Sequence and structural evolution of the KsgA/Dim1 methyltransferase family

BMC Research Notes, Oct 2008

Background One of the 60 or so genes conserved in all domains of life is the ksgA/dim1 orthologous group. Enzymes from this family perform the same post-transcriptional nucleotide modification in ribosome biogenesis, irrespective of organism. Despite this common function, divergence has enabled some family members to adopt new and sometimes radically different functions. For example, in S. cerevisiae Dim1 performs two distinct functions in ribosome biogenesis, while human mtTFB is not only an rRNA methyltransferase in the mitochondria but also a mitochondrial transcription factor. Thus, these proteins offer an unprecedented opportunity to study evolutionary aspects of structure/function relationships, especially with respect to our recently published work on the binding mode of a KsgA family member to its 30S subunit substrate. Here we compare and contrast KsgA orthologs from bacteria, eukaryotes, and mitochondria as well as the paralogous ErmC enzyme. Results By using structure and sequence comparisons in concert with a unified ribosome binding model, we have identified regions of the orthologs that are likely related to gains of function beyond the common methyltransferase function. There are core regions common to the entire enzyme class that are associated with ribosome binding, an event required in rRNA methylation activity, and regions that are conserved in subgroups that are presumably related to non-methyltransferase functions. Conclusion The ancient protein KsgA/Dim1 has adapted to cellular roles beyond that of merely an rRNA methyltransferase. These results provide a structural foundation for analysis of multiple aspects of ribosome biogenesis and mitochondrial transcription.

A PDF file should load here. If you do not see its contents the file may be temporarily unavailable at the journal website or you do not have a PDF plug-in installed and enabled in your browser.

Alternatively, you can download the file locally and open with any standalone PDF reader:

https://link.springer.com/content/pdf/10.1186%2F1756-0500-1-108.pdf

Sequence and structural evolution of the KsgA/Dim1 methyltransferase family

BMC Research Notes Short Report Sequence and structural evolution of the KsgA/Dim1 methyltransferase family Heather C O'Farrell 1 Zhili Xu 0 Gloria M Culver 0 Jason P Rife 1 0 Department of Biology, University of Rochester , Rochester, New York 14627 , USA 1 Department of Medicinal Chemistry and Institute for Structural Biology and Drug Discovery, Virginia Commonwealth University , Richmond, Virginia 23219 , USA Background: One of the 60 or so genes conserved in all domains of life is the ksgA/dim1 orthologous group. Enzymes from this family perform the same post-transcriptional nucleotide modification in ribosome biogenesis, irrespective of organism. Despite this common function, divergence has enabled some family members to adopt new and sometimes radically different functions. For example, in S. cerevisiae Dim1 performs two distinct functions in ribosome biogenesis, while human mtTFB is not only an rRNA methyltransferase in the mitochondria but also a mitochondrial transcription factor. Thus, these proteins offer an unprecedented opportunity to study evolutionary aspects of structure/function relationships, especially with respect to our recently published work on the binding mode of a KsgA family member to its 30S subunit substrate. Here we compare and contrast KsgA orthologs from bacteria, eukaryotes, and mitochondria as well as the paralogous ErmC enzyme. Results: By using structure and sequence comparisons in concert with a unified ribosome binding model, we have identified regions of the orthologs that are likely related to gains of function beyond the common methyltransferase function. There are core regions common to the entire enzyme class that are associated with ribosome binding, an event required in rRNA methylation activity, and regions that are conserved in subgroups that are presumably related to non-methyltransferase functions. Conclusion: The ancient protein KsgA/Dim1 has adapted to cellular roles beyond that of merely an rRNA methyltransferase. These results provide a structural foundation for analysis of multiple aspects of ribosome biogenesis and mitochondrial transcription. Findings Ribosome biogenesis is a fundamental process in all cells, requiring the consumption of large quantities of cellular resources under the control of an extraordinary level of regulation. In comparing prokaryotic and eukaryotic ribosome biogenesis pathways, the conservation of the KsgA/Dim1 family is unique. The presence and function of this enzyme has been maintained in every evolutionary lineage, including eukaryotic organelles. KsgA catalyzes the conversion of two adjacent adenosines in the small subunit rRNA (A1518 and A1519 of 16S rRNA, E. coli numbering) to N6,N6-dimethyladenosines [ 1 ]. The KsgA family carries out this core methyltransferase function in all domains of life, including organelles, but has also added new roles as cellular organization became more complex. In eukaryotes, the KsgA ortholog Dim1 is essential for proper processing of the pre-18S small subunit rRNA [ 2 ], and Dim1 knockout is lethal. Pfc1, which is the KsgA ortholog found in chloroplasts of Arabidopsis thaliana, is important for chloroplast formation under chilling conditions [ 3 ]. A distinct eukaryotic ortholog, mtTFB, is transported into the mitochondria where, in addition to methylating the small subunit rRNA, it has adopted the ribosomally unrelated function of serving as a mitochondrial transcription factor [ 4,5 ]. In some mitochondria, there are two separate mtTFB proteins, mtTFB1 and mtTFB2, which are proposed to have arisen from a gene duplication event [5]. There is evidence that mtTFB1 has retained stronger methyltransferase activity, while mtTFB2 is more active as a transcription factor [ 5,6 ]. The fungi have only a single mtTFB, suggesting either loss of one of the paralogs in this lineage, or that the duplication occurred later in evolution. In at least one case, S. cerevisiae, the single mtTFB protein (scmtTFB) serves as a transcription factor but has lost its methyltransferase activity entirely [7]. sc-mtTFB lacks significant sequence homology to any of the KsgA/Dim1 enzymes; yeast mtTFBs are generally poorly conserved and difficult to identify via sequence homology [ 8 ]. Another important offshoot of the KsgA lineage is the Erm family of methyltransferases, which confer antibiotic resistance by methylating A2058 of the 23S rRNA [ 9 ]. The present-day Erm family almost certainly resulted from one or more gene duplications of a KsgA gene and subsequent evolution to permit recognition of a distinct target base [ 10 ]. KsgA's remarkable degree of conservation, coupled with the adaptation of new cellular functions, give us a unique opportunity to look at structural/function evolution of a single protein lineage. Previous studies have established the structural similarity between some rRNA adenosine dimethyltransferases [ 11,12 ]. Based on recent work in our groups we can now make pre (...truncated)


This is a preview of a remote PDF: https://link.springer.com/content/pdf/10.1186%2F1756-0500-1-108.pdf

Heather C O'Farrell, Zhili Xu, Gloria M Culver, Jason P Rife. Sequence and structural evolution of the KsgA/Dim1 methyltransferase family, BMC Research Notes, 2008, pp. 108, Volume 1, Issue 1, DOI: 10.1186/1756-0500-1-108