An in vitro study comparing a peripherally inserted central catheter to a conventional central venous catheter: no difference in static and dynamic pressure transmission

BMC Anesthesiology, Oct 2010

Background Early goal directed therapy improves survival in patients with septic shock. Central venous pressure (CVP) monitoring is essential to guide adequate resuscitation. Use of peripherally inserted central catheters (PICC) is increasing, but little data exists comparing a PICC to a conventional CVP catheter. We studied the accuracy of a novel PICC to transmit static and dynamic pressures in vitro. Methods We designed a device to generate controlled pressures via a column of water allowing simultaneous measurements from a PICC and a standard triple lumen catheter. Digital transducers were used to obtain all pressure readings. Measurements of static pressures over a physiologic range were recorded using 5Fr and 6Fr dual lumen PICCs. Additionally, random repetitive pressure pulses were applied to the column of water to simulate physiologic intravascular pressure variations. The resultant PICC and control waveforms were recorded simultaneously. Results Six-hundred thirty measurements were made using the 5 Fr and 6 Fr PICCs. The average bias determined by Bland-Altman plot was 0.043 mmHg for 5 Fr PICC and 0.023 mmHg for 6 Fr PICC with a difference range of 1.0 to -1.0. The correlation coefficient for both catheters was 1.0 (p-value < 0.001). Dynamic pressure waveforms plotted simultaneously between PICC and control revealed equal peaks and troughs. Conclusion In vitro, no static or dynamic pressure differences were found between the PICC and a conventional CVP catheter. Clinical studies are required to assess whether the novel PICC has bedside equivalence to conventional catheters when measuring central venous pressures.

A PDF file should load here. If you do not see its contents the file may be temporarily unavailable at the journal website or you do not have a PDF plug-in installed and enabled in your browser.

Alternatively, you can download the file locally and open with any standalone PDF reader:

http://www.biomedcentral.com/content/pdf/1471-2253-10-18.pdf

An in vitro study comparing a peripherally inserted central catheter to a conventional central venous catheter: no difference in static and dynamic pressure transmission

BMC Anesthesiology An in vitro study comparing a peripherally inserted central catheter to a conventional central venous catheter: no difference in static and dynamic pressure transmission Heath E Latham 0 1 Timothy T Dwyer 0 1 Bethene L Gregg 1 2 Steven Q Simpson 0 1 0 Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Kansas Medical Center , Kansas City, Kansas , USA 1 3901 Rainbow Blvd , MS 3007, Kansas City, KS 66160 , USA 2 Division of Respiratory Care Education, University of Kansas Medical Center , Kansas City, Kansas , USA Background: Early goal directed therapy improves survival in patients with septic shock. Central venous pressure (CVP) monitoring is essential to guide adequate resuscitation. Use of peripherally inserted central catheters (PICC) is increasing, but little data exists comparing a PICC to a conventional CVP catheter. We studied the accuracy of a novel PICC to transmit static and dynamic pressures in vitro. Methods: We designed a device to generate controlled pressures via a column of water allowing simultaneous measurements from a PICC and a standard triple lumen catheter. Digital transducers were used to obtain all pressure readings. Measurements of static pressures over a physiologic range were recorded using 5Fr and 6Fr dual lumen PICCs. Additionally, random repetitive pressure pulses were applied to the column of water to simulate physiologic intravascular pressure variations. The resultant PICC and control waveforms were recorded simultaneously. Results: Six-hundred thirty measurements were made using the 5 Fr and 6 Fr PICCs. The average bias determined by Bland-Altman plot was 0.043 mmHg for 5 Fr PICC and 0.023 mmHg for 6 Fr PICC with a difference range of 1.0 to -1.0. The correlation coefficient for both catheters was 1.0 (p-value < 0.001). Dynamic pressure waveforms plotted simultaneously between PICC and control revealed equal peaks and troughs. Conclusion: In vitro, no static or dynamic pressure differences were found between the PICC and a conventional CVP catheter. Clinical studies are required to assess whether the novel PICC has bedside equivalence to conventional catheters when measuring central venous pressures. - Background Sepsis is a major cause of death in the world and carries a mortality rate of 20 to 60% depending on the severity of the disease [1]. Severe sepsis and septic shock are the leading cause of death in non-cardiac intensive care units and the 10th overall cause of death in the United States [2]. As the countrys population grows and ages, the incidence of sepsis is also increasing [1-3]. Despite profound technological advancements in medicine over the last two decades, no intervention has impacted the treatment of severe sepsis and septic shock to the degree of early goal directed therapy. In 2001, Rivers and colleagues demonstrated a sixteen percent reduction in hospital mortality with an early intervention bundle including aggressive volume resuscitation guided by central venous pressure (CVP) monitoring [4]. Centrally inserted central catheters (CICC) and pulmonary artery catheters (PAC) are the current gold standard instruments for measuring CVP, but insertion of these catheters carries the risk of pneumothorax, hemothorax, and severe bleeding [5]. Peripherally inserted central catheters (PICC) are increasingly used in the hospital setting, and do not have the same risk of complications with insertion as compared to centrally inserted catheters [6]. Interestingly, CVP monitoring is an indication for use for several commercially available PICCs, including those manufactured by AngioDynamics, Arrow, Bard, and Medcomp [7-11]. However, there is limited literature on functional accuracy of PICCs for measuring CVP [12,13]. In addition, PICC length and flexibility, necessary design requirements, intuitively suggest to clinicians that central venous pressure measurement via PICC may not be accurate. For our study, we selected the AngioDynamics Morpheus PICC. A property unique to the Morpheus catheter is that the shaft transitions from increased stiffness at the proximal end to softer flexibility at the distal end [14]. Purpose The purpose of our study was to assess the accuracy of static and dynamic pressures measured via the Morpheus PICC compared to a conventional catheter for central insertion. We hypothesized that under in vitro conditions, pressure transmission through the PICC would be equal to pressure transmission through the conventional catheter. Methods In an in vitro study, we designed an inverted T-device to generate controlled pressures via a column of water. The PICC and control were inserted into the device opposite of each other with the catheter tips at the base of the column of water, allowing simultaneous measurements from the PICC and control catheter. Care was taken to avoid excessive external compression or bending of the catheters at the insertion points. The column of water was cali (...truncated)


This is a preview of a remote PDF: http://www.biomedcentral.com/content/pdf/1471-2253-10-18.pdf

Heath E Latham, Timothy T Dwyer, Bethene L Gregg, Steven Q Simpson. An in vitro study comparing a peripherally inserted central catheter to a conventional central venous catheter: no difference in static and dynamic pressure transmission, BMC Anesthesiology, 2010, pp. 18, 10, DOI: 10.1186/1471-2253-10-18