#### 4D gauge theories with conformal matter

Journal of High Energy Physics
September 2018, 2018:88 | Cite as
4D gauge theories with conformal matter
AuthorsAuthors and affiliations
Fabio ApruzziJonathan J. HeckmanDavid R. MorrisonLuigi Tizzano
Open Access
Regular Article - Theoretical Physics
First Online: 17 September 2018
Received: 04 April 2018
Accepted: 04 September 2018
Abstract
One of the hallmarks of 6D superconformal field theories (SCFTs) is that on a partial tensor branch, all known theories resemble quiver gauge theories with links comprised of 6D conformal matter, a generalization of weakly coupled hypermultiplets. In this paper we construct 4D quiverlike gauge theories in which the links are obtained from compactifications of 6D conformal matter on Riemann surfaces with flavor symmetry fluxes. This includes generalizations of super QCD with exceptional gauge groups and quarks replaced by 4D conformal matter. Just as in super QCD, we find evidence for a conformal window as well as confining gauge group factors depending on the total amount of matter. We also present F-theory realizations of these field theories via elliptically fibered Calabi-Yau fourfolds. Gauge groups (and flavor symmetries) come from 7-branes wrapped on surfaces, conformal matter localizes at the intersection of pairs of 7-branes, and Yukawas between 4D conformal matter localize at points coming from triple intersections of 7-branes. Quantum corrections can also modify the classical moduli space of the F-theory model, matching expectations from effective field theory.
Keywords F-Theory Supersymmetric Gauge Theory Brane Dynamics in Gauge Theories Conformal Field Models in String Theory
ArXiv ePrint: 1803.00582
Download to read the full article text
Notes
Open Access
This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
References
[1]
E. Witten, String theory dynamics in various dimensions, Nucl. Phys. B 443 (1995) 85 [hep-th/9503124] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
[2]
E. Witten, Some comments on string dynamics, in Future perspectives in string theory. Proceedings, Conference, Strings’95, Los Angeles, U.S.A., March 13–18, 1995, pp. 501–523, hep-th/9507121 [INSPIRE].
[3]
A. Strominger, Open p-branes, Phys. Lett. B 383 (1996) 44 [hep-th/9512059] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
[4]
N. Seiberg, Nontrivial fixed points of the renormalization group in six-dimensions, Phys. Lett. B 390 (1997) 169 [hep-th/9609161] [INSPIRE].ADSCrossRefGoogle Scholar
[5]
E. Witten, Small instantons in string theory, Nucl. Phys. B 460 (1996) 541 [hep-th/9511030] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
[6]
O.J. Ganor and A. Hanany, Small E 8 instantons and tensionless noncritical strings, Nucl. Phys. B 474 (1996) 122 [hep-th/9602120] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
[7]
D.R. Morrison and C. Vafa, Compactifications of F-theory on Calabi-Yau threefolds. 2., Nucl. Phys. B 476 (1996) 437 [hep-th/9603161] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
[8]
N. Seiberg and E. Witten, Comments on string dynamics in six-dimensions, Nucl. Phys. B 471 (1996) 121 [hep-th/9603003] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
[9]
M. Bershadsky and A. Johansen, Colliding singularities in F-theory and phase transitions, Nucl. Phys. B 489 (1997) 122 [hep-th/9610111] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
[10]
I. Brunner and A. Karch, Branes at orbifolds versus Hanany Witten in six-dimensions, JHEP 03 (1998) 003 [hep-th/9712143] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
[11]
J.D. Blum and K.A. Intriligator, Consistency conditions for branes at orbifold singularities, Nucl. Phys. B 506 (1997) 223 [hep-th/9705030] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
[12]
P.S. Aspinwall and D.R. Morrison, Point-like instantons on K3 orbifolds, Nucl. Phys. B 503 (1997) 533 [hep-th/9705104] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
[13]
K.A. Intriligator, New string theories in six-dimensions via branes at orbifold singularities, Adv. Theor. Math. Phys. 1 (1998) 271 [hep-th/9708117] [INSPIRE].MathSciNetzbMATHCrossRefGoogle Scholar
[14]
A. Hanany and A. Zaffaroni, Branes and six-dimensional supersymmetric theories, Nucl. Phys. B 529 (1998) 180 [hep-th/9712145] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
[15]
J.J. Heckman, D.R. Morrison and C. Vafa, On the Classification of 6D SCFTs and Generalized ADE Orbifolds, JHEP 05 (2014) 028 [Erratum ibid. 06 (2015) 017] [arXiv:1312.5746] [INSPIRE].
