#### Soft charges and electric-magnetic duality

Journal of High Energy Physics
August 2018, 2018:102 | Cite as
Soft charges and electric-magnetic duality
AuthorsAuthors and affiliations
V. HosseinzadehA. SerajM. M. Sheikh-Jabbari
Open Access
Regular Article - Theoretical Physics
First Online: 17 August 2018
Received: 07 July 2018
Accepted: 07 August 2018
45 Downloads
Abstract
The main focus of this work is to study magnetic soft charges of the four dimensional Maxwell theory. Imposing appropriate asymptotic falloff conditions, we compute the electric and magnetic soft charges and their algebra both at spatial and at null infinity. While the commutator of two electric or two magnetic soft charges vanish, the electric and magnetic soft charges satisfy a complex U(1) current algebra. This current algebra through Sugawara construction yields two U(1) Kac-Moody algebras. We repeat the charge analysis in the electric-magnetic duality-symmetric Maxwell theory and construct the duality-symmetric phase space where the electric and magnetic soft charges generate the respective boundary gauge transformations. We show that the generator of the electric-magnetic duality and the electric and magnetic soft charges form infinite copies of iso(2) algebra. Moreover, we study the algebra of charges associated with the global Poincaré symmetry of the background Minkowski spacetime and the soft charges. We discuss physical meaning and implication of our charges and their algebra.
Keywords Duality in Gauge Field Theories Gauge Symmetry Global Symmetries Spontaneous Symmetry Breaking
ArXiv ePrint: 1806.01901
Download to read the full article text
Notes
Open Access
This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
References
[1]
A. Strominger, Lectures on the Infrared Structure of Gravity and Gauge Theory, arXiv:1703.05448 [INSPIRE].
[2]
J. Lee and R.M. Wald, Local symmetries and constraints, J. Math. Phys. 31 (1990) 725 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
[3]
A. Ashtekar, L. Bombelli and O. Reula, The Covariant Phase Space Of Asymptotically Flat Gravitational Fields, PRINT-90-0318 (SYRACUSE) (1990), [INSPIRE].
[4]
A. Ashtekar, Asympotitc Quantization: Based on 1984 Naples Lectures, Monographs and Textbooks in physical science, 2, Bibliopolis, Naples, Italy, (1987).Google Scholar
[5]
M. Henneaux, Hamiltonian Form of the Path Integral for Theories with a Gauge Freedom, Phys. Rept. 126 (1985) 1 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
[6]
M. Henneaux and C. Teitelboim, Quantization of gauge systems, Princeton University Press, Princeton, U.S.A., (1992).zbMATHGoogle Scholar
[7]
J.D. Brown and M. Henneaux, Central Charges in the Canonical Realization of Asymptotic Symmetries: An Example from Three-Dimensional Gravity, Commun. Math. Phys. 104 (1986) 207 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
[8]
M. Henneaux and C. Troessaert, Asymptotic symmetries of electromagnetism at spatial infinity, JHEP 05 (2018) 137 [arXiv:1803.10194] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
[9]
M. Henneaux and C. Troessaert, Hamiltonian structure and asymptotic symmetries of the Einstein-Maxwell system at spatial infinity, JHEP 07 (2018) 171 [arXiv:1805.11288] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
[10]
D. Kapec, M. Pate and A. Strominger, New Symmetries of QED, Adv. Theor. Math. Phys. 21 (2017) 1769 [arXiv:1506.02906] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
[11]
L. Bieri, P. Chen and S.-T. Yau, The Electromagnetic Christodoulou Memory Effect and its Application to Neutron Star Binary Mergers, Class. Quant. Grav. 29 (2012) 215003 [arXiv:1110.0410] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
[12]
L. Bieri and D. Garfinkle, An electromagnetic analogue of gravitational wave memory, Class. Quant. Grav. 30 (2013) 195009 [arXiv:1307.5098] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
[13]
