Search for heavy neutrinos or third-generation leptoquarks in final states with two hadronically decaying τ leptons and two jets in proton-proton collisions at \( \sqrt{s}=13 \) TeV

Journal of High Energy Physics, Mar 2017

A search for new particles has been conducted using events with two high transverse momentum (p T) τ leptons that decay hadronically, at least two high-p T jets, and missing transverse energy from the τ lepton decays. The analysis is performed using data from proton-proton collisions, collected by the CMS experiment in 2015 at \( \sqrt{s}=13 \) TeV, corresponding to an integrated luminosity of 2.1 fb−1. The results are interpreted in two physics models. The first model involves heavy right-handed neutrinos, Nℓ (ℓ = e, μ, τ), and right-handed charged bosons, WR, arising in a left-right symmetric extension of the standard model. Masses of the WR boson below 2.35 (1.63) TeV are excluded at 95% confidence level, assuming the N τ mass is 0.8 (0.2) times the mass of the WR boson and that only the N τ flavor contributes to the WR decay width. In the second model, pair production of third-generation scalar leptoquarks that decay into ττbb is considered. Third-generation scalar leptoquarks with masses below 740 GeV are excluded, assuming a 100% branching fraction for the leptoquark decay to a τ lepton and a bottom quark. This is the first search at hadron colliders for the third-generation Majorana neutrino, as well as the first search for third-generation leptoquarks in the final state with a pair of hadronically decaying τ leptons and jets.

A PDF file should load here. If you do not see its contents the file may be temporarily unavailable at the journal website or you do not have a PDF plug-in installed and enabled in your browser.

Alternatively, you can download the file locally and open with any standalone PDF reader:

https://link.springer.com/content/pdf/10.1007%2FJHEP03%282017%29077.pdf

Search for heavy neutrinos or third-generation leptoquarks in final states with two hadronically decaying τ leptons and two jets in proton-proton collisions at \( \sqrt{s}=13 \) TeV

Received: December Search for heavy neutrinos or third-generation leptoquarks in nal states with two hadronically decaying collisions at p M. Gouzevitch 0 1 2 3 4 G. Grenier 0 1 2 3 4 B. Ille 0 1 2 3 4 F. Lagarde 0 1 2 3 4 I.B. Laktineh 0 1 2 3 4 M. Lethuillier 0 1 2 3 4 L. Mirabito 0 1 2 3 4 0 Open Access , Copyright CERN 1 University , Budapest , Hungary 2 2: Also at State Key Laboratory of Nuclear Physics and Technology, Peking University 3 tute' (MEPhI) , Moscow , Russia 4 44: Also at Budker Institute of Nuclear Physics , Novosibirsk , Russia A search for new particles has been conducted using events with two high transverse momentum (pT) leptons that decay hadronically, at least two high-pT jets, and from proton-proton collisions, collected by the CMS experiment in 2015 at p missing transverse energy from the lepton decays. The analysis is performed using data Beyond Standard Model; Hadron-Hadron scattering (experiments); proton- - s = 13 TeV, corresponding to an integrated luminosity of 2.1 fb 1 . The results are interpreted in two and right-handed charged bosons, WR, arising in a left-right symmetric extension of the Masses of the WR boson below 2.35 (1.63) TeV are excluded at 95% con dence level, assuming the N mass is 0.8 (0.2) times the mass of the WR boson and that avor contributes to the WR decay width. In the second model, pair production of third-generation scalar leptoquarks that decay into bb is considered. Third-generation scalar leptoquarks with masses below 740 GeV are excluded, assuming a 100% branching fraction for the leptoquark decay to a lepton and a bottom quark. This is the rst search at hadron colliders for the third-generation Majorana neutrino, as well as the rst search for third-generation leptoquarks in the nal state with a pair of hadronically decaying 1 Introduction 2 The CMS detector 3 Object reconstruction and identi cation 4 Signal and background simulation 5 Event selection 6 Background estimation 7 Systematic uncertainties 8 Results 9 Summary The CMS collaboration In this paper a search for new phenomena at the CERN LHC beyond the standard model (SM) of particle physics is presented, using events containing two energetic at least two energetic jets. This nal state is expected, for example, in the decay of a right-handed W boson (WR) into a lepton and a heavy neutrino that decays into another lepton and two jets ( jj). The same nal state is also expected from the decay of leptoquark (LQ) pairs. A brief description of the two models predicting these di erent decay paths to the same nal state is given below. In the SM, the neutrinos of the three generations are considered to be massless, while the observation of neutrino oscillations implies otherwise. One way to generate neutrino masses is the seesaw mechanism, which can be accommodated in a left-right symmetric extension of the SM (LRSM) [1{3]. This model explains the observed parity violation in the SM as the consequence of spontaneous symmetry breaking at a multi- TeV mass scale and introduces a right-handed counterpart to the SM group SU(2)L. The new SU(2)R gauge group is associated with three new gauge bosons, WR and Z0, and three heavy right-handed allowed by this model is the production of a WR that decays into a heavy neutrino N` and a charged lepton of the same generation. The heavy neutrino subsequently decays into a lepton and two jets. In this context, the light neutrino mass is given by m y2v2=mN, where y is a Yukawa coupling to the SM Higgs eld, v the Higgs eld vacuum expectation value in the SM, and mN the mass of the heavy neutrino state. In type I seesaw models, the light and heavy neutrinos must be Majorana particles in order to explain the known neutrino masses. As a consequence, processes that violate lepton number conservation by two units would be possible. Therefore, searches for heavy Majorana neutrinos can provide important tests of the nature of neutrinos and the origin of neutrino masses. A similar dilepton plus dijet nal state can be realized in other extensions of the SM that predict scalar or vector LQs. The motivation for postulating such particles is to achieve a uni ed description of quarks and leptons [4]. Leptoquarks are SU(3) color-triplet bosons that carry both lepton and baryon numbers [5{7], and are foreseen in grand uni ed theories, composite models, extended technicolor models, and superstring-inspired models. The exact properties (spin, weak isospin, electric charge, chirality of the fermion couplings, and fermion number) depend on the structure of each speci c model. For this reason, direct searches for LQs at collider experiments are typically performed in the context of the Buchmuller-Ruckl-Wyler model [8]. This model includes a general e ective lagrangian describing interactions of LQs with SM fermions and naturally provides symmetry between leptons and quarks of the SM. Since they carry both baryon number and lepton number, it is expected that LQs would be produced in pairs, and that LQs of the nth generation would decay into leptons and quarks of the same generation. This analysis is a search for the third-generation particles of the LRSM and LQ models, nal states that contain a pair of leptons and jets. In the heavy neutrino search, these nal states arise from the decays WR ! + qq. This search is the rst for the third-generation Majorana neutrino at hadron colliders. Previous searches for heavy neutrinos have been performed at LEP [9, 10], excluding heavy neutrinos of this model for masses below approximately 100 GeV, and in the dimuon plus dijet ( dielectron plus dijet (eejj) channels at 7 TeV by ATLAS [11] and at 8 TeV by CMS [12]. The ATLAS and CMS searches assumed that N is too heavy to play a role in the decay of WR. In those searches, the