A comprehensive approach to dark matter studies: exploration of simplified top-philic models

Journal of High Energy Physics, Nov 2016

Abstract Studies of dark matter lie at the interface of collider physics, astrophysics and cosmology. Constraining models featuring dark matter candidates entails the capability to provide accurate predictions for large sets of observables and compare them to a wide spectrum of data. We present a framework which, starting from a model Lagrangian, allows one to consistently and systematically make predictions, as well as to confront those predictions with a multitude of experimental results. As an application, we consider a class of simplified dark matter models where a scalar mediator couples only to the top quark and a fermionic dark sector (i.e. the simplified top-philic dark matter model). We study in detail the complementarity of relic density, direct/indirect detection and collider searches in constraining the multi-dimensional model parameter space, and efficiently identify regions where individual approaches to dark matter detection provide the most stringent bounds. In the context of collider studies of dark matter, we point out the complementarity of LHC searches in probing different regions of the model parameter space with final states involving top quarks, photons, jets and/or missing energy. Our study of dark matter production at the LHC goes beyond the tree-level approximation and we show examples of how higher-order corrections to dark matter production processes can affect the interpretation of the experimental results.

A PDF file should load here. If you do not see its contents the file may be temporarily unavailable at the journal website or you do not have a PDF plug-in installed and enabled in your browser.

Alternatively, you can download the file locally and open with any standalone PDF reader:

https://link.springer.com/content/pdf/10.1007%2FJHEP11%282016%29111.pdf

A comprehensive approach to dark matter studies: exploration of simplified top-philic models

Received: June A comprehensive approach to dark matter studies: exploration of simpli ed top-philic models Chiara Arina 0 1 3 6 7 8 9 Mihailo Backovic 0 1 3 6 7 8 9 Eric Conte 0 1 3 7 8 9 Benjamin Fuks 0 1 2 3 5 7 8 9 Jun Guo 0 1 3 4 7 8 9 Jan Heisig 0 1 3 7 8 9 g Beno 0 1 3 7 8 9 t Hespel 0 1 3 6 7 8 9 Michael Kramer 0 1 3 7 8 9 g Fabio Maltoni 0 1 3 6 7 8 9 Antony Martini 0 1 3 6 7 8 9 Kentarou Mawatari 0 1 3 7 8 9 h 0 1 3 7 8 9 i Mathieu Pellenj 0 1 3 7 8 9 Eleni Vryonidou 0 1 3 6 7 8 9 Open Access 0 1 3 7 8 9 c The Authors. 0 1 3 7 8 9 0 Chinese Academy of Sciences , Beijing 100190 , P.R. China 1 IUT Colmar , F-68008 Colmar Cedex , France 2 CNRS, UMR 7589, LPTHE , F-75005, Paris , France 3 Universite catholique de Louvain , Chemin du Cyclotron 2, B-1348 Louvain-la-Neuve , Belgium 4 State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics 5 Sorbonne Universites, UPMC Univ. Paris 06, UMR 7589, LPTHE, F-75005, Paris , France 6 Centre for Cosmology , Particle Physics and Phenomenology (CP3) 7 International Solvay Institutes , Pleinlaan 2, B-1050 Brussels , Belgium 8 Sommerfeldstr. 