L. Susskind, Electromagnetic Memory, arXiv:1507.02584 [INSPIRE].
[14]
S. Pasterski, Asymptotic Symmetries and Electromagnetic Memory, JHEP 09 (2017) 154 [arXiv:1505.00716] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
[15]
Y. Hamada, M.-S. Seo and G. Shiu, Large gauge transformations and little group for soft photons, Phys. Rev. D 96 (2017) 105013 [arXiv:1704.08773] [INSPIRE].ADSGoogle Scholar
[16]
Y. Hamada and G. Shiu, Infinite Set of Soft Theorems in Gauge-Gravity Theories as Ward-Takahashi Identities, Phys. Rev. Lett. 120 (2018) 201601 [arXiv:1801.05528] [INSPIRE].ADSCrossRefGoogle Scholar
[17]
H. Hirai and S. Sugishita, Conservation Laws from Asymptotic Symmetry and Subleading Charges in QED, JHEP 07 (2018) 122 [arXiv:1805.05651] [INSPIRE].ADSCrossRefGoogle Scholar
[18]
E.E. Flanagan and D.A. Nichols, Observer dependence of angular momentum in general relativity and its relationship to the gravitational-wave memory effect, Phys. Rev. D 92 (2015) 084057 [arXiv:1411.4599] [INSPIRE].ADSMathSciNetGoogle Scholar
[19]
L. Bieri, D. Garfinkle and S.-T. Yau, Gravitational Waves and Their Memory in General Relativity, arXiv:1505.05213 [INSPIRE].
[20]
A. Tolish, L. Bieri, D. Garfinkle and R.M. Wald, Examination of a simple example of gravitational wave memory, Phys. Rev. D 90 (2014) 044060 [arXiv:1405.6396] [INSPIRE].ADSGoogle Scholar
[21]
M. Pate, A.-M. Raclariu and A. Strominger, Gravitational Memory in Higher Dimensions, JHEP 06 (2018) 138 [arXiv:1712.01204] [INSPIRE].ADSCrossRefGoogle Scholar
[22]
S.B. Giddings and A. Kinsella, Gauge-invariant observables, gravitational dressings and holography in AdS, arXiv:1802.01602 [INSPIRE].
[23]
P.P. Kulish and L.D. Faddeev, Asymptotic conditions and infrared divergences in quantum electrodynamics, Theor. Math. Phys. 4 (1970) 745 [INSPIRE].CrossRefzbMATHGoogle Scholar
[24]
B. Gabai and A. Sever, Large gauge symmetries and asymptotic states in QED, JHEP 12 (2016) 095 [arXiv:1607.08599] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
[25]
A. Herdegen, Asymptotic structure of electrodynamics revisited, Lett. Math. Phys. 107 (2017) 1439 [arXiv:1604.04170] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
[26]
C. Montonen and D.I. Olive, Magnetic Monopoles as Gauge Particles?, Phys. Lett. B 72 (1977) 117 [INSPIRE].ADSCrossRefGoogle Scholar
[27]
N. Seiberg and E. Witten, Electric-magnetic duality, monopole condensation and confinement in N = 2 supersymmetric Yang-Mills theory, Nucl. Phys. B 426 (1994) 19 [Erratum ibid. B 430 (1994) 485] [hep-th/9407087] [INSPIRE].
[28]
A. Strominger, Magnetic Corrections to the Soft Photon Theorem, Phys. Rev. Lett. 116 (2016) 031602 [arXiv:1509.00543] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
[29]
M. Campiglia and A. Laddha, Subleading soft photons and large gauge transformations, JHEP 11 (2016) 012 [arXiv:1605.09677] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
[30]
D. Zwanziger, Quantum field theory of particles with both electric and magnetic charges, Phys. Rev. 176 (1968) 1489 [INSPIRE].ADSCrossRefGoogle Scholar
[31]
D. Zwanziger, Local Lagrangian quantum field theory of electric and magnetic charges, Phys. Rev. D 3 (1971) 880 [INSPIRE].ADSMathSciNetGoogle Scholar
[32]
