Search for high-mass Zγ resonances in e+e−γ and μ + μ −γ final states in proton-proton collisions at \( \sqrt{s}=8 \) and 13 TeV

Journal of High Energy Physics, Jan 2017

This paper describes the search for a high-mass narrow-width scalar particle decaying into a Z boson and a photon. The analysis is performed using proton-proton collision data recorded with the CMS detector at the LHC at center-of-mass energies of 8 and 13 TeV, corresponding to integrated luminosities of 19.7 and 2.7 fb−1, respectively. The Z bosons are reconstructed from opposite-sign electron or muon pairs. No statistically significant deviation from the standard model predictions has been found in the 200-2000 GeV mass range. Upper limits at 95% confidence level have been derived on the product of the scalar particle production cross section and the branching fraction of the Z decaying into electrons or muons, which range from 280 to 20 fb for resonance masses between 200 and 2000 GeV.

A PDF file should load here. If you do not see its contents the file may be temporarily unavailable at the journal website or you do not have a PDF plug-in installed and enabled in your browser.

Alternatively, you can download the file locally and open with any standalone PDF reader:

https://link.springer.com/content/pdf/10.1007%2FJHEP01%282017%29076.pdf

Search for high-mass Zγ resonances in e+e−γ and μ + μ −γ final states in proton-proton collisions at \( \sqrt{s}=8 \) and 13 TeV

Received: October resonances in e+e The CMS collaboration 0 1 0 University , Budapest , Hungary 1 46: Also at Riga Technical University , Riga , Latvia decaying into a Z boson and a photon. The analysis is performed using proton-proton collision data recorded with the CMS detector at the LHC at center-of-mass energies of 8 and 13 TeV, corresponding to integrated luminosities of 19.7 and 2.7 fb 1, respectively. The Z bosons are reconstructed from opposite-sign electron or muon pairs. No statistically signi cant deviation from the standard model predictions has been found in the 200{ 2000 GeV mass range. Upper limits at 95% con dence level have been derived on the product of the scalar particle production cross section and the branching fraction of the Z decaying into electrons or muons, which range from 280 to 20 fb for resonance masses Beyond Standard Model; Hadron-Hadron scattering (experiments) - 8 and 13 TeV 1 Introduction 2 The CMS detector 3 Particle reconstruction and event selection 4 Background modelling 5 Signal modeling 6 Systematic uncertainties 7 Results 8 Summary The CMS collaboration The ATLAS and CMS experiments have observed [1{3] a standard model (SM) like Higgs boson at 125 GeV [4]. While this discovery has rea rmed the SM, it is widely believed that the SM is a low-energy approximation of a more complex theory [5]. An enhancement with respect to the SM in the rate of rare decays of the 125 GeV boson or the discovery of additional scalar or pseudoscalar bosons would provide evidence that this is the case. Searches for the rare decay of the 125 GeV Higgs boson into a Z boson and a photon have been conducted by both ATLAS and CMS [6, 7], but have insu cient sensitivity to probe the SM Higgs boson hypothesis. In the context of the wider search for new resonances in the diphoton nal state [8{ 10], information from the Z channel provides important complementary information. For example, an extended SM incorporating a scalar (or pseudoscalar) decaying to two photons would imply that Z decays should be observed as well [11]. We present the results for a search for a high-mass scalar, X, with mass between 200 GeV and 2 TeV, decaying to Z . The analysis is performed by studying proton-proton collisions recorded with the CMS detector at the CERN LHC. The analyzed data samples correspond to integrated luminosities of 19.7 and 2.7 fb 1, recorded at center-of-mass energies of 8 and 13 TeV, respectively. The search is for localized excesses in the X ! Z channel, with the Z boson identi ed by means of its decays into an electron or a muon pair. The dominant backgrounds consist of the irreducible contribution from the continuum Z production and the reducible backgrounds from either nal-state radiation in Z boson decays or Z boson production in association with one or more jets (Z plus jets), where a jet is misidenti ed as a photon. The background is determined directly from data. Searches for a scalar singlet decaying to Z have been performed at the LHC by ATLAS at center-of-mass energies of 8 [12] and 13 TeV [13]. The CMS detector A detailed description of the CMS detector, together with the de nition of the coordinate system used and the relevant kinematic variables, can be found elsewhere [14]. The central feature of the CMS apparatus is a superconducting solenoid, 13 m in length and 6 m in diameter, which provides an axial magnetic eld of 3.8 T. Within the eld volume there are several particle detection systems. Charged-particle trajectories are measured by silicon pixel and strip trackers, covering 0 < < 2 in azimuth and j j < 2:5 in pseudorapidity. A lead tungstate crystal electromagnetic calorimeter (ECAL) is partitioned into a barrel hadron calorimeter surrounds the ECAL volume and covers the region j j < 3. Iron forward calorimeters with quartz bers, read out by photomultipliers, extend the calorimeter electrons, and hadronic jets. Lead and silicon-strip preshower detectors are located in front of the endcap electromagnetic calorimeter. Muons are identi ed and measured in gas-ionization detectors embedded in the steel ux-return yoke outside the solenoid. The detector is nearly hermetic, allowing energy balance measurements in the plane transverse to the beam direction. A two-tier trigger system selects proton-proton collision events Particle reconstruction and event selection The selected events are required to pass a dielectron trigger, which has transverse momentum, pT, thresholds of 17 and 12 GeV, respectively, on the two electrons, or a dimuon trigger, with thresholds of 17 and 8 GeV on the two muons. The analysis of the 13 TeV data also makes use of trigger paths that require the presence of only one muon, with a transverse momentum threshold of 20 GeV. The trigger e ciencies for events containing two leptons satisfying the subsequent event selection requirements are measured to be between 90% and 98% for the e+e about 91% for the enriched in Z boson events. channel depending on the electron transverse momenta, and channel. These e ciencies are determined with a data sample Events with two opposite-sign, same- avor leptons (electrons or muons) and a photon are selected. All particles are required to be isolated, and the lepton with the highest pT is required to satisfy pT > 20 (25) GeV in the analysis of 8 (13) TeV data, while the secondleading lepton must have pT > 10 (20) GeV. The photon is required to satisfy pT > 40 GeV. The electrons and photon must have j j < 2:5, while the muons must have j j < 2:4. Photons and electrons in the ECAL barrel-endcap transition region 1:44 < j j < 1:57 of the electromagnetic calorimeter are excluded. More details on reconstruction of photons, electrons, and muons can be found in refs. [15{17]. Events are required to have at least one vertex [18], with the reconstructed longitudinal position within 24 cm of the geometric center of the detector and the transverse position within 2 cm of the beam interaction region. There are multiple reconstructed vertices associated with additional interactions (pileup), and the vertex with the highest sum of the p2T of its associated tracks is chosen as the primary vertex. The leptons are required to originate from the same primary vertex by requiring, for each track, that its transverse impact parameter with respect to the primary vertex is smaller than 2 mm and that its longitudinal impact parameter is smaller than 2 (5) mm for electrons (muons). The observables used in the photon selection are as follows: isolation variables based on a particle- ow (PF) algorithm [19, 20], kinematic variables corresponding to the location and energy of the photon, shower shape variables that provide information on the size and shape of the energy deposition in the ECAL, and a variable taking into account the energy deposited by pileup interactions, calculated with the FastJet package [21]. Identi cation and isolation requirements in the analysis of the 8 TeV data are enforced through the use of a multivariate discriminant, whereas simple, cut-based selection is used in the analysis of 13 TeV data. The search conducted in 8 TeV data targets a lower mass range, so the photon identi cation criteria with the most e cient rejection of the jet-induced background Photon candidates are rejected if a cluster of hits in the tracker pixel detector is found to be compatible with the ECAL energy cluster position. The e ciency of the photon identi cation is measured from Z ! ee data [22] by treating the electrons as photons [3], and is found to be 90% for photons with pT > 40 GeV. These e ciencies include the losses due to photon conversions caused by the pixel tracker veto requirement, estimated with R = events, where the photon is produced via Isolation