[16]
D. Gaiotto and A. Tomasiello, Holography for (1, 0) theories in six dimensions, JHEP 12 (2014) 003 [arXiv:1404.0711] [INSPIRE].ADSCrossRefGoogle Scholar
[17]
M. Del Zotto, J.J. Heckman, A. Tomasiello and C. Vafa, 6d Conformal Matter, JHEP 02 (2015) 054 [arXiv:1407.6359] [INSPIRE].MathSciNetzbMATHCrossRefGoogle Scholar
[18]
M. Del Zotto, J.J. Heckman, D.R. Morrison and D.S. Park, 6D SCFTs and Gravity, JHEP 06 (2015) 158 [arXiv:1412.6526] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
[19]
J.J. Heckman, More on the Matter of 6D SCFTs, Phys. Lett. B 747 (2015) 73 [arXiv:1408.0006] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
[20]
L. Bhardwaj, Classification of 6d \( \mathcal{N} \) = (1, 0) gauge theories, JHEP 11 (2015) 002 [arXiv:1502.06594] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
[21]
C.-M. Chang and Y.-H. Lin, Carving Out the End of the World or (Superconformal Bootstrap in Six Dimensions), JHEP 08 (2017) 128 [arXiv:1705.05392] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
[22]
F. Apruzzi, M. Fazzi, D. Rosa and A. Tomasiello, All AdS 7 solutions of type-II supergravity, JHEP 04 (2014) 064 [arXiv:1309.2949] [INSPIRE].ADSCrossRefGoogle Scholar
[23]
J.J. Heckman, D.R. Morrison, T. Rudelius and C. Vafa, Atomic Classification of 6D SCFTs, Fortsch. Phys. 63 (2015) 468 [arXiv:1502.05405] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
[24]
M. Del Zotto, J.J. Heckman, D.S. Park and T. Rudelius, On the Defect Group of a 6D SCFT, Lett. Math. Phys. 106 (2016) 765 [arXiv:1503.04806] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
[25]
D. Gaiotto and S.S. Razamat, \( \mathcal{N} \) = 1 theories of class \( {\mathcal{S}}_k \), JHEP 07 (2015) 073 [arXiv:1503.05159] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
[26]
K. Ohmori, H. Shimizu, Y. Tachikawa and K. Yonekura, 6d \( \mathcal{N} \) = (1, 0) theories on T 2 and class S theories: Part I, JHEP 07 (2015) 014 [arXiv:1503.06217] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
[27]
S. Franco, H. Hayashi and A. Uranga, Charting Class \( {\mathcal{S}}_k \) Territory, Phys. Rev. D 92 (2015) 045004 [arXiv:1504.05988] [INSPIRE].ADSGoogle Scholar
[28]
M. Del Zotto, C. Vafa and D. Xie, Geometric engineering, mirror symmetry and \( 6{\mathrm{d}}_{\left(1,0\right)}\to 4{\mathrm{d}}_{\left(\mathcal{N} = 2\right)} \), JHEP 11 (2015) 123 [arXiv:1504.08348] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
[29]
J.J. Heckman, D.R. Morrison, T. Rudelius and C. Vafa, Geometry of 6D RG Flows, JHEP 09 (2015) 052 [arXiv:1505.00009] [INSPIRE].MathSciNetzbMATHCrossRefGoogle Scholar
[30]
J. Louis and S. Lüst, Supersymmetric AdS 7 backgrounds in half-maximal supergravity and marginal operators of (1, 0) SCFTs, JHEP 10 (2015) 120 [arXiv:1506.08040] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
[31]
C. Cordova, T.T. Dumitrescu and K. Intriligator, Anomalies, renormalization group flows and the a-theorem in six-dimensional (1, 0) theories, JHEP 10 (2016) 080 [arXiv:1506.03807] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
[32]
A. Hanany and K. Maruyoshi, Chiral theories of class \( \mathcal{S} \), JHEP 12 (2015) 080 [arXiv:1505.05053] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
[33]
