Amotl2a interacts with the Hippo effector Yap1 and the Wnt/β-catenin effector Lef1 to control tissue size in zebrafish

eLife, Sep 2015

During development, proliferation must be tightly controlled for organs to reach their appropriate size. While the Hippo signaling pathway plays a major role in organ growth control, how it senses and responds to increased cell density is still unclear. Here we use the zebrafish lateral line primordium (LLP), a group of migrating epithelial cells that form sensory organs, to understand how tissue growth is controlled during organ formation. Loss of the cell junction-associated Motin protein Amotl2a leads to overproliferation and bigger LLP, affecting the final pattern of sensory organs. Amotl2a function in the LLP is mediated together by the Hippo pathway effector Yap1 and the Wnt/β-catenin effector Lef1. Our results implicate for the first time the Hippo pathway in size regulation in the LL system. We further provide evidence that the Hippo/Motin interaction is essential to limit tissue size during development.

A PDF file should load here. If you do not see its contents the file may be temporarily unavailable at the journal website or you do not have a PDF plug-in installed and enabled in your browser.

Alternatively, you can download the file locally and open with any standalone PDF reader:

http://elifesciences.org/content/elife/early/2015/09/03/eLife.08201.full.pdf

Amotl2a interacts with the Hippo effector Yap1 and the Wnt/β-catenin effector Lef1 to control tissue size in zebrafish

