Resistance of a sub-arctic bird community to severe forest damage caused by geometrid moth outbreaks

European Journal of Forest Research, May 2015

Outbreaks by geometrid moths periodically cause mass mortality of trees and state changes in understorey vegetation in sub-arctic mountain birch forest in northern Scandinavia. In order to assess the short-term impacts of such disturbance on forest bird communities, we took bird censuses in forest where almost all birch trees had been killed by moth outbreaks 2–4 years before the study and in undamaged forest. The study was repeated in two locations (Kirkenes and Tana) with contrasting forest structure and fragmentation. Using a hierarchical community model, we show that the total abundance of birds in Kirkenes was only about 25 % lower in damaged than undamaged forest and that species richness differed even less between the two forest types. Meanwhile, neither bird abundance nor species richness differed between damaged and undamaged forest in Tana. The observed patterns in abundance were mainly driven by a few very common species. Only a single species showed indication of being more abundant in damaged forest. Thus, our findings indicate that bird communities in sub-arctic mountain birch forest have a high degree of resistance to forest damage caused by moth outbreaks. We suggest that bird populations in outbreak-affected forest may be maintained by surviving trees and by standing dead tree trunks, which help maintain the vertical structure of the forest habitat. The fact that many of the studied bird species are habitat generalists may also explain their apparently weak responses to the damage caused by the outbreak. Our results do not point towards forest damage caused by moth outbreaks as a major driver of change in bird communities in the study system, although more long-term research is needed to substantiate this conclusion.

A PDF file should load here. If you do not see its contents the file may be temporarily unavailable at the journal website or you do not have a PDF plug-in installed and enabled in your browser.

Alternatively, you can download the file locally and open with any standalone PDF reader:

https://link.springer.com/content/pdf/10.1007%2Fs10342-015-0886-y.pdf

Resistance of a sub-arctic bird community to severe forest damage caused by geometrid moth outbreaks

Resistance of a sub-arctic bird community to severe forest damage caused by geometrid moth outbreaks Ole Petter Laksforsmo Vindstad 0 1 2 3 Jane Uhd Jepsen 0 1 2 3 Rolf Anker Ims 0 1 2 3 0 Department of Arctic and Marine Biology, University of Troms , 9037 Troms , Norway 1 & Ole Petter Laksforsmo Vindstad 2 Communicated by Jarmo Holopainen 3 Norwegian Institute for Nature Research, Fram Centre , 9296 Troms , Norway Outbreaks by geometrid moths periodically cause mass mortality of trees and state changes in understorey vegetation in sub-arctic mountain birch forest in northern Scandinavia. In order to assess the short-term impacts of such disturbance on forest bird communities, we took bird censuses in forest where almost all birch trees had been killed by moth outbreaks 2-4 years before the study and in undamaged forest. The study was repeated in two locations (Kirkenes and Tana) with contrasting forest structure and fragmentation. Using a hierarchical community model, we show that the total abundance of birds in Kirkenes was only about 25 % lower in damaged than undamaged forest and that species richness differed even less between the two forest types. Meanwhile, neither bird abundance nor species richness differed between damaged and undamaged forest in Tana. The observed patterns in abundance were mainly driven by a few very common species. Only a single species showed indication of being more abundant in damaged forest. Thus, our findings indicate that bird communities in sub-arctic mountain birch forest have a high degree of resistance to forest damage caused by moth outbreaks. We suggest that bird populations in outbreak-affected forest may be maintained by surviving trees and by standing dead tree trunks, which help maintain the vertical structure of the forest habitat. The fact that many of the studied bird species are habitat generalists may also explain their apparently weak responses to the damage caused by the outbreak. Our results do not point towards forest damage caused by moth outbreaks as a major driver of change in bird communities in the study system, although more long-term research is needed to substantiate this conclusion. Disturbance; Mountain birch; Operophtera; Epirrita; Transect; Hierarchical model - Outbreaks by pest insects are major sources of disturbance in many forest ecosystems (Barbosa et al. 2012). Outbreaks can cause damage and mortality in trees and understorey vegetation across enormous areas and thereby alter many biotic and abiotic attributes of forest habitats, including the amount of canopy cover (Dennison et al. 2010; Moulinier et al. 2013), the spatial heterogeneity of the habitat (Muller et al. 2008; Yang 2012) and the species composition of vegetation communities (Man and Rice 2010; Karlsen et al. 2013). This, in turn, may alter habitat quality for a wide range of forest-dwelling taxa (Lehnert et al. 2013). However, the consequences of this have so far been studied for relatively few species, and there are still large uncertainties as to how outbreak-induced changes in habitat characteristics affect wildlife communities in most outbreak-affected systems. The importance of such impact studies is currently accentuated for boreal and sub-arctic forest ecosystems, where insect outbreaks recently appear to have become more extensive due to climate change (Jepsen et al. 2008, 2011; Weed et al. 2013). Birds are one group of organisms that are known to be sensitive to habitat changes caused by insect outbreaks. Many species of birds forage, seek shelter from predators and build their nests in trees or among understorey vegetation. The severe impacts that outbreaks have on forest vegetation can thereby cause cascading effects on bird communities in outbreak-affected areas. Bird species which are associated with closed-canopy forest have typically been found to undergo population declines in areas experiencing outbreak-induced mortality of trees, while species that prefer clearings and disturbed habitats have usually been found to increase (Rabenold et al. 1998; Gale et al. 2001; Becker et al. 2008). The same is true for species associated with the understorey vegetation, which often grows denser and taller after outbreaks, probably due to increased amounts of light reaching the forest floor or fertilization from insect frass and cadavers (Bell and Whitmore 1997; Canterbury and Blockstein 1997). In northern Scandinavia, outbreaks by the two geometrid moths (Lepidoptera: Geometridae) autumnal moth (Epirrita autumnata) and winter moth (Operophtera brumata) periodically cause defoliation of mountain birch (Betula pubescens ssp. czerepanovii) across areas of 1000s of square kilometres (Jepsen et al. 2009a, 2013). Moth larvae are an important food resource for many species of birds in the mountain birch forest, and several bird species appear to increase reproductive effort due to a superabundance of food in moth outbreak years (Enemar et al. 1984, 2004; Hogstad 2005; (...truncated)


This is a preview of a remote PDF: https://link.springer.com/content/pdf/10.1007%2Fs10342-015-0886-y.pdf

Ole Petter Laksforsmo Vindstad, Jane Uhd Jepsen, Rolf Anker Ims. Resistance of a sub-arctic bird community to severe forest damage caused by geometrid moth outbreaks, European Journal of Forest Research, 2015, pp. 725-736, Volume 134, Issue 4, DOI: 10.1007/s10342-015-0886-y