WR mass (m(WR)) is excluded up to approximately 3.0 TeV. In the search for LQs, requiring the presence of leptons selects third-generation LQs, leading to the nal state bb. Searches for LQs in this channel from ATLAS at 7 TeV [13] and CMS at 13 TeV [14] excluded third generation leptoquarks for masses less than 534 GeV and 740 GeV, respectively. lepton is the heaviest known lepton and decays about one third of the time into purely leptonic nal states ( l), and the remainder of the time into hadrons plus one neutrino. In this analysis pairs of leptons are selected in which both decay hadronically ( h) into one, three, or (rarely) ve charged mesons often accompanied by one or more neutral pions. Because the hadronic decay of the system has two associated neutrinos, tive vector sum of the transverse momenta of all reconstructed particles in an event. The magnitude of p~Tmiss is referred to as ETmiss. In contrast to heavy neutrino searches in the jj nal states, this analysis uses events that contain neutrinos from the tau lepton decays, and thus the WR resonance cannot be fully reconstructed in the h h channel. To distinguish between signal and SM processes that give rise to a similar nal state topology (backgrounds), the visible reconstruct the partial mass: lepton decay products, two jets, and the ETmiss are used to where E and p represent the energies and momenta of selected and jet candidates. The partial mass is expected to be large in the heavy neutrino case and close to the WR mass. The heavy neutrino search strategy is to look for a broad enhancement in the partial mass distribution inconsistent with known SM backgrounds. For pair production of leptoquarks, the scalar sum of the transverse momenta (pT) of the decay products, ST = p h;1 + p h;2 + pjT1 + pj2 , is expected to be large and comparable with the total T T T leptoquark mass. In this case the strategy is similar to other leptoquark analyses and involves searching for a broad enhancement in the high-ST part of the spectrum. It is worth noting that the partial mass and ST are typically higher than in channels containing l, because of the di erent number of neutrinos from lepton decays. At the same time, because a h resembles a jet, the typical probability of misidentifying a jet as a h is at least an order of magnitude higher than that for a jet to be misidenti ed as an electron or muon. As a result, the multijet background from quantum chromodynamics (QCD) processes in the h h channel is larger than in the However, the QCD multijet contribution at high values of partial mass and ST is strongly reduced owing to its rapidly decreasing production cross section. These considerations, combined with the fact that the considered nal state has the highest branching fraction to h pairs, makes it a promising channel in searches for new physics. The analysis is performed using proton-proton collision data collected by the CMS experiment in 2015 at p heavy neutrino and leptoquark searches. Upon selecting two high-quality h candidates and two additional jet candidates, the distribution of m( h; h; j; j; ETmiss) or ST is used to look for a potential signal that would appear as an excess of events over the SM expectation at large values of the mass or ST. The object reconstruction is described in section 3, followed by the description of the signal and background simulation samples in section 4. The selections de ning the signal region (SR), described in section 5, achieve a reduction of the background to a yield of about 1 event in the region where signal dominates. A major challenge of this analysis is to ensure the signal and trigger e ciencies are not only high, but well understood. This is accomplished through studies of SM processes involving genuine h candidates. The analysis strategy is described in section 6 and relies on the selection of )+jets and Z ! h h events. A number of background enriched control regions are de ned in section 6. The purpose of the control samples is to ensure a good understanding of the background contributions as well as to cross-check the accuracy of the e ciency measurements and assign appropriate systematic uncertainties (section 7). Estimates of the background contributions in the SR are derived from data wherever possible, using samples enriched with background events. These control regions are used to measure the partial mass shapes, ST shapes, and selection e ciencies in order to extrapolate to the region where the signal is expected. In cases where the background contributions are small (<10%) or the above approach is not feasible, data-to-simulation scale factors, de ned as a ratio between the numbers of observed data events and expected simulated yields in background-enhanced regions, are used to validate or correct the expected contributions obtained from the simulation samples. Finally, the results are discussed in section 8. The CMS detector A detailed description of the CMS detector, together with a de nition of the coordinate system used and the relevant kinematic variables, can be found in [15]. The central feature of the CMS apparatus is a superconducting solenoid of 6 m inner diameter, providing a eld of 3.8 T. Within the eld volume are the silicon pixel and strip tracker, the lead tungstate crystal electromagnetic calorimeter (ECAL), which includes a silicon sensor preshower detector in front of the ECAL endcaps, and the brass and scintillator hadron calorimeter. In addition to the barrel and endcap detectors, CMS has extensive forward calorimetry. Muons are measured in gas-ionization detectors embedded in the steel ux-return yoke of the solenoid. The inner tracker measures charged particles within the region of pseudorapidity j j < 2:5 and provides an impact parameter resolution of 15mum and a pT resolution of about composed of custom hardware processors and a high-level trigger that consists of a farm of commercial CPUs running a version of the o ine reconstruction optimized for fast Object reconstruction and identi cation Jets are reconstructed using the particle- ow (PF) algorithm [16]. In the PF approach, information from all subdetectors is combined to reconstruct and identify nal-state particles (muons, electrons, photons, and charged and neutral hadrons) produced in the beam collifor jet clustering. Jets are required to pass identi cation criteria designed to reject particles from additional beam collisions within the same or a nearby bunch crossing (pileup) and from anomalous behavior of the calorimeters, and to ensure separation from any identi ed R = is the azimuthal angle. For jets with pT > 30 GeV and j j < 2:4, the identi cation e ciency is approx 99%, with a rejection e ciency of 90{95% for jets originating from pileup interactions [18]. The jet energy scale and resolution are calibrated using correction factors that depend on the pT and jet [19]. Jets originating from the hadronization of bottom quarks are identi ed using the loose working point of the combined secondary vertex algorithm [20], which exploits observables related to the long lifetime of b hadrons. For b quark jets with pT > 30 GeV and j j < 2:4, the identi cation e ciency is approximately 85%, with a mistag rate of about 10% for light-quark and gluon jets [21]. The b quark jets are used to obtain tt-enriched control samples in order to estimate the background rate in the SR. Although muons are not used to de ne the SR, they are used to obtain control samples for the background estimates. Muons are reconstructed using the tracker and muon detectors. Quality requirements based on the minimum number of hits in the silicon tracker, pixel detector, and muon chambers are applied to suppress backgrounds from decays in ight and from hadron shower remnants that reach the muon system [22]. The muon identi cation e ciency for the quality requirements and kinematic range used in this