C. Cardona, Asymptotic Symmetries of Yang-Mills with Theta Term and Monopoles, arXiv:1504.05542 [INSPIRE].
[33]
L. Freidel and D. Pranzetti, Electromagnetic duality and central charge, arXiv:1806.03161 [INSPIRE].
[34]
A. Seraj, Conserved charges, surface degrees of freedom and black hole entropy, Ph.D. thesis, IPM, Tehran, 2016. arXiv:1603.02442 [INSPIRE].
[35]
A. Fiorucci and G. Compère, Advanced Lectures in General Relativity, Ph.D. thesis, Brussels U., PTM, 2018. arXiv:1801.07064 [INSPIRE].
[36]
N. Woodhouse, Geometric Quantization, Oxford Mathematical Monographs, Clarendon, Oxford, U.K. (1980).zbMATHGoogle Scholar
[37]
J.D. Jackson, Classical Electrodynamics, Wiley, (1998).Google Scholar
[38]
A. Seraj, Multipole charge conservation and implications on electromagnetic radiation, JHEP 06 (2017) 080 [arXiv:1610.02870] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
[39]
M. Campiglia and A. Laddha, Asymptotic symmetries of QED and Weinberg’s soft photon theorem, JHEP 07 (2015) 115 [arXiv:1505.05346] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
[40]
W. Donnelly and L. Freidel, Local subsystems in gauge theory and gravity, JHEP 09 (2016) 102 [arXiv:1601.04744] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
[41]
M. Geiller, Edge modes and corner ambiguities in 3d Chern-Simons theory and gravity, Nucl. Phys. B 924 (2017) 312 [arXiv:1703.04748] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
[42]
M. Geiller, Lorentz-diffeomorphism edge modes in 3d gravity, JHEP 02 (2018) 029 [arXiv:1712.05269] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
[43]
A.J. Speranza, Local phase space and edge modes for diffeomorphism-invariant theories, JHEP 02 (2018) 021 [arXiv:1706.05061] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
[44]
T. He, P. Mitra, A.P. Porfyriadis and A. Strominger, New Symmetries of Massless QED, JHEP 10 (2014) 112 [arXiv:1407.3789] [INSPIRE].ADSCrossRefGoogle Scholar
[45]
R.M. Wald, Black hole entropy is the Noether charge, Phys. Rev. D 48 (1993) R3427 [gr-qc/9307038] [INSPIRE].
[46]
V. Iyer and R.M. Wald, Some properties of Noether charge and a proposal for dynamical black hole entropy, Phys. Rev. D 50 (1994) 846 [gr-qc/9403028] [INSPIRE].
[47]
K.Y. Bliokh, A.Y. Bekshaev and F. Nori, Dual electromagnetism: Helicity, spin, momentum and angular momentum, New J. Phys. 15 (2013) 033026 [arXiv:1208.4523] [INSPIRE].ADSCrossRefGoogle Scholar
[48]
R.P. Cameron and S.M. Barnett, Electric-magnetic symmetry and Noether’s theorem, New J. Phys. 14 (2012) 123019.ADSMathSciNetCrossRefGoogle Scholar
[49]
S. Deser and C. Teitelboim, Duality Transformations of Abelian and Nonabelian Gauge Fields, Phys. Rev. D 13 (1976) 1592 [INSPIRE].ADSGoogle Scholar
[50]
G. Barnich and A. Gomberoff, Dyons with potentials: Duality and black hole thermodynamics, Phys. Rev. D 78 (2008) 025025 [arXiv:0705.0632] [INSPIRE].ADSMathSciNetGoogle Scholar
[51]
C. Bunster, A. Gomberoff and A. Pérez, Regge-Teitelboim analysis of the symmetries of electromagnetic and gravitational fields on asymptotically null spacelike surfaces, arXiv:1805.03728 [INSPIRE].
