The First Mitochondrial Genome for the Superfamily Hagloidea and Implications for Its Systematic Status in Ensifera

PLOS ONE, Dec 2019

Hagloidea Handlirsch, 1906 was an ancient group of Ensifera, that was much more diverse in the past extending at least into the Triassic, apparently diminishing in diversity through the Cretaceous, and now only represented by a few extant species. In this paper, we report the complete mitochondrial genome (mitogenome) of Tarragoilus diuturnus Gorochov, 2001, representing the first mitogenome of the superfamily Hagloidea. The size of the entire mitogenome of T. diuturnus is 16144 bp, containing 13 protein-coding genes (PCGs), 2 ribosomal RNA (rRNA) genes, 22 transfer RNA (tRNA) genes and one control region. The order and orientation of the gene arrangement pattern is identical to that of D. yakuba and most ensiferans species. A phylogenomic analysis was carried out based on the concatenated dataset of 13 PCGs and 2 rRNA genes from mitogenome sequences of 15 ensiferan species, comprising four superfamilies Grylloidea, Tettigonioidae, Rhaphidophoroidea and Hagloidea. Both maximum likelihood and Bayesian inference analyses strongly support Hagloidea T. diuturnus and Rhaphidophoroidea Troglophilus neglectus as forming a monophyletic group, sister to the Tettigonioidea. The relationships among four superfamilies of Ensifera were (Grylloidea, (Tettigonioidea, (Hagloidea, Rhaphidophoroidea))).

A PDF file should load here. If you do not see its contents the file may be temporarily unavailable at the journal website or you do not have a PDF plug-in installed and enabled in your browser.

Alternatively, you can download the file locally and open with any standalone PDF reader:

https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0086027&type=printable

The First Mitochondrial Genome for the Superfamily Hagloidea and Implications for Its Systematic Status in Ensifera

Zhao L (2014) The First Mitochondrial Genome for the Superfamily Hagloidea and Implications for Its Systematic Status in Ensifera. PLoS ONE 9(1): e86027. doi:10.1371/journal.pone.0086027 The First Mitochondrial Genome for the Superfamily Hagloidea and Implications for Its Systematic Status in Ensifera Zhijun Zhou 0 Fuming Shi 0 Ling Zhao 0 George E. Fox, University of Houston, United States of America 0 1 College of Life Sciences, Hebei University , Baoding, Hebei Province , China , 2 College of Life Science and Biotechnology, Mianyang Normal University , Mianyang, Sichuan Province , China Hagloidea Handlirsch, 1906 was an ancient group of Ensifera, that was much more diverse in the past extending at least into the Triassic, apparently diminishing in diversity through the Cretaceous, and now only represented by a few extant species. In this paper, we report the complete mitochondrial genome (mitogenome) of Tarragoilus diuturnus Gorochov, 2001, representing the first mitogenome of the superfamily Hagloidea. The size of the entire mitogenome of T. diuturnus is 16144 bp, containing 13 protein-coding genes (PCGs), 2 ribosomal RNA (rRNA) genes, 22 transfer RNA (tRNA) genes and one control region. The order and orientation of the gene arrangement pattern is identical to that of D. yakuba and most ensiferans species. A phylogenomic analysis was carried out based on the concatenated dataset of 13 PCGs and 2 rRNA genes from mitogenome sequences of 15 ensiferan species, comprising four superfamilies Grylloidea, Tettigonioidae, Rhaphidophoroidea and Hagloidea. Both maximum likelihood and Bayesian inference analyses strongly support Hagloidea T. diuturnus and Rhaphidophoroidea Troglophilus neglectus as forming a monophyletic group, sister to the Tettigonioidea. The relationships among four superfamilies of Ensifera were (Grylloidea, (Tettigonioidea, (Hagloidea, Rhaphidophoroidea))). - Funding: This research was supported by the National Natural Science Foundation of PR China (No. 31101632, 31071955 and 31372232). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Competing Interests: The authors have declared that no competing interests exist. Analyses of molecular data are often effective for phylogenetic reconstruction, as they benefit from a great number of informative characters without the kinds of biases that can be introduced by the choice and scoring of morphological characters [1]. The complete mitochondrial genome (mitogenome) is one of the most widely used molecular components in the phylogenetic analysis of insects, because it carries much more information than an individual gene. The Ensifera consist of about 10,000 species and six extant superfamilies according to the Orthoptera Species File Online [2]. The group contains many familiar insects including katydids, crickets, mole crickets, and wetas. They are well known for acoustic signals produced in the contexts of courtship and mate recognition. Among the ensiferans are some clear relicts, such as members of Stenopelmatoidea and Hagloidea. The superfamily Hagloidea Handlirsch, 1906 was an ancient group of Ensifera. It was much more diverse in the past, extending at least into the Triassic, apparently diminishing in diversity through the Cretaceous [3]. It is the only family group of ensiferans, which can be traced from the Mesozoic to now [4]. Today, the Hagloidea are represented by only a few species, entirely in the sole modern family Prophalangopsidae Kirby, 1906 [2], that seems to intermingle traits of the Tettigonioidae and Grylloidea. The Prophalangopsidae contain five fossil subfamilies (Aboilinae Martynov, 1925; Protaboilinae Gorochov, 1988; Chifengiinae Hong, 1982; Termitidiinae Zeuner, 1939; Tettohaglinae Gorochov, 2003) and twoextant subfamilies: Prophalangopsinae Kirby, 1906 (extant 3 genera 4 species) and Cyphoderrinae Gorochov, 1988(extant 2 genera 4 species) [2]. The phylogeny of the Ensifera has been most investigated by Gwynne [5] and Desutter-Grandcolas [6]. However, the phylogenetic relationships between major ensiferan lineages are still poorly understood, despite many comprehensive efforts to define these lineages and reconstruct their relationships using morphological characters. The Hagloidea were an ancient group of Ensifera and appear to be ancestors of the Tettigonioidea and Stenopelmatoidea [7]. Prophalangopsidae is an intermediate group between Tettigonioidea, Stenopelmatoidea, and the more primitive Hagloidea. Therefore the above-mentioned trends are very important for their evolution (and consequently for their taxonomy) [7]. Prophalangopsinae and Cyphoderrinae are more closely related to the Tettigonioidae (katydids or bush-crickets) than to any other ensiferans, and their evolutionary split occurred more than 230 million years ago in the Permian. The close relationships between the Prophalangopsidae and Tettigonioidae are congruent with (...truncated)


This is a preview of a remote PDF: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0086027&type=printable

Zhijun Zhou, Fuming Shi, Ling Zhao. The First Mitochondrial Genome for the Superfamily Hagloidea and Implications for Its Systematic Status in Ensifera, PLOS ONE, 2014, 1, DOI: 10.1371/journal.pone.0086027