M. Aganagic and N. Haouzi, ADE Little String Theory on a Riemann Surface (and Triality), arXiv:1506.04183 [INSPIRE].
[34]
K. Ohmori, H. Shimizu, Y. Tachikawa and K. Yonekura, 6d \( \mathcal{N} \) = (1, 0) theories on S 1 /T 2 and class S theories: part II, JHEP 12 (2015) 131 [arXiv:1508.00915] [INSPIRE].ADSGoogle Scholar
[35]
I. Coman, E. Pomoni, M. Taki and F. Yagi, Spectral curves of \( \mathcal{N} \) = 1 theories of class \( {\mathcal{S}}_k \), JHEP 06 (2017) 136 [arXiv:1512.06079] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
[36]
S. Cremonesi and A. Tomasiello, 6d holographic anomaly match as a continuum limit, JHEP 05 (2016) 031 [arXiv:1512.02225] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
[37]
J.J. Heckman, T. Rudelius and A. Tomasiello, 6D RG Flows and Nilpotent Hierarchies, JHEP 07 (2016) 082 [arXiv:1601.04078] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
[38]
C. Cordova, T.T. Dumitrescu and K. Intriligator, Deformations of Superconformal Theories, JHEP 11 (2016) 135 [arXiv:1602.01217] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
[39]
D.R. Morrison and C. Vafa, F-theory and \( \mathcal{N} \) = 1 SCFTs in four dimensions, JHEP 08 (2016) 070 [arXiv:1604.03560] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
[40]
J.J. Heckman, P. Jefferson, T. Rudelius and C. Vafa, Punctures for theories of class \( {\mathcal{S}}_{\varGamma } \), JHEP 03 (2017) 171 [arXiv:1609.01281] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
[41]
C. Cordova, T.T. Dumitrescu and K. Intriligator, Multiplets of Superconformal Symmetry in Diverse Dimensions, arXiv:1612.00809 [INSPIRE].
[42]
H.-C. Kim, S. Kim and J. Park, 6d strings from new chiral gauge theories, arXiv:1608.03919 [INSPIRE].