16, D-52056 Aachen , Germany 9 Universite de Strasbourg/CNRS-IN2 P3, F-67037 Strasbourg , France bGroupe de Recherche de Physique des Hautes Energies (GRPHE), Universite de Haute-Alsace, CNRS/IN2P3, 53 Avenue des Martyrs, F-38026 Grenoble, France iTheoretische Natuurkunde and IIHE/ELEM, Vrije Universiteit Brussel and f Institut Pluridisciplinaire Hubert Curien/Departement Recherches Subatomiques - spectrum of data. experimental results. ArXiv ePrint: 1605.09242 Contents 1 Introduction 2 3 5 Combined constraints Conclusions Mediator width Constraints from direct detection Constraints from indirect detection Collider constraints The tt + E= T nal state Mono-X nal states Introduction as the { 1 { into three categories: dark matter scattering o atomic nuclei; surements of, for instance, gamma-rays; independent way. { 2 { { 3 { LtY;0X = yt = p CP -even scalar are suppressed, e.g. cos( 0 where tan consists of the ratio of the fgt; gX ; mX ; mY g ; while the width sections 3.1 and 3.3. operators LgY0 = 1 gg(Q2) LY0 = 1 g (Q2) with the e ective couplings being gg(Q2) = gt 4mt2 g (Q2) = gt 4mt2 { 4 { the one-loop form factor FS(x) = x 1 + (1 x) arctan2 their Higgs counterparts. (mY 2mX ) ; 2mt) ; (Y0 ! ) = gt2 81e2m3v3Y2 2 FS 3 4mt2 4mt2 where t;X = q width into a pair of gluons by virtue of s2 = e2 nal states the sum of eqs. (2.6), (2.7) and (2.8). nal states are displayed in Y =mY values { 5 { mX = 50 GeV mX = 300 GeV mY [GeV] (gt , gX) = (1, 1) mX = 50 GeV mX = 300 GeV mY [GeV] mX = 50 GeV mX = 300 GeV mY [GeV] nal states for o gluons through top-quark loops. leading to { 6 { Cosmology Astrophysics Colliders relic indirect no E= T Planck, FermiLAT mX < mt mX > mY mX > 1 GeV LUX, CDMSLite mY > 2mX mY > 2mX +j, +Z, +h mY > 2mt mY > 2mt mY < 2mX ; 2mt the coupling values to a maximum of { 7 { MultiNest parameter log(mX = GeV) log(mY = GeV) log(gX ) log(gt) 0 ! 3:7 4 ! log( ) 4 ! log( ) uniform over the indicated range. Measurement Observable Value/Constraint Comment Y =mY Planck 2015 [44] < 0:2 > 10 11 GeV < LSIUX (90% CL) < CSIDMS (95% CL) Narrow width approximation Ensures prompt decay at colliders LUX bound [45] (mX > 8 GeV) CDMSlite bound [46] (1 GeV < mX < 8 GeV) DMh2 as measured by the Y =mY { 8 { and 10 2 < gt < 2 . The collider study context of LHC predictions. XX ! tt (I) ; XX ! gg (II) ; XX ! Y0Y0 (III) ; X exchange process (III). { 9 { the resonant pole of mY ; gX couplings. m2X 10 9 GeV 2 Y plays a role, as the relevant quanwhere x Y in this { 10 { 0:2 and Y > 10 11 GeV (cf. table 3). Y =mY mX and mY 2mX is consistent with { 12 { of O(1) result in coupling size of 10 4. nding is DMh2, implying that the constraint of having regions of the allowed parameter space. Constraints from direct detection of Y0, where the scattering o SnI = mX mn mX + mn 2 mn gX gt 27 mt m2Y fG where fG Y , simplifying the nucleons [56], which we here omit. { 13 { detection constraints (cf. table 3). { 14 { ; ] which are allowed by the illustrated by the lower panel of gure 4. (II), the process XX ! even if jmY 2mX j Y (except in the case where mY 2mX ). Conversely, the char10 3, implying { 15 { where v 0:2, Y > 2mX j . be v vrel = 2v1 with v 10 32 cm3s 1 (for dark matter masses around 1 GeV) and 4 { 16 { compressed region. uxes, but the model with scalar mediators. Collider constraints ve- avour All the cross sections shown in 103 pb { 17 { 8 TeV LHC gt = 1 mY [GeV] mY = 50 GeV pp→XXtt (NLO) pp→XXj (LO MET >150 GeV) mX [GeV] gt = gX = 1 mY = 100 GeV energy of p energy of p (Y0) is taken from the Higgs Cross quickly with the increase in { 18 { mediator mass lies in the [2mt; the increase