Transient Receptor Potential Ankyrin 1 Receptor Activation In Vitro and In Vivo by Pro-tussive Agents: GRC 17536 as a Promising Anti-Tussive Therapeutic

PLOS ONE, Dec 2019

Cough is a protective reflex action that helps clear the respiratory tract which is continuously exposed to airborne environmental irritants. However, chronic cough presents itself as a disease in its own right and despite its global occurrence; the molecular mechanisms responsible for cough are not completely understood. Transient receptor potential ankyrin1 (TRPA1) is robustly expressed in the neuronal as well as non-neuronal cells of the respiratory tract and is a sensor of a wide range of environmental irritants. It is fast getting acceptance as a key biological sensor of a variety of pro-tussive agents often implicated in miscellaneous chronic cough conditions. In the present study, we demonstrate in vitro direct functional activation of TRPA1 receptor by citric acid which is routinely used to evoke cough in preclinical and clinical studies. We also show for the first time that a potent and selective TRPA1 antagonist GRC 17536 inhibits citric acid induced cellular Ca+2 influx in TRPA1 expressing cells and the citric acid induced cough response in guinea pigs. Hence our data provides a mechanistic link between TRPA1 receptor activation in vitro and cough response induced in vivo by citric acid. Furthermore, we also show evidence for TRPA1 activation in vitro by the TLR4, TLR7 and TLR8 ligands which are implicated in bacterial/respiratory virus pathogenesis often resulting in chronic cough. In conclusion, this study highlights the potential utility of TRPA1 antagonist such as GRC 17536 in the treatment of miscellaneous chronic cough conditions arising due to diverse causes but commonly driven via TRPA1.

A PDF file should load here. If you do not see its contents the file may be temporarily unavailable at the journal website or you do not have a PDF plug-in installed and enabled in your browser.

Alternatively, you can download the file locally and open with any standalone PDF reader:

https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0097005&type=printable

Transient Receptor Potential Ankyrin 1 Receptor Activation In Vitro and In Vivo by Pro-tussive Agents: GRC 17536 as a Promising Anti-Tussive Therapeutic

et al. (2014) Transient Receptor Potential Ankyrin 1 Receptor Activation In Vitro and In Vivo by Pro-tussive Agents: GRC 17536 as a Promising Anti-Tussive Therapeutic. PLoS ONE 9(5): e97005. doi:10.1371/journal.pone.0097005 Transient Receptor Potential Ankyrin 1 Receptor Activation In Vitro and In Vivo by Pro-tussive Agents: GRC 17536 as a Promising Anti-Tussive Therapeutic Indranil Mukhopadhyay 0 Abhay Kulkarni 0 Sarika Aranake 0 Pallavi Karnik 0 Mahesh Shetty 0 Sandeep Thorat 0 Indraneel Ghosh 0 Dinesh Wale 0 Vikram Bhosale 0 Neelima Khairatkar-Joshi 0 Stuart E. Dryer, University of Houston, United States of America 0 Biological Research, Glenmark Research Centre, Glenmark Pharmaceuticals Ltd. , Navi Mumbai, Maharashtra , India Cough is a protective reflex action that helps clear the respiratory tract which is continuously exposed to airborne environmental irritants. However, chronic cough presents itself as a disease in its own right and despite its global occurrence; the molecular mechanisms responsible for cough are not completely understood. Transient receptor potential ankyrin1 (TRPA1) is robustly expressed in the neuronal as well as non-neuronal cells of the respiratory tract and is a sensor of a wide range of environmental irritants. It is fast getting acceptance as a key biological sensor of a variety of pro-tussive agents often implicated in miscellaneous chronic cough conditions. In the present study, we demonstrate in vitro direct functional activation of TRPA1 receptor by citric acid which is routinely used to evoke cough in preclinical and clinical studies. We also show for the first time that a potent and selective TRPA1 antagonist GRC 17536 inhibits citric acid induced cellular Ca+2 influx in TRPA1 expressing cells and the citric acid induced cough response in guinea pigs. Hence our data provides a mechanistic link between TRPA1 receptor activation in vitro and cough response induced in vivo by citric acid. Furthermore, we also show evidence for TRPA1 activation in vitro by the TLR4, TLR7 and TLR8 ligands which are implicated in bacterial/respiratory virus pathogenesis often resulting in chronic cough. In conclusion, this study highlights the potential utility of TRPA1 antagonist such as GRC 17536 in the treatment of miscellaneous chronic cough conditions arising due to diverse causes but commonly driven via TRPA1. - Cough is a vagally mediated reflex and a primary defensive mechanism to protect the airway by forceful expulsion of irritant agents from the respiratory tract. Although a protective response, sometimes it becomes excessive and harmful to the airway mucosa leading to compromised quality of life. Cough is broadly divided into acute and chronic persistent cough [1]. Cough accompanying acute illnesses generally resolves in few days to few weeks. In contrast, chronic cough is recognized as a clinical condition and defined as one that lingers for more than three to eight weeks, sometimes lasting for months or even years. Despite its wide prevalence, treatment options for chronic cough are very limited and often symptomatic. Currently available and most commonly used treatments such as dextromethorphan, hydrocodone and codeine are inadequate due to limited efficacy and CNS side effects or abuse liability [2,3,4]. Their other undesirable side effects include respiratory depression and gastrointestinal disturbances. Activation of sensory nerves innervating anatomical regions implicated in cough reflex, including the larynx, trachea and large bronchi, by exogenous inhaled or aspirated substances or by locally produced endogenous biochemical mediators can produce cough [5]. Miscellaneous peripheral receptors expressed on the pulmonary C fibers [6,7] and central mechanisms [8] have been implicated in cough reflex in animals as well as in humans. There is strong emerging evidence implicating TRPA1 receptor activation in driving chronic cough. TRPA1 is an irritant sensing ion channel expressed in the vast majority of vagal nociceptive Cfibers of the bronchopulmonary region [9]. A large number of in vitro and in vivo studies have recently established TRPA1 as a major chemosensory receptor of the airways [10,11,12,13]. Many environmental irritants known to cause coughing directly activate TRPA1 receptor further emphasizing the relevance of TRPA1 expression in these respiratory vagal nerves. For example, acrolein - found in car exhausts, crotonaldehyde - in cigarette smoke, wood smoke particulate matter etc. are all reported to activate TRPA1 [14,15,16]. TRPA1 is also implicated in cough hypersensitivity associated with chronic exposure to environmental irritants, such as in highly polluted areas, or in occupations where workers are exposed to a number of dangerous irritants on a daily basis. TRPA1 on sensory nerves detects not only exogenous environmental agents that may be inhaled, but is also activated by known endogenous tussive molecules such as PGE2 and bradykinin produced during t (...truncated)


This is a preview of a remote PDF: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0097005&type=printable

Indranil Mukhopadhyay, Abhay Kulkarni, Sarika Aranake, Pallavi Karnik, Mahesh Shetty, Sandeep Thorat, Indraneel Ghosh, Dinesh Wale, Vikram Bhosale, Neelima Khairatkar-Joshi. Transient Receptor Potential Ankyrin 1 Receptor Activation In Vitro and In Vivo by Pro-tussive Agents: GRC 17536 as a Promising Anti-Tussive Therapeutic, PLOS ONE, 2014, 5, DOI: 10.1371/journal.pone.0097005