[43]
H. Shimizu and Y. Tachikawa, Anomaly of strings of 6d \( \mathcal{N} \) = (1, 0) theories, JHEP 11 (2016) 165 [arXiv:1608.05894] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
[44]
N. Mekareeya, T. Rudelius and A. Tomasiello, T-branes, Anomalies and Moduli Spaces in 6D SCFTs, JHEP 10 (2017) 158 [arXiv:1612.06399] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
[45]
M. Del Zotto and G. Lockhart, On Exceptional Instanton Strings, JHEP 09 (2017) 081 [arXiv:1609.00310] [INSPIRE].MathSciNetzbMATHCrossRefGoogle Scholar
[46]
F. Apruzzi, F. Hassler, J.J. Heckman and I.V. Melnikov, From 6D SCFTs to Dynamic GLSMs, Phys. Rev. D 96 (2017) 066015 [arXiv:1610.00718] [INSPIRE].ADSGoogle Scholar
[47]
S.S. Razamat, C. Vafa and G. Zafrir, 4d \( \mathcal{N} \) = 1 from 6d (1, 0), JHEP 04 (2017) 064 [arXiv:1610.09178] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
[48]
I. Bah, A. Hanany, K. Maruyoshi, S.S. Razamat, Y. Tachikawa and G. Zafrir, 4d \( \mathcal{N} \) = 1 from 6d \( \mathcal{N} \) = (1, 0) on a torus with fluxes, JHEP 06 (2017) 022 [arXiv:1702.04740] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
[49]
I. Bah, A. Passias and A. Tomasiello, AdS 5 compactifications with punctures in massive IIA supergravity, JHEP 11 (2017) 050 [arXiv:1704.07389] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
[50]
M. Del Zotto, J.J. Heckman and D.R. Morrison, 6D SCFTs and Phases of 5D Theories, JHEP 09 (2017) 147 [arXiv:1703.02981] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
[51]
F. Apruzzi, J.J. Heckman and T. Rudelius, Green-Schwarz Automorphisms and 6D SCFTs, JHEP 02 (2018) 157 [arXiv:1707.06242] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
[52]
J.J. Heckman and L. Tizzano, 6D Fractional Quantum Hall Effect, JHEP 05 (2018) 120 [arXiv:1708.02250] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
[53]
H.-C. Kim, S.S. Razamat, C. Vafa and G. Zafrir, E-String Theory on Riemann Surfaces, Fortsch. Phys. 66 (2018) 1700074 [arXiv:1709.02496] [INSPIRE].MathSciNetCrossRefGoogle Scholar
[54]
S.S. Razamat and G. Zafrir, E 8 orbits of IR dualities, JHEP 11 (2017) 115 [arXiv:1709.06106] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
[55]
F. Hassler and J.J. Heckman, Punctures and Dynamical Systems, arXiv:1711.03973 [INSPIRE].
[56]
T. Bourton and E. Pomoni, Instanton counting in Class \( {\mathcal{S}}_k \), arXiv:1712.01288 [INSPIRE].
[57]
F. Apruzzi and M. Fazzi, AdS 7 /CFT 6 with orientifolds, JHEP 01 (2018) 124 [arXiv:1712.03235] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
[58]
N. Seiberg and E. Witten, Electric-magnetic duality, monopole condensation and confinement in N = 2 supersymmetric Yang-Mills theory, Nucl. Phys. B 426 (1994) 19 [Erratum ibid. B 430 (1994) 485] [hep-th/9407087] [INSPIRE].
[59]
N. Seiberg and E. Witten, Monopoles, duality and chiral symmetry breaking in N = 2 supersymmetric QCD, Nucl. Phys. B 431 (1994) 484 [hep-th/9408099] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
[60]
N. Seiberg, Electric-magnetic duality in supersymmetric nonAbelian gauge theories, Nucl. Phys. B 435 (1995) 129 [hep-th/9411149] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
[61]
C. Vafa, Geometric origin of Montonen-Olive duality, Adv. Theor. Math. Phys. 1 (1998) 158 [hep-th/9707131] [INSPIRE].MathSciNetzbMATHCrossRefGoogle Scholar
[62]
E. Witten, Solutions of four-dimensional field theories via M-theory, Nucl. Phys. B 500 (1997) 3 [hep-th/9703166] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
[63]
D. Gaiotto, N = 2 dualities, JHEP 08 (2012) 034 [arXiv:0904.2715] [INSPIRE].ADSCrossRefGoogle Scholar
