The geometry of \( \mathcal{N}=3 \) AdS4 in massive IIA

Journal of High Energy Physics, Aug 2018

Abstract The geometry of the \( \mathcal{N}=3 \), SO(4)-invariant, AdS4 solution of massive type IIA supergravity that uplifts from the \( \mathcal{N}=3 \) vacuum of D = 4 \( \mathcal{N}=8 \) dyonic ISO(7) supergravity is investigated. Firstly, a D = 4, SO(4)-invariant restricted duality hierarchy is constructed and used to uplift the entire, dynamical SO(4)-invariant sector to massive type IIA. The resulting consistent uplift formulae are used to obtain a new local expression for the \( \mathcal{N}=3 \) AdS4 solution in massive IIA and analyse its geometry. Locally, the internal S6 geometry corresponds to a warped fibration of S2 and a hemisphere of S4. This can be regarded as a warped generalisation of the usual twistor fibration geometry. Finally, the triplet of Killing spinors corresponding to the \( \mathcal{N}=3 \) solution are constructed and shown to obey the massive type IIA Killing spinor equations.

A PDF file should load here. If you do not see its contents the file may be temporarily unavailable at the journal website or you do not have a PDF plug-in installed and enabled in your browser.

Alternatively, you can download the file locally and open with any standalone PDF reader:

https://link.springer.com/content/pdf/10.1007%2FJHEP08%282018%29133.pdf

The geometry of \( \mathcal{N}=3 \) AdS4 in massive IIA

Journal of High Energy Physics August 2018, 2018:133 | Cite as The geometry of \( \mathcal{N}=3 \) AdS4 in massive IIA AuthorsAuthors and affiliations G. Bruno De LucaGabriele Lo MonacoNiall T. MacphersonAlessandro TomasielloOscar Varela Open Access Regular Article - Theoretical Physics First Online: 22 August 2018 Received: 24 May 2018 Revised: 02 July 2018 Accepted: 20 July 2018 20 Downloads Abstract The geometry of the \( \mathcal{N}=3 \), SO(4)-invariant, AdS4 solution of massive type IIA supergravity that uplifts from the \( \mathcal{N}=3 \) vacuum of D = 4 \( \mathcal{N}=8 \) dyonic ISO(7) supergravity is investigated. Firstly, a D = 4, SO(4)-invariant restricted duality hierarchy is constructed and used to uplift the entire, dynamical SO(4)-invariant sector to massive type IIA. The resulting consistent uplift formulae are used to obtain a new local expression for the \( \mathcal{N}=3 \) AdS4 solution in massive IIA and analyse its geometry. Locally, the internal S6 geometry corresponds to a warped fibration of S2 and a hemisphere of S4. This can be regarded as a warped generalisation of the usual twistor fibration geometry. Finally, the triplet of Killing spinors corresponding to the \( \mathcal{N}=3 \) solution are constructed and shown to obey the massive type IIA Killing spinor equations. Keywords AdS-CFT Correspondence Flux compactifications Supergravity Models Superstring Vacua  ArXiv ePrint: 1805.04823 Download to read the full article text Notes Open Access This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited. References [1] L.J. Romans, Massive N = 2a Supergravity in Ten-Dimensions, Phys. Lett. B 169 (1986) 374 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar [2] A. Guarino, D.L. Jafferis and O. Varela, String Theory Origin of Dyonic N = 8 Supergravity and Its Chern-Simons Duals, Phys. Rev. Lett. 115 (2015) 091601 [arXiv:1504.08009] [INSPIRE].ADSCrossRefGoogle Scholar [3] A. Guarino and O. Varela, Consistent \( \mathcal{N}=8 \) truncation of massive IIA on S 6, JHEP 12 (2015) 020 [arXiv:1509.02526] [INSPIRE].ADSzbMATHGoogle Scholar [4] G. Dall’Agata, G. Inverso and M. Trigiante, Evidence for a family of SO(8) gauged supergravity theories, Phys. Rev. Lett. 109 (2012) 201301 [arXiv:1209.0760] [INSPIRE].ADSCrossRefGoogle Scholar [5] G. Dall’Agata, G. Inverso and A. Marrani, Symplectic Deformations of Gauged Maximal Supergravity, JHEP 07 (2014) 133 [arXiv:1405.2437] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar [6] G. Inverso, Electric-magnetic deformations of D = 4 gauged supergravities, JHEP 03 (2016) 138 [arXiv:1512.04500] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar [7] O. Varela, AdS 4 solutions of massive IIA from dyonic ISO(7) supergravity, JHEP 03 (2016) 071 [arXiv:1509.07117] [INSPIRE].ADSCrossRefGoogle Scholar [8] Y. Pang and J. Rong, N = 3 solution in dyonic ISO(7) gauged maximal supergravity and its uplift to massive type IIA supergravity, Phys. Rev. D 92 (2015) 085037 [arXiv:1508.05376] [INSPIRE].ADSMathSciNetGoogle Scholar [9] K. Behrndt and M. Cvetič, General N = 1 supersymmetric flux vacua of (massive) type IIA string theory, Phys. Rev. Lett. 95 (2005) 021601 [hep-th/0403049] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar [10] D. Lüst, F. Marchesano, L. Martucci and D. Tsimpis, Generalized non-supersymmetric flux vacua, JHEP 11 (2008) 021 [arXiv:0807.4540] [INSPIRE].MathSciNetCrossRefGoogle Scholar [11] F. Apruzzi, M. Fazzi, A. Passias, A. Rota and A. Tomasiello, Six-Dimensional Superconformal Theories and their Compactifications from Type IIA Supergravity, Phys. Rev. Lett. 115 (2015) 061601 [arXiv:1502.06616] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar [12] A. Rota and A. Tomasiello, AdS 4 compactifications of AdS 7 solutions in type-II supergravity, JHEP 07 (2015) 076 [arXiv:1502.06622] [INSPIRE].ADSCrossRefGoogle Scholar [13] D. Lüst and D. Tsimpis, Supersymmetric AdS 4 compactifications of IIA supergravity, JHEP 02 (2005) 027 [hep-th/0412250] [INSPIRE].CrossRefGoogle Scholar [14] M. Graña, R. Minasian, M. Petrini and A. Tomasiello, A Scan for new N = 1 vacua on twisted tori, JHEP 05 (2007) 031 [hep-th/0609124] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar [15] A. Tomasiello, New string vacua from twistor spaces, Phys. Rev. D 78 (2008) 046007 [arXiv:0712.1396] [INSPIRE].ADSMathSciNetGoogle Scholar [16] P. Koerber, D. Lüst and D. Tsimpis, Type IIA AdS 4 compactifications on cosets, interpolations and domain walls, JHEP 07 (2008) 017 [arXiv:0804.0614] [INSPIRE].ADSCrossRefGoogle Scholar [17] M. Petrini and A. Zaffaroni, N = 2 solutions of massive type IIA and their Chern-Simons duals, JHEP 09 (2009) 107 [arXiv:0904.4915] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar [18] D. Lüst and D. Tsimpis, New supersymmetric AdS 4 type-II vacua, JHEP 09 (2009) 098 [arXiv:0906.2561] [INSPIRE].CrossRefGoogle Scholar [19] A. Gallerati, H. Samtleben and M. Trigiante, The \( \mathcal{N}>2 \) supersymmetric AdS vacua in maximal supergravity, JHEP 12 (2014) 174 [arXiv:1410.0711] [INSPIRE].ADSCrossRefGoogle Scholar [20] M. Cvetič, G.W. Gibbons, H. Lü and C.N. Pope, Bianchi IX selfdual Einstein metrics and singular G 2 manifolds, Class. Quant. Grav. 20 (2003) 4239 [hep-th/0206151] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar [21] K. Behrndt and M. Cvetič, General N = 1 supersymmetric fluxes in massive type IIA string theory, Nucl. Phys. B 708 (2005) 45 [hep-th/0407263] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar [22] B.S. Acharya, J.M. Figueroa-O’Farrill, C.M. Hull and