requirements are based on objects reconstructed with the PF algorithm within 2 = 0:3 from the photon candidate direction, where are, respectively, the di erences in the pseudorapidity and azimuth angles between the photon and the given reconstructed object. Only charged candidates are considered in the enforcement of isolation criteria in the analysis of 13 TeV data, whereas additional photons are also considered in the analysis of 8 TeV data. Electron candidates are reconstructed as clusters of energy deposits in the ECAL matched to signals in the silicon tracker [16]. The electron energy resolution is improved by using a multivariate regression technique resulting in improvements of 10 and 30% in the mass resolution for Z ! ee events over the standard CMS electron reconstruction in the barrel and endcap calorimeters, respectively [16]. Electrons are identi ed via loose requirements on the shape of these energy deposits, on the ratio of energies in associated hadron and electromagnetic calorimeter cells, on the geometrical matching between the energy deposits and the associated track, and on the consistency between the energy reconstructed from the calorimeter deposits and the momentum measured in the tracker. The electron selection criteria used in the analysis of 8 TeV data are optimized further for background rejection using a multivariate approach. The training of the multivariate electron reconstruction is performed using simulated events, while the performance is validated Muon candidates [17] are reconstructed from tracks found in the muon system that are associated with the tracks in the silicon detectors. Muon identi cation criteria are based on the quality of the track t and the number of associated energy deposits in the pixel and strip tracking detectors. The total e ciencies for the combined muon identi cation and pileup-corrected isolation criteria are better than 95%. Electrons and muons from Z boson decays are expected to be isolated from other xed cone of size R = 0:4 is constructed around the direction of each lepton candidate in the search performed in 8 TeV data, while R varies with the lepton pT in the selection used in the analysis of 13 TeV data according to the relation: R = < 10 GeV ; 50 < pT < 200 GeV pT > 200 GeV: This ensures high lepton identi cation e ciency even for highly-boosted Z boson decays, as expected in the decay of high-mass resonances. The relative isolation of the lepton is quanti ed by summing the transverse momenta of the relevant PF candidates within this cone, excluding the lepton itself. To account for the contamination from pileup interactions, charged particles originating from additional vertices are excluded from the estimate, and a correction is applied to account for the neutral PF objects originating from pileup activity, which cannot be excluded by vertex identi cation. The resulting quantity, divided by the lepton transverse momentum, is required to be less than 0.4 for both electrons and muons in the analysis of 8 TeV data, and less than 0.1 (0.2) for electrons (muons) in 13 TeV data. This requirement rejects misidenti ed leptons and background arising from hadronic jets. Finally, the separation between each lepton and the photon must satisfy R > 0:4 in order to reject events with The invariant mass of the dilepton system is required to be greater than 50 GeV. In the selection used in 8 TeV data, no upper dilepton mass condition is needed, while in the selection used in 13 TeV data the dilepton mass is required to be below 130 GeV. The minimum dilepton mass requirement rejects contributions from pp ! internal conversion of the photon produces a dilepton pair. In the rare cases where more than one dilepton pair is present, the one with an invariant mass closest to the Z boson mass is taken. The nal set of requirements combines the information from the photon and the leptons: (i) the invariant mass M`` of the `+` system (where ` = e; ), is required to be above 150 (200) GeV in the analysis of 8 (13) TeV data; and (ii) the ratio of the photon transverse energy to M`` must be greater than 0.27. This latter requirement suppresses backgrounds due to misidenti cation of photons, without signi cant loss in signal sensitivity and without introducing a bias in the M`` spectrum. Background modelling Simulations indicate that 80{90% of the background after the full event selection is due production with initial-state radiation, with the remainder mostly due to the ta 2 t s /σ 1 ) ift- 0 ta 2 t s /σ 1 ) ift- 0 (right) channels. The tted function is represented by a line, with the 68% uncertainty band as grey shading. The lower panels show the di erence between the data and the t, divided by the stat, that includes the statistical uncertainty in both the data and the t. For bins with a low number of data entries, the error bars correspond to the Garwood con dence intervals. contribution from Z plus jet events, where the jet is misreconstructed as a photon. The M`` distributions are steeply and smoothly falling with increasing mass. The background is measured directly in the data, through an unbinned maximum-likelihood t to the observed distributions, separately in the e+e parametrized with empirical formulae. channels. The background is In the 8 TeV analysis the background shape is parameterized with the sum of three exponential decay functions. The t is performed for values of M`` > 150 GeV. The potential bias in the background measurement is studied by using pseudo-data generated from di erent functional forms and tted with the function under test. The results of these ts are used to determine an appropriate model for the background, such that the bias introduced in the signal measurement is smaller than 1/5 of the statistical uncertainty in its determination. The chosen model (sum of three exponential decay functions) is found to satisfy this criterion across the search mass range. The observed M`` invariant mass spectra in 8 TeV data are shown in gure 1. The results of the t is represented by a line, with the 68% uncertainty band as grey shading. The 13 TeV search employs a strategy similar to the 8 TeV search. The t is performed for values of M`` > 200 GeV. The function chosen for the background estimate, f (x) = xa+b log x; describes the background shape well and does not create a signi cant bias. The absence of signi cant bias has been veri ed by tting a large number of pseudo-datasets generated from various background models, and measuring the di erence between the true and tted background yields in di erent M`` windows; in each window a pull variable is de ned as tta 2 s ) ift- 0 ta−1 tta 2 s /σ 1 ) ift- 0 ta−1 (right) channels. The tted function is represented by a line, with the 68% uncertainty band as gray shading. The lower panels show the di erence between the data and the t, divided by the uncertainty stat, which includes the statistical uncertainty in both the data and the t. For bins with a low number of data entries, the error bars correspond to the Garwood con dence intervals. shown with a line and a band. Signal modeling the di erence between the true and tted yields, divided by the statistical uncertainty. If the absolute value of the median of this distribution is found to be above 0.5 in an interval, an additional uncertainty is assigned to the background parametrization. A modi ed pull distribution is then constructed, increasing the statistical uncertainty in the t by an extra term, denoted the bias term. The bias term is parametrized as a smooth function of M`` , which is tuned in such a manner that the absolute value of the median of the modi ed pull distribution is less than 0.5 in all intervals. This additional uncertainty is included in the likelihood function by adding to the background model a component having the same shape as the signal, with a normalization coe cient distributed as a Gaussian of mean zero, and with a width equal to the integral of the bias term. This inclusion of the additional component takes into account the possible mismodeling of the background shape. The bias term which is used in this analysis amounts to about 5 10 3 events/GeV The observed M`` invariant mass spectra in 13 TeV data are shown in (right) channels. The results of the t and its uncertainty are No events with invariant mass larger than 1275 (1220) GeV pass the selection on We focus on narrow-width signal models, where the intrinsic width of the resonance is negligible compared to the experimental resolution. Scalar resonances decaying to Z are generated at leading order with pythia 8.175 [23] and NNPDF2.3 [24] parton distribution functions (PDF). The 8 TeV generator uses the Z2* tune [25] to describe the underlying event and the 13 TeV generator, the CUETP8M tune [26]. Several samples are generated with masses ranging from 200 (350) GeV to 1.2 (2) TeV, in the 8 (13) TeV analysis. The search performed in 13 TeV data begins at higher invariant mass in order to avoid the region where the background is sculpted by the kinematic selections imposed on the nalstate objects. As far as the upper range, the analysis of the 8 TeV data ends where the results based on the 13 TeV analysis dominate