#### Combined explanations of B-physics anomalies: the sterile neutrino solution

Journal of High Energy Physics
October 2018, 2018:92 | Cite as
Combined explanations of B-physics anomalies: the sterile neutrino solution
AuthorsAuthors and affiliations
Aleksandr AzatovDaniele BarducciDiptimoy GhoshDavid MarzoccaLorenzo Ubaldi
Open Access
Regular Article - Theoretical Physics
First Online: 15 October 2018
7 Downloads
Abstract
In this paper we provide a combined explanation of charged- and neutral-current B-physics anomalies assuming the presence of a light sterile neutrino NR which contributes to the B → D(*)τν processes. We focus in particular on two simplified models, where the mediator of the flavour anomalies is either a vector leptoquark U 1 μ ∼ (3, 1, 2/3) or a scalar leptoquark S1 ∼ (\( \overline{\mathbf{3}} \), 1, 1/3). We find that U 1 μ can successfully reproduce the required deviations from the Standard Model while being at the same time compatible with all other flavour and precision observables. The scalar leptoquark instead induces a tension between Bs mixing and the neutral-current anomalies. For both states we present the limits and future projections from direct searches at the LHC finding that, while at present both models are perfectly allowed, all the parameter space will be tested with more luminosity. Finally, we study in detail the cosmological constraints on the sterile neutrino NR and the conditions under which it can be a candidate for dark matter.
Keywords Phenomenological Models
ArXiv ePrint: 1807.10745
Download to read the full article text
Notes
Open Access
This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
References
[1]
BaBar collaboration, J.P. Lees et al., Evidence for an excess of \( \overline{B}\to {D}^{\left(\ast \right)}{\tau}^{-}{\overline{\nu}}_{\tau } \) decays, Phys. Rev. Lett. 109 (2012) 101802 [arXiv:1205.5442] [INSPIRE].
[2]
BaBar collaboration, J.P. Lees et al., Measurement of an Excess of \( \overline{B}\to {D}^{\left(\ast \right)}{\tau}^{-}{\overline{\nu}}_{\tau } \) Decays and Implications for Charged Higgs Bosons, Phys. Rev. D 88 (2013) 072012 [arXiv:1303.0571] [INSPIRE].
[3]
Belle collaboration, M. Huschle et al., Measurement of the branching ratio of \( \overline{B}\to {D}^{\left(\ast \right)}{\tau}^{-}{\overline{\nu}}_{\tau } \) relative to \( \overline{B}\to {D}^{\left(\ast \right)}{\ell}^{-}{\overline{\nu}}_{\ell } \) decays with hadronic tagging at Belle, Phys. Rev. D 92 (2015) 072014 [arXiv:1507.03233] [INSPIRE].
[4]
Belle collaboration, Y. Sato et al., Measurement of the branching ratio of \( {\overline{B}}^0\to {D}^{\ast +}{\tau}^{-}{\overline{\nu}}_{\tau } \) relative to \( {\overline{B}}^0\to {D}^{*+}{\ell}^{-}{\overline{\nu}}_{\ell } \) decays with a semileptonic tagging method, Phys. Rev. D 94 (2016) 072007 [arXiv:1607.07923] [INSPIRE].
[5]
Belle collaboration, S. Hirose et al., Measurement of the τ lepton polarization and R(D *) in the decay \( \overline{B}\to {D}^{\ast }{\tau}^{-}{\overline{\nu}}_{\tau } \), Phys. Rev. Lett. 118 (2017) 211801 [arXiv:1612.00529] [INSPIRE].
[6]
LHCb collaboration, Measurement of the ratio of branching fractions \( \mathrm{\mathcal{B}}\left({\overline{B}}^0\to {D}^{\ast +}{\tau}^{-}{\overline{\nu}}_{\tau}\right)/\mathrm{\mathcal{B}}\left({\overline{B}}^0\to {D}^{\ast +}{\mu}^{-}{\overline{\nu}}_{\mu}\right) \), Phys. Rev. Lett. 115 (2015) 111803 [Erratum ibid. 115 (2015) 159901] [arXiv:1506.08614] [INSPIRE].