analysis is approximately 98%. Muon candidates are additionally required to pass isolation criteria. Isolation is de ned as the pT sum of the reconstructed PF charged and neutral particles, within an isolation cone of radius R = 0:4 centered around the muon track [23]. The contribution from the muon candidate is removed from the sum and corrections are applied to remove the contribution from particles produced in pileup interactions. Hadronic decays of the lepton are reconstructed and identi ed using the \hadronsplus-strips" algorithm [24] designed to optimize the performance of h reconstruction by including speci c h decay modes. To suppress backgrounds from light-quark or gluon jets, a h candidate is required to be isolated from other energy deposit in the event. The isolation criterion is de ned as the scalar pT sum S of charged and neutral PF candidates within a cone of radius R = 0:5 around the h direction, excluding the h candidate. The isolation criterion is S < 0:8 GeV. Additionally, h candidates are separated from electrons and muons by using dedicated discriminators in the event. The algorithm to discriminate a h from an electron uses observables that quantify the compactness and shape of energy deposits in the ECAL, in combination with observables that are sensitive to the amount of bremsstrahlung emitted along the leading track and observables that are sensitive to the overall particle multiplicity. The discriminator against muons is based on the presence of hits in the muon system associated with the track of the h candidate. The resulting combined e ciency for the isolation and selection requirements used to de ne the SR is 55% averaged over the kinematic range used in this analysis. The presence of neutrinos in the decays must be inferred from the imbalance of transverse momentum measured in the detector. Information from the forward calorimeter is included in the calculation of ETmiss, and the jet energy corrections described above are propagated as corrections to ETmiss. Missing transverse energy is one of the most important observables for discriminating the signal events from background events that do not contain neutrinos, such as QCD multijet events with light-quark and gluon jets. Signal and background simulation The QCD multijet processes are the dominant background in the SR. Multijet events are characterized by jets with high multiplicity, which can be misidenti ed as a h from QCD multijets, the other much smaller backgrounds are the top pair production (tt) and the Drell-Yan (DY) process giving rise to leptons plus jets. The DY+jets events are characterized by two isolated leptons and additional jets from initial-state radiation. Backgrounds from tt events contain two b quark jets and either a genuine isolated h lepton or, with similar probability, a misidenti ed h candidate. Collision data are compared to samples of Monte Carlo (MC) simulated events and techniques based on control samples in data are employed when possible. The MadGraph (v5.1.5) [25] program is used for simulation of DY+jets, W+jets, and tt+jets production at leading order. The MadGraph generator is interfaced with pythia 8 [26], for parton showering and fragmentation simulation. The pythia generator is used to model the signal and QCD multijet processes. The heavy-neutrino signal event samples are generated with WR masses ranging from 1 to 3 TeV. The N mass varies between 0.05 and 0.95 multiplied by the WR mass. It is assumed that the gauge couplings associated with the left and right SU(2) groups are equal and that the N decays are prompt. It is also assumed the Ne and masses are too heavy to play a role in the decay of WR, and thus WR ! WR ! qq0 are the dominant decay modes. The branching fraction for the WR ! decay is approximately 10{15%, depending on m(WR) and m(N ). The leptoquark signal event samples are generated with masses ranging from 200 to 1000 GeV. The simulated events are processed with a detailed simulation of the CMS apparatus using the Geant4 In simulations, the DY and tt background yields, as well as the signal yields, are normalized to the integrated luminosity of the collected data using next-to-leading order (NLO) or next-to-next-to-leading order (NNLO) cross sections [28{31]. The mean number of interactions in a single bunch crossing in the analyzed data set is 21. In simulated events, multiple interactions are superimposed on the primary collision, with the distribution of the number of pileup interactions matching that observed in data. Candidate signal events were collected using a trigger requiring the presence of at least two h candidates with pT > 35 GeV and j j < 2:1 [32]. In addition to the requirements on h trigger objects, kinematic requirements on pT and are imposed on the reconstructed h candidates used in the SR to achieve a trigger e ciency greater than 90% per h candidate. Events are required to have at least two h candidates with pT > 70 GeV. The h h pairs are required to be separated by R > 0:4. Each h candidate is required to have j j < 2:1 in order to ensure that it is reconstructed fully within the acceptance of the tracking system. Candidates are also required to satisfy the reconstruction and identi cation criteria described in section 3. In contrast to other analyses, an opposite-sign requirement cannot be used to discriminate against backgrounds from misidenti ed h candidates, since the signal in the LRSM model can yield both oppositely-charged and same-sign h h pairs, because of the Majorana nature of the heavy neutrino. In addition to the preselection described above, the nal selection is de ned by requiring at least two jets with pT > 50 GeV and j j < 2:4. Only jets separated from the h candidates by R > 0:4 are considered. Because there are neutrinos in the decay, we are able to require ETmiss > 50 GeV to control the level of QCD multijet background. Further, to reduce the contribution from Z+jets events, the invariant mass of the h h pair is required to be > 100 GeV. selection e ciency for LQ ! decaying to h h. Background estimation The signal selection e ciency for WR ! + qq events depends on the masses. The total signal selection e ciency, assuming the N mass is half the As discussed above, the ETmiss and h isolation are the main variables discriminating against QCD multijet events. The QCD multijet background estimation methodology utilizes control samples obtained by inverting the signal region requirements on these two variables. In the remainder of this section, events obtained by inverting the isolation requirement on both h candidates will be referred to as nonisolated h h samples. The QCD multijet background is estimated using data and relying on the \ABCD" method. The regions A, B, C, and D are de ned as follows: A: fail the ETmiss > 50 GeV requirement; nonisolated h h; B: fail the ETmiss > 50 GeV requirement; pass nominal isolation (as in SR); C: pass the ETmiss > 50 GeV requirement; nonisolated h h; D: pass the ETmiss > 50 GeV requirement; pass nominal isolation (as in SR). Nnion-QCD). The signal contamination in the control regions is negligible according to simulation (<1%). The contribution of QCD multijet events in the SR (NQDCD) is estimated using the predicted rate of QCD multijet events in region C (NQCCD), weighted by a scale factor used to extrapolate from the nonisolated to the isolated h region. The extrapolation factor is obtained by dividing the expected number of QCD multijet events in region B (NQBCD) by the expected number of QCD multijet events in region A (NQACD). Therefore, shapes for the variables of interest, m( h; h; j; j; ETmiss) and ST, are correlated with ETmiss and thus were obtained from region C. Tests to validate both the normalization and shapes obtained for the background are performed with data. The rst set of validation tests in data is performed using the same method