the combination. The signal distribution in M`` is obtained from the generated events that pass the full selection. The signal shape is parametrized with empirical functions; the function chosen is the sum of a Gaussian and Crystal Ball function ([27], see appendix D) for the 8 TeV analysis, and an extended form of the Crystal Ball function, with a Gaussian core and two power-law tails, for the 13 TeV analysis. The tted parameters are determined from the simulated samples at each mass point, separately for the electron and muon channels, and then interpolated through polynomial ts to generic M`` values in order to have smoothly varying signal shape parametrizations. The typical mass resolution for signal events is channel and 1{2% for the channel, depending on the mass of The product of the expected signal acceptance and e ciency in the analysis of 8 TeV data rises from about 33% at M`` = 200 GeV to about 45% at M`` = 1:2 TeV. In 45% (55%) at M`` = 2 TeV, for the e+e Systematic uncertainties The background spectra are described by parametric functions of M`` . The coe cients are obtained from a t to the data events, and considered as unconstrained nuisance parameters in the t. Thus the description of the background is derived from data. No systematic uncertainty related to the background description is considered, as possible biases are accounted for in the bias terms. The systematic uncertainty in the signal description arises from the integrated luminosity measurement [28, 29], the trigger e ciency, the e ect on the signal acceptance from the choice of parton distribution functions [30], the imperfect simulation of the lepton and photon e ciencies, and the signal mass scale and resolution. These uncertainties have been evaluated separately at 8 and 13 TeV, and their magnitudes are summarized in table 1. The photon e ciency uncertainty of the 13 TeV data analysis is larger because of the use of preliminary calibrations. The sources of uncertainty are considered to be completely uncorrelated between the two center-of-mass energies. No signi cant excess is observed with respect to the SM background predictions. Upper limits are set on the production cross section of high-mass scalar resonances using the Trigger e ciency (ee, Lepton e ciency Photon e ciency Mass scale and resolution (ee , Total systematic uncertainty (ee , fraction for X ! Z obtained with the searches performed at 8 TeV (left) and at 13 TeV (right). modi ed frequentist method, commonly known as CLs [31, 32]. An example of its usage is found in [2]. Asymptotic formulae [33] are used in the calculation. The individual expected and observed upper limits at 95% con dence level (CL) on the product of the cross section and the branching fraction for X ! Z are shown in The combination of the two results accounts for the di erent parton luminosities for collisions at 8 and 13 TeV, which have been calculated with the NNPDF2.3 parton distributions [24]. The e ect of using di erent PDFs for the scaling has been evaluated and a ects the limits by at most a few percent, mainly in the low-mass region. The signal is assumed to be produced solely through gluon-gluon fusion, and the 8 TeV limit is scaled up by the corresponding parton luminosity ratio, which ranges between 3 and 7 in the 0.2 to 1.2 TeV mass region, and is about 4.3 for a signal with a mass of 750 GeV. Figure 4 (left) shows the 95% CL upper limits on the 13 TeV cross section, 13 TeV(X ! Z ), as a function of the resonance mass, for the 8 TeV (blue, lighter) and 13 TeV (red, darker) analyses, and their combination (black). The expected (observed) limits are shown as dashed (solid) lines. Figure 4 (right) shows the combined 8 and 13 TeV limit with its 68% (inner green) and 95% (outer yellow) uncertainty bands. The discontinuities in the limits are an artifact of the di erent ranges exploited by the two searches. 19.7 fb-1 (8 TeV) + 2.7 fb-1 (13 TeV) 8 TeV Expected 8 TeV Observed 13 TeV(X ! Z ) for the scaled 8 TeV (blue, lighter) and 13 TeV (red, darker) searches, together with their combination (black). Expected limits are shown with dashed lines, observed ones with Right: 95% CL upper limit for the combination of 8 TeV and 13 TeV data. The solid (dashed) line represents the observed (expected) limit, whereas the inner green (outer yellow) bands represent the 68% (95%) uncertainty bands. 19.7 fb-1 (8 TeV) + 2.7 fb-1 (13 TeV) l ca10−1 o 10−2 10−3 8 TeV 13 TeV Combination Resonance Mass [GeV] 13 TeV search (red, dashed), and the combination (black, solid). Background-only local p-values are de ned as the probability of obtaining, under the background-only hypothesis, a result equal or larger than the one observed in the data. Figure 5 shows the observed background-only p-values for the 8 TeV search (blue, dotted), the 13 TeV search (red, dashed), and their combination (black). The uctuation at M`` 370 GeV corresponds to a local signi cance of 2.6 , and a global signi cance smaller than one standard deviation, once the `look-elsewhere' e ect has been taken into account [34]. This has been computed by counting the fraction of times the background-only p-value crosses the level corresponding to 0.5 standard deviations in the full mass range in which , has been presented. The search makes use of proton-proton data collected by the CMS detector at the LHC, corresponding to integrated luminosities of 19.7 and 2.7 fb 1 at 8 and 13 TeV, respectively. The background is measured directly from data and localized excesses are looked for. No signi cant deviation with respect to the standard model expectation is found. Upper limits at 95% con dence level are set on the production cross section of narrow resonances, ranging from 280 to 20 fb for resonance masses from 200 to 2000 GeV. We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative sta s at CERN and at other CMS institutes for their contributions to the success of the CMS e ort. In addition, we gratefully acknowledge the computing centers and personnel of the Worldwide LHC Computing Grid for delivering so e ectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMWFW and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES and CSF (Croatia); RPF (Cyprus); SENESCYT (Ecuador); MoER, ERC IUT and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NIH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); MSIP and NRF (Republic of Korea); LAS (Lithuania); MOE and UM (Malaysia); BUAP, CINVESTAV, CONACYT, LNS, SEP, and UASLP-FAI (Mexico); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS and RFBR (Russia); MESTD (Serbia); SEIDI and CPAN (Spain); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter, IPST, STAR and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU and SFFR (Ukraine); STFC (United Kingdom); DOE and NSF (U.S.A.). Individuals have received support from the Marie-Curie program and the European Research Council and EPLANET (European Union); the Leventis Foundation; the A. P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Sci ce; the Fonds pour la Formation a la Recherche dans l'Industrie et dans l'Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the Ministry of Education, Youth and Sports (MEYS) of the Czech Republic; the Council of Science and Industrial Research, India; the HOMING PLUS program of the Foundation for Polish Science, co nanced from European Union, Regional Development Fund, the Mobility Plus program of the Ministry of Science and Higher Education, the National Science Center (Poland), contracts Harmonia 2014/14/M/ST2/00428, Opus 2013/11/B/ST2/04202, 2014/13/B/ST2/02543 and 2014/15/B/ST2/03998, Sonatabis 2012/07/E/ST2/01406; the Thalis and Aristeia programs co nanced by EU-ESF and the Greek NSRF; the National Priorities Research Program by Qatar National Research Fund; the Programa Clar n-COFUND del Principado de Asturias; the Rachadapisek Sompot Fund for Postdoctoral Fellowship, Chulalongkorn University and the Chulalongkorn Academic into Its 2nd Century Project Advancement Project (Thailand); and the Welch Foundation, contract C-1845. This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited. [1] ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE]. [2] CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE]. [3] CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, JHEP 06 (2013) 081. [4] CMS collaboration, Precise determination of the mass of the Higgs boson and tests of compatibility of its couplings with the standard model predictions using proton collisions at 7 and 8 TeV, Eur. Phys. J. C 75 (2015) 212 [arXiv:1412.8662] [INSPIRE]. [hep-ph/0306055] [INSPIRE]. [arXiv:1402.3051] [INSPIRE]. at ps = 7 and 8 TeV, Phys. Lett. B 726 (2013) 587 [arXiv:1307.5515] [INSPIRE]. [6] CMS collaboration, Search for a Higgs boson decaying into a Z and a photon in pp collisions [7] ATLAS collaboration, Search for Higgs boson decays to a photon and a Z boson in pp s = 7 and 8 TeV with the ATLAS detector, Phys. Lett. B 732 (2014) 8 [8] ATLAS collaboration, Search for resonances in diphoton events at p s = 13 TeV with the ATLAS detector, JHEP 09 (2016) 001 [arXiv:1606.03833] [INSPIRE]. [9] CMS collaboration, Search for resonant production of high-mass