[7]
LHCb collaboration, Measurement of the ratio of the B 0 → D *− τ + ν τ and B 0 → D *− μ + ν μ branching fractions using three-prong τ-lepton decays, Phys. Rev. Lett. 120 (2018) 171802 [arXiv:1708.08856] [INSPIRE].
[8]
LHCb collaboration, Test of lepton flavor universality by the measurement of the B 0 → D *− τ + ν τ branching fraction using three-prong τ decays, Phys. Rev. D 97 (2018) 072013 [arXiv:1711.02505] [INSPIRE].
[9]
HFLAV collaboration, Y. Amhis et al., Averages of b-hadron, c-hadron and τ-lepton properties as of summer 2016, Eur. Phys. J. C 77 (2017) 895 [arXiv:1612.07233] [INSPIRE].
[10]
HFLAV collaboration, Summer 2018 update, https://hflav-eos.web.cern.ch/hflav-eos/semi/summer18/RDRDs.html (2018).
[11]
LHCb collaboration, Test of lepton universality using B + → K + ℓ + ℓ − decays, Phys. Rev. Lett. 113 (2014) 151601 [arXiv:1406.6482] [INSPIRE].
[12]
LHCb collaboration, Test of lepton universality with B 0 → K *0 ℓ + ℓ − decays, JHEP 08 (2017) 055 [arXiv:1705.05802] [INSPIRE].
[13]
LHCb collaboration, Angular analysis of the B 0 → K *0 μ + μ − decay using 3 fb −1 of integrated luminosity, JHEP 02 (2016) 104 [arXiv:1512.04442] [INSPIRE].
[14]
LHCb collaboration, Measurement of form-factor-independent observables in the decay B 0 → K *0 μ + μ −, Phys. Rev. Lett. 111 (2013) 191801 [arXiv:1308.1707] [INSPIRE].
[15]
A. Datta, M. Duraisamy and D. Ghosh, Diagnosing new physics in b → cτν τ decays in the light of the recent BaBar result, Phys. Rev. D 86 (2012) 034027 [arXiv:1206.3760] [INSPIRE].ADSGoogle Scholar
[16]
B. Bhattacharya, A. Datta, D. London and S. Shivashankara, Simultaneous explanation of the R K and R(D (*)) puzzles, Phys. Lett. B 742 (2015) 370 [arXiv:1412.7164] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
[17]
R. Alonso, B. Grinstein and J. Martin Camalich, Lepton universality violation and lepton flavor conservation in B-meson decays, JHEP 10 (2015) 184 [arXiv:1505.05164] [INSPIRE].ADSCrossRefGoogle Scholar
[18]
A. Greljo, G. Isidori and D. Marzocca, On the breaking of lepton flavor universality in B decays, JHEP 07 (2015) 142 [arXiv:1506.01705] [INSPIRE].ADSCrossRefGoogle Scholar
[19]
L. Calibbi, A. Crivellin and T. Ota, Effective field theory approach to b → sℓℓ′, \( B\to {K}^{\ast}\nu \overline{\nu} \) and B → D * τν with third generation couplings, Phys. Rev. Lett. 115 (2015) 181801 [arXiv:1506.02661] [INSPIRE].ADSCrossRefGoogle Scholar
[20]
M. Bauer and M. Neubert, Minimal leptoquark explanation for the \( {R}_{D^{\left(*\right)}} \) , R K and (g − 2)g anomalies, Phys. Rev. Lett. 116 (2016) 141802 [arXiv:1511.01900] [INSPIRE].