Sobhika Agarwala Sandra Duquesne Kun Liu Anton Boehm Lin Grimm Sandra Link Sabine König Stefan Eimer Olaf Ronneberger Virginie Lecaudey This PDF is the version of the article that was accepted for publication after peer review. Fully formatted HTML, PDF, and XML versions will be made available after technical processing, editing, and proofing. - Stay current on the latest in life science and biomedical research from eLife. Sign up for alerts at elife.elifesciences.org effector Lef1 to control tissue size in zebrafish Sandra Link1,2, Sabine König1, Stefan Eimer1,4,5, Olaf Ronneberger1,3, Virginie Lecaudey1, 2* 1 BIOSS Centre for Biological Signalling Studies 2 Developmental Biology, Institute for Biology I, Faculty of Biology 3 Image Analysis Lab, Institute for Computer Science 4 ZBSA Center for Biological Systems Analysis 5 Institute for Biology III, Faculty of Biology Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany. * Present Address: Prof. Dr. Virginie Lecaudey Goethe-Universitaet Frankfurt Institute for Cell Biology and Neuroscience Developmental Biology of Vertebrates Max-von-Laue-Strasse 13 D-60438 Frankfurt am Main Phone: +49 (0)69 798 42102 Email: Running title: Amotl2a regulates tissue size in zebrafish Keywords: Amotl2 / Hippo / Wnt/ Proliferation/ Organ size / Yap/ Lef1/ Zebrafish Abstract word count: 141 words Main text word count: 5796 words INTRODUCTION 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 Amotl2a is required to limit the proliferation rate in the trailing region of Nechiporuk AV, Raible DW. FGF-dependent mechanosensory organ patterning in zebrafish. Science. 2008 Jun 27;320(5884):1774–7. Ernst S, Liu K, Agarwala S, Moratscheck N, Avci ME, Dalle Nogare D, et al. Shroom3 is required downstream of FGF signalling to mediate proneuromast assembly in zebrafish. Development. 2012 Dec;139(24):4571–81. Harding MJ, Nechiporuk AV. Fgfr-Ras-MAPK signaling is required for apical constriction via apical positioning of Rho-associated kinase during mechanosensory organ formation. Development. 2012 Sep;139(17):3130–5. Aman A, Nguyen M, Piotrowski T. Wnt/β-catenin dependent cell proliferation underlies segmented lateral line morphogenesis. Dev Biol. 2011 Jan 15;349(2):470–82. McGraw HF, Drerup CM, Culbertson MD, Linbo T, Raible DW, Nechiporuk AV. Lef1 is required for progenitor cell identity in the zebrafish lateral line primordium. Development. 2011 Sep;138(18):3921–30. Valdivia LE, Young RM, Hawkins TA, Stickney HL, Cavodeassi F, Schwarz Q, et al. Lef1-dependent Wnt/β-catenin signalling drives the proliferative engine that maintains tissue homeostasis during lateral line development. Development. 2011 Sep;138(18):3931–41. Matsuda M, Nogare DD, Somers K, Martin K, Wang C, Chitnis AB. Lef1 regulates Dusp6 to influence neuromast formation and spacing in the zebrafish posterior lateral line primordium. Development. 2013 Jun;140(11):2387–97. Gamba L, Cubedo N, Lutfalla G, Ghysen A, Dambly-Chaudiere C. Lef1 controls patterning and proliferation in the posterior lateral line system of zebrafish. Dev Dyn. 2010 Dec;239(12):3163–71. Huang H, Lu F-I, Jia S, Meng S, Cao Y, Wang Y, et al. Amotl2 is essential for cell movements in zebrafish embryo and regulates c-Src translocation. Development. 2007 Mar;134(5):979–88. Li Z, Wang Y, Zhang M, Xu P, Huang H, Wu D, et al. The Amotl2 Gene Inhibits Wnt/β-Catenin Signaling and Regulates Embryonic Development in Zebrafish. J Biol Chem. 2012 Apr 13;287(16):13005–15. Hong J-H, Hwang ES, McManus MT, Amsterdam A, Tian Y, Kalmukova R, et al. TAZ, a transcriptional modulator of mesenchymal stem cell differentiation. Science. 2005 Aug 12;309(5737):1074–8. Skouloudaki K, Puetz M, Simons M, Courbard J-R, Boehlke C, Hartleben B, et al. Scribble participates in Hippo signaling and is required for normal zebrafish pronephros development. Proc Natl Acad Sci USA. 2009 May 26;106(21):8579–84. Moro E, Ozhan-Kizil G, Mongera A, Beis D, Wierzbicki C, Young RM, et al. In vivo Wnt signaling tracing through a transgenic biosensor fish reveals novel activity domains. Dev Biol. 2012 Jun 15;366(2):327–40. Turner N, Grose R. Fibroblast growth factor signalling: from development to cancer. Nat Rev Cancer. 