and event selection criteria described above for the di erent regions, except with an inverted jet multiplicity requirement, Nj < 2, in order to provide an exclusive set of regions, A0, B0, C0, and D0. The purity of QCD multijet events in these control samples ranges approximately from 96 to 99%. There is agreement between the observation of 123 QCD multijet events in region D0 and the prediction of 122:2 10:3 events given by the and ST distributions in region D0, where the shapes of QCD multijet events were obtained from region C0 and normalized to the predicted yield of QCD multijet events in the region NQDCD = NQSRCD = 15:1 uncertainty in the control samples. The measurement of the Z(! D0. There is agreement across the m( h; h; j; j; ETmiss) and ST spectra, showing that h isolation does not bias either distribution. An additional test on the extraction of the shape from the nonisolated h regions, with Nj 2, is performed using the shape from QCD multijet events falling in region A, to estimate the shape of QCD multijet events in region B. Figure 1 (lower) shows the m( h; h; j; j; ETmiss) and ST distributions in region B, using the shape for QCD multijet events from region A, which provides further con dence in the method. The procedure outlined in this section yields a QCD multijet estimate of 4:1 events. The overall uncertainty is dominated by the statistical )+jets contribution to the SR is based on both simulation and data. The e ciency for the trigger and for the requirement of at least two high-quality h leptons is expected to be well modeled by simulation. Mismodeling of the )+jets background rate and shapes in the SR can come from the requirement of two additional jets. For these reasons we consider two control samples: the rst control sample is used to validate the correct modeling of the requirement of at least two high-quality h leptons; the second control sample is used to measure a correction factor for the correct modeling of two additional jets. ) control sample, used to validate the modeling of the trigger and the requirement of at least two high-quality h leptons, is obtained by using the preselection requirements de ned previously, and additionally requiring h h pairs to have an invariant mass less than 100 GeV. This results in a sample composed of approx 90% of Z(! according to simulation. The rates and shapes in data and simulation are consistent, with a measured data-to-simulation scale factor of 0:97 The second control sample, used to measure a correction factor for the e ciency of the dijet selection, is obtained by applying criteria, similar to those used in the search analysis, to select a sample of Z(! )+jets events having a dimuon invariant mass m compatible with that of the Z boson (60 < m < 120 GeV). Candidate events for this control sample were collected using a trigger requiring the presence of at least one muon object with pT( ) > 18 GeV. A study of this control sample allows a straightforward estimation, using lepton universality in the Z boson decay, of the extra hadronic activity expected in Z(! )+jets events. Thus the rate for Z ! in simulation, after selections, can be corrected using the measured dijet selection e ciency, to determine the expected contribution of Z(! )+jets in the SR. The measured correction factor is 0:01, resulting in a DY+jets background estimate of 1:3 0:5 events in the SR. Systematic uncertainties in the estimated background yields are described in section 7. In a similar way, the estimation of the tt contribution to the SR is also obtained using information from both data and simulation. A tt-enriched control sample is obtained by applying all the signal selection criteria with at least one b-tagged jet and two isolated muons, as opposed to h h, and additionally by requiring a Z boson mass veto requirement outside the region between 80 and 110 GeV) to suppress Z(! The tt prediction from simulation agrees with the observed yield and shape in the control sample. The measured data-to-simulation scale factor in the control sample is 0:99 and thus the tt prediction in the SR is based on simulation, without any corrections. The tt background yield in the SR is 2:5 500 1000150020002500 taaD kgB 22004006008010001020104010600 taaD kgB 12002003004005006007008009010000 the m( h h; j; ETmiss) distribution in the nonisolated h h control sample (\QCD" in the legend) correctly models the shape in the isolated region (\Data"). Upper right: QCD multijet background validation test of the ABCD method applied to h h data, showing that there is a good agreement in the ST distribution between the observed yield and shape and the predicted yield and shape. Lower left: QCD multijet background validation test for Nj that the m( h h; j; j; ETmiss) distribution in the nonisolated h h control sample correctly models the shape in the isolated region. Lower right: QCD multijet background validation test for Nj showing that the ST distribution in the nonisolated h h control sample correctly models the shape in the isolated region. The hatched band in the upper panel of each distribution represents the total statistical uncertainty in the background. The lower panel shows the ratio between the observed data and the background estimation. The shaded band in the lower panel represents the statistical uncertainty in the background prediction. The diboson (\VV" in the legend) contributions are 2 data with ETmiss < 50 GeV, showing Systematic uncertainties Various imperfectly known or poorly simulated e ects can alter the shape and normalization of the m( h; h; j; j; ETmiss) and ST spectra. Since the estimation of the background contributions in the SR is partly based on simulation, the signal and certain backgrounds are a ected by similar sources of systematic uncertainties. For example, the uncertainty in the integrated luminosity measurement is 2.7% [33] and a ects the signal and tt background. The dominant sources of systematic uncertainties in the signal, DY+jets, and tt background predictions are the uncertainties in the h identi cation and trigger e ciency. The h trigger e ciency (the fraction of h candidates that additionally pass the h trigger requirement) is estimated using a sample of Z ! h events, collected using a single-muon trigger, that satisfy the same h identi cation criteria used to de ne the SR. This estimation leads to a relative uncertainty of 5.0% per h candidate. Systematic e ects associated with the h identi cation are extracted from a t to the Z (! distribution, m( 1; 2). In order to estimate the uncertainty in the h identi cation e ciency, the t constrains the Z boson production cross section to the measured cross section in the Z(! ee= ) decay channels, leading to a relative uncertainty of 7% per h candidate [32]. An additional systematic uncertainty, which dominates for high-pT h candidates, is related to the con dence that the MC simulation correctly models the identi cation e ciency. This additional uncertainty increases linearly with pT and amounts to 20% per h are negligible, as found from validation tests. Additional contributions to the uncertainties in the signal, DY+jets, and tt background predictions are due to the uncertainty in the h/jet energy scale, ranging from 3{5%. The systematic uncertainty in the QCD multijet background prediction is dominated by the statistical uncertainty of the data used in the control regions (about 27%). The contamination from other backgrounds in the QCD multijet control regions has a negligible e ect on the systematic uncertainty. The uncertainty in the signal acceptance due to the choice of parton distribution functions included in the simulated samples is evaluated in accordance with the PDF4LHC recommendation and amounts to 5% [34]. The systematic e ect caused by imprecise modeling of initial nal-state radiation is determined by reweighting events to account