[21]
S. Fajfer and N. Košnik, Vector leptoquark resolution of R K and \( {R}_{D^{\left(*\right)}} \) puzzles, Phys. Lett. B 755 (2016) 270 [arXiv:1511.06024] [INSPIRE].ADSCrossRefGoogle Scholar
[22]
R. Barbieri, G. Isidori, A. Pattori and F. Senia, Anomalies in B-decays and U(2) flavour symmetry, Eur. Phys. J. C 76 (2016) 67 [arXiv:1512.01560] [INSPIRE].ADSCrossRefGoogle Scholar
[23]
D. Buttazzo, A. Greljo, G. Isidori and D. Marzocca, Toward a coherent solution of diphoton and flavor anomalies, JHEP 08 (2016) 035 [arXiv:1604.03940] [INSPIRE].ADSCrossRefGoogle Scholar
[24]
D. Das, C. Hati, G. Kumar and N. Mahajan, Towards a unified explanation of \( {R}_{D^{\left(*\right)}} \) , R K and (g − 2)μ anomalies in a left-right model with leptoquarks, Phys. Rev. D 94 (2016) 055034 [arXiv:1605.06313] [INSPIRE].ADSGoogle Scholar
[25]
S.M. Boucenna et al., Phenomenology of an SU(2) × SU(2) × U(1) model with lepton-flavour non-universality, JHEP 12 (2016) 059 [arXiv:1608.01349] [INSPIRE].ADSCrossRefGoogle Scholar
[26]
D. Bečirević, S. Fajfer, N. Košnik and O. Sumensari, Leptoquark model to explain the B-physics anomalies, R K and R D, Phys. Rev. D 94 (2016) 115021 [arXiv:1608.08501] [INSPIRE].ADSGoogle Scholar
[27]
G. Hiller, D. Loose and K. Schönwald, Leptoquark flavor patterns & B decay anomalies, JHEP 12 (2016) 027 [arXiv:1609.08895] [INSPIRE].ADSCrossRefGoogle Scholar
[28]
D. Bardhan, P. Byakti and D. Ghosh, A closer look at the R D and \( {R}_{D^{*}} \) anomalies, JHEP 01 (2017) 125 [arXiv:1610.03038] [INSPIRE].ADSCrossRefGoogle Scholar
[29]
B. Bhattacharya et al., Simultaneous explanation of the R K and \( {R}_{D^{\left(*\right)}} \) puzzles: a model analysis, JHEP 01 (2017) 015 [arXiv:1609.09078] [INSPIRE].ADSCrossRefGoogle Scholar
[30]
R. Barbieri, C.W. Murphy and F. Senia, B-decay anomalies in a composite leptoquark model, Eur. Phys. J. C 77 (2017) 8 [arXiv:1611.04930] [INSPIRE].ADSCrossRefGoogle Scholar
[31]
D. Bečirević, N. Košnik, O. Sumensari and R. Zukanovich Funchal, Palatable leptoquark scenarios for lepton flavor violation in exclusive b → sℓ 1 ℓ 2 modes, JHEP 11 (2016) 035 [arXiv:1608.07583] [INSPIRE].Google Scholar
[32]
M. Bordone, G. Isidori and S. Trifinopoulos, Semileptonic B-physics anomalies: a general EFT analysis within U(2)n flavor symmetry, Phys. Rev. D 96 (2017) 015038 [arXiv:1702.07238] [INSPIRE].ADSGoogle Scholar
[33]
E. Megias, M. Quirós and L. Salas, Lepton-flavor universality violation in R K and \( {R}_{D^{\left(*\right)}} \) from warped space, JHEP 07 (2017) 102 [arXiv:1703.06019] [INSPIRE].ADSCrossRefGoogle Scholar
[34]
A. Crivellin, D. Müller and T. Ota, Simultaneous explanation of R(D (*)) and b → sμ + μ − : the last scalar leptoquarks standing, JHEP 09 (2017) 040 [arXiv:1703.09226] [INSPIRE].ADSCrossRefGoogle Scholar
[35]
Y. Cai, J. Gargalionis, M.A. Schmidt and R.R. Volkas, Reconsidering the One Leptoquark solution: flavor anomalies and neutrino mass, JHEP 10 (2017) 047 [arXiv:1704.05849] [INSPIRE].ADSCrossRefGoogle Scholar
[36]
W. Altmannshofer, P. Bhupal Dev and A. Soni, \( {R}_{D^{\left(*\right)}} \) anomaly: a possible hint for natural supersymmetry with R-parity violation, Phys. Rev. D 96 (2017) 095010 [arXiv:1704.06659] [INSPIRE].Google Scholar
[37]
F. Sannino, P. Stangl, D.M. Straub and A.E. Thomsen, Flavor physics and flavor anomalies in minimal fundamental partial compositeness, Phys. Rev. D 97 (2018) 115046 [arXiv:1712.07646] [INSPIRE].ADSGoogle Scholar
[38]
D. Buttazzo, A. Greljo, G. Isidori and D. Marzocca, B-physics anomalies: a guide to combined explanations, JHEP 11 (2017) 044 [arXiv:1706.07808] [INSPIRE].ADSCrossRefGoogle Scholar
[39]
