Open science versus commercialization: a modern research conflict?

Genome Medicine, Feb 2012

Background Efforts to improve research outcomes have resulted in genomic researchers being confronted with complex and seemingly contradictory instructions about how to perform their tasks. Over the past decade, there has been increasing pressure on university researchers to commercialize their work. Concurrently, they are encouraged to collaborate, share data and disseminate new knowledge quickly (that is, to adopt an open science model) in order to foster scientific progress, meet humanitarian goals, and to maximize the impact of their research. Discussion We present selected guidelines from three countries (Canada, United States, and United Kingdom) situated at the forefront of genomics to illustrate this potential policy conflict. Examining the innovation ecosystem and the messages conveyed by the different policies surveyed, we further investigate the inconsistencies between open science and commercialization policies. Summary Commercialization and open science are not necessarily irreconcilable and could instead be envisioned as complementary elements of a more holistic innovation framework. Given the exploratory nature of our study, we wish to point out the need to gather additional evidence on the coexistence of open science and commercialization policies and on its impact, both positive and negative, on genomics academic research.

A PDF file should load here. If you do not see its contents the file may be temporarily unavailable at the journal website or you do not have a PDF plug-in installed and enabled in your browser.

Alternatively, you can download the file locally and open with any standalone PDF reader:

https://link.springer.com/content/pdf/10.1186%2Fgm316.pdf

Open science versus commercialization: a modern research conflict?

Genome Medicine Open science versus commercialization: a modern research conflict? Timothy Caulfield 0 Shawn HE Harmon 2 Yann Joly 1 0 Health Law and Science Policy Group, Law Centre, University of Alberta , Edmonton, T6G 2H5 , Canada 1 Centre of Genomics and Policy, Faculty of Medicine, Department of Human Genetics, McGill University , 740 Dr. Penfield Avenue Suite 5200, Montreal, H3A 1A4 , Canada 2 School of Law, University of Edinburgh, Old College , South Bridge, Edinburgh, EH8 9YL , UK Background: Efforts to improve research outcomes have resulted in genomic researchers being confronted with complex and seemingly contradictory instructions about how to perform their tasks. Over the past decade, there has been increasing pressure on university researchers to commercialize their work. Concurrently, they are encouraged to collaborate, share data and disseminate new knowledge quickly (that is, to adopt an open science model) in order to foster scientific progress, meet humanitarian goals, and to maximize the impact of their research. Discussion: We present selected guidelines from three countries (Canada, United States, and United Kingdom) situated at the forefront of genomics to illustrate this potential policy conflict. Examining the innovation ecosystem and the messages conveyed by the different policies surveyed, we further investigate the inconsistencies between open science and commercialization policies. Summary: Commercialization and open science are not necessarily irreconcilable and could instead be envisioned as complementary elements of a more holistic innovation framework. Given the exploratory nature of our study, we wish to point out the need to gather additional evidence on the coexistence of open science and commercialization policies and on its impact, both positive and negative, on genomics academic research. Background Article 27 of the Universal Declaration of Human Rights (1949), Article 15 of the International Covenant on Economic, Social and Cultural Rights (1966), and Article 15 of the UNESCO Universal Declaration on Bioethics and Human Rights (2005) all articulate the obligation to share scientific knowledge and the right to share in the benefits of scientific knowledge. But like the concept of ‘benefit sharing’, the idea of optimally sharing and maximally utilising scientific knowledge is fraught with complexity, confusion, and policies at seemingly stark crosspurposes. The matter is further complicated by the fact that research is becoming more expensive, research structures are growing more complex and fractured, and innovation levels, at least in the pharmaceutical setting, are not increasing [ 1 ]. Efforts to meet these legally mandated needs and to simultaneously improve research outcomes have resulted in researchers being confronted with complex and seemingly contradictory instructions about how to perform their tasks. This is particularly vexing for universitybased genomics researchers. On the one hand, they are told to commercialize their research by patenting, licensing, and forming close partnerships with industry, which has particular skills, financial assets to facilitate the translation of knowledge into products, and objectives. It is presumed that this will generate maximum wealth and benefit through the quicker introduction of socially useful knowledge and products. On the other hand, researchers are encouraged to share data and disseminate knowledge quickly (that is, to adopt an open science model) so as to foster scientific progress, meet humanitarian goals, and (again) maximize the impact of research. As genomics research leaders with mature regulatory frameworks and enviable regulatory capacity, and as regular expositors of human rights rhetoric, Canada, the United Kingdom (UK), and the United States (US) might be expected to take a lead in clarifying the message to researchers and rationalizing the expectations to which they are held. While we recognize that other jurisdictions will have an equally strong interest in this regard (for example, Japan and the BRIC countries Brazil, Russia, India and China), space limits our ability to address them, and, in any event, this paper is not intended as a comprehensive survey/study. Below we discuss the prevalence of these conflicting messages in Canada, the UK, the US, and internationally, and highlight some of the practical difficulties they are creating within the global research community. In doing so, we focus on the bioscience sector, which has been the subject of significant expectation and support, and we offer some hope to researchers that a rational course is not impossible. Discussion Commercialize and translate While there are numerous social and political forces at work in generating the above-noted pressure to commercialize research, two in particular are noteworthy. The first relates to the need, recognized by governments and imposed on researchers, to secure research funds from sources other (...truncated)


This is a preview of a remote PDF: https://link.springer.com/content/pdf/10.1186%2Fgm316.pdf

Timothy Caulfield, Shawn HE Harmon, Yann Joly. Open science versus commercialization: a modern research conflict?, Genome Medicine, 2012, pp. 17, Volume 4, Issue 2, DOI: 10.1186/gm316