for e ects such as s terms in the soft-collinear approach [35] and missing NLO terms in the parton shower approach [36]. The dominant e ects that contribute to the m( h; h; j; j; ETmiss) and ST shape variations include the h and jet energy scale uncertainties, resulting in systematic uncertainties of less than 10% in all mass and ST bins. Figure 2 shows the background predictions as well as the observed m( h; h; j; j; ETmiss) and ST spectra. The last bin in the mass plot represents the yield for m( h; h; j; j; ETmiss) > 2:25 TeV, while the last bin in the ST plot represents the yield for ST > 1 TeV (i.e. these bins include the over ow). The observed yield is 14 events, while the predicted background 4:2 events, with QCD multijet, tt, and Z ! composing 76.3%, 12.6%, m(WR) = 1:0 TeV m(WR) = 2:7 TeV m(LQ) = 0:6 TeV m(LQ) = 1:0 TeV m(WR)=2. taaD kgB 5200 10001500200025003000 taaD kgB 2400600801000102010401060108020000 Left: m( h; h; j; j; ETmiss) distribution in the SR. Right: ST distribution in the signal region. The estimated backgrounds are stacked while the data and simulated signal are overlaid. The hatched band in the upper panel of each distribution represents the total statistical uncertainty in the background. The lower panel shows the ratio between the observed data and the background estimation. The shaded band across the lower panel, represents the total statistical and systematic and 6.6% of the total respectively (see table 1). The simulated distributions corresponding comparison. The observed m( h; h; j; j; ETmiss) and ST distributions do not reveal evidence The exclusion limit is calculated by using the distributions of m( h; h; j; j; ETmiss) in the LRSM interpretation, or of ST for the LQ interpretation, to construct the Poisson likelihood and to compute the 95% Con dence Level (CL) upper limit on the signal cross section [τ)103 CMS b f N cross section and branching fraction of the WR ! decay for m(N ) = m(WR)=2, as functions of m(WR) mass. Right: expected and observed limits, at 95% CL, on the product of the LQ pair production cross section and the branching fraction squared of the LQ ! b decay, as functions of LQ mass. The bands around the expected limits represent the one and two standard deviation uncertainties obtained using a large sample of pseudo-experiments based on the background-only hypothesis, for each bin of the mass and ST distributions. The dot-dashed blue line corresponds to the theoretical signal cross section at NLO, which assumes only N avor contributes to the WR using the modi ed frequentist CLs method [37, 38]. Systematic uncertainties are represented by nuisance parameters, assuming a gamma or log-normal prior for normalization parameters, and Gaussian priors for shape uncertainties. Figure 3 shows the expected and observed limits as well as the theoretical cross sections as functions of m(WR) and m(LQ). For heavy neutrino models with strict left-right symmetry, and with the assumption that only the N avor contributes to the WR boson decay width, WR boson masses below 2.3 TeV are excluded at 95% CL, assuming the N mass is 0:5 m(WR). The heavy-neutrino limits depend on the N mass. For example, a Figure 4 shows the 95% CL upper limits on the product of the production cross section and the branching fraction, as a function of m(WR) and x. The signal acceptance and mass shape are evaluated for each fm(WR); xg combination in gure 4 and used in the excluded at 95% CL, assuming the N mass is 0.8 (0.2) times the mass of WR boson. gR = g color axis corresponds to the observed upper limit on the product of the cross section N ). The curves indicate observed and expected exclusion and the branching fraction B(WR ! left SU(2) groups are equal. (left of the curve) for a model that assumes that the gauge couplings associated with the right and For the leptoquark interpretation using ST as the nal t variable, LQ masses below 740 GeV are excluded at 95% CL, compared with expected limit of 790 GeV. The results of this search can also be applied to other models that predict a similar dilepton plus dijet nal state, for example to the model with sterile right-handed neutrinos described in ref. [39]. Summary A search is performed for physics beyond the standard model in events with two energetic leptons, two energetic jets, and large transverse momentum imbalance, using a data sample corresponding to an integrated luminosity of 2.1 fb 1 collected with the CMS detector in proton-proton collisions at p of heavy right-handed third-generation neutrinos, N , and right-handed WR bosons that arise in the left-right symmetric extensions of the standard model, where the WR decay chain results in a pair of high-pT leptons; (2) pair production of third-generation scalar bb channel. The observed m( h; h; j; j; ETmiss) and ST distributions do not reveal any evidence of signals compatible with these scenarios. Assuming that only the avor contributes signi cantly to the WR decay width, WR masses below 2.35 (1.63) TeV are excluded at 95% con dence level, assuming the N mass is 0.8 (0.2) times the mass of WR boson. This analysis represents the rst search for N at the LHC and is also the rst to focus on pair production of third-generation scalar leptoquarks using the h hbb nal state. Leptoquarks with a mass less than 740 GeV are excluded at 95% con dence level, to be compared with an expected mass limit of 790 GeV. This result equals the most stringent previous limit obtained in the l hbb nal state, set by CMS using 19.5 fb 1 of data recorded at 8 TeV [14]. This is the rst search for third-generation leptoquarks in the h hbb channel. We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative sta s at CERN and at other CMS institutes for their contributions to the success of the CMS e ort. In addition, we gratefully acknowledge the computing centers and personnel of the Worldwide LHC Computing Grid for delivering so e ectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMWFW and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES and CSF (Croatia); RPF (Cyprus); SENESCYT (Ecuador); MoER, ERC IUT, and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NIH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); MSIP and NRF (Republic of Korea); LAS (Lithuania); MOE and UM (Malaysia); BUAP, CINVESTAV, CONACYT, LNS, SEP, and UASLP-FAI (Mexico); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS, and RFBR (Russia); MESTD (Serbia); SEIDI and CPAN (Spain); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter, IPST, STAR, and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU and SFFR (Ukraine); STFC (U.K.); DOE and NSF (U.S.A.). Individuals have received support from the Marie-Curie program and the European Research Council and EPLANET (European Union); the Leventis Foundation; the A. P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Sci ce; the Fonds pour la Formation a la Recherche dans l'Industrie et dans l'Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the Ministry of Education, Youth and Sports (MEYS) of the Czech Republic; the Council of Science and Industrial Research, India; the HOMING PLUS program of the Foundation for Polish Science, co nanced from European Union, Regional Development Fund, the Mobility Plus program of the Ministry of Science and Higher Education, the National Science Center (Poland), contracts Harmonia 2014/14/M/ST2/00428, Opus 2014/13/B/ST2/02543, 2014/15/B/ST2/03998, and 2015/19/B/ST2/02861, Sonatabis 2012/07/E/ST2/01406; the Thalis and Aristeia programs co nanced by EU-ESF and the Greek NSRF; the National Priorities Research Program by Qatar National Research Fund; the Programa Clar n-COFUND del Principado de Asturias; the Rachadapisek Sompot Fund for Postdoctoral Fellowship, Chulalongkorn University and the Chulalongkorn Academic into Its 2nd Century Project Advancement Project (Thailand); and the Welch