A. Azatov, D. Bardhan, D. Ghosh, F. Sgarlata and E. Venturini, Anatomy of b → cτν anomalies, arXiv:1805.03209 [INSPIRE].
[40]
J. Kumar, D. London and R. Watanabe, Combined explanations of the b → sμ + μ − and \( b\to c{\tau}^{-}\overline{\nu} \) anomalies: a general model analysis,arXiv:1806.07403[INSPIRE].
[41]
D. Bečirević et al., Scalar leptoquarks from grand unified theories to accommodate the B-physics anomalies, Phys. Rev. D 98 (2018) 055003 [arXiv:1806.05689] [INSPIRE].ADSGoogle Scholar
[42]
P. Asadi, M.R. Buckley and D. Shih, It’s all right(-handed neutrinos): a new W′ model for the \( {R}_{D^{\left(*\right)}} \) anomaly, JHEP 09 (2018) 010 [arXiv:1804.04135] [INSPIRE].ADSCrossRefGoogle Scholar
[43]
A. Greljo, D.J. Robinson, B. Shakya and J. Zupan, R(D (*)) from W′ and right-handed neutrinos, JHEP 09 (2018) 169 [arXiv:1804.04642] [INSPIRE].ADSCrossRefGoogle Scholar
[44]
S. Fajfer, J.F. Kamenik, I. Nisandzic and J. Zupan, Implications of lepton flavor universality violations in B decays, Phys. Rev. Lett. 109 (2012) 161801 [arXiv:1206.1872] [INSPIRE].ADSCrossRefGoogle Scholar
[45]
X.-G. He and G. Valencia, B decays with τ leptons in nonuniversal left-right models, Phys. Rev. D 87 (2013) 014014 [arXiv:1211.0348] [INSPIRE].ADSGoogle Scholar
[46]
G. Cvetič, F. Halzen, C.S. Kim and S. Oh, Anomalies in (semi)-leptonic B decays B ± → τ ± ν, B ± → Dτ ± ν and B ± → D * τ ± ν and possible resolution with sterile neutrino, Chin. Phys. C 41 (2017) 113102 [arXiv:1702.04335] [INSPIRE].ADSCrossRefGoogle Scholar
[47]
S. Fraser et al., Towards a viable scalar interpretation of \( {R}_{D^{\left(*\right)}} \), Phys. Rev. D 98 (2018) 035016 [arXiv:1805.08189] [INSPIRE].ADSGoogle Scholar
[48]
R.N. Mohapatra, Mechanism for understanding small neutrino mass in superstring theories, Phys. Rev. Lett. 56 (1986) 561 [INSPIRE].ADSCrossRefGoogle Scholar
[49]
R.N. Mohapatra and J.W.F. Valle, Neutrino mass and baryon number nonconservation in superstring models, Phys. Rev. D 34 (1986) 1642 [INSPIRE].ADSGoogle Scholar
[50]
A.G. Dias et al., A simple realization of the inverse seesaw mechanism, Phys. Rev. D 86 (2012) 035007 [arXiv:1206.2590] [INSPIRE].
[51]
D.J. Robinson, B. Shakya and J. Zupan, Right-handed neutrinos and R(D (*)), arXiv:1807.04753 [INSPIRE].