photon pairs in s = 8 and 13 TeV, Phys. Rev. Lett. 117 (2016) 051802 proton-proton collisions at p [arXiv:1606.04093] [INSPIRE]. [10] CMS collaboration, Search for high-mass diphoton resonances in proton-proton collisions at 13 TeV and combination with 8 TeV search, submitted to Phys. Lett. B, arXiv:1609.02507 [11] D. Buttazzo, A. Greljo and D. Marzocca, Knocking on new physics' door with a scalar resonance, Eur. Phys. J. C 76 (2016) 116 [arXiv:1512.04929] [INSPIRE]. [12] ATLAS collaboration, Search for new resonances in W nal states in pp collisions [13] ATLAS collaboration, Search for heavy resonances decaying to a Z boson and a photon in s = 13 TeV with the ATLAS detector, Phys. Lett. B 764 (2017) 11 [15] CMS collaboration, Performance of photon reconstruction and identi cation with the CMS [arXiv:1607.06363] [INSPIRE]. detector in proton-proton collisions at p [arXiv:1502.02702] [INSPIRE]. detector in proton-proton collisions at p [arXiv:1502.02701] [INSPIRE]. s = 8 TeV, 2015 JINST 10 P08010 s = 8 TeV, 2015 JINST 10 P06005 [16] CMS collaboration, Performance of electron reconstruction and selection with the CMS s = 7 TeV, 2012 JINST 7 P10002 [arXiv:1206.4071] [INSPIRE]. [17] CMS collaboration, Performance of CMS muon reconstruction in pp collision events at JINST 9 C03005 [arXiv:1402.0675] [INSPIRE]. and MET, CMS-PAS-PFT-09-001 (2009). [19] CMS collaboration, Particle- ow event reconstruction in CMS and performance for jets, taus [20] CMS collaboration, Commissioning of the particle- ow event reconstruction with the rst LHC collisions recorded in the CMS detector, CMS-PAS-PFT-10-001 (2010). [arXiv:0707.1378] [INSPIRE]. [22] CMS collaboration, Measurement of the Inclusive W and Z Production Cross Sections in pp s = 7 TeV, JHEP 10 (2011) 132 [arXiv:1107.4789] [INSPIRE]. Phys. Commun. 178 (2008) 852 [arXiv:0710.3820] [INSPIRE]. [arXiv:1207.1303] [INSPIRE]. 2631 [arXiv:1110.5530] [INSPIRE]. [26] CMS collaboration, Event generator tunes obtained from underlying event and multiparton scattering measurements, Eur. Phys. J. C 76 (2016) 155 [arXiv:1512.00815] [INSPIRE]. [27] M.J. Oreglia, A study of the reactions 0 ! ", Ph.D. thesis, Stanford University, Stanford U.S.A. (1980) [SLAC-R-236], see appendix D. [28] CMS collaboration, CMS luminosity based on pixel cluster counting | Summer 2013 update, CMS-PAS-LUM-13-001 (2013). CMS-PAS-LUM-15-001 (2015). 023001 [arXiv:1510.03865] [INSPIRE]. [29] CMS collaboration, CMS luminosity measurement for the 2015 data taking period, Instrum. Meth. A 434 (1999) 435 [hep-ex/9902006] [INSPIRE]. tests of new physics, Eur. Phys. J. C 71 (2011) 1554 [Erratum ibid. C 73 (2013) 2501] [arXiv:1007.1727] [INSPIRE]. Phys. J. C 70 (2010) 525 [arXiv:1005.1891] [INSPIRE]. Yerevan Physics Institute, Yerevan, Armenia V. Khachatryan, A.M. Sirunyan, A. Tumasyan Institut fur Hochenergiephysik, Wien, Austria M. Flechl, M. Friedl, R. Fruhwirth1, V.M. Ghete, C. Hartl, N. Hormann, J. Hrubec, N. Rad, B. Rahbaran, H. Rohringer, J. Schieck1, J. Strauss, W. Waltenberger, C.-E. Wulz1 Institute for Nuclear Problems, Minsk, Belarus O. Dvornikov, V. Makarenko, V. Zykunov National Centre for Particle and High Energy Physics, Minsk, Belarus V. Mossolov, N. Shumeiko, J. Suarez Gonzalez Universiteit Antwerpen, Antwerpen, Belgium S. Alderweireldt, E.A. De Wolf, X. Janssen, J. Lauwers, M. Van De Klundert, H. Van Haevermaet, P. Van Mechelen, N. Van Remortel, A. Van Spilbeeck Vrije Universiteit Brussel, Brussel, Belgium S. Abu Zeid, F. Blekman, J. D'Hondt, N. Daci, I. De Bruyn, K. Deroover, N. Heracleous, S. Lowette, S. Moortgat, L. Moreels, A. Olbrechts, Q. Python, S. Tavernier, W. Van Doninck, P. Van Mulders, I. Van Parijs Universite Libre de Bruxelles, Bruxelles, Belgium H. Brun, B. Clerbaux, G. De Lentdecker, H. Delannoy, G. Fasanella, L. Favart, R. Goldouzian, A. Grebenyuk, G. Karapostoli, T. Lenzi, A. Leonard, J. Luetic, T. Maerschalk, A. Marinov, A. Randle-conde, T. Seva, C. Vander Velde, P. Vanlaer, R. Yonamine, F. Zenoni, F. Zhang2 Ghent University, Ghent, Belgium A. Cimmino, T. Cornelis, D. Dobur, A. Fagot, G. Garcia, M. Gul, D. Poyraz, S. Salva, R. Schofbeck, A. Sharma, M. Tytgat, W. Van Driessche, E. Yazgan, N. Zaganidis Universite Catholique de Louvain, Louvain-la-Neuve, Belgium H. Bakhshiansohi, C. Belu 3, O. Bondu, S. Brochet, G. Bruno, A. Caudron, S. De Visscher, C. Delaere, M. Delcourt, B. Francois, A. Giammanco, A. Jafari, P. Jez, M. Komm, V. Lemaitre, A. Magitteri, A. Mertens, M. Musich, C. Nuttens, K. Piotrzkowski, L. Quertenmont, M. Selvaggi, M. Vidal Marono, S. Wertz Universite de Mons, Mons, Belgium Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil W.L. Alda Junior, F.L. Alves, G.A. Alves, L. Brito, C. Hensel, A. Moraes, M.E. Pol, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil E. Belchior Batista Das Chagas, W. Carvalho, J. Chinellato4, A. Custodio, E.M. Da Costa, G.G. Da Silveira5, D. De Jesus Damiao, C. De Oliveira Martins, S. Fonseca De Souza, L.M. Huertas Guativa, H. Malbouisson, D. Matos Figueiredo, C. Mora Herrera, L. Mundim, H. Nogima, W.L. Prado Da Silva, A. Santoro, A. Sznajder, E.J. Tonelli Manganote4, Universidade Estadual Paulista a, Universidade Federal do ABC b, S~ao Paulo, S. Ahujaa, C.A. Bernardesb, S. Dograa, T.R. Fernandez Perez Tomeia, E.M. Gregoresb, P.G. Mercadanteb, C.S. Moona, S.F. Novaesa, Sandra S. Padulaa, D. Romero Abadb, Institute for Nuclear Research and Nuclear Energy, So a, Bulgaria A. Aleksandrov, R. Hadjiiska, P. Iaydjiev, M. Rodozov, S. Stoykova, G. Sultanov, M. VuUniversity of So a, So a, Bulgaria A. Dimitrov, I. Glushkov, L. Litov, B. Pavlov, P. Petkov Beihang University, Beijing, China H. Zhang, J. Zhao Institute of High Energy Physics, Beijing, China M. Ahmad, J.G. Bian, G.M. Chen, H.S. Chen, M. Chen, Y. Chen7, T. Cheng, C.H. Jiang, D. Leggat, Z. Liu, F. Romeo, S.M. Shaheen, A. Spiezia, J. Tao, C. Wang, Z. Wang, State Key Laboratory of Nuclear Physics and Technology, Peking University, Y. Ban, G. Chen, Q. Li, S. Liu, Y. Mao, S.J. Qian, D. Wang, Z. Xu Universidad de Los Andes, Bogota, Colombia C. Avila, A. Cabrera, L.F. Chaparro Sierra, C. Florez, J.P. Gomez, C.F. Gonzalez Hernandez, J.D. Ruiz Alvarez, J.C. Sanabria University of Split, Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, Split, Croatia N. Godinovic, D. Lelas, I. Puljak, P.M. Ribeiro Cipriano, T. Sculac University of Split, Faculty of Science, Split, Croatia Z. Antunovic, M. Kovac Institute Rudjer Boskovic, Zagreb, Croatia V. Brigljevic, D. Ferencek, K. Kadija, S. Micanovic, L. Sudic, T. Susa University of Cyprus, Nicosia, Cyprus A. Attikis, G. Mavromanolakis, J. Mousa, C. Nicolaou, F. Ptochos, P.A. Razis, H. Rykaczewski, D. Tsiakkouri Charles University, Prague, Czech Republic M. Finger8, M. Finger Jr.8 Universidad San Francisco de Quito, Quito, Ecuador E. Carrera Jarrin Academy of Scienti c Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt E. El-khateeb9, S. Elgammal10, A. Mohamed11 National Institute of Chemical Physics and Biophysics, Tallinn, Estonia B. Calpas, M. Kadastik, M. Murumaa, L. Perrini, M. Raidal, A. Tiko, C. Veelken Department of Physics, University of Helsinki, Helsinki, Finland P. Eerola, J. Pekkanen, M. Voutilainen Helsinki Institute of Physics, Helsinki, Finland J. Harkonen, T. Jarvinen, V. Karimaki, R. Kinnunen, T. Lampen, K. Lassila-Perini, S. Lehti, T. Linden, P. Luukka, J. Tuominiemi, E. Tuovinen, L. Wendland Lappeenranta University of Technology, Lappeenranta, Finland J. Talvitie, T. Tuuva IRFU, CEA, Universite Paris-Saclay, Gif-sur-Yvette, France M. Besancon, F. Couderc, M. Dejardin, D. Denegri, B. Fabbro, J.L. Faure, C. Favaro, F. Ferri, S. Ganjour, S. Ghosh, A. Givernaud, P. Gras, G. Hamel de Monchenault, P. Jarry, I. Kucher, E. Locci, M. Machet, J. Malcles, J. Rander, A. Rosowsky, M. Titov, A. Zghiche Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, A. Abdulsalam, I. Antropov, S. Ba oni, F. Beaudette, P. Busson, L. Cadamuro, E. Chapon, C. Charlot, O. Davignon, R. Granier de Cassagnac, M. Jo, S. Lisniak, P. Mine, M. Nguyen, C. Ochando, G. Ortona, P. Paganini, P. Pigard, S. Regnard, R. Salerno, Y. Sirois, T. Strebler, Y. Yilmaz, A. Zabi Institut Pluridisciplinaire Hubert Curien, Universite de Strasbourg, Universite de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France J.-L. Agram12, J. Andrea, A. Aubin, D. Bloch, J.-M. Brom, M. Buttignol, E.C. Chabert, N. Chanon, C. Collard, E. Conte12, X. Coubez, J.-C. Fontaine12, D. Gele, U. Goerlach, A.