[64]
F. Apruzzi, M. Fazzi, A. Passias, A. Rota and A. Tomasiello, Six-Dimensional Superconformal Theories and their Compactifications from Type IIA Supergravity, Phys. Rev. Lett. 115 (2015) 061601 [arXiv:1502.06616] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
[65]
H.-C. Kim, S.S. Razamat, C. Vafa and G. Zafrir, D-type Conformal Matter and SU/USp Quivers, JHEP 06 (2018) 058 [arXiv:1802.00620] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
[66]
C. Beasley, J.J. Heckman and C. Vafa, GUTs and Exceptional Branes in F-theory — I, JHEP 01 (2009) 058 [arXiv:0802.3391] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
[67]
R. Donagi and M. Wijnholt, Model Building with F-theory, Adv. Theor. Math. Phys. 15 (2011) 1237 [arXiv:0802.2969] [INSPIRE].MathSciNetzbMATHCrossRefGoogle Scholar
[68]
J.J. Heckman, Particle Physics Implications of F-theory, Ann. Rev. Nucl. Part. Sci. 60 (2010) 237 [arXiv:1001.0577] [INSPIRE].ADSCrossRefGoogle Scholar
[69]
T. Weigand, Lectures on F-theory compactifications and model building, Class. Quant. Grav. 27 (2010) 214004 [arXiv:1009.3497] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
[70]
D.R. Morrison and W. Taylor, Classifying bases for 6D F-theory models, Central Eur. J. Phys. 10 (2012) 1072 [arXiv:1201.1943] [INSPIRE].ADSzbMATHGoogle Scholar
[71]
K. Ohmori, H. Shimizu, Y. Tachikawa and K. Yonekura, Anomaly polynomial of general 6d SCFTs, PTEP 2014 (2014) 103B07 [arXiv:1408.5572] [INSPIRE].
[72]
F. Benini, Y. Tachikawa and B. Wecht, Sicilian gauge theories and N = 1 dualities, JHEP 01 (2010) 088 [arXiv:0909.1327] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
[73]
K.A. Intriligator and B. Wecht, The exact superconformal R symmetry maximizes a, Nucl. Phys. B 667 (2003) 183 [hep-th/0304128] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
[74]
D. Anselmi, D.Z. Freedman, M.T. Grisaru and A.A. Johansen, Nonperturbative formulas for central functions of supersymmetric gauge theories, Nucl. Phys. B 526 (1998) 543 [hep-th/9708042] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
[75]
V.A. Novikov, M.A. Shifman, A.I. Vainshtein and V.I. Zakharov, Exact Gell-Mann-Low Function of Supersymmetric Yang-Mills Theories from Instanton Calculus, Nucl. Phys. B 229 (1983) 381 [INSPIRE].ADSCrossRefGoogle Scholar
[76]
V.A. Novikov, M.A. Shifman, A.I. Vainshtein and V.I. Zakharov, β-function in Supersymmetric Gauge Theories: Instantons Versus Traditional Approach, Phys. Lett. B 166 (1986) 329 [Yad. Fiz. 43 (1986) 459] [INSPIRE].
[77]
M.A. Shifman, A.I. Vainshtein and V.I. Zakharov, Exact Gell-Mann-Low function in supersymmetric electrodynamics, Phys. Lett. B 166 (1986) 334 [INSPIRE].ADSCrossRefGoogle Scholar
[78]
N. Arkani-Hamed and H. Murayama, Holomorphy, rescaling anomalies and exact β-functions in supersymmetric gauge theories, JHEP 06 (2000) 030 [hep-th/9707133] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
[79]
D. Gaiotto, A. Neitzke and Y. Tachikawa, Argyres-Seiberg duality and the Higgs branch, Commun. Math. Phys. 294 (2010) 389 [arXiv:0810.4541] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
[80]
Y. Tachikawa and B. Wecht, Explanation of the Central Charge Ratio 27/32 in Four-Dimensional Renormalization Group Flows between Superconformal Theories, Phys. Rev. Lett. 103 (2009) 061601 [arXiv:0906.0965] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
[81]
J.J. Heckman, Y. Tachikawa, C. Vafa and B. Wecht, N = 1 SCFTs from Brane Monodromy, JHEP 11 (2010) 132 [arXiv:1009.0017] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