2010 Feb;10(2):116–29. Wada H, Ghysen A, Asakawa K, Abe G, Ishitani T, Kawakami K. Wnt/Dkk negative feedback regulates sensory organ size in zebrafish. Curr Biol. 2013 Aug 19;23(16):1559–65. Varelas X, Samavarchi-Tehrani P, Narimatsu M, Weiss A, Cockburn K, Larsen BG, et al. The Crumbs complex couples cell density sensing to Hippodependent control of the TGF-β-SMAD pathway. Dev Cell. 2010 Dec 14;19(6):831–44. Paramasivam M, Sarkeshik A, Yates JR, Fernandes MJG, McCollum D. Angiomotin family proteins are novel activators of the LATS2 kinase tumor suppressor. Mol Biol Cell. 2011 Oct;22(19):3725–33. Imajo M, Miyatake K, Iimura A, Miyamoto A, Nishida E. A molecular mechanism that links Hippo signalling to the inhibition of Wnt/β-catenin signalling. EMBO J. 2012 Mar 7;31(5):1109–22. Varelas X, Miller BW, Sopko R, Song S, Gregorieff A, Fellouse FA, et al. The Hippo pathway regulates Wnt/beta-catenin signaling. Dev Cell. 2010 Apr 20;18(4):579–91. Barry ER, Morikawa T, Butler BL, Shrestha K, la Rosa de R, Yan KS, et al. Restriction of intestinal stem cell expansion and the regenerative response by YAP. Nature. 2013 Jan 3;493(7430):106–10. Azzolin L, Zanconato F, Bresolin S, Forcato M, Basso G, Bicciato S, et al. Role of TAZ as mediator of Wnt signaling. Cell. 2012 Dec 21;151(7):1443–56. Fish JE, Wythe JD, Xiao T, Bruneau BG, Stainier DYR, Srivastava D, et al. A Slit/miR-218/Robo regulatory loop is required during heart tube formation in zebrafish. Development. 2011 Apr 1;138(7):1409–19. Heallen T, Zhang M, Wang J, Bonilla-Claudio M, Klysik E, Johnson RL, et al. Hippo pathway inhibits Wnt signaling to restrain cardiomyocyte proliferation and heart size. Science. 2011;332(6028):458–61. Azzolin L, Panciera T, Soligo S, Enzo E, Bicciato S, Dupont S, et al. YAP/TAZ incorporation in the β-catenin destruction complex orchestrates the Wnt response. Cell. 2014 Jul 3;158(1):157–70. Piccolo S, Dupont S, Cordenonsi M. The biology of YAP/TAZ: hippo signaling and beyond. Physiol Rev. 2014 Oct;94(4):1287–312. Rauskolb C, Sun S, Sun G, Pan Y, Irvine KD. Cytoskeletal tension inhibits Hippo signaling through an Ajuba-Warts complex. Cell. 2014 Jul 3;158(1):143–56. Chan SW, Lim CJ, Guo F, Tan I, Leung T, Hong W. Actin-binding and cell proliferation activities of angiomotin family members are regulated by Hippo pathway-mediated phosphorylation. J Biol Chem. 2013 Dec 27;288(52):37296–307. Ernkvist M, Aase K, Ukomadu C, Wohlschlegel J, Blackman R, Veitonmäki N, et al. p130-angiomotin associates to actin and controls endothelial cell shape. FEBS J. 2006 May;273(9):2000–11. Dai X, She P, Chi F, Feng Y, Liu H, Jin D, et al. Phosphorylation of angiomotin by Lats1/2 kinases inhibits F-actin binding, cell migration, and angiogenesis. J Biol Chem. 2013 Nov 22;288(47):34041–51. Kimmel CB, Ballard WW, Kimmel SR, Ullmann B, Schilling TF. Stages of embryonic development of the zebrafish. Dev Dyn. 1995 Jul 1;203(3):253– 310. Haas P, Gilmour DT. Chemokine signaling mediates self-organizing tissue migration in the zebrafish lateral line. Dev Cell. 2006 May 1;10(5):673–80. Lee Y, Grill S, Sanchez A, Murphy-Ryan M, Poss KD. Fgf signaling instructs position-dependent growth rate during zebrafish fin regeneration. Development. 2005 Dec 1;132(23):5173–83. Herzog W, Sonntag C, Hardt von der S, Roehl HH, Varga ZM, Hammerschmidt M. Fgf3 signaling from the ventral diencephalon is required for early specification and subsequent survival of the zebrafish adenohypophysis. Development. 2004 Aug 1;131(15):3681–92. Norton WHJ, Ledin J, Grandel H, Neumann CJ. HSPG synthesis by zebrafish Ext2 and Extl3 is required for Fgf10 signalling during limb development. Development. 