Foundation, contract C-1845. This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited. masses, Phys. Rev. D 65 (2002) 053014 [hep-ph/0109264] [INSPIRE]. ! e at a rate of one out of 109 muon decays?, Phys. Lett. B 67 (1977) 421 Rev. Lett. 44 (1980) 912 [INSPIRE]. (1974) 438 [INSPIRE]. [5] J.C. Pati and A. Salam, Lepton number as the fourth `color', Phys. Rev. D 10 (1974) 275 [6] J.C. Pati and A. Salam, Erratum: Lepton number as the fourth `color', Phys. Rev. D 11 B 191 (1987) 442 [Erratum ibid. B 448 (1999) 320] [INSPIRE]. [9] DELPHI collaboration, P. Abreu et al., Search for neutral heavy leptons produced in Z decays, Z. Phys. C 74 (1997) 57 [Erratum ibid. C 75 (1997) 580] [INSPIRE]. [11] ATLAS collaboration, Search for heavy neutrinos and right-handed W bosons in events with Phys. Lett. B 295 (1992) 371 [INSPIRE]. two leptons and jets in pp collisions at p C 72 (2012) 2056 [arXiv:1203.5420] [INSPIRE]. s = 7 TeV with the ATLAS detector, Eur. Phys. J. [12] CMS collaboration, Search for heavy neutrinos and W bosons with right-handed couplings in proton-proton collisions at p s = 8 TeV, Eur. Phys. J. C 74 (2014) 3149 [arXiv:1407.3683] [13] ATLAS collaboration, Search for third generation scalar leptoquarks in pp collisions at [14] CMS collaboration, Search for pair production of third-generation scalar leptoquarks and top [15] CMS collaboration, The CMS experiment at the CERN LHC, 2008 JINST 3 S08004 squarks in proton-proton collisions at p [arXiv:1408.0806] [INSPIRE]. s = 8 TeV, Phys. Lett. B 739 (2014) 229 [16] CMS collaboration, Commissioning of the Particle- ow Event Reconstruction with the rst LHC collisions recorded in the CMS detector, CMS-PAS-PFT-10-001 (2010). 063 [arXiv:0802.1189] [INSPIRE]. P04013 [arXiv:1211.4462] [INSPIRE]. startup, CMS-PAS-BTV-15-001 (2015). Resolution in CMS, 2011 JINST 6 P11002 [arXiv:1107.4277] [INSPIRE]. [20] CMS collaboration, Identi cation of b-quark jets with the CMS experiment, 2013 JINST 8 [21] CMS collaboration, Identi cation of b quark jets at the CMS Experiment in the LHC Run 2 s = 7 TeV, 2012 JINST 7 P10002 [arXiv:1206.4071] [INSPIRE]. [22] CMS collaboration, Performance of CMS muon reconstruction in pp collision events at [23] CMS collaboration, Muon Reconstruction and Identi cation Improvements for Run-2 and First Results with 2015 Run Data, CMS-DP-15-015 (2015). JINST 7 P01001. JHEP 06 (2011) 128 [arXiv:1106.0522] [INSPIRE]. 159 [arXiv:1410.3012] [INSPIRE]. Meth. A 506 (2003) 250 [INSPIRE]. [arXiv:1504.02131] [INSPIRE]. all-fermionic scattering channels, JHEP 12 (2012) 054 [arXiv:1207.0236] [INSPIRE]. [32] CMS collaboration, Measurement of the inclusive Z cross section via decays to tau pairs in s = 7 TeV, JHEP 08 (2011) 117 [arXiv:1104.1617] [INSPIRE]. [33] CMS collaboration, CMS luminosity measurement for the 2015 data-taking period, CMS-PAS-LUM-15-001 (2015). 023001 [arXiv:1510.03865] [INSPIRE]. [35] G. Nanava and Z. Was, How to use SANC to improve the PHOTOS Monte Carlo simulation of bremsstrahlung in leptonic W boson decays, Acta Phys. Polon. B 34 (2003) 4561 [hep-ph/0303260] [INSPIRE]. B 449 (1999) 313 [hep-ph/9812455] [INSPIRE]. [37] T. Junk, Con dence level computation for combining searches with small statistics, Nucl. Instrum. Meth. A 434 (1999) 435 [hep-ex/9902006] [INSPIRE]. Yerevan Physics Institute, Yerevan, Armenia V. Khachatryan, A.M. Sirunyan, A. Tumasyan Institut fur Hochenergiephysik, Wien, Austria W. Adam, E. Asilar, T. Bergauer, J. Brandstetter, E. Brondolin, M. Dragicevic, J. Ero, M. Flechl, M. Friedl, R. Fruhwirth1, V.M. Ghete, C. Hartl, N. Hormann, J. Hrubec, M. Jeitler1, A. Konig, I. Kratschmer, D. Liko, T. Matsushita, I. Mikulec, D. Rabady, N. Rad, B. Rahbaran, H. Rohringer, J. Schieck1, J. Strauss, W. Waltenberger, C.-E. Wulz1 Institute for Nuclear Problems, Minsk, Belarus O. Dvornikov, V. Makarenko, V. Zykunov National Centre for Particle and High Energy Physics, Minsk, Belarus V. Mossolov, N. Shumeiko, J. Suarez Gonzalez Universiteit Antwerpen, Antwerpen, Belgium S. Alderweireldt, E.A. De Wolf, X. Janssen, J. Lauwers, M. Van De Klundert, H. Van Haevermaet, P. Van Mechelen, N. Van Remortel, A. Van Spilbeeck Vrije Universiteit Brussel, Brussel, Belgium S. Abu Zeid, F. Blekman, J. D'Hondt, N. Daci, I. De Bruyn, K. Deroover, S. Lowette, S. Moortgat, L. Moreels, A. Olbrechts, Q. Python, S. Tavernier, W. Van Doninck, P. Van Mulders, I. Van Parijs Universite Libre de Bruxelles, Bruxelles, Belgium H. Brun, B. Clerbaux, G. De Lentdecker, H. Delannoy, G. Fasanella, L. Favart, R. Goldouzian, A. Grebenyuk, G. Karapostoli, T. Lenzi, A. Leonard, J. Luetic, T. Maerschalk, A. Marinov, A. Randle-conde, T. Seva, C. Vander Velde, P. Vanlaer, D. Vannerom, R. Yonamine, F. Zenoni, F. Zhang2 Ghent University, Ghent, Belgium A. Cimmino, T. Cornelis, D. Dobur, A. Fagot, G. Garcia, M. Gul, I. Khvastunov, D. Poyraz, S. Salva, R. Schofbeck, A. Sharma, M. Tytgat, W. Van Driessche, E. Yazgan, N. Zaganidis Universite Catholique de Louvain, Louvain-la-Neuve, Belgium H. Bakhshiansohi, C. Belu 3, O. Bondu, S. Brochet, G. Bruno, A. Caudron, S. De Visscher, C. Delaere, M. Delcourt, B. Francois, A. Giammanco, A. Jafari, P. Jez, M. Komm, G. Krintiras, V. Lemaitre, A. Magitteri, A. Mertens, M. Musich, C. Nuttens, K. Piotrzkowski, L. Quertenmont, M. Selvaggi, M. Vidal Marono, S. Wertz Universite de Mons, Mons, Belgium Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil W.L. Alda Junior, F.L. Alves, G.A. Alves, L. Brito, C. Hensel, A. Moraes, M.E. Pol, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil G.G. Da Silveira5, D. De Jesus Damiao, C. De Oliveira Martins, S. Fonseca De Souza, L.M. Huertas Guativa, H. Malbouisson, D. Matos Figueiredo, C. Mora Herrera, L. Mundim, H. Nogima, W.L. Prado Da Silva, A. Santoro, A. Sznajder, E.J. Tonelli Manganote4, Universidade Estadual Paulista a, Universidade Federal do ABC b, S~ao Paulo, S. Ahujaa, C.A. Bernardesb, S. Dograa, T.R. Fernandez Perez Tomeia, E.M. Gregoresb, P.G. Mercadanteb, C.S. Moona, S.F. Novaesa, Sandra S. Padulaa, D. Romero Abadb, Institute for Nuclear Research and Nuclear Energy, So a, Bulgaria A. Aleksandrov, R. Hadjiiska, P. Iaydjiev, M. Rodozov, S. Stoykova, G. Sultanov, M. VuUniversity of So a, So a, Bulgaria A. Dimitrov, I. Glushkov, L. Litov, B. Pavlov, P. Petkov Beihang University, Beijing, China H. Zhang, J. Zhao Institute of High Energy Physics, Beijing, China M. Ahmad, J.G. Bian, G.M. Chen, H.S. Chen, M. Chen, Y. Chen7, T. Cheng, C.H. Jiang, D. Leggat, Z. Liu, F. Romeo, S.M. Shaheen, A. Spiezia, J. Tao, C. Wang, Z. Wang, State Key Laboratory of Nuclear Physics and Technology, Peking University, Y. Ban, G. Chen, Q. Li, S. Liu, Y. Mao, S.J. Qian, D. Wang, Z. Xu Universidad de Los Andes, Bogota, Colombia C. Avila, A. Cabrera, L.F. Chaparro Sierra, C. Florez, J.P. Gomez, C.F. Gonzalez Hernandez, J.D. Ruiz Alvarez, J.C. Sanabria University of Split, Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, Split, Croatia N. Godinovic, D. Lelas, I. Puljak, P.M. Ribeiro Cipriano, T. Sculac University of Split, Faculty of Science, Split, Croatia Z. Antunovic, M. Kovac Institute Rudjer Boskovic, Zagreb, Croatia V. Brigljevic, D. Ferencek, K. Kadija, S. Micanovic, L. Sudic, T. Susa University of Cyprus, Nicosia, Cyprus A. Attikis, G. Mavromanolakis, J. Mousa, C. Nicolaou, F. Ptochos, P.A. Razis, H. Rykaczewski, D. Tsiakkouri Charles University, Prague, Czech Republic M. Finger8, M. Finger Jr.8 Universidad San Francisco de Quito, Quito, Ecuador E. Carrera Jarrin Academy of Scienti c Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt Y. Assran9;10, T. Elkafrawy11, A. Mahrous12 National Institute of Chemical Physics and Biophysics, Tallinn, Estonia M. Kadastik, L. Perrini, M. Raidal, A. Tiko, C. Veelken Department of Physics, University of Helsinki, Helsinki, Finland P. Eerola, J. Pekkanen, M. Voutilainen Helsinki Institute of Physics, Helsinki, Finland J. Harkonen, T. Jarvinen, V. Karimaki, R. Kinnunen, T. Lampen, K. Lassila-Perini, S. Lehti, T. Linden, P. Luukka, J. Tuominiemi, E. Tuovinen, L. Wendland Lappeenranta University of Technology, Lappeenranta, Finland J. Talvitie, T. Tuuva IRFU, CEA, Universite Paris-Saclay, Gif-sur-Yvette, France M. Besancon, F. Couderc, M. Dejardin, D. Denegri, B. Fabbro, J.L. Faure, C. Favaro, F. Ferri, S. Ganjour, S. Ghosh, A. Givernaud, P. Gras, G. Hamel de Monchenault, P. Jarry, I. Kucher, E. Locci, M. Machet, J. Malcles, J. Rander, A. Rosowsky, M. Titov, A. Zghiche Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, Institut Pluridisciplinaire Hubert Curien (IPHC), Universite de Strasbourg, J.