The effectiveness of robotic-assisted gait training for paediatric gait disorders: systematic review

Journal of NeuroEngineering and Rehabilitation, Jan 2017

Background Robotic-assisted gait training (RAGT) affords an opportunity to increase walking practice with mechanical assistance from robotic devices, rather than therapists, where the child may not be able to generate a sufficient or correct motion with enough repetitions to promote improvement. However the devices are expensive and clinicians and families need to understand if the approach is worthwhile for their children, and how it may be best delivered. Methods The objective of this review was to identify and appraise the existing evidence for the effectiveness of RAGT for paediatric gait disorders, including modes of delivery and potential benefit. Six databases were searched from 1980 to October 2016, using relevant search terms. Any clinical trial that evaluated a clinical aspect of RAGT for children/adolescents with altered gait was selected for inclusion. Data were extracted following the PRISMA approach. Seventeen trials were identified, assessed for level of evidence and risk of bias, and appropriate data extracted for reporting. Results Three randomized controlled trials were identified, with the remainder of lower level design. Most individual trials reported some positive benefits for RAGT with children with cerebral palsy (CP), on activity parameters such as standing ability, walking speed and distance. However a meta-analysis of the two eligible RCTs did not confirm this finding (p = 0.72). Training schedules were highly variable in duration and frequency and adverse events were either not reported or were minimal. There was a paucity of evidence for diagnoses other than CP. Conclusion There is weak and inconsistent evidence regarding the use of RAGT for children with gait disorders. If clinicians (and their clients) choose to use RAGT, they should monitor individual progress closely with appropriate outcome measures including monitoring of adverse events. Further research is required using higher level trial design, increased numbers, in specific populations and with relevant outcome measures to both confirm effectiveness and clarify training schedules.

A PDF file should load here. If you do not see its contents the file may be temporarily unavailable at the journal website or you do not have a PDF plug-in installed and enabled in your browser.

Alternatively, you can download the file locally and open with any standalone PDF reader:

http://www.jneuroengrehab.com/content/pdf/s12984-016-0214-x.pdf

The effectiveness of robotic-assisted gait training for paediatric gait disorders: systematic review

Lefmann et al. Journal of NeuroEngineering and Rehabilitation The effectiveness of robotic-assisted gait training for paediatric gait disorders: systematic review Sophie Lefmann 0 Remo Russo 1 Susan Hillier 0 0 Sansom Institute for Health Research, University of South Australia , GPO Box 2471, Adelaide, SA 5001 , Australia 1 Paediatric Rehabilitation Department, Women's and Children's Health Network, Women's and Children's Hospital Campus , 72 King William Road, North Adelaide, SA 5006 , Australia Background: Robotic-assisted gait training (RAGT) affords an opportunity to increase walking practice with mechanical assistance from robotic devices, rather than therapists, where the child may not be able to generate a sufficient or correct motion with enough repetitions to promote improvement. However the devices are expensive and clinicians and families need to understand if the approach is worthwhile for their children, and how it may be best delivered. Methods: The objective of this review was to identify and appraise the existing evidence for the effectiveness of RAGT for paediatric gait disorders, including modes of delivery and potential benefit. Six databases were searched from 1980 to October 2016, using relevant search terms. Any clinical trial that evaluated a clinical aspect of RAGT for children/adolescents with altered gait was selected for inclusion. Data were extracted following the PRISMA approach. Seventeen trials were identified, assessed for level of evidence and risk of bias, and appropriate data extracted for reporting. Results: Three randomized controlled trials were identified, with the remainder of lower level design. Most individual trials reported some positive benefits for RAGT with children with cerebral palsy (CP), on activity parameters such as standing ability, walking speed and distance. However a meta-analysis of the two eligible RCTs did not confirm this finding (p = 0.72). Training schedules were highly variable in duration and frequency and adverse events were either not reported or were minimal. There was a paucity of evidence for diagnoses other than CP. Conclusion: There is weak and inconsistent evidence regarding the use of RAGT for children with gait disorders. If clinicians (and their clients) choose to use RAGT, they should monitor individual progress closely with appropriate outcome measures including monitoring of adverse events. Further research is required using higher level trial design, increased numbers, in specific populations and with relevant outcome measures to both confirm effectiveness and clarify training schedules. Gait; Robot-assisted training; Paediatric; Rehabilitation - Background Gait disorders in children can result from a number of conditions including cerebral palsy (CP), myelomeningocele, traumatic brain injury or after orthopaedic surgery or musculo-skeletal pathology. Such disorders can have a profound effect on the kinematics and tempero-spatial components of walking, as well as the participation of children in their home, school and other natural environments. Rehabilitation specialists and physiotherapists are interested in ways to influence sustained improvement in quality, speed, independence and efficiency of gait to enhance participation of children in a variety of different settings. Robotic-assisted gait training (RAGT) has become an increasingly common rehabilitation tool over the last decade to improve the gait pattern of people with neurological impairment [1]. Advances in treadmill and robotic technology have refined ways to support the person’s body weight, while helping the lower limbs and torso to maintain appropriate alignment and patterns when the person initiates and performs gait. The overall intent for people using RAGT is to vary the degree of active participation and degree of body-weight support needed during functional gait, as determined by their therapeutic goals developed with their rehabilitation team [1]. RAGT differs from more traditional bodyweight supported treadmill training in that the roboticcontrolled exoskeleton or footplates can assist with the specific guidance of hip, knee and ankle movements, instead of the therapist supporting or guiding the person’s body segment positioning [2]. Zwicker and Mayson [3] provided an overview of systematic reviews of all treadmill training studies for children with motor impairments in 2010, finding the majority of reviews have been conducted on treadmill training per se (with or without body-weight support). Further, they concluded that the evidence suggests that overall treadmill training with or without support and assistance is effective, but this effectiveness is not as clear for different pathology populations or different ages. A small number of RAGT devices are on the market or used in clinical research. The Lokomat® and ReoAmbulator ® use a computer-driven exoskeleton to regulate and monitor gait parameters in individuals with a compromised gait pattern (...truncated)


This is a preview of a remote PDF: http://www.jneuroengrehab.com/content/pdf/s12984-016-0214-x.pdf

Sophie Lefmann, Remo Russo, Susan Hillier. The effectiveness of robotic-assisted gait training for paediatric gait disorders: systematic review, Journal of NeuroEngineering and Rehabilitation, 2017, pp. 1, 14, DOI: 10.1186/s12984-016-0214-x