Dark matter from strong dynamics: the minimal theory of dark baryons

Journal of High Energy Physics, Dec 2018

Abstract As a simple model for dark matter, we propose a QCD-like theory based on SU(2) gauge theory with one flavor of dark quark. The model is confining at low energy and we use lattice simulations to investigate the properties of the lowest-lying hadrons. Compared to QCD, the theory has several peculiar differences: there are no Goldstone bosons or chiral symmetry restoration when the dark quark becomes massless; the usual global baryon number symmetry is enlarged to SU(2)B, resembling isospin; and baryons and mesons are unified together in SU(2)B iso-multiplets. We argue that the lightest baryon, a vector boson, is a stable dark matter candidate and is a composite realization of the hidden vector dark matter scenario. The model naturally includes a lighter state, the analog of the η′ in QCD, for dark matter to annihilate into to set the relic density via thermal freeze-out. Dark matter baryons may also be asymmetric, strongly self-interacting, or have their relic density set via 3 → 2 cannibalizing transitions. We discuss some experimental implications of coupling dark baryons to the Higgs portal.

A PDF file should load here. If you do not see its contents the file may be temporarily unavailable at the journal website or you do not have a PDF plug-in installed and enabled in your browser.

Alternatively, you can download the file locally and open with any standalone PDF reader:

https://link.springer.com/content/pdf/10.1007%2FJHEP12%282018%29118.pdf

Dark matter from strong dynamics: the minimal theory of dark baryons

Journal of High Energy Physics December 2018, 2018:118 | Cite as Dark matter from strong dynamics: the minimal theory of dark baryons AuthorsAuthors and affiliations Anthony FrancisRenwick J. HudspithRandy LewisSean Tulin Open Access Regular Article - Theoretical Physics First Online: 19 December 2018 6 Downloads Abstract As a simple model for dark matter, we propose a QCD-like theory based on SU(2) gauge theory with one flavor of dark quark. The model is confining at low energy and we use lattice simulations to investigate the properties of the lowest-lying hadrons. Compared to QCD, the theory has several peculiar differences: there are no Goldstone bosons or chiral symmetry restoration when the dark quark becomes massless; the usual global baryon number symmetry is enlarged to SU(2)B, resembling isospin; and baryons and mesons are unified together in SU(2)B iso-multiplets. We argue that the lightest baryon, a vector boson, is a stable dark matter candidate and is a composite realization of the hidden vector dark matter scenario. The model naturally includes a lighter state, the analog of the η′ in QCD, for dark matter to annihilate into to set the relic density via thermal freeze-out. Dark matter baryons may also be asymmetric, strongly self-interacting, or have their relic density set via 3 → 2 cannibalizing transitions. We discuss some experimental implications of coupling dark baryons to the Higgs portal. Keywords Lattice field theory simulation Phenomenological Models  ArXiv ePrint: 1809.09117 Download to read the full article text Notes Open Access This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited. References [1] G. Bertone, D. Hooper and J. Silk, Particle dark matter: evidence, candidates and constraints, Phys. Rept. 405 (2005) 279 [hep-ph/0404175] [INSPIRE]. [2] J.L. Feng, Dark matter candidates from particle physics and methods of detection, Ann. Rev. Astron. Astrophys. 48 (2010) 495 [arXiv:1003.0904] [INSPIRE].ADSCrossRefGoogle Scholar [3] M.J. Strassler and K.M. Zurek, Echoes of a hidden valley at hadron colliders, Phys. Lett. B 651 (2007) 374 [hep-ph/0604261] [INSPIRE]. [4] D.N. Spergel and P.J. Steinhardt, Observational evidence for selfinteracting cold dark matter, Phys. Rev. Lett. 84 (2000) 3760 [astro-ph/9909386] [INSPIRE]. [5] S. Tulin and H.-B. Yu, Dark matter self-interactions and small scale structure, Phys. Rept. 730 (2018) 1 [arXiv:1705.02358] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar [6] J.M. Cline, Z. Liu, G. Moore and W. Xue, Composite strongly interacting dark matter, Phys. Rev. D 90 (2014) 015023 [arXiv:1312.3325] [INSPIRE].ADSGoogle Scholar [7] K.K. Boddy, J.L. Feng, M. Kaplinghat and T.M.P. Tait, Self-interacting dark matter from a non-abelian hidden sector, Phys. Rev. D 89 (2014) 115017 [arXiv:1402.3629] [INSPIRE].ADSGoogle Scholar [8] S. Nussinov, Technocosmology: could a technibaryon excess provide a ‘natural’ missing mass candidate?, Phys. Lett. B 165 (1985) 55.ADSCrossRefGoogle Scholar [9] R.S. Chivukula and T.P. Walker, Technicolor cosmology, Nucl. Phys. B 329 (1990) 445 [INSPIRE].ADSCrossRefGoogle Scholar [10] S.M. Barr, R.S. Chivukula and E. Farhi, Electroweak fermion number violation and the production of stable particles in the early universe, Phys. Lett. B 241 (1990) 387 [INSPIRE].ADSCrossRefGoogle Scholar [11] Z. Chacko, H.-S. Goh and R. Harnik, The twin Higgs: natural electroweak breaking from mirror symmetry, Phys. Rev. Lett. 96 (2006) 231802 [hep-ph/0506256] [INSPIRE]. [12] R. Foot, Mirror dark matter: cosmology, galaxy structure and direct detection, Int. J. Mod. Phys. A 29 (2014) 1430013 [arXiv:1401.3965] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar [13] K.G. Wilson, Confinement of quarks, Phys. Rev. D 10 (1974) 2445 [INSPIRE].ADSGoogle Scholar [14] R. Lewis, C. Pica and F. Sannino, Light asymmetric dark matter on the lattice: SU(2) technicolor with two fundamental flavors, Phys. Rev. D 85 (2012) 014504 [arXiv:1109.3513] [INSPIRE].ADSGoogle Scholar [15] A. Hietanen, R. Lewis, C. Pica and F. Sannino, Composite Goldstone dark matter: experimental