[52]
R. Barbieri and A. Tesi, B-decay anomalies in Pati-Salam SU(4), Eur. Phys. J. C 78 (2018) 193 [arXiv:1712.06844] [INSPIRE].
[53]
J.M. Cline, B decay anomalies and dark matter from vectorlike confinement, Phys. Rev. D 97 (2018) 015013 [arXiv:1710.02140] [INSPIRE].
[54]
N. Assad, B. Fornal and B. Grinstein, Baryon number and lepton universality violation in leptoquark and diquark models, Phys. Lett. B 777 (2018) 324 [arXiv:1708.06350] [INSPIRE].ADSCrossRefGoogle Scholar
[55]
L. Calibbi, A. Crivellin and T. Li, A model of vector leptoquarks in view of the B-physics anomalies, arXiv:1709.00692 [INSPIRE].
[56]
L. Di Luzio, A. Greljo and M. Nardecchia, Gauge leptoquark as the origin of B-physics anomalies, Phys. Rev. D 96 (2017) 115011 [arXiv:1708.08450] [INSPIRE].ADSGoogle Scholar
[57]
M. Bordone, C. Cornella, J. Fuentes-Martin and G. Isidori, A three-site gauge model for flavor hierarchies and flavor anomalies, Phys. Lett. B 779 (2018) 317 [arXiv:1712.01368] [INSPIRE].ADSCrossRefGoogle Scholar
[58]
A. Greljo and B.A. Stefanek, Third family quark-lepton unification at the TeV scale, Phys. Lett. B 782 (2018) 131 [arXiv:1802.04274] [INSPIRE].ADSCrossRefGoogle Scholar
[59]
M. Blanke and A. Crivellin, B meson anomalies in a Pati-Salam model within the Randall-Sundrum background, Phys. Rev. Lett. 121 (2018) 011801 [arXiv:1801.07256] [INSPIRE].ADSCrossRefGoogle Scholar
[60]
M. Bordone, C. Cornella, J. Fuentes-Martín and G. Isidori, Low-energy signatures of the PS3 model: from B-physics anomalies to LFV, arXiv:1805.09328 [INSPIRE].
[61]
W. Altmannshofer, P. Stangl and D.M. Straub, Interpreting hints for lepton flavor universality violation, Phys. Rev. D 96 (2017) 055008 [arXiv:1704.05435] [INSPIRE].ADSGoogle Scholar
[62]
S. Descotes-Genon, L. Hofer, J. Matias and J. Virto, Global analysis of b → sℓℓ anomalies, JHEP 06 (2016) 092 [arXiv:1510.04239] [INSPIRE].ADSCrossRefGoogle Scholar
[63]
G. D’Amico et al., Flavour anomalies after the \( {R}_{K^{*}} \) measurement, JHEP 09 (2017) 010 [arXiv:1704.05438] [INSPIRE].CrossRefGoogle Scholar
[64]
B. Capdevila et al., Patterns of new physics in b → sℓ + ℓ − transitions in the light of recent data, JHEP 01 (2018) 093 [arXiv:1704.05340] [INSPIRE].ADSCrossRefGoogle Scholar
[65]
M. Ciuchini et al., On flavourful easter eggs for new physics hunger and lepton flavour universality violation, Eur. Phys. J. C 77 (2017) 688 [arXiv:1704.05447] [INSPIRE].CrossRefGoogle Scholar
[66]
D. Ghosh, Explaining the R K and \( {R}_{K^{*}} \) anomalies, Eur. Phys. J. C 77 (2017) 694 [arXiv:1704.06240] [INSPIRE].ADSCrossRefGoogle Scholar
[67]
G. Hiller and I. Nisandzic, R K and \( {R}_{K^{*}} \) beyond the standard model, Phys. Rev. D 96 (2017) 035003 [arXiv:1704.05444] [INSPIRE].