-C. Le Bihan, K. Skovpen, P. Van Hove Centre de Calcul de l'Institut National de Physique Nucleaire et de Physique des Particules, CNRS/IN2P3, Villeurbanne, France Universite de Lyon, Universite Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucleaire de Lyon, Villeurbanne, France S. Beauceron, C. Bernet, G. Boudoul, E. Bouvier, C.A. Carrillo Montoya, R. Chierici, D. Contardo, B. Courbon, P. Depasse, H. El Mamouni, J. Fan, J. Fay, S. Gascon, A.L. Pequegnot, S. Perries, A. Popov13, D. Sabes, V. Sordini, M. Vander Donckt, P. Verdier, A. Khvedelidze8 Georgian Technical University, Tbilisi, Georgia Tbilisi State University, Tbilisi, Georgia Z. Tsamalaidze8 RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany C. Autermann, S. Beranek, L. Feld, A. Heister, M.K. Kiesel, K. Klein, M. Lipinski, A. Ostapchuk, M. Preuten, F. Raupach, S. Schael, C. Schomakers, J. Schulz, T. Verlage, H. Weber, V. Zhukov13 RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany A. Albert, M. Brodski, E. Dietz-Laursonn, D. Duchardt, M. Endres, M. Erdmann, S. Erdweg, T. Esch, R. Fischer, A. Guth, M. Hamer, T. Hebbeker, C. Heidemann, K. Hoepfner, S. Knutzen, M. Merschmeyer, A. Meyer, P. Millet, S. Mukherjee, M. Olschewski, K. Padeken, T. Pook, M. Radziej, H. Reithler, M. Rieger, F. Scheuch, L. Sonnenschein, RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany V. Cherepanov, G. Flugge, F. Hoehle, B. Kargoll, T. Kress, A. Kunsken, J. Lingemann, T. Muller, A. Nehrkorn, A. Nowack, I.M. Nugent, C. Pistone, O. Pooth, A. Stahl14 Deutsches Elektronen-Synchrotron, Hamburg, Germany M. Aldaya Martin, T. Arndt, C. Asawatangtrakuldee, K. Beernaert, O. Behnke, U. Behrens, A.A. Bin Anuar, K. Borras15, A. Campbell, P. Connor, C. Contreras-Campana, F. Costanza, C. Diez Pardos, G. Dolinska, G. Eckerlin, D. Eckstein, T. Eichhorn, E. Eren, E. Gallo16, J. Garay Garcia, A. Geiser, A. Gizhko, J.M. Grados Luyando, P. Gunnellini, A. Harb, J. Hauk, M. Hempel17, H. Jung, A. Kalogeropoulos, O. Karacheban17, M. Kase mann, J. Keaveney, C. Kleinwort, I. Korol, D. Krucker, W. Lange, A. Lelek, J. Leonard, K. Lipka, A. Lobanov, W. Lohmann17, R. Mankel, I.-A. Melzer-Pellmann, A.B. Meyer, G. Mittag, J. Mnich, A. Mussgiller, E. Ntomari, D. Pitzl, R. Placakyte, A. Raspereza, B. Roland, M.O . Sahin, P. Saxena, T. Schoerner-Sadenius, C. Seitz, S. Spannagel, N. Stefaniuk, G.P. Van Onsem, R. Walsh, C. Wissing University of Hamburg, Hamburg, Germany V. Blobel, M. Centis Vignali, A.R. Draeger, T. Dreyer, E. Garutti, D. Gonzalez, J. Haller, M. Ho mann, A. Junkes, R. Klanner, R. Kogler, N. Kovalchuk, T. Lapsien, T. Lenz, I. Marchesini, D. Marconi, M. Meyer, M. Niedziela, D. Nowatschin, F. Pantaleo14, T. Pei er, A. Perieanu, J. Poehlsen, C. Sander, C. Scharf, P. Schleper, A. Schmidt, S. Schumann, J. Schwandt, H. Stadie, G. Steinbruck, F.M. Stober, M. Stover, H. Tholen, D. Troendle, E. Usai, L. Vanelderen, A. Vanhoefer, B. Vormwald Institut fur Experimentelle Kernphysik, Karlsruhe, Germany C. Barth, C. Baus, J. Berger, E. Butz, T. Chwalek, F. Colombo, W. De Boer, A. Dierlamm, S. Fink, R. Friese, M. Gi els, A. Gilbert, P. Goldenzweig, D. Haitz, F. Hartmann14, S.M. Heindl, U. Husemann, I. Katkov13, P. Lobelle Pardo, B. Maier, H. Mildner, M.U. Mozer, Th. Muller, M. Plagge, G. Quast, K. Rabbertz, S. Rocker, F. Roscher, Institute of Nuclear and Particle Physics (INPP), NCSR Demokritos, Aghia I. Topsis-Giotis G. Anagnostou, G. Daskalakis, T. Geralis, V.A. Giakoumopoulou, A. Kyriakis, D. Loukas, National and Kapodistrian University of Athens, Athens, Greece S. Kesisoglou, A. Panagiotou, N. Saoulidou, E. Tziaferi University of Ioannina, Ioannina, Greece I. Evangelou, G. Flouris, C. Foudas, P. Kokkas, N. Loukas, N. Manthos, I. Papadopoulos, MTA-ELTE Lendulet CMS Particle and Nuclear Physics Group, Eotvos Lorand Wigner Research Centre for Physics, Budapest, Hungary G. Bencze, C. Hajdu, P. Hidas, D. Horvath18, F. Sikler, V. Veszpremi, G. Vesztergombi19, Institute of Nuclear Research ATOMKI, Debrecen, Hungary N. Beni, S. Czellar, J. Karancsi20, A. Makovec, J. Molnar, Z. Szillasi University of Debrecen, Debrecen, Hungary M. Bartok19, P. Raics, Z.L. Trocsanyi, B. Ujvari National Institute of Science Education and Research, Bhubaneswar, India S. Bahinipati, S. Choudhury21, P. Mal, K. Mandal, A. Nayak22, D.K. Sahoo, N. Sahoo, Panjab University, Chandigarh, India S. Bansal, S.B. Beri, V. Bhatnagar, R. Chawla, U.Bhawandeep, A.K. Kalsi, A. Kaur, M. Kaur, R. Kumar, P. Kumari, A. Mehta, M. Mittal, J.B. Singh, G. Walia University of Delhi, Delhi, India Ashok Kumar, A. Bhardwaj, B.C. Choudhary, R.B. Garg, S. Keshri, S. Malhotra, M. Naimuddin, N. Nishu, K. Ranjan, R. Sharma, V. Sharma Saha Institute of Nuclear Physics, Kolkata, India R. Bhattacharya, S. Bhattacharya, K. Chatterjee, S. Dey, S. Dutt, S. Dutta, S. Ghosh, N. Majumdar, A. Modak, K. Mondal, S. Mukhopadhyay, S. Nandan, A. Purohit, A. Roy, D. Roy, S. Roy Chowdhury, S. Sarkar, M. Sharan, S. Thakur Indian Institute of Technology Madras, Madras, India Bhabha Atomic Research Centre, Mumbai, India R. Chudasama, D. Dutta, V. Jha, V. Kumar, A.K. Mohanty14, P.K. Netrakanti, L.M. Pant, P. Shukla, A. Topkar B. Sutar Tata Institute of Fundamental Research-A, Mumbai, India T. Aziz, S. Dugad, G. Kole, B. Mahakud, S. Mitra, G.B. Mohanty, B. Parida, N. Sur, Tata Institute of Fundamental Research-B, Mumbai, India S. Banerjee, S. Bhowmik23, R.K. Dewanjee, S. Ganguly, M. Guchait, Sa. Jain, S. Kumar, M. Maity23, G. Majumder, K. Mazumdar, T. Sarkar23, N. Wickramage24 Indian Institute of Science Education and Research (IISER), Pune, India S. Chauhan, S. Dube, V. Hegde, A. Kapoor, K. Kothekar, A. Rane, S. Sharma Institute for Research in Fundamental Sciences (IPM), Tehran, Iran H. Behnamian, S. Chenarani25, E. Eskandari Tadavani, S.M. Etesami25, A. Fahim26, M. Khakzad, M. Mohammadi Najafabadi, M. Naseri, S. Paktinat Mehdiabadi27, F. Rezaei Hosseinabadi, B. Safarzadeh28, M. Zeinali University College Dublin, Dublin, Ireland M. Felcini, M. Grunewald INFN Sezione di Bari a, Universita di Bari b, Politecnico di Bari c, Bari, Italy M. Abbresciaa;b, C. Calabriaa;b, C. Caputoa;b, A. Colaleoa, D. Creanzaa;c, L. Cristellaa;b, N. De Filippisa;c, M. De Palmaa;b, L. Fiorea, G. Iasellia;c, G. Maggia;c, M. Maggia, G. Minielloa;b, S. Mya;b, S. Nuzzoa;b, A. Pompilia;b, G. Pugliesea;c, R. Radognaa;b, A. Ranieria, G. Selvaggia;b, L. Silvestrisa;14, R. Vendittia;b, P. Verwilligena INFN Sezione di Bologna a, Universita di Bologna b, Bologna, Italy G. Abbiendia, C. Battilana, D. Bonacorsia;b, S. Braibant-Giacomellia;b, L. Brigliadoria;b, R. Campaninia;b, P. Capiluppia;b, A. Castroa;b, F.R. Cavalloa, S.S. Chhibraa;b, G. Codispotia;b, M. Cu ania;b, G.M. Dallavallea, F. Fabbria, A. Fanfania;b, D. Fasanellaa;b, P. Giacomellia, C. Grandia, L. Guiduccia;b, S. Marcellinia, G. Masettia, A. Montanaria, F.L. Navarriaa;b, A. Perrottaa, A.M. Rossia;b, T. Rovellia;b, G.P. Sirolia;b, N. Tosia;b;14 INFN Sezione di Catania a, Universita di Catania b, Catania, Italy S. Albergoa;b, M. Chiorbolia;b, S. Costaa;b, A. Di Mattiaa, F. Giordanoa;b, R. Potenzaa;b, A. Tricomia;b, C. Tuvea;b INFN Sezione di Firenze a, Universita di Firenze b, Firenze, Italy G. Barbaglia, V. Ciullia;b, C. Civininia, R. D'Alessandroa;b, E. Focardia;b, V. Goria;b, P. Lenzia;b, M. Meschinia, S. Paolettia, G. Sguazzonia, L. Viliania;b;14 INFN Laboratori Nazionali di Frascati, Frascati, Italy L. Benussi, S. Bianco, F. Fabbri, D. Piccolo, F. Primavera14 INFN Sezione di Genova a, Universita di Genova b, Genova, Italy V. Calvellia;b, F. Ferroa, M. Lo Veterea;b, M.R. Mongea;b, E. Robuttia, S. Tosia;b INFN Sezione di Milano-Bicocca a, Universita di Milano-Bicocca b, Milano, INFN Sezione di Napoli a, Universita di Napoli 'Federico II' b, Napoli, Italy, Universita della Basilicata c, Potenza, Italy, Universita G. Marconi d, Roma, S. Buontempoa, N. Cavalloa;c, G. De Nardo, S. Di Guidaa;d;14, M. Espositoa;b, F. Fabozzia;c, F. Fiengaa;b, A.O.M. Iorioa;b, G. Lanzaa, L. Listaa, S. Meolaa;d;14, P. Paoluccia;14, C. Sciaccaa;b, F. Thyssen INFN Sezione di Padova a, Universita di Padova b, Padova, Italy, Universita di Trento c, Trento, Italy P. Azzia;14, N. Bacchettaa, L. Benatoa;b, A. Bolettia;b, R. Carlina;b, P. Checchiaa, M. Dall'Ossoa;b, P. De Castro Manzanoa, T. Dorigoa, U. Dossellia, S. Fantinela, F. Gasparinia;b, U. Gasparinia;b, A. Gozzelinoa, S. Lacapraraa, M. Margonia;b, A.T. Meneguzzoa;b, F. Montecassianoa, J. Pazzinia;b, N. Pozzobona;b, P. Ronchesea;b, F. Simonettoa;b, E. Torassaa, M. Zanetti, P. Zottoa;b, G. Zumerlea;b INFN Sezione di Pavia a, Universita di Pavia b, Pavia, Italy A. Braghieria, A. Magnania;b, P. Montagnaa;b, S.P. Rattia;b, V. Rea, C. Riccardia;b, P. Salvinia, I. Vaia;b, P. Vituloa;b INFN Sezione di Perugia a, Universita di Perugia b, Perugia, Italy L. Alunni Solestizia;b, G.M. Bileia, D. Ciangottinia;b, L. Fanoa;b, P. Laricciaa;b, R. Leonardia;b, G. Mantovania;b, M. Menichellia, A. Sahaa, A. Santocchiaa;b INFN Sezione di Pisa a, Universita di Pisa b, Scuola Normale Superiore di Pisa c, Pisa, Italy K. Androsova;29, P. Azzurria;14, G. Bagliesia, J. Bernardinia, T. Boccalia, R. Castaldia, M.A. Cioccia;29, R. Dell'Orsoa, S. Donatoa;c, G. Fedi, A. Giassia, M.T. Grippoa;29, F. Ligabuea;c, T. Lomtadzea, L. Martinia;b, A. Messineoa;b, F. Pallaa, A. Rizzia;b, A. SavoyNavarroa;30, P. Spagnoloa, R. Tenchinia, G. Tonellia;b, A. Venturia, P.G. Verdinia INFN Sezione di Roma a, Universita di Roma b, Roma, Italy S. Gellia;b, E. Longoa;b, F. Margarolia;b, B. Marzocchia;b, P. Meridiania, G. Organtinia;b, R. Paramattia, F. Preiatoa;b, S. Rahatloua;b, C. Rovellia, F. Santanastasioa;b INFN Sezione di Torino a, Universita di Torino b, Torino, Italy, Universita del Piemonte Orientale c, Novara, Italy N. Amapanea;b, R. Arcidiaconoa;c;14, S. Argiroa;b, M. Arneodoa;c, N. Bartosika, R. Bellana;b, C. Biinoa, N. Cartigliaa, F. Cennaa;b, M. Costaa;b, R. Covarellia;b, A. Deganoa;b, N. Demariaa, L. Fincoa;b, B. Kiania;b, C. Mariottia, S. Masellia, E. Migliorea;b, V. Monacoa;b, E. Monteila;b, M.M. Obertinoa;b, L. Pachera;b, N. Pastronea, M. Pelliccionia, G.L. Pinna