[82]
J. McGrane and B. Wecht, Theories of class \( \mathcal{S} \) and new \( \mathcal{N} \) = 1 SCFTs, JHEP 06 (2015) 047 [arXiv:1409.7668] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
[83]
K. Maruyoshi and J. Song, \( \mathcal{N} \) = 1 deformations and RG flows of \( \mathcal{N} \) = 2 SCFTs, JHEP 02 (2017) 075 [arXiv:1607.04281] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
[84]
A. Collinucci, S. Giacomelli, R. Savelli and R. Valandro, T-branes through 3d mirror symmetry, JHEP 07 (2016) 093 [arXiv:1603.00062] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
[85]
A. Collinucci, S. Giacomelli and R. Valandro, T-branes, monopoles and S-duality, JHEP 10 (2017) 113 [arXiv:1703.09238] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
[86]
P. Agarwal, I. Bah, K. Maruyoshi and J. Song, Quiver tails and \( \mathcal{N} \) = 1 SCFTs from M5-branes, JHEP 03 (2015) 049 [arXiv:1409.1908] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
[87]
I. Bah, C. Beem, N. Bobev and B. Wecht, Four-Dimensional SCFTs from M5-Branes, JHEP 06 (2012) 005 [arXiv:1203.0303] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
[88]
I. Bah and N. Bobev, Linear quivers and \( \mathcal{N} \) = 1 SCFTs from M5-branes, JHEP 08 (2014) 121 [arXiv:1307.7104] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
[89]
O. Chacaltana, J. Distler and A. Trimm, Tinkertoys for the Twisted D-Series, JHEP 04 (2015) 173 [arXiv:1309.2299] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
[90]
O. Chacaltana, J. Distler and A. Trimm, Tinkertoys for the Twisted E 6 Theory, arXiv:1501.00357 [INSPIRE].
[91]
O. Chacaltana, J. Distler, A. Trimm and Y. Zhu, Tinkertoys for the E 7 Theory, JHEP 05 (2018) 031 [arXiv:1704.07890] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
[92]
O. Chacaltana, J. Distler, A. Trimm and Y. Zhu, Tinkertoys for the E 8 Theory, arXiv:1802.09626 [INSPIRE].
[93]
K. Maruyoshi, Y. Tachikawa, W. Yan and K. Yonekura, N = 1 dynamics with T N theory, JHEP 10 (2013) 010 [arXiv:1305.5250] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
[94]
S. Cecotti, C. Cordova, J.J. Heckman and C. Vafa, T-Branes and Monodromy, JHEP 07 (2011) 030 [arXiv:1010.5780] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
[95]
L.B. Anderson, J.J. Heckman and S. Katz, T-Branes and Geometry, JHEP 05 (2014) 080 [arXiv:1310.1931] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
[96]
A. Collinucci and R. Savelli, T-branes as branes within branes, JHEP 09 (2015) 161 [arXiv:1410.4178] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
[97]
I. Bena, J. Blåbäck, R. Minasian and R. Savelli, There and back again: A T-brane’s tale, JHEP 11 (2016) 179 [arXiv:1608.01221] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
[98]
F. Marchesano and S. Schwieger, T-branes and α′-corrections, JHEP 11 (2016) 123 [arXiv:1609.02799] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
[99]
L.B. Anderson, J.J. Heckman, S. Katz and L. Schaposnik, T-Branes at the Limits of Geometry, JHEP 10 (2017) 058 [arXiv:1702.06137] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
[100]
I. Bena, J. Blåbäck and R. Savelli, T-branes and Matrix Models, JHEP 06 (2017) 009 [arXiv:1703.06106] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
[101]
F. Marchesano, R. Savelli and S. Schwieger, Compact T-branes, JHEP 09 (2017) 132 [arXiv:1707.03797] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
[102]
E. Witten, Toroidal compactification without vector structure, JHEP 02 (1998) 006 [hep-th/9712028] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