predictions from the lattice, JHEP 12 (2014) 130 [arXiv:1308.4130] [INSPIRE].ADSCrossRefGoogle Scholar [16] Lattice Strong Dynamics collaboration, T. Appelquist et al., Lattice calculation of composite dark matter form factors, Phys. Rev. D 88 (2013) 014502 [arXiv:1301.1693] [INSPIRE]. [17] W. Detmold, M. McCullough and A. Pochinsky, Dark nuclei I: cosmology and indirect detection, Phys. Rev. D 90 (2014) 115013 [arXiv:1406.2276] [INSPIRE].ADSGoogle Scholar [18] W. Detmold, M. McCullough and A. Pochinsky, Dark nuclei II: nuclear spectroscopy in two-color QCD, Phys. Rev. D 90 (2014) 114506 [arXiv:1406.4116] [INSPIRE].ADSGoogle Scholar [19] Lattice Strong Dynamics (LSD) collaboration, T. Appelquist et al., Composite bosonic baryon dark matter on the lattice: SU(4) baryon spectrum and the effective Higgs interaction, Phys. Rev. D 89 (2014) 094508 [arXiv:1402.6656] [INSPIRE]. [20] T. Appelquist et al., Stealth dark matter: dark scalar baryons through the Higgs portal, Phys. Rev. D 92 (2015) 075030 [arXiv:1503.04203] [INSPIRE].ADSGoogle Scholar [21] T. Appelquist et al., Detecting stealth dark matter directly through electromagnetic polarizability, Phys. Rev. Lett. 115 (2015) 171803 [arXiv:1503.04205] [INSPIRE].ADSCrossRefGoogle Scholar [22] A. Francis, R.J. Hudspith, R. Lewis and S. Tulin, Dark matter from one-flavor SU(2) gauge theory, PoS(LATTICE 2016)227 [arXiv:1610.10068] [INSPIRE]. [23] G.D. Kribs and E.T. Neil, Review of strongly-coupled composite dark matter models and lattice simulations, Int. J. Mod. Phys. A 31 (2016) 1643004 [arXiv:1604.04627] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar [24] E. Witten, An SU(2) anomaly, Phys. Lett. B 117 (1982) 324.ADSMathSciNetCrossRefGoogle Scholar [25] T. Hambye and M.H.G. Tytgat, Confined hidden vector dark matter, Phys. Lett. B 683 (2010) 39 [arXiv:0907.1007] [INSPIRE].ADSCrossRefGoogle Scholar [26] E. Marinari, G. Parisi and C. Rebbi, Computer estimates of meson masses in SU(2) lattice gauge theory, Phys. Rev. Lett. 47 (1981) 1795 [INSPIRE].ADSCrossRefGoogle Scholar [27] J.B. Kogut et al., Chiral symmetry restoration in baryon rich environments, Nucl. Phys. B 225 (1983) 93 [INSPIRE].ADSCrossRefGoogle Scholar [28] A. Nakamura, Quarks and gluons at finite temperature and density, Phys. Lett. B 149 (1984) 391.ADSCrossRefGoogle Scholar [29] L. von Smekal, Universal aspects of QCD-like theories, Nucl. Phys. Proc. Suppl. 228 (2012) 179 [arXiv:1205.4205] [INSPIRE].ADSCrossRefGoogle Scholar [30] M. Creutz, One flavor QCD, Annals Phys. 322 (2007) 1518 [hep-th/0609187] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar [31] R.J. Scherrer and M.S. Turner, On the relic, cosmic abundance of stable weakly interacting massive particles, Phys. Rev. D 33 (1986) 1585 [Erratum ibid. D 34 (1986) 3263] [INSPIRE]. [32] K. Petraki and R.R. Volkas, Review of asymmetric dark matter, Int. J. Mod. Phys. A 28 (2013) 1330028 [arXiv:1305.4939] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar [33] K.M. Zurek, Asymmetric dark matter: theories, signatures and constraints, Phys. Rept. 537 (2014) 91 [arXiv:1308.0338] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar [34] Z.G. Berezhiani, A.D. Dolgov and R.N. Mohapatra, Asymmetric inflationary reheating and the nature of mirror universe, Phys. Lett. B 375 (1996) 26 [hep-ph/9511221] [INSPIRE]. [35] E. Kuflik, M. Perelstein, N. R.-L. Lorier and Y.-D. Tsai, Elastically decoupling dark matter, Phys. Rev. Lett. 116 (2016) 221302 [arXiv:1512.04545] [INSPIRE].ADSCrossRefGoogle Scholar [36] E.D. Carlson, M.E. Machacek and L.J. Hall, Self-interacting dark matter, Astrophys. J. 398 (1992) 43 [INSPIRE].ADSCrossRefGoogle Scholar [37] N. Bernal et al., Production regimes for self-interacting dark matter, JCAP 03 (2016) 018 [arXiv:1510.08063] [INSPIRE].ADSCrossRefGoogle Scholar [38] S.-M. Choi et al., Vector SIMP dark matter, JHEP 10 (2017) 162 [arXiv:1707.01434] [INSPIRE].ADSCrossRefGoogle Scholar [39] M.A. Clark and A.D. Kennedy, Accelerating dynamical fermion computations using the Rational Hybrid Monte Carlo (RHMC) algorithm with multiple pseudofermion fields, Phys. Rev. Lett. 98 (2007) 051601 [hep-lat/0608015] [INSPIRE]. [40] S. Bernardson, P. McCarty and C. Thron, Monte Carlo methods for estimating linear combinations of inverse matrix entries in lattice QCD, Comput. Phys. Commun. 