[68]
D. Bardhan, P. Byakti and D. Ghosh, Role of tensor operators in R K and \( {R}_{K^{*}} \), Phys. Lett. B 773 (2017) 505 [arXiv:1705.09305] [INSPIRE].ADSCrossRefGoogle Scholar
[69]
R. Alonso, B. Grinstein and J. Martin Camalich, Lifetime of B c− constrains explanations for anomalies in B → D (*) τν, Phys. Rev. Lett. 118 (2017) 081802 [arXiv:1611.06676] [INSPIRE].ADSCrossRefGoogle Scholar
[70]
S. Aoki et al., Review of lattice results concerning low-energy particle physics, Eur. Phys. J. C 77 (2017) 112 [arXiv:1607.00299] [INSPIRE].ADSCrossRefGoogle Scholar
[71]
Particle Data Group collaboration, M. Tanabashi et al., Review of Particle Physics, Phys. Rev. D 98 (2018) 030001.Google Scholar
[72]
D. Bečirević, O. Sumensari and R. Zukanovich Funchal, Lepton flavor violation in exclusive b → s decays, Eur. Phys. J. C 76 (2016) 134 [arXiv:1602.00881] [INSPIRE].ADSGoogle Scholar
[73]
BaBar collaboration, J.P. Lees et al., A search for the decay modes B +− → h +− τ +− l, Phys. Rev. D 86 (2012) 012004 [arXiv:1204.2852] [INSPIRE].
[74]
F. Feruglio, P. Paradisi and A. Pattori, Revisiting lepton flavor universality in B decays, Phys. Rev. Lett. 118 (2017) 011801 [arXiv:1606.00524] [INSPIRE].ADSCrossRefGoogle Scholar
[75]
F. Feruglio, P. Paradisi and A. Pattori, On the importance of electroweak corrections for B anomalies, JHEP 09 (2017) 061 [arXiv:1705.00929] [INSPIRE].ADSCrossRefGoogle Scholar
[76]
C. Cornella, F. Feruglio and P. Paradisi, Low-energy effects of lepton flavour universality violation, arXiv:1803.00945 [INSPIRE].
[77]
SLD Electroweak Group, DELPHI, ALEPH, SLD, SLD Heavy Flavour Group, OPAL, LEP Electroweak Working Group, L3 collaboration, S. Schael et al., Precision electroweak measurements on the Z resonance, Phys. Rept. 427 (2006) 257 [hep-ex/0509008] [INSPIRE].
[78]
B. Gripaios, Composite leptoquarks at the LHC, JHEP 02 (2010) 045 [arXiv:0910.1789] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
[79]
Y. Sakaki, M. Tanaka, A. Tayduganov and R. Watanabe, Testing leptoquark models in \( \overline{B}\to {D}^{\left(\ast \right)}\tau \overline{\nu} \), Phys. Rev. D 88 (2013) 094012 [arXiv:1309.0301] [INSPIRE].ADSGoogle Scholar
[80]
G. Hiller and M. Schmaltz, R K and future b → sℓℓ physics beyond the standard model opportunities, Phys. Rev. D 90 (2014) 054014 [arXiv:1408.1627] [INSPIRE].ADSGoogle Scholar
[81]
B. Gripaios, M. Nardecchia and S.A. Renner, Composite leptoquarks and anomalies in B-meson decays, JHEP 05 (2015) 006 [arXiv:1412.1791] [INSPIRE].ADSCrossRefGoogle Scholar
[82]
I. Doršner, S. Fajfer, D.A. Faroughy and N. Košnik, The role of the S 3 GUT leptoquark in flavor universality and collider searches, arXiv:1706.07779 [INSPIRE].