in mY . Mediator resonance searches at { 29 { constraint, Y =mY under consideration. Combined constraints nd that in the region where gX ; gt rameter space region close to mY { 30 { Conclusions dicting the measured relic density 2mX and for mX > mt. Di Collider searches from LHC Run 1 at p { 32 { , the resonant of mY 600 GeV and mY 0:5mY ). Our results some model points in the mY 500 GeV region, while measurements provide model and deserve dedicated studies. and cosmology in a generic model. Acknowledgments { 33 { interactions" convention 4.4517.08. Mediator width Y =mY in the (gt, . Diphoton channel is Y =mY grows quickly, reaching 20% for gt; gX { 35 { gure 18 2mX and mX O(1) GeV. In of extremely small widths. { 36 { Planck bound. described in section 3.1. (XX ! tt) = 3gX2 gt2yt2 (s 32 s 4mt2)3=2q (m2Y s)2 + m2Y 2Y 4m2X and is given by: (XX ! gg) = g2g2 16 v2 (m2Y s3=2q 4m2X s)2 + m2Y 2Y (XX ! Y0Y0) = X4 h(t0) 4m2X ) where t0;1 are the integration extrema: t0;1 = 1 q 4m2X the merging scale being set to 40 GeV. Spire [105, 106]. s = 8 TeV. nally requires that the lepton pT is larger { 40 { Nominal Preselection E= T > 320 GeV MT > 160 GeV (j1;2; E= T ) > 1:2 MTW2 > 200 GeV 0.769 -0.52% spectrum as obtained with asked to be well separated in azimuth, enforced to be greater than 200 GeV. j1;2; E= T > 1:2, and the MTW2 variable [107] is { 41 { i = again be observed. { 42 { 84653.7 53431.28 38547.75 34436.35 34436.35 34436.35 34397.54 7563.04 4477.67 2813.70 1753.71 1110.92 Nominal One hard jet At most two jets Requirements if two jets Muon veto Electron veto Tau veto E= T > 250 GeV E= T > 300 GeV E= T > 350 GeV E= T > 400 GeV E= T > 450 GeV E= T > 500 GeV E= T > 550 GeV 84653.7 50817.2 31878.1 31878.1 31865.1 31695.1 8687.22 5400.51 3394.09 2224.15 1456.02 989.806 671.442 ETmiss[GeV] The last bin is the over ow bin. { 43 { Open Access. Press, Cambridge U.K. (2010). (2015) 078 [arXiv:1503.00691] [INSPIRE]. (2016) 112 [arXiv:1603.01366] [INSPIRE]. [arXiv:1302.1802] [INSPIRE]. [INSPIRE]. [INSPIRE]. [arXiv:1308.2679] [INSPIRE]. [arXiv:1411.0535] [INSPIRE]. [arXiv:1212.2730] [INSPIRE]. [INSPIRE]. [INSPIRE]. (2014) 079 [arXiv:1405.0301] [INSPIRE]. [arXiv:1310.1921] [INSPIRE]. [arXiv:1406.3030] [INSPIRE]. [INSPIRE]. 449 [arXiv:0704.3704] [INSPIRE]. 1601 [arXiv:0809.3437] [INSPIRE]. arXiv:1305.2424 [INSPIRE]. [arXiv:0803.2932] [INSPIRE]. [INSPIRE]. [arXiv:1405.3530] [INSPIRE]. [arXiv:1506.06556] [INSPIRE]. [arXiv:1603.04737] [INSPIRE]. arXiv:1609.07490 [INSPIRE]. [INSPIRE]. [INSPIRE]. Phys. Rev. D 86 (2012) 010001 [INSPIRE]. [arXiv:1110.3797] [INSPIRE]. [arXiv:1209.2870] [INSPIRE]. nucleon from e ective [arXiv:1210.2721] [INSPIRE]. pairs in the single-lepton (2015) 121 [arXiv:1504.03198] [INSPIRE]. events in proton-proton collisions at p [arXiv:1408.3583] [INSPIRE]. boson in proton-proton collisions at p [arXiv:1511.09375] [INSPIRE]. in pp collisions at p [INSPIRE]. proton-proton collisions at p [arXiv:1505.07018] [INSPIRE]. + jets channel in pp collisions at p [INSPIRE]. [arXiv:1207.1303] [INSPIRE]. nal state in proton-proton collisions at p 92 [arXiv:1410.4031] [INSPIRE]. pairs in the single-lepton nal state in proton-proton collisions at p transverse momentum in pp collisions at p [INSPIRE]. s = 13 TeV with s = 8 TeV with nal states 011301 [arXiv:1406.5542] [INSPIRE]. (2008) 063 [arXiv:0802.1189] [INSPIRE]. 