Path planning of mechanical polishing process for freeform surface with a small polishing tool

Robotics and Biomimetics, Dec 2014

Products with freeform surface are widely applied in industries, and the surface quality plays an important role in order to fulfill the targeted functions. As polishing path of small polishing tool affects the polishing removal function considerably, it is highly necessary to study the polishing path of freeform surface for obtaining good polishing efficiency and well-proportioned surface quality. By combining the Preston polishing removal function, the material removal model of small polishing tool under the control of constant polishing force and pressure is established. Based on this model, the material removal functions of scan line, Archimedean spiral, and Hilbert fractal polishing path are derived. The simulation results show that the Hilbert fractal polishing path has the best comprehensive performance. By using the projection relation of differential geometry, the optimal path generation algorithm of the Bézier surface based on Hilbert fractal polishing path is established. The polishing experiments are conducted on a self-developed polishing machine which is based on a parallel manipulator. The experimental results demonstrate that the surface roughness is improved from level 9 to level 11.

A PDF file should load here. If you do not see its contents the file may be temporarily unavailable at the journal website or you do not have a PDF plug-in installed and enabled in your browser.

Alternatively, you can download the file locally and open with any standalone PDF reader:

https://link.springer.com/content/pdf/10.1186%2Fs40638-014-0024-1.pdf

Path planning of mechanical polishing process for freeform surface with a small polishing tool

Lin et al. Robotics and Biomimetics Path planning of mechanical polishing process for freeform surface with a small polishing tool Weiyang Lin 0 1 2 Peng Xu 0 3 Bing Li 0 Xiaojun Yang 0 0 Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen University Town , Xili, 518055 Shenzhen , China 1 Mechanical Automation of Engineering, the Chinese University of Hong Kong , NT Road, 999077 Shatin , Hong Kong 2 School of Astronautics, Harbin Institute of Technology , Xidazhi Street, 150001 Harbin , China 3 Department of Industrial and Systems Engineering, the Hong Kong Polytechnic University , Yuk Choi Road, 999077 Kowloon , Hong Kong Products with freeform surface are widely applied in industries, and the surface quality plays an important role in order to fulfill the targeted functions. As polishing path of small polishing tool affects the polishing removal function considerably, it is highly necessary to study the polishing path of freeform surface for obtaining good polishing efficiency and well-proportioned surface quality. By combining the Preston polishing removal function, the material removal model of small polishing tool under the control of constant polishing force and pressure is established. Based on this model, the material removal functions of scan line, Archimedean spiral, and Hilbert fractal polishing path are derived. The simulation results show that the Hilbert fractal polishing path has the best comprehensive performance. By using the projection relation of differential geometry, the optimal path generation algorithm of the Bézier surface based on Hilbert fractal polishing path is established. The polishing experiments are conducted on a self-developed polishing machine which is based on a parallel manipulator. The experimental results demonstrate that the surface roughness is improved from level 9 to level 11. Mechanical polishing; Small polishing tool; Freeform surface; Polishing path; Removal function - Background Product structure can be optimized by using freeform surfaces, which opens the door for solutions with improved performance, reduced complexity, lower mass, and smaller size. However, due to the geometric particularity, freeform surfaces face more challenges and difficulties in precision manufacturing. Polishing is usually one of the final processing steps of precision manufacturing, and the results directly affect the appearance and longevity of parts [1]. It is fundamentally different from other precision manufacturing technologies. Removal of polishing does not only depend on the position of the tool orthogonal to the workpiece, as for grinding and cutting processes but also proportional to the product of local pressure and relative-speed between tool and workpiece and the dwell time. In recent years, there were efforts to develop versatile polishing processes in order to achieve high accuracy. The current polishing methods mainly include electrochemical polishing [2], magnetorheological fluid polishing [3,4], plasma polishing [5,6], ultrasonic polishing [7,8] and computer-controlled mechanical polishing [9,10]. Nowadays, a lot of freeform components are still produced by final manual polishing. It not only heavily relies on the know-how and experience of technicians but also needs much attention for processing and testing. To achieve a given level of precision with high efficiency and reliability, process automation is clearly the way forward. As the computer-controlled mechanical polishing has high efficiency and can be controlled easily [11], it is the focus of this study. The mechanical polishing is a statistical ‘rubbing’ process that the microscopic loose-abrasive particles in the polishing liquid which is driven by high-speed rotational polishing tool could produce friction with the part surface. Protruding portions of the surface are removed to meet the roughness requirement. However, due to the various factors, the polishing process heavily relies on trial and experience, which leads to a slow development in the mechanical polishing process. Compared with the large polishing tool, the small polishing tool used in this study has many advantages [12]. The small tool can follow the freeform surface with relatively large curvature, while large tool cannot polish the freeform surface with curvature smaller than its radius. The small tool can redress the error of local surface, while a large tool may polish the nearby surface when it polishes a local surface. The small can also operate at greater pressure and velocity than a large tool; therefore, it can remove the material in a rapid manner. In the case of manufacturing one single piece, small polishing tool has a higher polishing efficiency. As the polishing surface is highly nondeterministic, one of the reasons is that the polishing path of the tool affects the removal considerably. A basic requirement for polishing paths is that the surface can be completely and uniformly covered during a polishing cycle (...truncated)


This is a preview of a remote PDF: https://link.springer.com/content/pdf/10.1186%2Fs40638-014-0024-1.pdf

Weiyang Lin, Peng Xu, Bing Li, Xiaojun Yang. Path planning of mechanical polishing process for freeform surface with a small polishing tool, Robotics and Biomimetics, 2014, pp. 24, Volume 1, Issue 1, DOI: 10.1186/s40638-014-0024-1