78 (1993) 256 [INSPIRE].ADSCrossRefzbMATHGoogle Scholar [41] P.A. Boyle, A. Juttner, C. Kelly and R.D. Kenway, Use of stochastic sources for the lattice determination of light quark physics, JHEP 08 (2008) 086 [arXiv:0804.1501] [INSPIRE].Google Scholar [42] K. Bitar et al., The QCD finite temperature transition and hybrid monte carlo, Nucl. Phys. B 313 (1989) 348 [INSPIRE].ADSCrossRefGoogle Scholar [43] G.S. Bali, S. Collins and A. Schafer, Effective noise reduction techniques for disconnected loops in Lattice QCD, Comput. Phys. Commun. 181 (2010) 1570 [arXiv:0910.3970] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar [44] R. Arthur et al., SU(2) gauge theory with two fundamental flavours: scalar and pseudoscalar spectrum, arXiv:1607.06654 [INSPIRE]. [45] L. Del Debbio, M.T. Frandsen, H. Panagopoulos and F. Sannino, Higher representations on the lattice: Perturbative studies, JHEP 06 (2008) 007 [arXiv:0802.0891] [INSPIRE].ADSCrossRefGoogle Scholar [46] A. Hietanen, R. Lewis, C. Pica and F. Sannino, Fundamental composite higgs dynamics on the lattice: SU(2) with two flavors, JHEP 07 (2014) 116 [arXiv:1404.2794] [INSPIRE].ADSCrossRefGoogle Scholar [47] G.S. Bali, QCD forces and heavy quark bound states, Phys. Rept. 343 (2001) 1 [hep-ph/0001312] [INSPIRE]. [48] Y. Schröder, The static potential in QCD to two loops, Phys. Lett. B 447 (1999) 321 [hep-ph/9812205] [INSPIRE]. [49] C.W. Bernard et al., The static quark potential in three flavor QCD, Phys. Rev. D 62 (2000) 034503 [hep-lat/0002028] [INSPIRE]. [50] E. Eichten et al., The spectrum of charmonium, Phys. Rev. Lett. 34 (1975) 369 [Erratum ibid. 36 (1976) 1276] [INSPIRE]. [51] T. Hambye, Hidden vector dark matter, JHEP 01 (2009) 028 [arXiv:0811.0172] [INSPIRE].ADSCrossRefGoogle Scholar [52] S. Kanemura, S. Matsumoto, T. Nabeshima and N. Okada, Can WIMP dark matter overcome the nightmare scenario?, Phys. Rev. D 82 (2010) 055026 [arXiv:1005.5651] [INSPIRE].ADSGoogle Scholar [53] A. Djouadi, O. Lebedev, Y. Mambrini and J. Quevillon, Implications of LHC searches for Higgs-portal dark matter, Phys. Lett. B 709 (2012) 65 [arXiv:1112.3299] [INSPIRE].ADSCrossRefGoogle Scholar [54] O. Lebedev, H.M. Lee and Y. Mambrini, Vector Higgs-portal dark matter and the invisible Higgs, Phys. Lett. B 707 (2012) 570 [arXiv:1111.4482] [INSPIRE].ADSCrossRefGoogle Scholar [55] S. Baek, P. Ko, W.-I. Park and E. Senaha, Higgs portal vector dark matter: revisited, JHEP 05 (2013) 036 [arXiv:1212.2131] [INSPIRE].ADSCrossRefGoogle Scholar [56] M. Hoferichter, P. Klos, J. Menéndez and A. Schwenk, Improved limits for Higgs-portal dark matter from LHC searches, Phys. Rev. Lett. 119 (2017) 181803 [arXiv:1708.02245] [INSPIRE].ADSCrossRefGoogle Scholar [57] XENON collaboration, E. Aprile et al., Dark matter search results from a one ton-year exposure of XENON1T, Phys. Rev. Lett. 121 (2018) 111302 [arXiv:1805.12562] [INSPIRE]. [58] ATLAS collaboration, Constraints on new phenomena via Higgs boson couplings and invisible decays with the ATLAS detector, JHEP 11 (2015) 206 [arXiv:1509.00672] [INSPIRE]. [59] CMS collaboration, Searches for invisible decays of the Higgs boson in pp collisions at \( \sqrt{s}=7 \) , 8 and 13 TeV, JHEP 02 (2017) 135 [arXiv:1610.09218] [INSPIRE]. [60] T.R. Slatyer and C.-L. Wu, General constraints on dark matter decay from the Cosmic Microwave Background, Phys. Rev. D 95 (2017) 023010 [arXiv:1610.06933] [INSPIRE].ADSGoogle Scholar [61] K. Jedamzik, Big Bang nucleosynthesis constraints on hadronically and electromagnetically decaying relic neutral particles, Phys. Rev. D 74 (2006) 103509 [hep-ph/0604251] [INSPIRE]. [62] A. Fradette and M. Pospelov, BBN for the LHC: constraints on lifetimes of the Higgs portal scalars, Phys. Rev. D 96 (2017) 075033 [arXiv:1706.01920] [INSPIRE].ADSGoogle Scholar [63] F. Bezrukov and D. Gorbunov, Light inflaton hunter’s guide, JHEP 05 (2010) 010 [arXiv:0912.0390] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar [64] A. Djouadi, J. Kalinowski and M. Spira, HDECAY: a program for Higgs boson decays in the standard model and its supersymmetric extension, Comput. Phys. Commun. 