Robot-aided developmental assessment of wrist proprioception in children

Journal of NeuroEngineering and Rehabilitation, Jan 2017

Background Several neurodevelopmental disorders and brain injuries in children have been associated with proprioceptive dysfunction that will negatively affect their movement. Unfortunately, there is lack of reliable and objective clinical examination protocols and our current knowledge of how proprioception evolves in typically developing children is still sparse. Methods Using a robotic exoskeleton, we investigated proprioceptive acuity of the wrist in a group of 49 typically developing healthy children (8–15 years), and a group of 40 young adults. Without vision participants performed an ipsilateral wrist joint position matching task that required them to reproduce (match) a previously experienced target position. All three joint degrees-of-freedom of the wrist/hand complex were assessed. Accuracy and precision were evaluated as a measure of proprioceptive acuity. The cross-sectional data indicating the time course of development of acuity were then fitted by four models in order to determine which function best describes developmental changes in proprioception across age. Results First, the robot-aided assessment proved to be an easy to administer method for objectively measuring proprioceptive acuity in both children and adult populations. Second, proprioceptive acuity continued to develop throughout middle childhood and early adolescence, improving by more than 50% with respect to the youngest group. Adult levels of performance were reached approximately by the age of 12 years. An inverse-root function best described the development of proprioceptive acuity across the age groups. Third, wrist/forearm proprioception is anisotropic across the three DoFs with the Abduction/Adduction exhibiting a higher level of acuity than those of Flexion/extension and Pronation/Supination. This anisotropy did not change across development. Conclusions Proprioceptive development for the wrist continues well into early adolescence. Our normative data obtained trough this novel robot-aided assessment method provide a basis against which proprioceptive function of pediatric population can be compared. This may aid the design of more effective sensorimotor intervention programs.

A PDF file should load here. If you do not see its contents the file may be temporarily unavailable at the journal website or you do not have a PDF plug-in installed and enabled in your browser.

Alternatively, you can download the file locally and open with any standalone PDF reader:

http://www.jneuroengrehab.com/content/pdf/s12984-016-0215-9.pdf

Robot-aided developmental assessment of wrist proprioception in children

Marini et al. Journal of NeuroEngineering and Rehabilitation Robot-aided developmental assessment of wrist proprioception in children Francesca Marini Valentina Squeri Pietro Morasso Claudio Campus Jürgen Konczak Lorenzo Masia 0 0 School of Mechanical & Aerospace Engineering, Nanyang Technological University , 639798 Singapore, Singapore Background: Several neurodevelopmental disorders and brain injuries in children have been associated with proprioceptive dysfunction that will negatively affect their movement. Unfortunately, there is lack of reliable and objective clinical examination protocols and our current knowledge of how proprioception evolves in typically developing children is still sparse. Methods: Using a robotic exoskeleton, we investigated proprioceptive acuity of the wrist in a group of 49 typically developing healthy children (8-15 years), and a group of 40 young adults. Without vision participants performed an ipsilateral wrist joint position matching task that required them to reproduce (match) a previously experienced target position. All three joint degrees-of-freedom of the wrist/hand complex were assessed. Accuracy and precision were evaluated as a measure of proprioceptive acuity. The cross-sectional data indicating the time course of development of acuity were then fitted by four models in order to determine which function best describes developmental changes in proprioception across age. Results: First, the robot-aided assessment proved to be an easy to administer method for objectively measuring proprioceptive acuity in both children and adult populations. Second, proprioceptive acuity continued to develop throughout middle childhood and early adolescence, improving by more than 50% with respect to the youngest group. Adult levels of performance were reached approximately by the age of 12 years. An inverse-root function best described the development of proprioceptive acuity across the age groups. Third, wrist/forearm proprioception is anisotropic across the three DoFs with the Abduction/Adduction exhibiting a higher level of acuity than those of Flexion/extension and Pronation/Supination. This anisotropy did not change across development. Conclusions: Proprioceptive development for the wrist continues well into early adolescence. Our normative data obtained trough this novel robot-aided assessment method provide a basis against which proprioceptive function of pediatric population can be compared. This may aid the design of more effective sensorimotor intervention programs. Proprioception; Developmental changes; Robot-aided assessment; Joint position matching; Children; Wrist joint - Background Proprioceptive signals from peripheral mechanoreceptors give rise to our awareness of limb position and movement in space [1]. Moreover, intact limb proprioception is essential for many aspects of motor control such as interlimb coordination [2, 3], for correcting and updating movement strategies [4] or for the formation of muscle synergies [5]. Proprioceptive signals are also crucial for motor learning [6, 7], providing information necessary for building and updating internal models of limb representation [8]. Proprioceptive loss or dysfunction caused by damage to the peripheral or central nervous system [9–12] in children has been shown to impair their motor control [13] and learning [7, 14]. A comprehensive knowledge of the typical development of human proprioception and its transition through adolescence into adulthood is currently lacking. However, given the importance that © The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. proprioception plays for motor development, it seems meaningful to characterize the course of its development, because such knowledge can be used as reference when diagnosing pediatric neurological disorders that are associated with somatosensory deficits [15]. Ultimately, the establishment of diagnostic standards and accepted functional assessment protocols would aid therapeutic intervention. Currently, an unbiased, accurate, and objective method to assess proprioception is still missing in clinical practice. Part of the problem arises from the fact that proprioceptive function is not easy to assess in children. The available tests either lack sensitivity, are difficult to understand, or they require a prolonged attention span that young children find difficult to maintain. We here present a robot-aided method t (...truncated)


This is a preview of a remote PDF: http://www.jneuroengrehab.com/content/pdf/s12984-016-0215-9.pdf

Francesca Marini, Valentina Squeri, Pietro Morasso, Claudio Campus, Jürgen Konczak, Lorenzo Masia. Robot-aided developmental assessment of wrist proprioception in children, Journal of NeuroEngineering and Rehabilitation, 2017, pp. 3, 14, DOI: 10.1186/s12984-016-0215-9