1896 [arXiv:1111.6097] [INSPIRE]. [INSPIRE]. [INSPIRE]. [1] G. Bertone , D. Hooper and J. Silk , Particle dark matter: evidence , candidates and [2] G. Bertone , Particle dark matter: observations, models and searches , Cambridge Univ. [3] M. Drees and G. Gerbier , Mini-review of dark matter: 2012 , arXiv:1204.2373 [INSPIRE]. [4] D. Clowe et al., A direct empirical proof of the existence of dark matter , Astrophys. J . 648 [5] LHC New Physics Working Group collaboration, D. Alves , Simpli ed models for LHC [6] D. Abercrombie et al., Dark matter benchmark models for early LHC run-2 searches: report [7] M.R. Buckley , D. Feld and D. Goncalves , Scalar simpli ed models for dark matter , Phys. [8] U. Haisch and E. Re , Simpli ed dark matter top-quark interactions at the LHC , JHEP 06 [9] J. Heisig , M. Kramer , M. Pellen and C. Wiebusch , Constraints on Majorana dark matter [10] N.F. Bell , Y. Cai and R.K. Leane , Mono-W dark matter signals at the LHC : simpli ed [11] A.J. Brennan , M.F. McDonald , J. Gramling and T.D. Jacques , Collide and conquer: [12] T. du Pree , K. Hahn , P. Harris and C. Roskas , Cosmological constraints on dark matter [13] C.B. Jackson , G. Servant , G. Shaughnessy , T.M.P. Tait and M. Taoso , Gamma-ray lines [15] R.M. Godbole , G. Mendiratta and T.M.P. Tait , A simpli ed model for dark matter [16] Q.-F. Xiang , X.-J. Bi , P.-F. Yin and Z.-H. Yu , Searches for dark matter signals in simpli ed models at future hadron colliders , Phys. Rev. D 91 ( 2015 ) 095020 [arXiv:1503.02931] [17] A. DiFranzo , K.I. Nagao , A. Rajaraman and T.M.P. Tait , Simpli ed models for dark matter [18] P. Harris , V.V. Khoze , M. Spannowsky and C. Williams , Closing up on dark sectors at colliders: from 14 to 100 TeV , Phys. Rev . D 93 ( 2016 ) 054030 [arXiv:1509.02904] [19] V.V. Khoze , G. Ro and M. Spannowsky , Spectroscopy of scalar mediators to dark matter at the LHC and at 100 TeV , Phys. Rev . D 92 ( 2015 ) 075006 [arXiv:1505.03019] [INSPIRE]. [20] P. Harris, V.V. Khoze, M. Spannowsky and C. Williams, Constraining dark sectors at colliders: beyond the e ective theory approach, Phys. Rev. D 91 (2015) 055009 [21] Y. Zhang, Top quark mediated dark matter, Phys. Lett. B 720 (2013) 137 [22] J. Alwall et al., The automated computation of tree-level and next-to-leading order [23] A. Alloul, N.D. Christensen, C. Degrande, C. Duhr and B. Fuks, FeynRules 2:0 | a [25] E. Conte, B. Fuks and G. Serret, MadAnalysis 5, a user-friendly framework for collider [26] E. Conte, B. Dumont, B. Fuks and C. Wymant, Designing and recasting LHC analyses with [27] B. Dumont et al., Toward a public analysis database for LHC new physics searches using [28] DELPHES 3 collaboration, J. de Favereau et al., DELPHES 3, a modular framework for [29] M. Backovic, K. Kong and M. McCaskey, MadDM v.1:0: computation of dark matter relic [30] M. Backovic, A. Martini, O. Mattelaer, K. Kong and G. Mohlabeng, Direct detection of dark matter with MadDM v.2:0, Phys. Dark Univ. 9-10 (2015) 37 [arXiv:1505.04190] [31] F. Feroz and M.P. Hobson, Multimodal nested sampling: an e cient and robust alternative to MCMC methods for astronomical data analysis, Mon. Not. Roy. Astron. Soc. 384 (2008) [32] F. Feroz, M.P. Hobson and M. Bridges, MultiNest: an e cient and robust Bayesian inference tool for cosmology and particle physics, Mon. Not. Roy. Astron. Soc. 398 (2009) [33] G. D'Ambrosio, G.F. Giudice, G. Isidori and A. Strumia, Minimal avor violation: an [34] N. Craig, J. Galloway and S. Thomas, Searching for signs of the second Higgs doublet, [35] M. Carena, I. Low, N.R. Shah and C.E.M. Wagner, Impersonating the Standard Model Higgs [36] Y.G. Kim, K.Y. Lee and S. Shin, Singlet fermionic dark matter, JHEP 05 (2008) 100 [37] S. Baek, P. Ko and W.