Advances in earthquake and tsunami sciences and disaster risk reduction since the 2004 Indian ocean tsunami

Geoscience Letters, Dec 2014

The December 2004 Indian Ocean tsunami was the worst tsunami disaster in the world’s history with more than 200,000 casualties. This disaster was attributed to giant size (magnitude M ~ 9, source length >1000 km) of the earthquake, lacks of expectation of such an earthquake, tsunami warning system, knowledge and preparedness for tsunamis in the Indian Ocean countries. In the last ten years, seismology and tsunami sciences as well as tsunami disaster risk reduction have significantly developed. Progress in seismology includes implementation of earthquake early warning, real-time estimation of earthquake source parameters and tsunami potential, paleoseismological studies on past earthquakes and tsunamis, studies of probable maximum size, recurrence variability, and long-term forecast of large earthquakes in subduction zones. Progress in tsunami science includes accurate modeling of tsunami source such as contribution of horizontal components or “tsunami earthquakes”, development of new types of offshore and deep ocean tsunami observation systems such as GPS buoys or bottom pressure gauges, deployments of DART gauges in the Pacific and other oceans, improvements in tsunami propagation modeling, and real-time inversion or data assimilation for the tsunami warning. These developments have been utilized for tsunami disaster reduction in the forms of tsunami early warning systems, tsunami hazard maps, and probabilistic tsunami hazard assessments. Some of the above scientific developments helped to reveal the source characteristics of the 2011 Tohoku earthquake, which caused devastating tsunami damage in Japan and Fukushima Dai-ichi Nuclear Power Station accident. Toward tsunami disaster risk reduction, interdisciplinary and trans-disciplinary approaches are needed for scientists with other stakeholders.

A PDF file should load here. If you do not see its contents the file may be temporarily unavailable at the journal website or you do not have a PDF plug-in installed and enabled in your browser.

Alternatively, you can download the file locally and open with any standalone PDF reader:

https://link.springer.com/content/pdf/10.1186%2Fs40562-014-0015-7.pdf

Advances in earthquake and tsunami sciences and disaster risk reduction since the 2004 Indian ocean tsunami

Satake Geoscience Letters Advances in earthquake and tsunami sciences and disaster risk reduction since the 2004 Indian ocean tsunami 0 Earthquake Research Institute, The University of Tokyo , Yayoi, Bunkyo-ku, Tokyo 113-0032 , Japan The December 2004 Indian Ocean tsunami was the worst tsunami disaster in the world's history with more than 200,000 casualties. This disaster was attributed to giant size (magnitude M ~ 9, source length >1000 km) of the earthquake, lacks of expectation of such an earthquake, tsunami warning system, knowledge and preparedness for tsunamis in the Indian Ocean countries. In the last ten years, seismology and tsunami sciences as well as tsunami disaster risk reduction have significantly developed. Progress in seismology includes implementation of earthquake early warning, real-time estimation of earthquake source parameters and tsunami potential, paleoseismological studies on past earthquakes and tsunamis, studies of probable maximum size, recurrence variability, and long-term forecast of large earthquakes in subduction zones. Progress in tsunami science includes accurate modeling of tsunami source such as contribution of horizontal components or “tsunami earthquakes”, development of new types of offshore and deep ocean tsunami observation systems such as GPS buoys or bottom pressure gauges, deployments of DART gauges in the Pacific and other oceans, improvements in tsunami propagation modeling, and real-time inversion or data assimilation for the tsunami warning. These developments have been utilized for tsunami disaster reduction in the forms of tsunami early warning systems, tsunami hazard maps, and probabilistic tsunami hazard assessments. Some of the above scientific developments helped to reveal the source characteristics of the 2011 Tohoku earthquake, which caused devastating tsunami damage in Japan and Fukushima Dai-ichi Nuclear Power Station accident. Toward tsunami disaster risk reduction, interdisciplinary and trans-disciplinary approaches are needed for scientists with other stakeholders. Earthquake; Tsunami; Disaster risk reduction; Tsunami warning system; The 2004 Indian Ocean tsunami; The 2011 Tohoku tsunami Introduction On 26 December 2004, five months after the inauguration of the Asia Oceania Geoscience Society (AOGS), the countries around the Indian Ocean suffered from the devastating tsunami. This tsunami, generated by the Sumatra-Andaman earthquake (magnitude M 9.1), was the worst tsunami disaster in the world’s written history, and the casualties were not only from the Indian Ocean countries but also extended to European countries because many tourists were spending their Christmas vacations in Asian countries. This disaster was attributed to several factors. The earthquake was huge and such a giant earthquake was not expected in the Indian Ocean; thus tsunami warning system did not exist in the Indian Ocean; and consequently the coastal residents, tourists and governments did not have knowledge on tsunamis and were not prepared for such a disaster. In the last decade, significant improvements have been made in earthquake and tsunami sciences as well as in their applications for disaster risk reduction. Scientific developments include real-time estimation of earthquake and tsunami source parameters, implementation of early warning of earthquakes and tsunamis, historical and geological studies of past earthquakes and tsunamis, examination of probable maximum earthquake size, long-term forecast of large earthquakes, new types of tsunami observations in the open ocean and on the coast, and accurate tsunami modeling and inversion. The disaster risk reduction includes delivery of tsunami early warning messages to officials and coastal residents, making tsunami hazard maps or probabilistic hazard assessments, construction of infrastructure such as speakers to disseminate the warning messages, seawalls, evacuation signs, and designated evacuation areas, as well as public education. During the time period of such developments, the 2011 Tohoku earthquake and tsunami occurred and caused devastating tsunami damage in Japan and the Fukushima Dai-ichi Nuclear Power Station accident. Some of the above scientific developments helped to reveal the source characteristics of this giant earthquake and tsunami, yet they could not prevent the disaster. In this review paper, I first describe the 2004 Indian Ocean tsunami in section 2, then review developments in seismology in section 3, followed by those in tsunami science in section 4. The 2011 Tohoku earthquake and tsunami are described in section 5. I then discuss efforts and issues that show how scientific developments can be utilized for disaster risk reduction in section 6. The 2004 Indian ocean tsunami The source of the Indian Ocean tsunami was the Sumatra-Andaman earthquake on 26 December 2004 (Figure 1). The earthquake size, expressed by a moment magnitude scale (Mw), was 9.1 (according to United States Geologica (...truncated)


This is a preview of a remote PDF: https://link.springer.com/content/pdf/10.1186%2Fs40562-014-0015-7.pdf

Kenji Satake. Advances in earthquake and tsunami sciences and disaster risk reduction since the 2004 Indian ocean tsunami, Geoscience Letters, 2014, pp. 15, Volume 1, Issue 1, DOI: 10.1186/s40562-014-0015-7