Improving Electrical Conductivity, Thermal Stability, and Solubility of Polyaniline-Polypyrrole Nanocomposite by Doping with Anionic Spherical Polyelectrolyte Brushes

Nanoscale Research Letters, Jul 2015

The extent to which anionic spherical polyelectrolyte brushes (ASPB) as dopant improved the performance of polyaniline-polypyrrole (PANI-PPy) nanocomposite was investigated. Different characterization and analytical methods including Fourier transform infrared spectroscopy (FTIR), thermo-gravimetric analysis (TGA), scanning electron microscopy (SEM), and X-ray diffraction (XRD) confirmed that ASPB serving as dopant could improve the comprehensive properties of PANI-PPy nanocomposite. It was different from dopants such as SiO2, poly(sodium-p-styrenesulfonate) (PSS), and canonic spherical polyelectrolyte brushes (CSPB) which only enhanced the performance of PANI-PPy nanocomposite on one or two sides. The electrical conductivity of (PANI-PPy)/ASPB nanocomposite at room temperature was 8.3 S/cm, which was higher than that of PANI-PPy (2.1 S/cm), (PANI-PPy)/PSS (6.8 S/cm), (PANI-PPy)/SiO2 (7.2 S/cm), and (PANI-PPy)/CSPB (2.2 S/cm). Meanwhile, (PANI-PPy)/ASPB nanocomposite possessed enhanced thermal stability and good solubility. In addition, the effects of polymerization temperature, the molecular weight of grafted polyelectrolyte brushes, and storage time on electrical conductivity were discussed.

A PDF file should load here. If you do not see its contents the file may be temporarily unavailable at the journal website or you do not have a PDF plug-in installed and enabled in your browser.

Alternatively, you can download the file locally and open with any standalone PDF reader:

https://link.springer.com/content/pdf/10.1186%2Fs11671-015-0997-x.pdf

Improving Electrical Conductivity, Thermal Stability, and Solubility of Polyaniline-Polypyrrole Nanocomposite by Doping with Anionic Spherical Polyelectrolyte Brushes

Su Nanoscale Research Letters Improving Electrical Conductivity, Thermal Stability, and Solubility of Polyaniline- Polypyrrole Nanocomposite by Doping with Anionic Spherical Polyelectrolyte Brushes Na Su 0 0 School of Printing and Packaging Engineering, Shanghai Publishing and Printing College , Shanghai 200093 , China The extent to which anionic spherical polyelectrolyte brushes (ASPB) as dopant improved the performance of polyaniline-polypyrrole (PANI-PPy) nanocomposite was investigated. Different characterization and analytical methods including Fourier transform infrared spectroscopy (FTIR), thermo-gravimetric analysis (TGA), scanning electron microscopy (SEM), and X-ray diffraction (XRD) confirmed that ASPB serving as dopant could improve the comprehensive properties of PANI-PPy nanocomposite. It was different from dopants such as SiO2, poly (sodium-p-styrenesulfonate) (PSS), and canonic spherical polyelectrolyte brushes (CSPB) which only enhanced the performance of PANI-PPy nanocomposite on one or two sides. The electrical conductivity of (PANI-PPy)/ASPB nanocomposite at room temperature was 8.3 S/cm, which was higher than that of PANI-PPy (2.1 S/cm), (PANI-PPy)/ PSS (6.8 S/cm), (PANI-PPy)/SiO2 (7.2 S/cm), and (PANI-PPy)/CSPB (2.2 S/cm). Meanwhile, (PANI-PPy)/ASPB nanocomposite possessed enhanced thermal stability and good solubility. In addition, the effects of polymerization temperature, the molecular weight of grafted polyelectrolyte brushes, and storage time on electrical conductivity were discussed. Nanocomposite; Polyaniline-polypyrrole; Anionic spherical polyelectrolyte brushes; Doping; Electrical conductivity; Thermal stability; Solubility - Background During the last several decades, conducting polymers have been the subject of numerous investigations due to their excellent physical and chemical properties originating from their unique π-conjugated system [1–3]. Among the conducting polymers studied, polyaniline (PANI) and polypyrrole (PPy) are of particular interest because of their promising electrical conductivity, high environmental stability, interesting redox properties, magnetoresistance (MR) behaviors, and electrochemical performances [4–10]. In comparison with numerous reports about PANI and PPy, researches on copolymers of aniline and pyrrole are still far from enough. Because the copolymer may overcome the shortcomings of a single π-electron in the homopolymer, obtaining composites with excellent property [11], studies on copolymerization of aniline and pyrrole gradually attract people’s attention. Electrochemical [12, 13] and chemical oxidative polymerization methods [14, 15] are the most common methods used in the synthesis of conducting copolymers. However, the large-scale application of PANI-PPy composite is sometimes limited by the difficulty of insolubility and infusibility of the material which can lead to poor electronic conductivity and mechanical properties. Therefore, the improvement of the comprehensive properties of PANI-PPy nanocomposite is of significance. To date, most of the published research on this topic has been developed to improve the performance of conducting polymers on certain aspects. Xin et al. [16] prepared poly(aniline-co-pyrrole) nanocomposite by chemical oxidation polymerization using iron(III) chloride hexahydrate (FeCl3·H2O) as an oxidant and sodium dodecylbenzenesulfonate (SDBS) as a surfactant. They found that the nanocomposite had high electrical conductivity by selecting proper conditions for the synthesis process. Li et al. [17] proposed a method to prepare poly(pyrrole-co-aniline) nanofibrils using a template by chemical copolymerization technique. It was reported that the length, diameter, and thickness of copolymer nanofibers were controlled by using AAO as a template, and the copolymer nanofibers had good thermal stability. Moreover, as for PPy, enhanced mechanical properties and reduced flammability were obtained by doping with epoxy resin [18]. However, since the properties of conducting polymers are mutually restraining, the improvement of their comprehensive performance is an important and difficult task. In recent years, conducting polymers doped with polyelectrolyte have achieved outstanding progress [19]. Wu and coworkers [20] developed PPy, which exhibited excellent electrical conductivity and solubility by using different concentrations of water-soluble polystyrene sulfonate (PSS). The reason for this may be that de-doping does not easily happen for doped ions due to the large size of the polyelectrolyte, so the electrical conductivity of conducting polymers is more stable. Meanwhile, the entanglement effect of the long flexible chains of the polyelectrolyte can effectively hinder the growth of copolymer chains, helping to enhance its solubility. It is undoubtedly a good reference for the development of conducting polymers with excellent performance. In addition, in order to improve the thermal stability, magnetoresistance (...truncated)


This is a preview of a remote PDF: https://link.springer.com/content/pdf/10.1186%2Fs11671-015-0997-x.pdf

Na Su. Improving Electrical Conductivity, Thermal Stability, and Solubility of Polyaniline-Polypyrrole Nanocomposite by Doping with Anionic Spherical Polyelectrolyte Brushes, Nanoscale Research Letters, 2015, pp. 301, Volume 10, Issue 1, DOI: 10.1186/s11671-015-0997-x