[103]
J. de Boer et al., Triples, fluxes and strings, Adv. Theor. Math. Phys. 4 (2002) 995 [hep-th/0103170] [INSPIRE].MathSciNetzbMATHCrossRefGoogle Scholar
[104]
Y. Tachikawa, Frozen singularities in M and F-theory, JHEP 06 (2016) 128 [arXiv:1508.06679] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
[105]
L. Bhardwaj, D.R. Morrison, Y. Tachikawa and A. Tomasiello, The frozen phase of F-theory, to appear.Google Scholar
[106]
E. Witten, Nonperturbative superpotentials in string theory, Nucl. Phys. B 474 (1996) 343 [hep-th/9604030] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
[107]
J.A. Minahan and D. Nemeschansky, An N = 2 superconformal fixed point with E 6 global symmetry, Nucl. Phys. B 482 (1996) 142 [hep-th/9608047] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
[108]
J.A. Minahan and D. Nemeschansky, Superconformal fixed points with E(n) global symmetry, Nucl. Phys. B 489 (1997) 24 [hep-th/9610076] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
[109]
S.H. Katz and C. Vafa, Geometric engineering of N = 1 quantum field theories, Nucl. Phys. B 497 (1997) 196 [hep-th/9611090] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
[110]
J.J. Heckman, J. Marsano, N. Saulina, S. Schäfer-Nameki and C. Vafa, Instantons and SUSY breaking in F-theory, arXiv:0808.1286 [INSPIRE].
[111]
R. Donagi and M. Wijnholt, MSW Instantons, JHEP 06 (2013) 050 [arXiv:1005.5391] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
[112]
M. Cvetič, R. Donagi, J. Halverson and J. Marsano, On Seven-Brane Dependent Instanton Prefactors in F-theory, JHEP 11 (2012) 004 [arXiv:1209.4906] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
[113]
S. Schäfer-Nameki and T. Weigand, F-theory and 2d (0, 2) theories, JHEP 05 (2016) 059 [arXiv:1601.02015] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
[114]
F. Apruzzi, F. Hassler, J.J. Heckman and I.V. Melnikov, UV Completions for Non-Critical Strings, JHEP 07 (2016) 045 [arXiv:1602.04221] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
[115]
C. Lawrie, S. Schäfer-Nameki and T. Weigand, The gravitational sector of 2d (0, 2) F-theory vacua, JHEP 05 (2017) 103 [arXiv:1612.06393] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
[116]
M. Bershadsky, K.A. Intriligator, S. Kachru, D.R. Morrison, V. Sadov and C. Vafa, Geometric singularities and enhanced gauge symmetries, Nucl. Phys. B 481 (1996) 215 [hep-th/9605200] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
[117]
T. Hayakawa, Blowing ups of 3-dimensional terminal singularities, Publ. Res. Inst. Math. Sci. 35 (1999) 515.MathSciNetzbMATHCrossRefGoogle Scholar
[118]
P. Wagreich, Elliptic singularities of surfaces, Amer. J. Math. 92 (1970) 419.MathSciNetzbMATHCrossRefGoogle Scholar
[119]
Y. Hayakawa, Degenaration of Calabi-Yau manifold with W-P metric, alg-geom/9507016.
[120]
C.-L. Wang, On the incompleteness of the Weil-Petersson metric along degenerations of Calabi-Yau manifolds, Math. Res. Lett. 4 (1997) 157.ADSMathSciNetzbMATHCrossRefGoogle Scholar
Copyright information
© The Author(s) 2018
Authors and Affiliations
Fabio Apruzzi12Email authorJonathan J. Heckman1David R. Morrison34View author's OrcID profileLuigi Tizzano51.Department of Physics and AstronomyUniversity of PennsylvaniaPhiladelphiaU.S.A.2.Department of PhysicsUniversity of North CarolinaChapel HillU.S.A.3.Department of MathematicsUniversity of California Santa BarbaraSanta BarbaraU.S.A.4.Department of PhysicsUniversity of California Santa BarbaraSanta BarbaraU.S.A.5.Department of Physics and AstronomyUppsala UniversityUppsalaSweden