The influence of insecticide exposure and environmental stimuli on the movement behaviour and dispersal of a freshwater isopod

Ecotoxicology, Jun 2016

Behaviour links physiological function with ecological processes and can be very sensitive towards environmental stimuli and chemical exposure. As such, behavioural indicators of toxicity are well suited for assessing impacts of pesticides at sublethal concentrations found in the environment. Recent developments in video-tracking technologies offer the possibility of quantifying behavioural patterns, particularly locomotion, which in general has not been studied and understood very well for aquatic macroinvertebrates to date. In this study, we aim to determine the potential effects of exposure to two neurotoxic pesticides with different modes of action at different concentrations (chlorpyrifos and imidacloprid) on the locomotion behaviour of the water louse Asellus aquaticus. We compare the effects of the different exposure regimes on the behaviour of Asellus with the effects that the presence of food and shelter exhibit to estimate the ecological relevance of behavioural changes. We found that sublethal pesticide exposure reduced dispersal distances compared to controls, whereby exposure to chlorpyrifos affected not only animal activity but also step lengths while imidacloprid only slightly affected step lengths. The presence of natural cues such as food or shelter induced only minor changes in behaviour, which hardly translated to changes in dispersal potential. These findings illustrate that behaviour can serve as a sensitive endpoint in toxicity assessments. However, under natural conditions, depending on the exposure concentration, the actual impacts might be outweighed by environmental conditions that an organism is subjected to. It is, therefore, of importance that the assessment of toxicity on behaviour is done under relevant environmental conditions.

A PDF file should load here. If you do not see its contents the file may be temporarily unavailable at the journal website or you do not have a PDF plug-in installed and enabled in your browser.

Alternatively, you can download the file locally and open with any standalone PDF reader:

https://link.springer.com/content/pdf/10.1007%2Fs10646-016-1686-y.pdf

The influence of insecticide exposure and environmental stimuli on the movement behaviour and dispersal of a freshwater isopod

Ecotoxicology The influence of insecticide exposure and environmental stimuli on the movement behaviour and dispersal of a freshwater isopod Jacqueline Augusiak 0 1 Paul J. Van den Brink 0 1 0 Alterra, Wageningen University and Research centre , P.O. Box 47, 6700 AA Wageningen , The Netherlands 1 Aquatic Ecology and Water Quality Management Group, Wageningen University and Research centre , P.O. Box 47, 6700 AA Wageningen , The Netherlands Behaviour links physiological function with ecological processes and can be very sensitive towards environmental stimuli and chemical exposure. As such, behavioural indicators of toxicity are well suited for assessing impacts of pesticides at sublethal concentrations found in the environment. Recent developments in videotracking technologies offer the possibility of quantifying behavioural patterns, particularly locomotion, which in general has not been studied and understood very well for aquatic macroinvertebrates to date. In this study, we aim to determine the potential effects of exposure to two neurotoxic pesticides with different modes of action at different concentrations (chlorpyrifos and imidacloprid) on the locomotion behaviour of the water louse Asellus aquaticus. We compare the effects of the different exposure regimes on the behaviour of Asellus with the effects that the presence of food and shelter exhibit to estimate the ecological relevance of behavioural changes. We found that sublethal pesticide exposure reduced dispersal distances compared to controls, whereby exposure to chlorpyrifos affected not only animal activity but also step lengths while imidacloprid only slightly affected step lengths. The presence of natural cues such as food or shelter induced only minor Locomotion; Dispersal; Automated video tracking; Aquatic macroinvertebrates - & Jacqueline Augusiak changes in behaviour, which hardly translated to changes in dispersal potential. These findings illustrate that behaviour can serve as a sensitive endpoint in toxicity assessments. However, under natural conditions, depending on the exposure concentration, the actual impacts might be outweighed by environmental conditions that an organism is subjected to. It is, therefore, of importance that the assessment of toxicity on behaviour is done under relevant environmental conditions. Arthropod populations form an integral part of freshwater ecosystems and are, as such, often exposed to chemical and physical disturbances such as nutrients, pollutants, habitat destruction and flow alterations (Dudgeon et al. 2006). In agro-ecosystems, pesticides used for plant protection in particular can enter surface waters through spray drift, run off, and draining, and affect non-target animal populations. Hence, environmental risk assessments are required for pesticides to minimize undesired side effects. Standard tests comprise a battery of mortality, immobilization and reproduction studies on single species in the lower tiers of the assessment process. In the higher tiers, micro- and mesocosms may be employed to evaluate ecological community responses to different exposure concentrations (Brock et al. 2006). To improve the determination of ecologically relevant risk levels, behavioural endpoints are increasingly investigated in ecotoxicological studies (Rodrigues et al. 2016). They have been shown to be relevant and useful in acute and chronic environmental risk assessments because they link physiological functions with ecological processes. Behavioural endpoints are also very sensitive towards environmental stimuli and chemical exposure (Dell?Omo 2002), and several studies assessing the environmental risks of pesticides reported behavioural effects at concentrations significantly below those causing mortality (for examples see Bo?ttger et al. 2013; Agatz et al. 2014). Locomotor behaviour is particularly vital to animal life as it facilitates feeding, predator avoidance, reproduction, or migration, and thus may link the effects of individual stress to the population level (Bayley et al. 1997). This type of behaviour can be studied easily via video tracking (Augusiak and Van den Brink 2015; Rodrigues et al. 2016). In aquatic environments, relocating macroinvertebrates are likely to encounter contaminated stretches with residue concentrations of pesticides. Depending on the mode of action and concentration of the encountered pesticide, travelling animals may be affected and their movement behaviour may be likely to change under such conditions. Especially neurotoxic substances might adversely affect orientation and activity. The observed alterations in activity, furthermore, correlated with the measured contamination gradient. Baatrup and Bayley (1993) showed that cypermethrin exposure disrupted the general movement pattern and activity of the Wolf Spider Pardosa amentata. However, studies on the behavioural effect of toxicants on aquatic crustaceans, so far mainly focused on feeding responses (Bo? (...truncated)


This is a preview of a remote PDF: https://link.springer.com/content/pdf/10.1007%2Fs10646-016-1686-y.pdf

Jacqueline Augusiak, Paul J. Van den Brink. The influence of insecticide exposure and environmental stimuli on the movement behaviour and dispersal of a freshwater isopod, Ecotoxicology, 2016, pp. 1338-1352, Volume 25, Issue 7, DOI: 10.1007/s10646-016-1686-y