2005 Nov 1;132(22):4963–73. Gerety SS, Wilkinson DG. Morpholino artifacts provide pitfalls and reveal a novel role for pro-apoptotic genes in hindbrain boundary development. Dev Biol. 2011 Feb 15;350(2):279–89. Cermak T, Doyle EL, Christian M, Wang L, Zhang Y, Schmidt C, et al. Efficient design and assembly of custom TALEN and other TAL effectorbased constructs for DNA targeting. Nucleic Acids Res. 2011 Jul 1;39(12):e82. Lecaudey V, Anselme I, Rosa F, Schneider-Maunoury S. The zebrafish Iroquois gene iro7 positions the r4/r5 boundary and controls neurogenesis in the rostral hindbrain. Development. 2004 Jul;131(13):3121–31. Dorsky RI, Snyder A, Cretekos CJ, Grunwald DJ, Geisler R, Haffter P, et al. Maternal and embryonic expression of zebrafish lef1. Mech Dev. 1999 Aug;86(1-2):147–50. Valentin G, Haas P, Gilmour DT. The chemokine SDF1a coordinates tissue migration through the spatially restricted activation of Cxcr7 and Cxcr4b. Curr Biol. 2007 Jun 19;17(12):1026–31. Glasgow E, Tomarev SI. Restricted expression of the homeobox gene prox 1 in developing zebrafish. Mech Dev. 1998 Aug;76(1-2):175–8. Kushnirov VV. Rapid and reliable protein extraction from yeast. Yeast. 2000 Jun 30;16(9):857–60. Weickert J. Anisotropic diffusion in image processing. ECMI series [Internet]. 1998 ed. 1998. Available from: http://www.lpi.tel.uva.es/muitic/pim/docus/anisotropic_diffusion.pdf Sato Y, Westin C, Bhalerao A, Nakajima S, Shiraga N, Tamura S, et al. Tissue classification based on 3D local intensity structures for volume rendering. IEEE Trans Visual Comput Graphics [Internet]. IEEE; 2000;6(2):160–80. Available from: http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=856997 Soille P. Morphological Image Analysis: Principles and Applications [Internet]. Berlin and New York: Springer-Verlag. Springer-Verlag New York, Inc; 2003. Available from: http://dl.acm.org/citation.cfm?id=773286 de Chaumont F, Dallongeville S, Chenouard N, Hervé N, Pop S, Provoost T, et al. Icy: an open bioimage informatics platform for extended reproducible research. Nat Methods [Internet]. 2012 Jul;9(7):690–6. Available from: http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=227 43774&retmode=ref&cmd=prlinks Supplementary figure legends 1) Supplementary tables A, B, C, D related to the Material and Methods section Source data files: 1) Figure 1-source data 1: Relative length of the amotl2a-free (excel sheet 1 2) Figure 2-source data1: Migration speed in amotl2a morphants 3) Figure 3-source data1: Cell counts in amotl2a morphants 4) Figure 3-source data2: Cell counts in rescue experiment of amotl2a morphants 6) Figure 3-source data 4: Cell counts in amotl2a overexpressing embryos 7) Figure 4-source data1: Cell counts in zygotic amotl2a mutants 8) Figure 4-source data2: Number of deposited neuromasts in MZamotl2a 9) Figure 4-source data 3: Migration speed in MZamotl2a mutants 1.4 1.3 1.2 1.1 1 0.9 0.8 0.7 0.6 0.5 1.3 1.2 1.1 1 0.9 0.8 0.7 0.6 0.5 1.4 1.3 1.2 1.1 1 0.9 0.8 0.7 0.6 0.5 0.4 2.2 2 1.8 1.6 1.4 1.2 1 0.8 0.6 0.4 Fukui H , Terai K , Nakajima H , Chiba A , Fukuhara S , Mochizuki N. S1P-Yap1 signaling regulates endoderm formation required for cardiac precursor cell migration in zebrafish . Dev Cell. 2014 Oct 13 ; 31 ( 1 ): 128 - 36 . Loh S-L , Teh C , Muller J , Guccione E , Hong W , Korzh V. Zebrafish yap1 plays a role in differentiation of hair cells in posterior lateral line . Sci Rep . 2014 ; 4 : 4289 . Thisse B , Thisse C. Functions and regulations of fibroblast growth factor signaling during embryonic development . Dev Biol. 2005 Nov 15 ; 287 ( 2 ): 390 - 402 .


This is a preview of a remote PDF: http://elifesciences.org/content/elife/early/2015/09/03/eLife.08201.full.pdf

Sobhika Agarwala, Sandra Duquesne, Kun Liu, Anton Boehm, Lin Grimm, Sandra Link, Sabine König, Stefan Eimer, Olaf Ronneberger, Virginie Lecaudey. Amotl2a interacts with the Hippo effector Yap1 and the Wnt/β-catenin effector Lef1 to control tissue size in zebrafish, eLife, 2015, DOI: 10.7554/eLife.08201