[52]
T. Regge and C. Teitelboim, Role of Surface Integrals in the Hamiltonian Formulation of General Relativity, Annals Phys. 88 (1974) 286 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
[53]
A. Bhattacharyya, L.-Y. Hung and Y. Jiang, Null hypersurface quantization, electromagnetic duality and asymptotic symmetries of Maxwell theory, JHEP 03 (2018) 027 [arXiv:1708.05606] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
[54]
Y. Hamada, M.-S. Seo and G. Shiu, Electromagnetic Duality and the Electric Memory Effect, JHEP 02 (2018) 046 [arXiv:1711.09968] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
[55]
R.P. Cameron, S.M. Barnett and A.M. Yao, Optical helicity, optical spin and related quantities in electromagnetic theory, New J. Phys. 14 (2012) 053050.ADSCrossRefGoogle Scholar
[56]
S. Weinberg, Photons and Gravitons in s Matrix Theory: Derivation of Charge Conservation and Equality of Gravitational and Inertial Mass, Phys. Rev. 135 (1964) B1049 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
[57]
G. Barnich and C. Troessaert, Aspects of the BMS/CFT correspondence, JHEP 05 (2010) 062 [arXiv:1001.1541] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
[58]
G. Barnich and C. Troessaert, BMS charge algebra, JHEP 12 (2011) 105 [arXiv:1106.0213] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
[59]
G. Barnich, Centrally extended BMS 4 Lie algebroid, JHEP 06 (2017) 007 [arXiv:1703.08704] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
[60]
E. Bogomolny, S. Mashkevich and S. Ouvry, Scattering on two Aharonov-Bohm vortices with opposite fluxes, J. Phys. A 43 (2010) 354029 [arXiv:1003.0294] [INSPIRE].MathSciNetzbMATHGoogle Scholar
[61]
C. Cheung, A. de la Fuente and R. Sundrum, 4D scattering amplitudes and asymptotic symmetries from 2D CFT, JHEP 01 (2017) 112 [arXiv:1609.00732] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
[62]
A. Nande, M. Pate and A. Strominger, Soft Factorization in QED from 2D Kac-Moody Symmetry, JHEP 02 (2018) 079 [arXiv:1705.00608] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
[63]
H. Afshar, D. Grumiller, W. Merbis, A. Pérez, D. Tempo and R. Troncoso, Soft hairy horizons in three spacetime dimensions, Phys. Rev. D 95 (2017) 106005 [arXiv:1611.09783] [INSPIRE].ADSGoogle Scholar
[64]
H. Afshar, D. Grumiller and M.M. Sheikh-Jabbari, Near horizon soft hair as microstates of three dimensional black holes, Phys. Rev. D 96 (2017) 084032 [arXiv:1607.00009] [INSPIRE].ADSGoogle Scholar
[65]
H. Afshar, D. Grumiller, M.M. Sheikh-Jabbari and H. Yavartanoo, Horizon fluff, semi-classical black hole microstates — Log-corrections to BTZ entropy and black hole/particle correspondence, JHEP 08 (2017) 087 [arXiv:1705.06257] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
[66]
H. Afshar, E. Esmaeili and M.M. Sheikh-Jabbari, Asymptotic Symmetries in p-Form Theories, JHEP 05 (2018) 042 [arXiv:1801.07752] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
[67]
C. Bunster and M. Henneaux, Can (Electric-Magnetic) Duality Be Gauged?, Phys. Rev. D 83 (2011) 045031 [arXiv:1011.5889] [INSPIRE].ADSGoogle Scholar
Copyright information
© The Author(s) 2018
Authors and Affiliations
V. Hosseinzadeh1A. Seraj1Email authorView author's OrcID profileM. M. Sheikh-Jabbari11.School of PhysicsInstitute for Research in Fundamental Sciences (IPM)TehranIran