Angionia;b, F. Raveraa;b, A. Romeroa;b, M. Ruspaa;c, R. Sacchia;b, K. Shchelinaa;b, V. Solaa, A. Solanoa;b, A. Staianoa, P. Traczyka;b INFN Sezione di Trieste a, Universita di Trieste b, Trieste, Italy S. Belfortea, M. Casarsaa, F. Cossuttia, G. Della Riccaa;b, A. Zanettia Kyungpook National University, Daegu, Korea D.H. Kim, G.N. Kim, M.S. Kim, S. Lee, S.W. Lee, Y.D. Oh, S. Sekmen, D.C. Son, A. Lee Chonbuk National University, Jeonju, Korea Chonnam National University, Institute for Universe and Elementary Particles, Hanyang University, Seoul, Korea J.A. Brochero Cifuentes, T.J. Kim Korea University, Seoul, Korea S. Lee, J. Lim, S.K. Park, Y. Roh Seoul National University, Seoul, Korea U.K. Yang, H.D. Yoo, G.B. Yu University of Seoul, Seoul, Korea M. Choi, H. Kim, J.H. Kim, J.S.H. Lee, I.C. Park, G. Ryu, M.S. Ryu Sungkyunkwan University, Suwon, Korea Y. Choi, J. Goh, C. Hwang, J. Lee, I. Yu Vilnius University, Vilnius, Lithuania V. Dudenas, A. Juodagalvis, J. Vaitkus S. Cho, S. Choi, Y. Go, D. Gyun, S. Ha, B. Hong, Y. Jo, Y. Kim, B. Lee, K. Lee, K.S. Lee, J. Almond, J. Kim, H. Lee, K. Lee, K. Nam, S.B. Oh, B.C. Radburn-Smith, S.h. Seo, { 21 { National Centre for Particle Physics, Universiti Malaya, Kuala Lumpur, Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico H. Castilla-Valdez, E. De La Cruz-Burelo, I. Heredia-De La Cruz33, A. Hernandez-Almada, R. Lopez-Fernandez, R. Magan~a Villalba, J. Mejia Guisao, A. Sanchez-Hernandez Universidad Iberoamericana, Mexico City, Mexico S. Carrillo Moreno, C. Oropeza Barrera, F. Vazquez Valencia Benemerita Universidad Autonoma de Puebla, Puebla, Mexico S. Carpinteyro, I. Pedraza, H.A. Salazar Ibarguen, C. Uribe Estrada Universidad Autonoma de San Luis Potos , San Luis Potos , Mexico A. Morelos Pineda University of Auckland, Auckland, New Zealand University of Canterbury, Christchurch, New Zealand National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan A. Ahmad, M. Ahmad, Q. Hassan, H.R. Hoorani, W.A. Khan, A. Saddique, M.A. Shah, M. Shoaib, M. Waqas National Centre for Nuclear Research, Swierk, Poland H. Bialkowska, M. Bluj, B. Boimska, T. Frueboes, M. Gorski, M. Kazana, K. Nawrocki, K. Romanowska-Rybinska, M. Szleper, P. Zalewski Institute of Experimental Physics, Faculty of Physics, University of Warsaw, K. Bunkowski, A. Byszuk34, K. Doroba, A. Kalinowski, M. Konecki, J. Krolikowski, M. Misiura, M. Olszewski, M. Walczak Laboratorio de Instrumentac~ao e F sica Experimental de Part culas, Lisboa, Joint Institute for Nuclear Research, Dubna, Russia I. Belotelov, M. Gavrilenko, I. Golutvin, I. Gorbunov, V. Karjavin, G. Kozlov, A. Lanev, A. Malakhov, V. Matveev35;36, V. Palichik, V. Perelygin, M. Savina, S. Shmatov, S. Shulha, N. Skatchkov, V. Smirnov, N. Voytishin, A. Zarubin Petersburg Nuclear Physics Institute, Gatchina (St. Petersburg), Russia L. Chtchipounov, V. Golovtsov, Y. Ivanov, V. Kim37, E. Kuznetsova38, V. Murzin, V. Oreshkin, V. Sulimov, A. Vorobyev Institute for Nuclear Research, Moscow, Russia Yu. Andreev, A. Dermenev, S. Gninenko, N. Golubev, A. Karneyeu, M. Kirsanov, N. Krasnikov, A. Pashenkov, D. Tlisov, A. Toropin Institute for Theoretical and Experimental Physics, Moscow, Russia V. Epshteyn, V. Gavrilov, N. Lychkovskaya, V. Popov, I. Pozdnyakov, G. Safronov, A. Spiridonov, M. Toms, E. Vlasov, A. Zhokin Moscow Institute of Physics and Technology A. Bylinkin36 S. Petrushanko, V. Savrin V. Blinov41, Y.Skovpen41 Physics, Protvino, Russia National Research Nuclear University 'Moscow Engineering Physics InstiM. Chadeeva39, O. Markin, E. Tarkovskii P.N. Lebedev Physical Institute, Moscow, Russia V. Andreev, M. Azarkin36, I. Dremin36, M. Kirakosyan, A. Leonidov36, S.V. Rusakov, Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, A. Baskakov, A. Belyaev, E. Boos, V. Bunichev, M. Dubinin40, L. Dudko, A. Er shov, A. Gribushin, V. Klyukhin, O. Kodolova, I. Lokhtin, I. Miagkov, S. Obraztsov, Novosibirsk State University (NSU), Novosibirsk, Russia State Research Center of Russian Federation, Institute for High Energy I. Azhgirey, I. Bayshev, S. Bitioukov, D. Elumakhov, V. Kachanov, A. Kalinin, D. Konstantinov, V. Krychkine, V. Petrov, R. Ryutin, A. Sobol, S. Troshin, N. Tyurin, A. Uzunian, University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia P. Adzic42, P. Cirkovic, D. Devetak, M. Dordevic, J. Milosevic, V. Rekovic J. Alcaraz Maestre, M. Barrio Luna, E. Calvo, M. Cerrada, M. Chamizo Llatas, N. Colino, B. De La Cruz, A. Delgado Peris, A. Escalante Del Valle, C. Fernandez Bedoya, J.P. Fernandez Ramos, J. Flix, M.C. Fouz, P. Garcia-Abia, O. Gonzalez Lopez, S. Goy Lopez, J.M. Hernandez, M.I. Josa, E. Navarro De Martino, A. Perez-Calero Yzquierdo, J. Puerta Pelayo, A. Quintario Olmeda, I. Redondo, L. Romero, M.S. Soares Universidad Autonoma de Madrid, Madrid, Spain J.F. de Troconiz, M. Missiroli, D. Moran Universidad de Oviedo, Oviedo, Spain J. Cuevas, J. Fernandez Menendez, I. Gonzalez Caballero, J.R. Gonzalez Fernandez, E. Palencia Cortezon, S. Sanchez Cruz, I. Suarez Andres, J.M. Vizan Garcia Instituto de F sica de Cantabria (IFCA), CSIC-Universidad de Cantabria, Gomez, T. Rodrigo, A. Ruiz-Jimeno, L. Scodellaro, N. Trevisani, I. Vila, R. Vilar CERN, European Organization for Nuclear Research, Geneva, Switzerland D. Abbaneo, E. Au ray, G. Auzinger, M. Bachtis, P. Baillon, A.H. Ball, D. Barney, P. Bloch, A. Bocci, A. Bonato, C. Botta, T. Camporesi, R. Castello, M. Cepeda, G. Cerminara, M. D'Alfonso, D. d'Enterria, A. Dabrowski, V. Daponte, A. David, M. De Gruttola, A. De Roeck, E. Di Marco43, M. Dobson, B. Dorney, T. du Pree, D. Duggan, M. Dunser, N. Dupont, A. Elliott-Peisert, S. Fartoukh, G. Franzoni, J. Fulcher, W. Funk, D. Gigi, K. Gill, M. Girone, F. Glege, D. Gulhan, S. Gundacker, M. Gutho , J. Hammer, P. Harris, J. Hegeman, V. Innocente, P. Janot, J. Kieseler, H. Kirschenmann, V. Knunz, A. Kornmayer14, M.J. Kortelainen, K. Kousouris, M. Krammer1, C. Lange, P. Lecoq, C. Lourenco, M.T. Lucchini, L. Malgeri, M. Mannelli, A. Martelli, F. Meijers, J.A. Merlin, S. Mersi, E. Meschi, F. Moortgat, S. Morovic, M. Mulders, H. Neugebauer, S. Orfanelli, L. Orsini, L. Pape, E. Perez, M. Peruzzi, A. Petrilli, G. Petrucciani, A. Pfei er, M. Pierini, A. Racz, T. Reis, G. Rolandi44, M. Rovere, M. Ruan, H. Sakulin, J.B. Sauvan, C. Schafer, C. Schwick, M. Seidel, A. Sharma, P. Silva, P. Sphicas45, J. Steggemann, M. Stoye, Y. Takahashi, M. Tosi, D. Treille, A. Triossi, A. Tsirou, V. Veckalns46, G.I. Veres19, N. Wardle, H.K. Wohri, A. Zagozdzinska34, W.D. Zeuner Paul Scherrer Institut, Villigen, Switzerland W. Bertl, K. Deiters, W. Erdmann, R. Horisberger, Q. Ingram, H.C. Kaestli, D. Kotlinski, U. Langenegger, T. Rohe Institute for Particle Physics, ETH Zurich, Zurich, Switzerland F. Bachmair, L. Bani, L. Bianchini, B. Casal, G. Dissertori, M. Dittmar, M. Donega, C. Grab, C. Heidegger, D. Hits, J. Hoss, G. Kasieczka, P. Lecomtey, W. Lustermann, B. Mangano, M. Marionneau, P. Martinez Ruiz del Arbol, M. Masciovecchio, M.T. Meinhard, D. Meister, F. Micheli, P. Musella, F. Nessi-Tedaldi, F. Pandol , J. Pata, F. Pauss, G. Perrin, L. Perrozzi, M. Quittnat, M. Rossini, M. Schonenberger, A. Starodumov47, V.R. Tavolaro, K. Theo latos, R. Wallny Universitat Zurich, Zurich, Switzerland T.K. Aarrestad, C. Amsler48, L. Caminada, M.F. Canelli, A. De Cosa, C. Galloni, A. Hinzmann, T. Hreus, B. Kilminster, J. Ngadiuba, D. Pinna, G. Rauco, P. Robmann, National Central University, Chung-Li, Taiwan V. Candelise, T.H. Doan, Sh. Jain, R. Khurana, M. Konyushikhin, C.M. Kuo, W. Lin, Y.J. Lu, A. Pozdnyakov, S.S. Yu National Taiwan University (NTU), Taipei, Taiwan Arun Kumar, P. Chang, Y.H. Chang, Y.W. Chang, Y. Chao, K.F. Chen, P.H. Chen, A. Psallidas, J.f. Tsai, Y.M. Tzeng Chulalongkorn University, Faculty of Science, Department of Physics, Bangkok, B. Asavapibhop, G. Singh, N. Srimanobhas, N. Suwonjandee Cukurova University, Adana, Turkey A. Adiguzel, S. Cerci49, S. Damarseckin, Z.S. Demiroglu, C. Dozen, I. Dumanoglu, S. Girgis, G. Gokbulut, Y. Guler, I. Hos, E.E. Kangal50, O. Kara, U. Kiminsu, M. Oglakci, G. Onengut51, K. Ozdemir52, D. Sunar Cerci49, B. Tali49, H. Topakli53, S. Turkcapar, I.S. Zorbakir, C. Zorbilmez Middle East Technical University, Physics Department, Ankara, Turkey B. Bilin, S. Bilmis, B. Isildak54, G. Karapinar55, M. Yalvac, M. Zeyrek Bogazici University, Istanbul, Turkey E. Gulmez, M. Kaya56, O. Kaya57, E.A. Yetkin58, T. Yetkin59 Istanbul Technical University, Istanbul, Turkey A. Cakir, K. Cankocak, S. Sen60 Institute for Scintillation Materials of National Academy of Science of Ukraine, L. Levchuk, P. Sorokin National Scienti c Center, Kharkov Institute of Physics and Technology, University of Bristol, Bristol, United Kingdom R. Aggleton, F. Ball, L. Beck, J.J. Brooke, D. Burns, E. Clement, D. Cussans, H. Flacher, J. Goldstein, M. Grimes, G.P. Heath, H.F. Heath, J. Jacob, L. Kreczko, C. Lucas, D.M. Newbold61, S. Paramesvaran, A. Poll, T. Sakuma, S. Seif El Nasr-storey, D. Smith, Rutherford Appleton Laboratory, Didcot, United Kingdom K.W. Bell, A. Belyaev62, C. Brew, R.M. Brown, L. Calligaris, D. Cieri, D.J.A. Cockerill, J.A. Coughlan, K. Harder, S. Harper, E. Olaiya, D. Petyt, C.H. Shepherd-Themistocleous, A. Thea, I.R. Tomalin, T. Williams { 25 { Imperial College, London, United Kingdom M. Baber, R. Bainbridge, O. Buchmuller, A. Bundock, D. Burton, S. Casasso, M. Citron, D. Colling, L. Corpe, P. Dauncey, G. Davies, A. De Wit, M. Della Negra, R. Di Maria, P. Dunne, A. Elwood, D. Futyan, Y. Haddad, G. Hall, G. Iles, T. James, R. Lane, C. Laner, R. Lucas61, L. Lyons, A.