[83]
S. Fajfer, N. Košnik and L. Vale Silva, Footprints of leptoquarks: from \( {R}_{K^{\left(\ast \right)}} \) to \( K\to \pi \nu \overline{\nu} \), Eur. Phys. J. C 78 (2018) 275 [arXiv:1802.00786] [INSPIRE].CrossRefGoogle Scholar
[84]
D. Marzocca, Addressing the B-physics anomalies in a fundamental composite Higgs Model, JHEP 07 (2018) 121 [arXiv:1803.10972] [INSPIRE].ADSCrossRefGoogle Scholar
[85]
A.G. Akeroyd and C.-H. Chen, Constraint on the branching ratio of \( {B}_c\to \tau \overline{\nu} \) from LEP1 and consequences for R(D (*)) anomaly, Phys. Rev. D 96 (2017) 075011 [arXiv:1708.04072] [INSPIRE].ADSGoogle Scholar
[86]
M. Jung and D.M. Straub, Constraining new physics in b → cℓν transitions, arXiv:1801.01112 [INSPIRE].
[87]
UTfit collaboration, Latest results from UTfit, http://www.utfit.org/UTfit/ (2016).
[88]
L. Di Luzio, M. Kirk and A. Lenz, Updated B s -mixing constraints on new physics models for b → sℓ + ℓ − anomalies, Phys. Rev. D 97 (2018) 095035 [arXiv:1712.06572] [INSPIRE].ADSGoogle Scholar
[89]
Fermilab Lattice, MILC collaboration, A. Bazavov et al., B ( s)0 -mixing matrix elements from lattice QCD for the Standard Model and beyond, Phys. Rev. D 93 (2016) 113016 [arXiv:1602.03560] [INSPIRE].
[90]
M. Blanke and A.J. Buras, Universal Unitarity Triangle 2016 and the tension between ΔM s,d and ε K in CMFV models, Eur. Phys. J. C 76 (2016) 197 [arXiv:1602.04020] [INSPIRE].ADSCrossRefGoogle Scholar
[91]
I. Doršner and A. Greljo, Leptoquark toolbox for precision collider studies, JHEP 05 (2018) 126 [arXiv:1801.07641] [INSPIRE].ADSCrossRefGoogle Scholar
[92]
J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP 07 (2014)079 [arXiv:1405.0301] [INSPIRE].
[93]
C. Degrande et al., UFO — The Universal FeynRules Output, Comput. Phys. Commun. 183 (2012) 1201 [arXiv:1108.2040] [INSPIRE].
[94]
CMS collaboration, Search for third-generation scalar leptoquarks and heavy right-handed neutrinos in final states with two tau leptons and two jets in proton-proton collisions at \( \sqrt{s}=13 \) TeV, JHEP 07 (2017) 121 [arXiv:1703.03995] [INSPIRE].
[95]
CMS collaboration, Search for heavy neutrinos and third-generation leptoquarks in final states with two hadronically decaying τ leptons and two jets in proton-proton collisions at \( \sqrt{s}=13 \) TeV, CMS-PAS-EXO-17-016 (2018).
[96]
ATLAS collaboration, Search for squarks and gluinos in final states with jets and missing transverse momentum using 36 fb −1 of \( \sqrt{s}=13 \) TeV pp collision data with the ATLAS detector, Phys. Rev. D 97 (2018) 112001 [arXiv:1712.02332] [INSPIRE].
[97]
CMS collaboration, Constraints on models of scalar and vector leptoquarks decaying to a quark and a neutrino at \( \sqrt{s}=13 \) TeV, Phys. Rev. D 98 (2018) 032005 [arXiv:1805.10228] [INSPIRE].
[98]
ATLAS collaboration, Search for high-mass resonances decaying to τν in pp collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, Phys. Rev. Lett. 120 (2018) 161802 [arXiv:1801.06992] [INSPIRE].
[99]
CMS collaboration, Search for new physics in final states with an energetic jet or a hadronically decaying W or Z boson and transverse momentum imbalance at \( \sqrt{s}=13 \) TeV, Phys. Rev. D 97 (2018) 092005 [arXiv:1712.02345] [INSPIRE].
[100]
D.A. Faroughy, A. Greljo and J.F. Kamenik, Confronting lepton flavor universality violation in B decays with high-p T tau lepton searches at LHC, Phys. Lett. B 764 (2017) 126 [arXiv:1609.07138] [INSPIRE].ADSCrossRefGoogle Scholar
[101]
CMS collaboration, Identification of heavy-flavour jets with the CMS detector in pp collisions at 13 TeV, 2018 JINST 13 P05011 [arXiv:1712.07158] [INSPIRE].
