Development and evaluation of a system to assess the effect of footwear on the in shoe plantar pressure and shear during gait

ROBOMECH Journal, Jul 2014

In this paper, we propose a system to assess the effect of footwear on the in-shoe plantar pressure and shear during gait. In our previous study, we developed a system for measuring the plantar pressure and shear inside footwear using specialized shoes and insoles with sensors. In this study, based on the previous study, 1) we realized a method to measure directly the in-shoe plantar pressure and shear applied from footwear, 2) verified the validity and reliability of the method and 3) evaluated the ability of the system to assess the effect of footwear by measurements with multiple subjects and various footwear. The reliability and validity were demonstrated by comparison with our previous system. From the evaluation of the newly developed system, we found four suggestions as the following; a) Footwear does not always reduce the pressure and shear force. b) Fixing the instep with shoelace or straps is effective in the reduction of shear force on risk regions of plantar. c) People with callus show significantly higher peak shear force (3.31 ± 0.78 (kgf)) than people without callus (2.03 ± 0.42 (kgf)) when they walk with their usual wearing shoes (p < 0.01). But in barefoot walking, there is no significant difference (2.59 ± 1.08 (kgf) versus 2.67 ± 0.99 (kgf), (p = 0.66)). d) People with callus can reduce the shear force by changing footwear. The system employed in this study can be used for assessing the effect of the intervention such as footwear or instruction of a walk.

A PDF file should load here. If you do not see its contents the file may be temporarily unavailable at the journal website or you do not have a PDF plug-in installed and enabled in your browser.

Alternatively, you can download the file locally and open with any standalone PDF reader:

http://www.robomechjournal.com/content/pdf/s40648-014-0004-9.pdf

Development and evaluation of a system to assess the effect of footwear on the in shoe plantar pressure and shear during gait

ROBOMECH Journal Development and evaluation of a system to assess the effect of footwear on the in shoe plantar pressure and shear during gait Manabu Takano 0 Hiroshi Noguchi 0 Makoto Oe 2 Hiromi Sanada 1 Taketoshi Mori 0 0 Department of Life Support Technology (Molten), Graduate School of Medicine, The University of Tokyo , Tokyo , Japan 1 Department of Gerontological Nursing/ Wound Care Management, Graduate School of Medicine, The University of Tokyo , Tokyo , Japan 2 Department of Advanced Nursing Technology, Graduate School of Medicine, The University of Tokyo , Tokyo , Japan In this paper, we propose a system to assess the effect of footwear on the in-shoe plantar pressure and shear during gait. In our previous study, we developed a system for measuring the plantar pressure and shear inside footwear using specialized shoes and insoles with sensors. In this study, based on the previous study, 1) we realized a method to measure directly the in-shoe plantar pressure and shear applied from footwear, 2) verified the validity and reliability of the method and 3) evaluated the ability of the system to assess the effect of footwear by measurements with multiple subjects and various footwear. The reliability and validity were demonstrated by comparison with our previous system. From the evaluation of the newly developed system, we found four suggestions as the following; a) Footwear does not always reduce the pressure and shear force. b) Fixing the instep with shoelace or straps is effective in the reduction of shear force on risk regions of plantar. c) People with callus show significantly higher peak shear force (3.31 ± 0.78 (kgf)) than people without callus (2.03 ± 0.42 (kgf)) when they walk with their usual wearing shoes (p < 0.01). But in barefoot walking, there is no significant difference (2.59 ± 1.08 (kgf) versus 2.67 ± 0.99 (kgf), (p = 0.66)). d) People with callus can reduce the shear force by changing footwear. The system employed in this study can be used for assessing the effect of the intervention such as footwear or instruction of a walk. Callosity; Diabetic foot; Gait analysis; Direct measurement; Therapeutic shoes - Background Gait has been widely and variously analyzed in clinical settings [1]. For example, gait parameters such as walking speed, cadence, step length and plantar pressure have been measured for fall [2], diabetic foot [3], and osteoarthritis [4]. Intervention by footwear is one of the major methods for improving gait parameters for both prevention and therapy. However, the evaluation of intervention by footwear [5-7] is difficult, especially for diabetic patients because they sometimes have neuropathy or foot deformity [8,9]. Because their sensitivity for pressure and shear force has decreased by neuropathy, it is hard to complain to clinicians about the pain or abnormality on their plantar. Also, even if patients have foot deformity, clinicians have been estimating the effect of footwear only experientially. Neuropathy, deformity and repetitive stress are known key factors of foot ulcer [10]. Moreover, the forces known to directly act on the foot are the plantar pressure (the force that act in the vertical direction) and the shear force (the shift force in the horizontal direction) [11]. If the patient has foot deformities or callus, the application of high pressure on the local regions would result in ulcer formation through infection or injury [12]. It has been particularly reported that patients with callus have very high risks of developing foot ulceration. Furthermore, the plantar pressure and the shear force are associated with callus formation [13]. To prevent foot ulcer, both consultation with experts and usage of footwear that reduce the force load on local regions are recommended [14]. High pressure is known to be exerted on the regions of the first and second metatarsal heads during gait [15], and the regions are frequent site of callus. Owing to the lack of standard methods for the objective clinical assessment of whether the footwear is appropriate or not [6], callus formation has not been effectively prevented. Hence in many cases, rather than preventing it, therapeutic care is given, to remove the callus after its formation. It is therefore important to evaluate the effect of footwear on the risk plantar regions by directly measuring the pressure and shear force on the regions applied from footwear. There are two major methods for measuring the force applied on the foot during gait. One involves the use of a force plate or sensors embedded in the ground [16-18]. This method can only be applied in special places, and the measured force is not the force on risk regions of the plantar but the force that the footwear applies on the ground. The other method involves the use of specialized shoes or insoles with embedded sensors [19,20]. In a study of Lord M et al., thin pressure sensor sheets and special insoles with embedded 3.8mm-thick shear stress sensors we (...truncated)


This is a preview of a remote PDF: http://www.robomechjournal.com/content/pdf/s40648-014-0004-9.pdf

Manabu Takano, Hiroshi Noguchi, Makoto Oe, Hiromi Sanada, Taketoshi Mori. Development and evaluation of a system to assess the effect of footwear on the in shoe plantar pressure and shear during gait, ROBOMECH Journal, 2014, pp. 4, 1, DOI: 10.1186/s40648-014-0004-9