-M. Magnan, S. Malik, L. Mastrolorenzo, J. Nash, A. Nikitenko47, J. Pela, B. Penning, M. Pesaresi, D.M. Raymond, A. Richards, A. Rose, C. Seez, S. Summers, A. Tapper, K. Uchida, M. Vazquez Acosta63, T. Virdee14, J. Wright, Brunel University, Uxbridge, United Kingdom J.E. Cole, P.R. Hobson, A. Khan, P. Kyberd, D. Leslie, I.D. Reid, P. Symonds, L. TeodorBaylor University, Waco, U.S.A. A. Borzou, K. Call, J. Dittmann, K. Hatakeyama, H. Liu, N. Pastika The University of Alabama, Tuscaloosa, U.S.A. O. Charaf, S.I. Cooper, C. Henderson, P. Rumerio, C. West Boston University, Boston, U.S.A. Brown University, Providence, U.S.A. G. Benelli, E. Berry, D. Cutts, A. Garabedian, J. Hakala, U. Heintz, J.M. Hogan, O. Jesus, K.H.M. Kwok, E. Laird, G. Landsberg, Z. Mao, M. Narain, S. Piperov, S. Sagir, E. Spencer, University of California, Davis, Davis, U.S.A. R. Breedon, G. Breto, D. Burns, M. Calderon De La Barca Sanchez, S. Chauhan, M. Chertok, J. Conway, R. Conway, P.T. Cox, R. Erbacher, C. Flores, G. Funk, M. Gardner, W. Ko, R. Lander, C. Mclean, M. Mulhearn, D. Pellett, J. Pilot, S. Shalhout, J. Smith, M. Squires, D. Stolp, M. Tripathi, S. Wilbur, R. Yohay University of California, Los Angeles, U.S.A. R. Cousins, P. Everaerts, A. Florent, J. Hauser, M. Ignatenko, N. Mccoll, D. Saltzberg, E. Takasugi, V. Valuev, M. Weber University of California, Riverside, Riverside, U.S.A. K. Burt, R. Clare, J. Ellison, J.W. Gary, S.M.A. Ghiasi Shirazi, G. Hanson, J. Heilman, P. Jandir, E. Kennedy, F. Lacroix, O.R. Long, M. Olmedo Negrete, M.I. Paneva, A. Shrinivas, W. Si, H. Wei, S. Wimpenny, B. R. Yates University of California, San Diego, La Jolla, U.S.A. J.G. Branson, G.B. Cerati, S. Cittolin, M. Derdzinski, R. Gerosa, A. Holzner, D. Klein, V. Krutelyov, J. Letts, I. Macneill, D. Olivito, S. Padhi, M. Pieri, M. Sani, V. Sharma, S. Simon, M. Tadel, A. Vartak, S. Wasserbaech64, C. Welke, J. Wood, F. Wurthwein, A. Yagil, G. Zevi Della Porta University of California, Santa Barbara - Department of Physics, Santa Bar R. Bhandari, J. Bradmiller-Feld, C. Campagnari, A. Dishaw, V. Dutta, K. Flowers, M. Franco Sevilla, P. Ge ert, C. George, F. Golf, L. Gouskos, J. Gran, R. Heller, J. Incandela, S.D. Mullin, A. Ovcharova, J. Richman, D. Stuart, I. Suarez, J. Yoo California Institute of Technology, Pasadena, U.S.A. D. Anderson, A. Apresyan, J. Bendavid, A. Bornheim, J. Bunn, Y. Chen, J. Duarte, J.M. Lawhorn, A. Mott, H.B. Newman, C. Pena, M. Spiropulu, J.R. Vlimant, S. Xie, Carnegie Mellon University, Pittsburgh, U.S.A. University of Colorado Boulder, Boulder, U.S.A. J.P. Cumalat, W.T. Ford, F. Jensen, A. Johnson, M. Krohn, T. Mulholland, K. Stenson, Cornell University, Ithaca, U.S.A. J. Thom, J. Tucker, P. Wittich, M. Zientek Fair eld University, Fair eld, U.S.A. J. Alexander, J. Chaves, J. Chu, S. Dittmer, K. Mcdermott, N. Mirman, G. Nicolas Kaufman, J.R. Patterson, A. Rinkevicius, A. Ryd, L. Skinnari, L. So , S.M. Tan, Z. Tao, Fermi National Accelerator Laboratory, Batavia, U.S.A. S. Abdullin, M. Albrow, G. Apollinari, S. Banerjee, L.A.T. Bauerdick, A. Beretvas, J. Berryhill, P.C. Bhat, G. Bolla, K. Burkett, J.N. Butler, H.W.K. Cheung, F. Chlebana, S. Cihangiry, M. Cremonesi, V.D. Elvira, I. Fisk, J. Freeman, E. Gottschalk, L. Gray, D. Green, S. Grunendahl, O. Gutsche, D. Hare, R.M. Harris, S. Hasegawa, J. Hirschauer, Z. Hu, B. Jayatilaka, S. Jindariani, M. Johnson, U. Joshi, B. Klima, B. Kreis, S. Lammel, J. Linacre, D. Lincoln, R. Lipton, T. Liu, R. Lopes De Sa, J. Lykken, K. Maeshima, N. Magini, J.M. Marra no, S. Maruyama, D. Mason, P. McBride, P. Merkel, S. Mrenna, S. Nahn, C. Newman-Holmesy, V. O'Dell, K. Pedro, O. Prokofyev, G. Rakness, L. Ristori, E. Sexton-Kennedy, A. Soha, W.J. Spalding, L. Spiegel, S. Stoynev, N. Strobbe, L. Taylor, S. Tkaczyk, N.V. Tran, L. Uplegger, E.W. Vaandering, C. Vernieri, M. Verzocchi, R. Vidal, M. Wang, H.A. Weber, A. Whitbeck University of Florida, Gainesville, U.S.A. D. Acosta, P. Avery, P. Bortignon, D. Bourilkov, A. Brinkerho , A. Carnes, M. Carver, D. Curry, S. Das, R.D. Field, I.K. Furic, J. Konigsberg, A. Korytov, P. Ma, K. Matchev, H. Mei, P. Milenovic65, G. Mitselmakher, D. Rank, L. Shchutska, D. Sperka, L. Thomas, J. Wang, S. Wang, J. Yelton Florida International University, Miami, U.S.A. S. Linn, P. Markowitz, G. Martinez, J.L. Rodriguez A. Ackert, J.R. Adams, T. Adams, A. Askew, S. Bein, B. Diamond, S. Hagopian, V. Hagopian, K.F. Johnson, A. Khatiwada, H. Prosper, A. Santra, M. Weinberg Florida Institute of Technology, Melbourne, U.S.A. M.M. Baarmand, V. Bhopatkar, S. Colafranceschi66, M. Hohlmann, D. Noonan, T. Roy, University of Illinois at Chicago (UIC), Chicago, U.S.A. M.R. Adams, L. Apanasevich, D. Berry, R.R. Betts, I. Bucinskaite, R. Cavanaugh, O. Evdokimov, L. Gauthier, C.E. Gerber, D.J. Hofman, K. Jung, P. Kurt, C. O'Brien, I.D. Sandoval Gonzalez, P. Turner, N. Varelas, H. Wang, Z. Wu, M. Zakaria, J. Zhang The University of Iowa, Iowa City, U.S.A. B. Bilki67, W. Clarida, K. Dilsiz, S. Durgut, R.P. Gandrajula, M. Haytmyradov, V. Khristenko, J.-P. Merlo, H. Mermerkaya68, A. Mestvirishvili, A. Moeller, J. Nachtman, H. Ogul, Y. Onel, F. Ozok69, A. Penzo, C. Snyder, E. Tiras, J. Wetzel, K. Yi Johns Hopkins University, Baltimore, U.S.A. I. Anderson, B. Blumenfeld, A. Cocoros, N. Eminizer, D. Fehling, L. Feng, A.V. Gritsan, P. Maksimovic, C. Martin, M. Osherson, J. Roskes, U. Sarica, M. Swartz, M. Xiao, Y. Xin, The University of Kansas, Lawrence, U.S.A. A. Al-bataineh, P. Baringer, A. Bean, S. Boren, J. Bowen, C. Bruner, J. Castle, L. Forthomme, R.P. Kenny III, A. Kropivnitskaya, D. Majumder, W. Mcbrayer, M. Murray, S. Sanders, R. Stringer, J.D. Tapia Takaki, Q. Wang Kansas State University, Manhattan, U.S.A. A. Ivanov, K. Kaadze, S. Khalil, Y. Maravin, A. Mohammadi, L.K. Saini, N. Skhirtladze, Lawrence Livermore National Laboratory, Livermore, U.S.A. F. Rebassoo, D. Wright University of Maryland, College Park, U.S.A. C. Anelli, A. Baden, O. Baron, A. Belloni, B. Calvert, S.C. Eno, C. Ferraioli, J.A. Gomez, N.J. Hadley, S. Jabeen, R.G. Kellogg, T. Kolberg, J. Kunkle, Y. Lu, A.C. Mignerey, F. Ricci-Tam, Y.H. Shin, A. Skuja, M.B. Tonjes, S.C. Tonwar Massachusetts Institute of Technology, Cambridge, U.S.A. D. Abercrombie, B. Allen, A. Apyan, R. Barbieri, A. Baty, R. Bi, K. Bierwagen, S. Brandt, W. Busza, I.A. Cali, Z. Demiragli, L. Di Matteo, G. Gomez Ceballos, M. Goncharov, D. Hsu, Y. Iiyama, G.M. Innocenti, M. Klute, D. Kovalskyi, K. Krajczar, Y.S. Lai, Y.-J. Lee, A. Levin, P.D. Luckey, A.C. Marini, C. Mcginn, C. Mironov, S. Narayanan, X. Niu, C. Paus, C. Roland, G. Roland, J. Salfeld-Nebgen, G.S.F. Stephans, K. Sumorok, K. Tatar, M. Varma, D. Velicanu, J. Veverka, J. Wang, T.W. Wang, B. Wyslouch, M. Yang, A.C. Benvenuti, R.M. Chatterjee, A. Evans, A. Finkel, A. Gude, P. Hansen, S. Kalafut, S.C. Kao, Y. Kubota, Z. Lesko, J. Mans, S. Nourbakhsh, N. Ruckstuhl, R. Rusack, N. Tambe, J. Turkewitz University of Mississippi, Oxford, U.S.A. J.G. Acosta, S. Oliveros University of Nebraska-Lincoln, Lincoln, U.S.A. E. Avdeeva, R. Bartek, K. Bloom, D.R. Claes, A. Dominguez, C. Fangmeier, R. Gonzalez Suarez, R. Kamalieddin, I. Kravchenko, A. Malta Rodrigues, F. Meier, J. Monroy, J.E. Siado, G.R. Snow, B. Stieger State University of New York at Bu alo, Bu alo, U.S.A. M. Alyari, J. Dolen, J. George, A. Godshalk, C. Harrington, I. Iashvili, J. Kaisen, A. Kharchilava, A. Kumar, A. Parker, S. Rappoccio, B. Roozbahani Northeastern University, Boston, U.S.A. G. Alverson, E. Barberis, A. Hortiangtham, A. Massironi, D.M. Morse, D. Nash, T. Orimoto, R. Teixeira De Lima, D. Trocino, R.