-I. Park, Search for the Higgs portal to a singlet fermionic dark [38] L. Lopez-Honorez, T. Schwetz and J. Zupan, Higgs portal, fermionic dark matter and a Standard Model like Higgs at 125 GeV, Phys. Lett. B 716 (2012) 179 [arXiv:1203.2064] [39] S. Baek, P. Ko and W.-I. Park, Invisible Higgs decay width vs. dark matter direct detection [40] S. Baek, P. Ko, M. Park, W.-I. Park and C. Yu, Beyond the dark matter e ective eld [41] P. Ko and H. Yokoya, Search for Higgs portal DM at the ILC, JHEP 08 (2016) 109 [42] C. Englert, M. McCullough and M. Spannowsky, S-channel dark matter simpli ed models and unitarity, Phys. Dark Univ. 14 (2016) 48 [arXiv:1604.07975] [INSPIRE]. [43] D. Barducci et al., Monojet searches for momentum-dependent dark matter interactions , [44] Planck collaboration , P. A.R. Ade et al., Planck 2015 results. XIII. Cosmological parameters, Astron. Astrophys. 594 ( 2016 ) A13 [arXiv:1502 .01589] [INSPIRE]. [45] LUX collaboration, D.S. Akerib et al., First results from the LUX dark matter experiment at the Sanford Underground Research Facility , Phys. Rev. Lett . 112 ( 2014 ) 091303 [46] SuperCDMS collaboration , R. Agnese et al., New results from the search for low-mass [47] Fermi-LAT collaboration , M. Ackermann et al., Searching for dark matter annihilation [48] Fermi-LAT collaboration , M. Ackermann et al., Updated search for spectral lines from [49] G. Belanger , F. Boudjema , A. Pukhov and A. Semenov , MicrOMEGAs4 :1: two dark matter [50] M. Backovic , M. Kramer , F. Maltoni , A. Martini , K. Mawatari and M. Pellen , Higher-order [51] O. Mattelaer and E. Vryonidou , Dark matter production through loop-induced processes at the LHC: the s-channel mediator case , Eur. Phys. J. C 75 ( 2015 ) 436 [arXiv:1508.00564] [52] M. Neubert , J. Wang and C. Zhang , Higher-order QCD predictions for dark matter [53] Simpli ed dark matter models webpage , http://feynrules.irmp.ucl.ac.be/wiki/DMsimp. [54] Particle Data Group collaboration , J. Beringer et al., Review of particle physics (RPP) , [55] J.M. Alarcon , J. Martin Camalich and J.A. Oller , The chiral representation of the N [56] J.M. Alarcon , L.S. Geng , J. Martin Camalich and J.A. Oller , The strangeness content of the [57] F. D'Eramo and M. Procura , Connecting dark matter UV complete models to direct [58] L. Vecchi , WIMPs and un-naturalness , arXiv:1312 .5695 [INSPIRE]. [59] Y.-Y. Mao , L.E. Strigari , R.H. Wechsler , H.-Y. Wu and O. Hahn , Halo-to-halo similarity and scatter in the velocity distribution of dark matter , Astrophys. J . 764 ( 2013 ) 35 [60] M. Lisanti , L.E. Strigari , J.G. Wacker and R.H. Wechsler , The dark matter at the end of [61] A. Ibarra , S. Lopez Gehler and M. Pato , Dark matter constraints from box-shaped [62] A. Ibarra , H.M. Lee , S. Lopez Gehler , W.