B.J. Spence, Branes at conical singularities and holography, Adv. Theor. Math. Phys. 2 (1999) 1249 [hep-th/9808014] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar [23] M.A. Awada, M.J. Duff and C.N. Pope, N = 8 Supergravity Breaks Down to N = 1, Phys. Rev. Lett. 50 (1983) 294 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar [24] A. Guarino and O. Varela, Dyonic ISO(7) supergravity and the duality hierarchy, JHEP 02 (2016) 079 [arXiv:1508.04432] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar [25] B. de Wit, H. Nicolai and H. Samtleben, Gauged Supergravities, Tensor Hierarchies and M-theory, JHEP 02 (2008) 044 [arXiv:0801.1294] [INSPIRE].MathSciNetCrossRefGoogle Scholar [26] E.A. Bergshoeff, J. Hartong, O. Hohm, M. Huebscher and T. Ortín, Gauge Theories, Duality Relations and the Tensor Hierarchy, JHEP 04 (2009) 123 [arXiv:0901.2054] [INSPIRE]. [27] A. Borghese, A. Guarino and D. Roest, All G 2 invariant critical points of maximal supergravity, JHEP 12 (2012) 108 [arXiv:1209.3003] [INSPIRE].ADSCrossRefGoogle Scholar [28] G. Dall’Agata and G. Inverso, On the Vacua of N = 8 Gauged Supergravity in 4 Dimensions, Nucl. Phys. B 859 (2012) 70 [arXiv:1112.3345] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar [29] H. Godazgar, M. Godazgar, O. Krüger and H. Nicolai, Consistent 4-form fluxes for maximal supergravity, JHEP 10 (2015) 169 [arXiv:1507.07684] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar [30] O. Varela, Complete D = 11 embedding of SO(8) supergravity, Phys. Rev. D 97 (2018) 045010 [arXiv:1512.04943] [INSPIRE].ADSMathSciNetGoogle Scholar [31] G.W. Gibbons, D.N. Page and C.N. Pope, Einstein Metrics on S 3 , R 3 and R 4 Bundles, Commun. Math. Phys. 127 (1990) 529 [INSPIRE].ADSCrossRefGoogle Scholar [32] G. Dall’Agata and N. Prezas, N = 1 geometries for M-theory and type IIA strings with fluxes, Phys. Rev. D 69 (2004) 066004 [hep-th/0311146] [INSPIRE].ADSMathSciNetGoogle Scholar [33] H. Nicolai and K. Pilch, Consistent Truncation of d = 11 Supergravity on AdS 4 × S 7, JHEP 03 (2012) 099 [arXiv:1112.6131] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar [34] Y. Pang and J. Rong, Evidence for the Holographic dual of \( \mathcal{N}=3 \) Solution in Massive Type IIA, Phys. Rev. D 93 (2016) 065038 [arXiv:1511.08223] [INSPIRE].ADSMathSciNetGoogle Scholar [35] D. Gaiotto and A. Tomasiello, The gauge dual of Romans mass, JHEP 01 (2010) 015 [arXiv:0901.0969] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar [36] D. Gaiotto and A. Tomasiello, Perturbing gauge/gravity duals by a Romans mass, J. Phys. A 42 (2009) 465205 [arXiv:0904.3959] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar [37] O. Aharony, D. Jafferis, A. Tomasiello and A. Zaffaroni, Massive type IIA string theory cannot be strongly coupled, JHEP 11 (2010) 047 [arXiv:1007.2451] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar [38] A. Guarino, J. Tarrio and O. Varela, Romans-mass-driven flows on the D2-brane, JHEP 08 (2016) 168 [arXiv:1605.09254] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar [39] R. Emparan, C.V. Johnson and R.C. Myers, Surface terms as counterterms in the AdS/CFT correspondence, Phys. Rev. D 60 (1999) 104001 [hep-th/9903238] [INSPIRE].ADSMathSciNetGoogle Scholar [40] D.L. Jafferis, I.R. Klebanov, S.S. Pufu and B.R. Safdi, Towards the F-Theorem: N = 2 Field Theories on the Three-Sphere, JHEP 06 (2011) 102 [arXiv:1103.1181] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar [41] S.F. Hassan, T-duality, space-time spinors and RR fields in curved backgrounds, Nucl. Phys. B 568 (2000) 145 [hep-th/9907152] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar [42] M. Gabella, D. Martelli, A. Passias and J. Sparks, \( \mathcal{N}=2 \) supersymmetric AdS 4 solutions of M-theory, Commun. Math. Phys. 325 (2014) 487 [arXiv:1207.3082] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar [43] A. Passias, G. Solard and A. Tomasiello, \( \mathcal{N}=2 \) supersymmetric AdS 4 solutions of type IIB supergravity, JHEP 04 (2018) 005 [arXiv:1709.09669] [INSPIRE].CrossRefzbMATHGoogle Scholar [44] A. Passias, D. Prins and A. Tomasiello, A massive class of \( \mathcal{N}=2 \) AdS 4 IIA solutions, arXiv:1805.03661 [INSPIRE]. [45] N.T. Macpherson and A. Tomasiello, Minimal flux Minkowski classification, JHEP 09 (2017) 126 [arXiv:1612.06885] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar [46] N.T. Macpherson, J. Montero and D. Prins, Mink 3 × S 3 solutions of type-II supergravity, Nucl. Phys. B 933 (2018) 185 [arXiv:1712.00851] [INSPIRE].ADSCrossRefGoogle Scholar [47] F. Apruzzi, J.C. Geipel, A. Legramandi, N.T. Macpherson and M. Zagermann, Minkowski 4 × S 2 solutions of IIB supergravity, Fortsch. Phys. 66 (2018) 1800006 [arXiv:1801.00800] [INSPIRE].CrossRefGoogle Scholar Copyright information © The Author(s) 2018 Authors and Affiliations G. Bruno De Luca1Gabriele Lo Monaco1Niall T. Macpherson2Alessandro Tomasiello1Oscar Varela345Email author1.Dipartimento di Fisica, Università di Milano-Bicocca and INFN, sezione di Milano-BicoccaMilanItaly2.SISSA International School for Advanced Studies and INFN, sezione di TriesteTriesteItaly3.Department of PhysicsUtah State UniversityLoganU.S.A.4.Departmento de Física Teórica and Instituto de Física Teórica UAM/CSICUniversidad Autónoma de MadridMadridSpain5.Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut)PotsdamGermany


This is a preview of a remote PDF: https://link.springer.com/content/pdf/10.1007%2FJHEP08%282018%29133.pdf

G. Bruno De Luca, Gabriele Lo Monaco, Niall T. Macpherson, Alessandro Tomasiello, Oscar Varela. The geometry of \( \mathcal{N}=3 \) AdS4 in massive IIA, Journal of High Energy Physics, 2018, 133, DOI: 10.1007/JHEP08(2018)133