Classification of different pineapple varieties grown in Malaysia based on volatile fingerprinting and sensory analysis

Chemistry Central Journal, Dec 2018

Background Pineapple is highly relished for its attractive sweet flavour and it is widely consumed in both fresh and canned forms. Pineapple flavour is a blend of a number of volatile and non-volatile compounds that are present in small amounts and in complex mixtures. The aroma compounds composition may be used for purposes of quality control as well as for authentication and classification of pineapple varieties. Results The key volatile compounds and aroma profile of six pineapple varieties grown in Malaysia were investigated by gas chromatography–olfactometry (GC-O), gas-chromatography–mass spectrometry and qualitative descriptive sensory analysis. A total of 59 compounds were determined by GC-O and aroma extract dilution analysis. Among these compounds, methyl-2-methylbutanoate, methyl hexanoate, methyl-3-(methylthiol)-propanoate, methyl octanoate, 2,5-dimethyl-4-methoxy-3(2H)-furanone, δ-octalactone, 2-methoxy-4-vinyl phenol, and δ-undecalactone contributed greatly to the aroma quality of the pineapple varieties, due to their high flavour dilution factor. The aroma of the pineapples was described by seven sensory terms as sweet, floral, fruity, fresh, green, woody and apple-like. Conclusion Inter-relationship between the aroma-active compounds and the pineapples revealed that ‘Moris’ and ‘MD2’ covaried majorly with the fruity esters, and the other varieties correlated with lesser numbers of the fruity esters. Hierarchical cluster analysis (HCA) was used to establish similarities among the pineapples and the results revealed three main groups of pineapples.

A PDF file should load here. If you do not see its contents the file may be temporarily unavailable at the journal website or you do not have a PDF plug-in installed and enabled in your browser.

Alternatively, you can download the file locally and open with any standalone PDF reader:

https://link.springer.com/content/pdf/10.1186%2Fs13065-018-0505-3.pdf

Classification of different pineapple varieties grown in Malaysia based on volatile fingerprinting and sensory analysis

Chemistry Central Journal December 2018, 12:140 | Cite as Classification of different pineapple varieties grown in Malaysia based on volatile fingerprinting and sensory analysis AuthorsAuthors and affiliations Ola LasekanFatma Khalifa Hussein Open Access Research Article First Online: 19 December 2018 40 Downloads Part of the following topical collections:Food Science Abstract Background Pineapple is highly relished for its attractive sweet flavour and it is widely consumed in both fresh and canned forms. Pineapple flavour is a blend of a number of volatile and non-volatile compounds that are present in small amounts and in complex mixtures. The aroma compounds composition may be used for purposes of quality control as well as for authentication and classification of pineapple varieties. Results The key volatile compounds and aroma profile of six pineapple varieties grown in Malaysia were investigated by gas chromatography–olfactometry (GC-O), gas-chromatography–mass spectrometry and qualitative descriptive sensory analysis. A total of 59 compounds were determined by GC-O and aroma extract dilution analysis. Among these compounds, methyl-2-methylbutanoate, methyl hexanoate, methyl-3-(methylthiol)-propanoate, methyl octanoate, 2,5-dimethyl-4-methoxy-3(2H)-furanone, δ-octalactone, 2-methoxy-4-vinyl phenol, and δ-undecalactone contributed greatly to the aroma quality of the pineapple varieties, due to their high flavour dilution factor. The aroma of the pineapples was described by seven sensory terms as sweet, floral, fruity, fresh, green, woody and apple-like. Conclusion Inter-relationship between the aroma-active compounds and the pineapples revealed that ‘Moris’ and ‘MD2’ covaried majorly with the fruity esters, and the other varieties correlated with lesser numbers of the fruity esters. Hierarchical cluster analysis (HCA) was used to establish similarities among the pineapples and the results revealed three main groups of pineapples. KeywordsPineapple varieties Volatile fingerprinting PCA HCA Sensory evaluation GC-O  Abbreviations ANOVA analysis of variance PCA principal component analysis HCA hierarchical cluster analysis FD flavour dilution Background Pineapple (Ananas comosus L. Merr) which is one of the most popular exotic fruits in the world trade is widely distributed in tropical regions such as the Philippines, Thailand, Malaysia and Indonesia. In 2016, the global pineapple production was estimated at 24.78 million metric tons with Costa Rica (2930.66 metric tons), Brazil (2694.56 metric tons), Philippines (2612.47 metric tons), India (1964 metric tons),Thailand (1811.59 metric tons, and Nigeria (1591.28 metric tons) as the top five pineapple producers in the world [1]. Other important producers are: Indonesia, China, India, Mexico, and Colombia [2]. Malaysia is part of a new group of pineapple-producing countries. Malaysia exported approximately 20,000 tons of fresh pineapples annually [2]. The main pineapple varieties grown in Malaysia are: ‘Moris’, ‘N36’, ‘Sarawak’, ‘Gandul’, ‘Yankee’, ‘Josapine’, ‘Maspine’, and most recently ‘MD2’. Some of these varieties such as N36 and Josapine were locally developed for the local fresh fruit market. Pineapple is highly relished for its attractive sweet flavour and it is widely consumed in both fresh and canned forms [3]. Pineapple flavour is a blend of a number of volatile and non-volatile compounds that are present in small amounts and in complex mixtures [4]. The volatile constituents of pineapples have been studied extensively and more than 280 compounds have been reported [4, 5]. Aroma chemicals are organic compounds with defined chemical structures. They are generated by organic or bio-catalytic synthesis or isolated from microbial fermentations [4]. There are many pathways involved in volatile biosynthesis starting from lipids [6], amino acids [7], terpenoids [8] and carotenoids [9]. Once the basic skeletons are produced via these pathways, the diversity of volatiles is achieved via additional modification reactions such as acylation, methylation, oxidation/reduction and cyclic ring closure [6]. As the content of aroma compounds in pineapple depends on many factors such as the climatic and geographical origin [10], varieties [11], different stages of ripening [12], and postharvest storage conditions [13], the aroma compounds composition may be used for purposes of quality control as well as for authentication and classification of pineapple varieties. Fingerprinting techniques, based on chemical composition and multivariate statistical analysis have been used in characterising or classifying wines according to origin, quality, variety and type [14, 15]. It was also used in the authentication of green-ripe sea-freighted and air-freighted pineapple fruits harvested at full maturity [16]. Application of untargeted fingerprinting techniques as a means of gaining insight into the reaction complexity of a food system has (...truncated)


This is a preview of a remote PDF: https://link.springer.com/content/pdf/10.1186%2Fs13065-018-0505-3.pdf

Ola Lasekan, Fatma Khalifa Hussein. Classification of different pineapple varieties grown in Malaysia based on volatile fingerprinting and sensory analysis, Chemistry Central Journal, 2018, pp. 140, Volume 12, Issue 1, DOI: 10.1186/s13065-018-0505-3