-L. Agram13, J. Andrea, A. Aubin, D. Bloch, J.-M. Brom, M. Buttignol, E.C. Chabert, N. Chanon, C. Collard, E. Conte13, X. Coubez, J.-C. Fontaine13, D. Gele, U. Goerlach, A.-C. Le Bihan, K. Skovpen, P. Van Hove Centre de Calcul de l'Institut National de Physique Nucleaire et de Physique des Particules, CNRS/IN2P3, Villeurbanne, France Universite de Lyon, Universite Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucleaire de Lyon, Villeurbanne, France S. Beauceron, C. Bernet, G. Boudoul, E. Bouvier, C.A. Carrillo Montoya, R. Chierici, D. Contardo, B. Courbon, P. Depasse, H. El Mamouni, J. Fan, J. Fay, S. Gascon, A.L. Pequegnot, S. Perries, A. Popov14, D. Sabes, V. Sordini, M. Vander Donckt, P. Verdier, T. Toriashvili15 I. Bagaturia16 Georgian Technical University, Tbilisi, Georgia Tbilisi State University, Tbilisi, Georgia RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany C. Autermann, S. Beranek, L. Feld, A. Heister, M.K. Kiesel, K. Klein, M. Lipinski, A. Ostapchuk, M. Preuten, F. Raupach, S. Schael, C. Schomakers, J. Schulz, T. Verlage, H. Weber, V. Zhukov14 RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany A. Albert, M. Brodski, E. Dietz-Laursonn, D. Duchardt, M. Endres, M. Erdmann, S. Erdweg, T. Esch, R. Fischer, A. Guth, M. Hamer, T. Hebbeker, C. Heidemann, K. Hoepfner, S. Knutzen, M. Merschmeyer, A. Meyer, P. Millet, S. Mukherjee, M. Olschewski, K. Padeken, T. Pook, M. Radziej, H. Reithler, M. Rieger, F. Scheuch, L. Sonnenschein, RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany V. Cherepanov, G. Flugge, F. Hoehle, B. Kargoll, T. Kress, A. Kunsken, J. Lingemann, T. Muller, A. Nehrkorn, A. Nowack, I.M. Nugent, C. Pistone, O. Pooth, A. Stahl17 Deutsches Elektronen-Synchrotron, Hamburg, Germany M. Aldaya Martin, T. Arndt, C. Asawatangtrakuldee, K. Beernaert, O. Behnke, U. Behrens, A.A. Bin Anuar, K. Borras18, A. Campbell, P. Connor, C. Contreras-Campana, F. Costanza, C. Diez Pardos, G. Dolinska, G. Eckerlin, D. Eckstein, T. Eichhorn, E. Eren, E. Gallo19, J. Garay Garcia, A. Geiser, A. Gizhko, J.M. Grados Luyando, P. Gunnellini, A. Harb, J. Hauk, M. Hempel20, H. Jung, A. Kalogeropoulos, O. Karacheban20, M. Kase mann, J. Keaveney, C. Kleinwort, I. Korol, D. Krucker, W. Lange, A. Lelek, J. Leonard, K. Lipka, A. Lobanov, W. Lohmann20, R. Mankel, I.-A. Melzer-Pellmann, A.B. Meyer, G. Mittag, J. Mnich, A. Mussgiller, E. Ntomari, D. Pitzl, R. Placakyte, A. Raspereza, B. Roland, M.O . Sahin, P. Saxena, T. Schoerner-Sadenius, C. Seitz, S. Spannagel, N. Stefaniuk, G.P. Van Onsem, R. Walsh, C. Wissing University of Hamburg, Hamburg, Germany V. Blobel, M. Centis Vignali, A.R. Draeger, T. Dreyer, E. Garutti, D. Gonzalez, J. Haller, M. Ho mann, A. Junkes, R. Klanner, R. Kogler, N. Kovalchuk, T. Lapsien, T. Lenz, I. Marchesini, D. Marconi, M. Meyer, M. Niedziela, D. Nowatschin, F. Pantaleo17, T. Pei er, A. Perieanu, J. Poehlsen, C. Sander, C. Scharf, P. Schleper, A. Schmidt, S. Schumann, J. Schwandt, H. Stadie, G. Steinbruck, F.M. Stober, M. Stover, H. Tholen, D. Troendle, E. Usai, L. Vanelderen, A. Vanhoefer, B. Vormwald Institut fur Experimentelle Kernphysik, Karlsruhe, Germany M. Akbiyik, C. Barth, S. Baur, C. Baus, J. Berger, E. Butz, R. Caspart, T. Chwalek, I. Topsis-Giotis Institute of Nuclear and Particle Physics (INPP), NCSR Demokritos, Aghia G. Anagnostou, G. Daskalakis, T. Geralis, V.A. Giakoumopoulou, A. Kyriakis, D. Loukas, National and Kapodistrian University of Athens, Athens, Greece S. Kesisoglou, A. Panagiotou, N. Saoulidou, E. Tziaferi University of Ioannina, Ioannina, Greece I. Evangelou, G. Flouris, C. Foudas, P. Kokkas, N. Loukas, N. Manthos, I. Papadopoulos, MTA-ELTE Lendulet CMS Particle and Nuclear Physics Group, Eotvos Lorand University, Budapest, Hungary Wigner Research Centre for Physics, Budapest, Hungary G. Bencze, C. Hajdu, D. Horvath21, F. Sikler, V. Veszpremi, G. Vesztergombi22, A.J. Zsig Institute of Nuclear Research ATOMKI, Debrecen, Hungary N. Beni, S. Czellar, J. Karancsi23, A. Makovec, J. Molnar, Z. Szillasi Institute of Physics, University of Debrecen M. Bartok22, P. Raics, Z.L. Trocsanyi, B. Ujvari National Institute of Science Education and Research, Bhubaneswar, India S. Bahinipati, S. Choudhury24, P. Mal, K. Mandal, A. Nayak25, D.K. Sahoo, N. Sahoo, Panjab University, Chandigarh, India S. Bansal, S.B. Beri, V. Bhatnagar, R. Chawla, U.Bhawandeep, A.K. Kalsi, A. Kaur, M. Kaur, R. Kumar, P. Kumari, A. Mehta, M. Mittal, J.B. Singh, G. Walia University of Delhi, Delhi, India Ashok Kumar, A. Bhardwaj, B.C. Choudhary, R.B. Garg, S. Keshri, S. Malhotra, M. Naimuddin, N. Nishu, K. Ranjan, R. Sharma, V. Sharma Saha Institute of Nuclear Physics, Kolkata, India R. Bhattacharya, S. Bhattacharya, K. Chatterjee, S. Dey, S. Dutt, S. Dutta, S. Ghosh, N. Majumdar, A. Modak, K. Mondal, S. Mukhopadhyay, S. Nandan, A. Purohit, A. Roy, D. Roy, S. Roy Chowdhury, S. Sarkar, M. Sharan, S. Thakur Indian Institute of Technology Madras, Madras, India Bhabha Atomic Research Centre, Mumbai, India R. Chudasama, D. Dutta, V. Jha, V. Kumar, A.K. Mohanty17, P.K. Netrakanti, L.M. Pant, P. Shukla, A. Topkar Tata Institute of Fundamental Research-A, Mumbai, India T. Aziz, S. Dugad, G. Kole, B. Mahakud, S. Mitra, G.B. Mohanty, B. Parida, N. Sur, Tata Institute of Fundamental Research-B, Mumbai, India S. Banerjee, S. Bhowmik26, R.K. Dewanjee, S. Ganguly, M. Guchait, Sa. Jain, S. Kumar, M. Maity26, G. Majumder, K. Mazumdar, T. Sarkar26, N. Wickramage27 Indian Institute of Science Education and Research (IISER), Pune, India S. Chauhan, S. Dube, V. Hegde, A. Kapoor, K. Kothekar, S. Pandey, A. Rane, S. Sharma Institute for Research in Fundamental Sciences (IPM), Tehran, Iran H. Behnamian, S. Chenarani28, E. Eskandari Tadavani, S.M. Etesami28, A. Fahim29, M. Khakzad, M. Mohammadi Najafabadi, M. Naseri, S. Paktinat Mehdiabadi30, F. Rezaei Hosseinabadi, B. Safarzadeh31, M. Zeinali University College Dublin, Dublin, Ireland M. Felcini, M. Grunewald INFN Sezione di Bari a, Universita di Bari b, Politecnico di Bari c, Bari, Italy M. Abbresciaa;b, C. Calabriaa;b, C. Caputoa;b, A. Colaleoa, D. Creanzaa;c, L. Cristellaa;b, N. De Filippisa;c, M. De Palmaa;b, L. Fiorea, G. Iasellia;c, G. Maggia;c, M. Maggia, G. Minielloa;b, S. Mya;b, S. Nuzzoa;b, A. Pompilia;b, G. Pugliesea;c, R. Radognaa;b, A. Ranieria, G. Selvaggia;b, L. Silvestrisa;17, R. Vendittia;b, P. Verwilligena INFN Sezione di Bologna a, Universita di Bologna b, Bologna, Italy G. Abbiendia, C. Battilana, D. Bonacorsia;b, S. Braibant-Giacomellia;b, L. Brigliadoria;b, R. Campaninia;b, P. Capiluppia;b, A. Castroa;b, F.R. Cavalloa, S.S. Chhibraa;b, G. Codispotia;b, M. Cu ania;b, G.M. Dallavallea, F. Fabbria, A. Fanfania;b, D. Fasanellaa;b, P. Giacomellia, C. Grandia, L. Guiduccia;b, S. Marcellinia, G. Masettia, A. Montanaria, F.L. Navarriaa;b, A. Perrottaa, A.M. Rossia;b, T. Rovellia;b, G.P. Sirolia;b, N. Tosia;b;17 INFN Sezione di Catania a, Universita di Catania b, Catania, Italy S. Albergoa;b, S. Costaa;b, A. Di Mattiaa, F. Giordanoa;b, R. Potenzaa;b, A. Tricomia;b, C. Tuvea;b INFN Sezione di Firenze a, Universita di Firenze b, Firenze, Italy G. Barbaglia, V. Ciullia;b, C. Civininia, R. D'Alessandroa;b, E. Focardia;b, P. Lenzia;b, M. Meschinia, S. Paolettia, G. Sguazzonia, L. Viliania;b;17 