-J. Wang, D. Wood Northwestern University, Evanston, U.S.A. S. Bhattacharya, K.A. Hahn, A. Kubik, A. Kumar, J.F. Low, N. Mucia, N. Odell, B. Pollack, M.H. Schmitt, K. Sung, M. Trovato, M. Velasco University of Notre Dame, Notre Dame, U.S.A. N. Dev, M. Hildreth, K. Hurtado Anampa, C. Jessop, D.J. Karmgard, N. Kellams, K. Lannon, N. Marinelli, F. Meng, C. Mueller, Y. Musienko35, M. Planer, A. Reinsvold, R. Ruchti, G. Smith, S. Taroni, M. Wayne, M. Wolf, A. Woodard The Ohio State University, Columbus, U.S.A. J. Alimena, L. Antonelli, J. Brinson, B. Bylsma, L.S. Durkin, S. Flowers, B. Francis, A. Hart, C. Hill, R. Hughes, W. Ji, B. Liu, W. Luo, D. Puigh, B.L. Winer, H.W. Wulsin Princeton University, Princeton, U.S.A. S. Cooperstein, O. Driga, P. Elmer, J. Hardenbrook, P. Hebda, D. Lange, J. Luo, D. Marlow, J. Mc Donald, T. Medvedeva, K. Mei, M. Mooney, J. Olsen, C. Palmer, P. Piroue, D. Stickland, C. Tully, A. Zuranski University of Puerto Rico, Mayaguez, U.S.A. Purdue University, West Lafayette, U.S.A. A. Barker, V.E. Barnes, S. Folgueras, L. Gutay, M.K. Jha, M. Jones, A.W. Jung, D.H. Miller, N. Neumeister, J.F. Schulte, X. Shi, J. Sun, A. Svyatkovskiy, F. Wang, W. Xie, Purdue University Calumet, Hammond, U.S.A. N. Parashar, J. Stupak A. Adair, B. Akgun, Z. Chen, K.M. Ecklund, F.J.M. Geurts, M. Guilbaud, W. Li, B. Michlin, M. Northup, B.P. Padley, R. Redjimi, J. Roberts, J. Rorie, Z. Tu, J. Zabel University of Rochester, Rochester, U.S.A. B. Betchart, A. Bodek, P. de Barbaro, R. Demina, Y.t. Duh, T. Ferbel, M. Galanti, A. Garcia-Bellido, J. Han, O. Hindrichs, A. Khukhunaishvili, K.H. Lo, P. Tan, M. Verzetti Rutgers, The State University of New Jersey, Piscataway, U.S.A. A. Agapitos, J.P. Chou, E. Contreras-Campana, Y. Gershtein, T.A. Gomez Espinosa, E. Halkiadakis, M. Heindl, D. Hidas, E. Hughes, S. Kaplan, R. Kunnawalkam Elayavalli, S. Kyriacou, A. Lath, K. Nash, H. Saka, S. Salur, S. Schnetzer, D. She eld, S. Somalwar, R. Stone, S. Thomas, P. Thomassen, M. Walker University of Tennessee, Knoxville, U.S.A. A.G. Delannoy, M. Foerster, J. Heideman, G. Riley, K. Rose, S. Spanier, K. Thapa Texas A&M University, College Station, U.S.A. O. Bouhali70, A. Celik, M. Dalchenko, M. De Mattia, A. Delgado, S. Dildick, R. Eusebi, J. Gilmore, T. Huang, E. Juska, T. Kamon71, R. Mueller, Y. Pakhotin, R. Patel, A. Perlo , L. Pernie, D. Rathjens, A. Rose, A. Safonov, A. Tatarinov, K.A. Ulmer Texas Tech University, Lubbock, U.S.A. N. Akchurin, C. Cowden, J. Damgov, F. De Guio, C. Dragoiu, P.R. Dudero, J. Faulkner, E. Gurpinar, S. Kunori, K. Lamichhane, S.W. Lee, T. Libeiro, T. Peltola, S. Undleeb, I. Volobouev, Z. Wang Vanderbilt University, Nashville, U.S.A. S. Greene, A. Gurrola, R. Janjam, W. Johns, C. Maguire, A. Melo, H. Ni, P. Sheldon, S. Tuo, J. Velkovska, Q. Xu University of Virginia, Charlottesville, U.S.A. M.W. Arenton, P. Barria, B. Cox, J. Goodell, R. Hirosky, A. Ledovskoy, H. Li, C. Neu, T. Sinthuprasith, X. Sun, Y. Wang, E. Wolfe, F. Xia Wayne State University, Detroit, U.S.A. C. Clarke, R. Harr, P.E. Karchin, J. Sturdy University of Wisconsin - Madison, Madison, WI, U.S.A. D.A. Belknap, C. Caillol, S. Dasu, L. Dodd, S. Duric, B. Gomber, M. Grothe, M. Herndon, A. Herve, P. Klabbers, A. Lanaro, A. Levine, K. Long, R. Loveless, I. Ojalvo, T. Perry, G.A. Pierro, G. Polese, T. Ruggles, A. Savin, N. Smith, W.H. Smith, D. Taylor, N. Woods 1: Also at Vienna University of Technology, Vienna, Austria 2: Also at State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France 4: Also at Universidade Estadual de Campinas, Campinas, Brazil 5: Also at Universidade Federal de Pelotas, Pelotas, Brazil 6: Also at Universite Libre de Bruxelles, Bruxelles, Belgium 7: Also at Deutsches Elektronen-Synchrotron, Hamburg, Germany 8: Also at Joint Institute for Nuclear Research, Dubna, Russia 9: Also at Ain Shams University, Cairo, Egypt 10: Now at British University in Egypt, Cairo, Egypt 11: Also at Zewail City of Science and Technology, Zewail, Egypt 12: Also at Universite de Haute Alsace, Mulhouse, France 13: Also at Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, 14: Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland 15: Also at RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany 16: Also at University of Hamburg, Hamburg, Germany 17: Also at Brandenburg University of Technology, Cottbus, Germany 18: Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary 19: Also at MTA-ELTE Lendulet CMS Particle and Nuclear Physics Group, Eotvos Lorand 20: Also at University of Debrecen, Debrecen, Hungary 21: Also at Indian Institute of Science Education and Research, Bhopal, India 22: Also at Institute of Physics, Bhubaneswar, India 23: Also at University of Visva-Bharati, Santiniketan, India 24: Also at University of Ruhuna, Matara, Sri Lanka 25: Also at Isfahan University of Technology, Isfahan, Iran 26: Also at University of Tehran, Department of Engineering Science, Tehran, Iran 27: Also at Yazd University, Yazd, Iran 28: Also at Plasma Physics Research Center, Science and Research Branch, Islamic Azad 29: Also at Universita degli Studi di Siena, Siena, Italy 30: Also at Purdue University, West Lafayette, U.S.A. 31: Also at International Islamic University of Malaysia, Kuala Lumpur, Malaysia 32: Also at Malaysian Nuclear Agency, MOSTI, Kajang, Malaysia 33: Also at Consejo Nacional de Ciencia y Tecnolog a, Mexico city, Mexico 34: Also at Warsaw University of Technology, Institute of Electronic Systems, Warsaw, Poland 35: Also at Institute for Nuclear Research, Moscow, Russia at National Research Nuclear University 'Moscow Engineering Physics Institute' (MEPhI), Moscow, Russia 37: Also at St. Petersburg State Polytechnical University, St. Petersburg, Russia 38: Also at University of Florida, Gainesville, U.S.A. 39: Also at P.N. Lebedev Physical Institute, Moscow, Russia 40: Also at California Institute of Technology, Pasadena, U.S.A. 41: Also at Budker Institute of Nuclear Physics, Novosibirsk, Russia 42: Also at Faculty of Physics, University of Belgrade, Belgrade, Serbia 43: Also at INFN Sezione di Roma; Universita di Roma, Roma, Italy 44: Also at Scuola Normale e Sezione dell'INFN, Pisa, Italy 45: Also at National and Kapodistrian University of Athens, Athens, Greece 47: Also at Institute for Theoretical and Experimental Physics, Moscow, Russia 48: Also at Albert Einstein Center for Fundamental Physics, Bern, Switzerland 49: Also at Adiyaman University, Adiyaman, Turkey 50: Also at Mersin University, Mersin, Turkey 51: Also at Cag University, Mersin, Turkey 52: Also at Piri Reis University, Istanbul, Turkey 53: Also at Gaziosmanpasa University, Tokat, Turkey 54: Also at Ozyegin University, Istanbul, Turkey 55: Also at Izmir Institute of Technology, Izmir, Turkey 56: Also at Marmara University, Istanbul, Turkey 57: Also at Kafkas University, Kars, Turkey 58: Also at Istanbul Bilgi University, Istanbul, Turkey 59: Also at Yildiz Technical University, Istanbul, Turkey 60: Also at Hacettepe University, Ankara, Turkey 68: Also at Erzincan University, Erzincan, Turkey 69: Also at Mimar Sinan University, Istanbul, Istanbul, Turkey 70: Also at Texas A&M University at Qatar, Doha, Qatar 71: Also at Kyungpook National University, Daegu, Korea [14] CMS collaboration, The CMS experiment at the CERN LHC, 2008 JINST 3 S08004 [18] CMS collaboration, V. Veszpremi , Operation and performance of the CMS tracker , 2014 [21] M. Cacciari and G.P. Salam , Pileup subtraction using jet areas , Phys. Lett . B 659 ( 2008 ) 119 [23] T. Sjostrand , S. Mrenna and P.Z. Skands , A brief introduction to PYTHIA 8. 1 , Comput . [24] R.D. Ball et al., Parton distributions with LHC data, Nucl. Phys. B 867 (2013) 244 [25] R. Field, Min-Bias and the Underlying Event at the LHC, Acta Phys. Polon. B 42 (2011) [30] J. Butterworth et al., PDF4LHC recommendations for LHC Run II, J. Phys. G 43 (2016) [31] A.L. Read, Presentation of search results: the CL(s) technique, J. Phys. G 28 (2002) 2693 France M. Schroder, I. Shvetsov, G. Sieber, H.J. Simonis, R. Ulrich, J. Wagner-Kuhr, S. Wayand, M. Weber, T. Weiler, S. Williamson, C. Wohrmann, R. Wolf Italy Italy L. Brianza14, M.E. Dinardoa;b, S. Fiorendia;b, S. Gennaia, A. Ghezzia;b, P. Govonia;b, M. Malberti, S. Malvezzia, R.A. Manzonia;b;14, D. Menascea, L. Moronia, M. Paganonia;b, D. Pedrinia, S. Pigazzini, S. Ragazzia;b, T. Tabarelli de Fatisa;b L. Baronea;b, F. Cavallaria, M. Cipriania;b, G. D'imperioa;b;14, D. Del Rea;b;14, M. Diemoza, Malaysia I. Ahmed, Z.A. Ibrahim, J.R. Komaragiri, M.A.B. Md Ali31, F. Mohamad Idris32, W.A.T. Wan Abdullah, M.N. Yusli, Z. Zolkapli Portugal P. Bargassa, C. Beir~ao Da Cruz E Silva, A. Di Francesco, P. Faccioli, P.G. Ferreira Parracho, M. Gallinaro, J. Hollar, N. Leonardo, L. Lloret Iglesias, M.V. Nemallapudi, J. Rodrigues Antunes, J. Seixas, O. Toldaiev, D. Vadruccio, J. Varela, P. Vischia Cortabitarte I.J. Cabrillo, A. Calderon, J.R. Castin~eiras De Saa, E. Curras, M. Fernandez, J. GarciaFerrero, G. Gomez, A. Lopez Virto, J. Marco, C. Martinez Rivero, F. Matorras, J. Piedra C. Dietz, F. Fiori, W.-S. Hou, Y. Hsiung, Y.F. Liu, R.-S. Lu, M. Min~ano Moya, E. Paganis, Thailand D. Arcaro, A. Avetisyan, T. Bose, D. Gastler, D. Rankin, C. Richardson, J. Rohlf, L. Sulak, M.B. Andrews, V. Azzolini, T. Ferguson, M. Paulini, J. Russ, M. Sun, H. Vogel, I. Vorobiev China 3: Also at Institut Pluridisciplinaire Hubert Curien, Universite de Strasbourg, Universite de Kingdom 61: Also at Rutherford Appleton Laboratory, Didcot, United Kingdom 62: Also at School of Physics and Astronomy, University of Southampton, Southampton, United 63: Also at Instituto de Astrof sica de Canarias, La Laguna, Spain 64: Also at Utah Valley University, Orem, U.S.A. 65: Also at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences , 66 : Also at Facolta Ingegneria, Universita di Roma, Roma, Italy 67 : Also at Argonne National Laboratory , Argonne, U.S.A.


This is a preview of a remote PDF: https://link.springer.com/content/pdf/10.1007%2FJHEP01%282017%29076.pdf

V. Khachatryan, A. M. Sirunyan, A. Tumasyan, W. Adam. Search for high-mass Zγ resonances in e+e−γ and μ + μ −γ final states in proton-proton collisions at \( \sqrt{s}=8 \) and 13 TeV, Journal of High Energy Physics, 2017, 76, DOI: 10.1007/JHEP01(2017)076