108 (1998) 56 [hep-ph/9704448] [INSPIRE]. [65] A.B. Newman et al., The density profiles of massive, relaxed galaxy clusters: I. The total density over 3 decades in radius, Astrophys. J. 765 (2013) 24 [arXiv:1209.1391] [INSPIRE]. [66] A.B. Newman, T. Treu, R.S. Ellis and D.J. Sand, The density profiles of massive, relaxed galaxy clusters: II. Separating luminous and dark matter in cluster cores, Astrophys. J. 765 (2013) 25 [arXiv:1209.1392] [INSPIRE]. [67] M. Kaplinghat, S. Tulin and H.-B. Yu, Dark matter halos as particle colliders: unified solution to small-scale structure puzzles from dwarfs to clusters, Phys. Rev. Lett. 116 (2016) 041302 [arXiv:1508.03339] [INSPIRE].ADSCrossRefGoogle Scholar [68] O.D. Elbert et al., A testable conspiracy: simulating baryonic effects on self-interacting dark matter halos, Astrophys. J. 853 (2018) 109 [arXiv:1609.08626] [INSPIRE].ADSCrossRefGoogle Scholar [69] S.W. Randall et al., Constraints on the self-interaction cross-section of dark matter from numerical simulations of the merging galaxy cluster 1E 0657-56, Astrophys. J. 679 (2008) 1173 [arXiv:0704.0261] [INSPIRE].ADSCrossRefGoogle Scholar [70] A. Robertson, R. Massey and V. Eke, What does the bullet cluster tell us about self-interacting dark matter?, Mon. Not. Roy. Astron. Soc. 465 (2017) 569 [arXiv:1605.04307] [INSPIRE].ADSCrossRefGoogle Scholar [71] E. Braaten and H.W. Hammer, Universal two-body physics in dark matter near an S-wave resonance, Phys. Rev. D 88 (2013) 063511 [arXiv:1303.4682] [INSPIRE].ADSGoogle Scholar [72] S. Tulin, H.-B. Yu and K.M. Zurek, Resonant dark forces and small scale structure, Phys. Rev. Lett. 110 (2013) 111301 [arXiv:1210.0900] [INSPIRE].ADSCrossRefGoogle Scholar [73] S. Tulin, H.-B. Yu and K.M. Zurek, Beyond collisionless dark matter: particle physics dynamics for dark matter halo structure, Phys. Rev. D 87 (2013) 115007 [arXiv:1302.3898] [INSPIRE].ADSGoogle Scholar [74] L. Del Debbio, A. Patella and C. Pica, Higher representations on the lattice: Numerical simulations. SU(2) with adjoint fermions, Phys. Rev. D 81 (2010) 094503 [arXiv:0805.2058] [INSPIRE]. [75] A. Hasenfratz and F. Knechtli, Flavor symmetry and the static potential with hypercubic blocking, Phys. Rev. D 64 (2001) 034504 [hep-lat/0103029] [INSPIRE]. [76] P. Di Vecchia and G. Veneziano, Chiral dynamics in the large N limit, Nucl. Phys. B 171 (1980) 253 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar [77] W. Bietenholz, P. de Forcrand and U. Gerber, Topological susceptibility from slabs, JHEP 12 (2015) 070 [arXiv:1509.06433] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar [78] JLQCD collaboration, S. Aoki et al., Topological susceptibility of QCD with dynamical Möbius domain-wall fermions, PTEP 2018 (2018) 043B07 [arXiv:1705.10906] [INSPIRE]. [79] R. Narayanan and H. Neuberger, Infinite N phase transitions in continuum Wilson loop operators, JHEP 03 (2006) 064 [hep-th/0601210] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar [80] M. Lüscher, Trivializing maps, the Wilson flow and the HMC algorithm, Commun. Math. Phys. 293 (2010) 899 [arXiv:0907.5491] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar [81] S. Borsányi et al., High-precision scale setting in lattice QCD, JHEP 09 (2012) 010 [arXiv:1203.4469] [INSPIRE].ADSCrossRefGoogle Scholar [82] M. Cè, M. García Vera, L. Giusti and S. Schaefer, The topological susceptibility in the large-N limit of SU(N) Yang-Mills theory, Phys. Lett. B 762 (2016) 232 [arXiv:1607.05939] [INSPIRE]. [83] T. DeGrand, Simple chromatic properties of gradient flow, Phys. Rev. D 95 (2017) 114512 [arXiv:1701.00793] [INSPIRE].ADSGoogle Scholar Copyright information © The Author(s) 2018 Authors and Affiliations Anthony Francis1Email authorView author's OrcID profileRenwick J. Hudspith2Randy Lewis2Sean Tulin21.Theoretical Physics Department, CERNGeneva 23Switzerland2.Department of Physics and AstronomyYork UniversityTorontoCanada


This is a preview of a remote PDF: https://link.springer.com/content/pdf/10.1007%2FJHEP12%282018%29118.pdf

Anthony Francis, Renwick J. Hudspith, Randy Lewis, Sean Tulin. Dark matter from strong dynamics: the minimal theory of dark baryons, Journal of High Energy Physics, 2018, 118, DOI: 10.1007/JHEP12(2018)118