Homozygous missense mutation (G56R) in glycosylphosphatidylinositol-anchored high-density lipoprotein-binding protein 1 (GPI-HBP1) in two siblings with fasting chylomicronemia (MIM 144650)

Lipids in Health and Disease, Sep 2007

Background Mice with a deleted Gpihbp1 gene encoding glycosylphosphatidylinositol-anchored high-density lipoprotein-binding protein 1 (GPI-HBP1) develop severe chylomicronemia. We screened the coding regions of the human homologue – GPIHBP1 – from the genomic DNA of 160 unrelated adults with fasting chylomicronemia and plasma triglycerides >10 mmol/L, each of whom had normal sequence of the LPL and APOC2 genes. Results One patient with severe type 5 hyperlipoproteinemia (MIM 144650), fasting chylomicronemia and relapsing pancreatitis resistant to standard therapy was found to be homozygous for a novel GPIHBP1 missense variant, namely G56R. This mutation was absent from the genomes of 600 control subjects and 610 patients with hyperlipidemia. The GPIHBP1 G56 residue has been conserved throughout evolution and the G56R mutation was predicted to have compromised function. Her homozygous brother also had refractory chylomicronemia and relapsing pancreatitis together with early coronary heart disease. G56R heterozygotes in the family had fasting mild hypertriglyceridemia. Conclusion Thus, a very rare GPIHBP1 missense mutation appears to be associated with severe hypertriglyceridemia and chylomicronemia.

A PDF file should load here. If you do not see its contents the file may be temporarily unavailable at the journal website or you do not have a PDF plug-in installed and enabled in your browser.

Alternatively, you can download the file locally and open with any standalone PDF reader:

http://www.lipidworld.com/content/pdf/1476-511X-6-23.pdf

Homozygous missense mutation (G56R) in glycosylphosphatidylinositol-anchored high-density lipoprotein-binding protein 1 (GPI-HBP1) in two siblings with fasting chylomicronemia (MIM 144650)

Jian Wang 1 Robert A Hegele 0 1 0 Blackburn Cardiovascular Genetics Laboratory, Robarts Research Institute , 406-100 Perth Drive, London, ON, N6A 5K8 , Canada 1 Schulich School of Medicine and Dentistry, University of Western Ontario and Vascular Biology Research Group, Robarts Research Institute , London, Ontario, N6A 5K8 , Canada Background: Mice with a deleted Gpihbp1 gene encoding glycosylphosphatidylinositol-anchored high-density lipoprotein-binding protein 1 (GPI-HBP1) develop severe chylomicronemia. We screened the coding regions of the human homologue - GPIHBP1 - from the genomic DNA of 160 unrelated adults with fasting chylomicronemia and plasma triglycerides >10 mmol/L, each of whom had normal sequence of the LPL and APOC2 genes. Results: One patient with severe type 5 hyperlipoproteinemia (MIM 144650), fasting chylomicronemia and relapsing pancreatitis resistant to standard therapy was found to be homozygous for a novel GPIHBP1 missense variant, namely G56R. This mutation was absent from the genomes of 600 control subjects and 610 patients with hyperlipidemia. The GPIHBP1 G56 residue has been conserved throughout evolution and the G56R mutation was predicted to have compromised function. Her homozygous brother also had refractory chylomicronemia and relapsing pancreatitis together with early coronary heart disease. G56R heterozygotes in the family had fasting mild hypertriglyceridemia. Conclusion: Thus, a very rare GPIHBP1 missense mutation appears to be associated with severe hypertriglyceridemia and chylomicronemia. - Background Glycosylphosphatidylinositol (GPI)-anchored high-density lipoprotein (HDL)-binding protein 1 (GPIHBP1) was identified by expression cloning as a cell surface protein that bound high-density lipoprotein (HDL) [1]. Recently, mice with induced deficiency in Gpihbp1 showed compromised lipolysis leading to severe chylomicronemia, even on a low-fat diet [2]. GPIHBP1 appears to provide a critical platform for the binding of both lipoprotein lipase (LPL) and chylomicrons [1,2]. Since no human mutations in GPIHBP1 have yet been reported, we screened the genomic DNA of 160 unrelated adults with fasting chylomicronemia to search for coding sequence mutations in this gene. Demographics of study sample From a tertiary referral lipid clinic, we evaluated 160 patients (33% female, 35% with diabetes) who had fasting chylomicronemia on at least one occasion. Age, body mass index, untreated fasting plasma cholesterol and triglycerides (mean standard deviation [SD]) were, respectively, 50.5 13.8 years, 30.2 4.8 kg/m2, 11.9 6.0 mmol/L and 31.1 25.0 mmol/L. All subjects consented to DNA analysis. No coding sequence mutations were found in LPL and APOC2 genes encoding, respectively, lipoprotein lipase and apolipoprotein (apo) C-II. Characterization of family with GPIHBP1 mutation Only one rare coding sequence variant in GPIHBP1 was found among the 160 screened patients, namely G56R (Figure 1A). This missense mutation was absent from the genomes of 600 normolipidemic Caucasian control subjects and 610 Caucasian patients with hyperlipidemia. The mutated amino acid residue was evolutionarily conserved (Figure 1B) and analysis with the PolyPhen algorithm [3] indicated that the mutation was probably The proband, a homozygote for GPIHBP1 G56R, had relapsing pancreatitis beginning at age 22 and was documented on numerous occasions to refractory fasting chylomicronemia, even with fat restriction. She had no thyroid, renal or hepatic disease and was not diabetic. She was not obese and consumed no alcohol. Her older brother had a similar biochemical profile, with a history of relapsing pancreatitis requiring hospitalization, refractory to medical treatment since age 25. At age 45 he required 3-vessel coronary artery bypass graft surgery for unstable angina symptoms that began at age 44 (Figure Both patients had normal activities of lipoprotein and hepatic lipases in post-heparin plasma, indicating that ex vivo lipolytic activity was not compromised. Both parents were long-deceased. Although consanguinity was not documented, it was possible since both parents were born in the same village. Three heterozygotes in this pedigree each had plasma triglyceride concentration in the top 5th percentile for age and sex, but no history of pancreatic or cardiovascular disease. Further, the proband's untreated son had combined hyperlipidemia, with approximately equimolar elevations of plasma total cholesterol and triglycerides, which together with an APOE E2/E2 genotype were highly suggestive of type 3 hyperlipoproteinemia (dysbetalipoproteinemia). Both patients have had a variable response to oral fibrate therapy, with a somewhat better response to restriction of fat intake to 20% of calories and to omega-3 fatty acids, although long term compliance AGG CTC CCT GGT GGC AGG AGC 5R3 5L4 5P5 5G6 5G7 5R8 5S9 AGG CTC CCT NGT GGGC AGG AGC 5R3 5L4 5P5 G5/6R 57 5R8 5S9 AGG CTC CCT CGT GGC AGG AGC 5R3 5L4 5 (...truncated)


This is a preview of a remote PDF: http://www.lipidworld.com/content/pdf/1476-511X-6-23.pdf

Jian Wang, Robert A Hegele. Homozygous missense mutation (G56R) in glycosylphosphatidylinositol-anchored high-density lipoprotein-binding protein 1 (GPI-HBP1) in two siblings with fasting chylomicronemia (MIM 144650), Lipids in Health and Disease, 2007, pp. 23, 6, DOI: 10.1186/1476-511X-6-23