[102]
M. Drewes and B. Garbrecht, Combining experimental and cosmological constraints on heavy neutrinos, Nucl. Phys. B 921 (2017) 250 [arXiv:1502.00477] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
[103]
M. Drewes, J. Hajer, J. Klaric and G. Lanfranchi, NA62 sensitivity to heavy neutral leptons in the low scale seesaw model, JHEP 07 (2018) 105 [arXiv:1801.04207] [INSPIRE].ADSCrossRefGoogle Scholar
[104]
P. Ballett, T. Boschi and S. Pascoli, Searching for MeV-scale neutrinos with the DUNE near detector, talk given at Prospects in Neutrino Physics (NuPhys2017), December 20–22, London, U.K. (2018), arXiv:1803.10824 [INSPIRE].
[105]
S.S. Gershtein and Ya.B. Zeldovich, Rest mass of muonic neutrino and cosmology, JETP Lett. 4 (1966) 120 [INSPIRE].
[106]
R. Cowsik and J. McClelland, An upper limit on the neutrino rest mass, Phys. Rev. Lett. 29 (1972) 669 [INSPIRE].ADSCrossRefGoogle Scholar
[107]
A. Boyarsky, J. Lesgourgues, O. Ruchayskiy and M. Viel, Lyman-α constraints on warm and on warm-plus-cold dark matter models, JCAP 05 (2009) 012 [arXiv:0812.0010] [INSPIRE].ADSCrossRefGoogle Scholar
[108]
G. Steigman, Equivalent neutrinos, light WIMPs and the chimera of dark radiation, Phys. Rev. D 87 (2013) 103517 [arXiv:1303.0049] [INSPIRE].ADSGoogle Scholar
[109]
Planck collaboration, P.A.R. Ade et al., Planck 2015 results. XIII. Cosmological parameters, Astron. Astrophys. 594 (2016) A13 [arXiv:1502.01589] [INSPIRE].
[110]
R.J. Scherrer and M.S. Turner, Decaying particles do not heat up the universe, Phys. Rev. D 31 (1985) 681 [INSPIRE].ADSGoogle Scholar
[111]
E.W. Kolb and M.S. Turner, The early universe, Front. Phys. 69 (1990) 1 [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
[112]
M. Nemevšek, G. Senjanović and Y. Zhang, Warm dark matter in low scale left-right theory, JCAP 07 (2012) 006 [arXiv:1205.0844] [INSPIRE].ADSCrossRefGoogle Scholar
[113]
S.F. King and A. Merle, Warm dark matter from keVins, JCAP 08 (2012) 016 [arXiv:1205.0551] [INSPIRE].ADSCrossRefGoogle Scholar
[114]
F. Bezrukov, H. Hettmansperger and M. Lindner, keV sterile neutrino dark matter in gauge extensions of the standard model, Phys. Rev. D 81 (2010) 085032 [arXiv:0912.4415] [INSPIRE].
[115]
R. Essig et al., Constraining light dark matter with diffuse X-ray and gamma-ray observations, JHEP 11 (2013) 193 [arXiv:1309.4091] [INSPIRE].ADSCrossRefGoogle Scholar
[116]
A. Boyarsky et al., Sterile neutrino dark matter, arXiv:1807.07938 [INSPIRE].
[117]
S. Davidson, E. Nardi and Y. Nir, Leptogenesis, Phys. Rept. 466 (2008) 105 [arXiv:0802.2962] [INSPIRE].ADSCrossRefGoogle Scholar
Copyright information
© The Author(s) 2018
Authors and Affiliations
Aleksandr Azatov12Daniele Barducci12Diptimoy Ghosh23Email authorDavid Marzocca2Lorenzo Ubaldi121.SISSA International School for Advanced StudiesTriesteItaly2.INFN — Sezione di TriesteTriesteItaly3.ICTP International Centre for Theoretical PhysicsTriesteItaly