-I. Park and M. Pato , Gamma-ray boxes from [63] M.G. Walker , M. Mateo , E.W. Olszewski , J. Penarrubia , N.W. Evans and G. Gilmore , A [70] CMS collaboration, Search for dark matter and unparticles produced in association with a Z [71] ATLAS collaboration, Search for dark matter produced in association with a Higgs boson [64] LHC Higgs Cross section Working Group collaboration , J.R. Andersen et al., [65] R.D. Ball et al., Parton distributions with LHC data, Nucl . Phys . B 867 ( 2013 ) 244 [66] M.R. Whalley , D. Bourilkov and R.C. Group , The Les Houches accord PDFs (LHAPDF) [67] A. Buckley et al., LHAPDF6: parton density access in the LHC precision era , Eur. Phys. J. [78] K. Cheung , K. Mawatari , E. Senaha , P.-Y. Tseng and T.-C. Yuan , The top window for dark [80] ATLAS collaboration, Search for new phenomena in nal states with an energetic jet and [89] D. Goncalves , F. Krauss , S. Kuttimalai and P. Maierhofer , Boosting invisible searches via [94] L. Beck , F. Blekman , D. Dobur , B. Fuks , J. Keaveney and K. Mawatari , Probing top-philic sgluons with LHC run I data, Phys . Lett . B 746 ( 2015 ) 48 [arXiv:1501.07580] [INSPIRE]. [95] N. Greiner , K. Kong , J.-C. Park , S.C. Park and J.-C. Winter , Model-independent production [96] C. Arina , E. Del Nobile and P. Panci , Dark matter with pseudoscalar-mediated interactions explains the DAMA signal and the galactic center excess , Phys. Rev. Lett . 114 ( 2015 ) [97] M. Cacciari , G.P. Salam and G. Soyez , The anti-kt jet clustering algorithm , JHEP 04 [98] M. Cacciari , G.P. Salam and G. Soyez , FastJet user manual , Eur. Phys. J. C 72 ( 2012 ) [99] C. Degrande , C. Duhr , B. Fuks , D. Grellscheid , O. Mattelaer and T. Reiter , UFO | the Universal FeynRules Output, Comput . Phys. Commun . 183 ( 2012 ) 1201 [arXiv:1108. 2040 ] [100] J. Pumplin , D.R. Stump , J. Huston , H.L. Lai , P.M. Nadolsky and W.K. Tung , New [101] T. Sjostrand , S. Mrenna and P.Z. Skands , PYTHIA 6 :4 physics and manual, JHEP 05 [102] R. Field , Min-bias and the underlying event at the LHC , Acta Phys. Polon. B 42 ( 2011 ) [103] M.L. Mangano , M. Moretti , F. Piccinini and M. Treccani , Matching matrix elements and shower evolution for top-quark production in hadronic collisions , JHEP 01 ( 2007 ) 013 [104] J. Alwall , S. de Visscher and F. Maltoni , QCD radiation in the production of heavy colored particles at the LHC , JHEP 02 ( 2009 ) 017 [arXiv:0810.5350] [INSPIRE]. [105] J. Guo , E. Conte and B. Fuks , MadAnalysis5 implementation of the CMS monojet search [106] B. Fuks and A. Martini , MadAnalysis5 implementation of the CMS search for dark matter [107] Y. Bai , H.-C. Cheng , J. Gallicchio and J. Gu , Stop the top background of the stop search , [108] M. Beltran , D. Hooper , E.W. Kolb , Z.A.C. Krusberg and T.M.P. Tait , Maverick dark [109] J. Goodman , M. Ibe , A. Rajaraman , W. Shepherd , T.M.P. Tait and H.-B. Yu , Constraints on dark matter from colliders , Phys. Rev. D 82 ( 2010 ) 116010 [arXiv:1008.1783] [110] J. Goodman , M. Ibe , A. Rajaraman , W. Shepherd , T.M.P. Tait and H.-B. Yu , Constraints [111] Y. Bai , P.J. Fox and R. Harnik , The Tevatron at the frontier of dark matter direct


This is a preview of a remote PDF: https://link.springer.com/content/pdf/10.1007%2FJHEP11%282016%29111.pdf

Chiara Arina, Mihailo Backović, Eric Conte, Benjamin Fuks, Jun Guo, Jan Heisig, Benoît Hespel, Michael Krämer, Fabio Maltoni, Antony Martini, Kentarou Mawatari, Mathieu Pellen, Eleni Vryonidou. A comprehensive approach to dark matter studies: exploration of simplified top-philic models, Journal of High Energy Physics, 2016, 111, DOI: 10.1007/JHEP11(2016)111