INFN Laboratori Nazionali di Frascati, Frascati, Italy L. Benussi, S. Bianco, F. Fabbri, D. Piccolo, F. Primavera17 INFN Sezione di Genova a, Universita di Genova b, Genova, Italy V. Calvellia;b, F. Ferroa, M. Lo Veterea;b, M.R. Mongea;b, E. Robuttia, S. Tosia;b INFN Sezione di Milano-Bicocca a, Universita di Milano-Bicocca b, Milano, INFN Sezione di Napoli a, Universita di Napoli 'Federico II' b, Napoli, Italy, Universita della Basilicata c, Potenza, Italy, Universita G. Marconi d, Roma, S. Buontempoa, N. Cavalloa;c, G. De Nardo, S. Di Guidaa;d;17, M. Espositoa;b, F. Fabozzia;c, F. Fiengaa;b, A.O.M. Iorioa;b, G. Lanzaa, L. Listaa, S. Meolaa;d;17, P. Paoluccia;17, C. Sciaccaa;b, F. Thyssen INFN Sezione di Padova a, Universita di Padova b, Padova, Italy, Universita di Trento c, Trento, Italy P. Azzia;17, N. Bacchettaa, L. Benatoa;b, D. Biselloa;b, A. Bolettia;b, R. Carlina;b, A. Carvalho Antunes De Oliveiraa;b, P. Checchiaa, M. Dall'Ossoa;b, P. De Castro Manzanoa, T. Dorigoa, U. Dossellia, F. Gasparinia;b, U. Gasparinia;b, A. Gozzelinoa, S. Lacapraraa, M. Margonia;b, A.T. Meneguzzoa;b, J. Pazzinia;b, N. Pozzobona;b, P. Ronchesea;b, F. Simonettoa;b, E. Torassaa, M. Zanetti, P. Zottoa;b, G. Zumerlea;b INFN Sezione di Pavia a, Universita di Pavia b, Pavia, Italy A. Braghieria, A. Magnania;b, P. Montagnaa;b, S.P. Rattia;b, V. Rea, C. Riccardia;b, P. Salvinia, I. Vaia;b, P. Vituloa;b INFN Sezione di Perugia a, Universita di Perugia b, Perugia, Italy L. Alunni Solestizia;b, G.M. Bileia, D. Ciangottinia;b, L. Fanoa;b, P. Laricciaa;b, R. Leonardia;b, G. Mantovania;b, M. Menichellia, A. Sahaa, A. Santocchiaa;b INFN Sezione di Pisa a, Universita di Pisa b, Scuola Normale Superiore di Pisa c, Pisa, Italy K. Androsova;32, P. Azzurria;17, G. Bagliesia, J. Bernardinia, T. Boccalia, R. Castaldia, M.A. Cioccia;32, R. Dell'Orsoa, S. Donatoa;c, G. Fedi, A. Giassia, M.T. Grippoa;32, F. Ligabuea;c, T. Lomtadzea, L. Martinia;b, A. Messineoa;b, F. Pallaa, A. Rizzia;b, A. SavoyNavarroa;33, P. Spagnoloa, R. Tenchinia, G. Tonellia;b, A. Venturia, P.G. Verdinia INFN Sezione di Roma a, Universita di Roma b, Roma, Italy L. Baronea;b, F. Cavallaria, M. Cipriania;b, D. Del Rea;b;17, M. Diemoza, S. Gellia;b, E. Longoa;b, F. Margarolia;b, P. G. Organtinia;b, R. Paramattia, F. Preiatoa;b, S. Rahatloua;b, C. Rovellia, F. Santanastasioa;b INFN Sezione di Torino a, Universita di Torino b, Torino, Italy, Universita del Piemonte Orientale c, Novara, Italy N. Amapanea;b, R. Arcidiaconoa;c;17, S. Argiroa;b, M. Arneodoa;c, N. Bartosika, R. Bellana;b, C. Biinoa, N. Cartigliaa, F. Cennaa;b, M. Costaa;b, R. Covarellia;b, A. Deganoa;b, N. Demariaa, L. Fincoa;b, B. Kiania;b, C. Mariottia, S. Masellia, E. Migliorea;b, V. Monacoa;b, E. Monteila;b, M. Montenoa, M.M. Obertinoa;b, L. Pachera;b, N. Pastronea, M. Pelliccionia, G.L. Pinna Angionia;b, F. Raveraa;b, A. Romeroa;b, M. Ruspaa;c, R. Sacchia;b, K. Shchelinaa;b, V. Solaa, A. Solanoa;b, A. Staianoa, INFN Sezione di Trieste a, Universita di Trieste b, Trieste, Italy S. Belfortea, M. Casarsaa, F. Cossuttia, G. Della Riccaa;b, A. Zanettia Kyungpook National University, Daegu, Korea D.H. Kim, G.N. Kim, M.S. Kim, S. Lee, S.W. Lee, Y.D. Oh, S. Sekmen, D.C. Son, A. Lee Chonbuk National University, Jeonju, Korea Chonnam National University, Institute for Universe and Elementary Particles, Hanyang University, Seoul, Korea J.A. Brochero Cifuentes, T.J. Kim Korea University, Seoul, Korea S. Lee, J. Lim, S.K. Park, Y. Roh Seoul National University, Seoul, Korea University of Seoul, Seoul, Korea M. Choi, H. Kim, J.H. Kim, J.S.H. Lee, I.C. Park, G. Ryu, M.S. Ryu Sungkyunkwan University, Suwon, Korea Y. Choi, J. Goh, C. Hwang, J. Lee, I. Yu Vilnius University, Vilnius, Lithuania V. Dudenas, A. Juodagalvis, J. Vaitkus S. Cho, S. Choi, Y. Go, D. Gyun, S. Ha, B. Hong, Y. Jo, Y. Kim, B. Lee, K. Lee, K.S. Lee, J. Almond, J. Kim, H. Lee, S.B. Oh, B.C. Radburn-Smith, S.h. Seo, U.K. Yang, H.D. Yoo, { 24 { National Centre for Particle Physics, Universiti Malaya, Kuala Lumpur, Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico H. Castilla-Valdez, E. De La Cruz-Burelo, I. Heredia-De La Cruz36, A. Hernandez-Almada, R. Lopez-Fernandez, R. Magan~a Villalba, J. Mejia Guisao, A. Sanchez-Hernandez Universidad Iberoamericana, Mexico City, Mexico S. Carrillo Moreno, C. Oropeza Barrera, F. Vazquez Valencia Benemerita Universidad Autonoma de Puebla, Puebla, Mexico S. Carpinteyro, I. Pedraza, H.A. Salazar Ibarguen, C. Uribe Estrada Universidad Autonoma de San Luis Potos , San Luis Potos , Mexico A. Morelos Pineda University of Auckland, Auckland, New Zealand University of Canterbury, Christchurch, New Zealand National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan A. Ahmad, M. Ahmad, Q. Hassan, H.R. Hoorani, W.A. Khan, A. Saddique, M.A. Shah, M. Shoaib, M. Waqas National Centre for Nuclear Research, Swierk, Poland H. Bialkowska, M. Bluj, B. Boimska, T. Frueboes, M. Gorski, M. Kazana, K. Nawrocki, K. Romanowska-Rybinska, M. Szleper, P. Zalewski Institute of Experimental Physics, Faculty of Physics, University of Warsaw, K. Bunkowski, A. Byszuk37, K. Doroba, A. Kalinowski, M. Konecki, J. Krolikowski, M. Misiura, M. Olszewski, M. Walczak Laboratorio de Instrumentac~ao e F sica Experimental de Part culas, Lisboa, Joint Institute for Nuclear Research, Dubna, Russia S. Afanasiev, V. Alexakhin, M. Gavrilenko, I. Golutvin, I. Gorbunov, A. Kamenev, V. Karjavin, A. Lanev, A. Malakhov, V. Matveev38;39, V. Palichik, V. Perelygin, M. Savina, S. Shmatov, S. Shulha, N. Skatchkov, V. Smirnov, A. Zarubin Petersburg Nuclear Physics Institute, Gatchina (St. Petersburg), Russia L. Chtchipounov, V. Golovtsov, Y. Ivanov, V. Kim40, E. Kuznetsova41, V. Murzin, V. Oreshkin, V. Sulimov, A. Vorobyev Institute for Nuclear Research, Moscow, Russia Yu. Andreev, A. Dermenev, S. Gninenko, N. Golubev, A. Karneyeu, M. Kirsanov, N. Krasnikov, A. Pashenkov, D. Tlisov, A. Toropin Institute for Theoretical and Experimental Physics, Moscow, Russia V. Epshteyn, V. Gavrilov, N. Lychkovskaya, V. Popov, I. Pozdnyakov, G. Safronov, A. Spiridonov, M. Toms, E. Vlasov, A. Zhokin Moscow Institute of Physics and Technology, Moscow, Russia A. Bylinkin39 National Research Nuclear University 'Moscow Engineering Physics Institute' (MEPhI), Moscow, Russia M. Chadeeva42, O. Markin, E. Tarkovskii P.N. Lebedev Physical Institute, Moscow, Russia V. Andreev, M. Azarkin39, I. Dremin39, M. Kirakosyan, A. Leonidov39, A. Terkulov Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, S. Petrushanko, V. Savrin A. Baskakov, A. Belyaev, E. Boos, M. Dubinin43, L. Dudko, A. Ershov, A. Gribushin, V. Klyukhin, O. Kodolova, I. Lokhtin, I. Miagkov, S. Obraztsov, M. Per lov, Novosibirsk State University (NSU), Novosibirsk, Russia V. Blinov44, Y.Skovpen44, D. Shtol44 State Research Center of Russian Federation, Institute for High Energy Physics, Protvino, Russia I. Azhgirey, I. Bayshev, S. Bitioukov, D. Elumakhov, V. Kachanov, A. Kalinin, D. Konstantinov, V. Krychkine, V. Petrov, R. Ryutin, A. Sobol, S. Troshin, N. Tyurin, A. Uzunian, University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia P. Adzic45, P. Cirkovic, D. Devetak, M. Dordevic, J. Milosevic, V. Rekovic nologicas (CIEMAT), Madrid, Spain J. Alcaraz Maestre, M. Barrio Luna, E. Calvo, M. Cerrada, M. Chamizo Llatas, N. Colino, B. De La Cruz, A. Delgado Peris, A. Escalante Del Valle, C. Fernandez Bedoya, J.P. Fernandez Ramos, J. Flix, M.C. Fouz, P. Garcia-Abia, O. Gonzalez Lopez, S. Goy Lopez, J.M. Hernandez, M.I. Josa, E. Navarro De Martino, A. Perez-Calero Yzquierdo, J. Puerta Pelayo, A. Quintario Olmeda, I. Redondo, L. Romero, M.S. Soares Universidad Autonoma de Madrid, Madrid, Spain J.F. de Troconiz, M. Missiroli, D. Moran Universidad de Oviedo, Oviedo, Spain J. Cuevas, J. Fernandez Menendez, I. Gonzalez Caballero, J.R. Gonzalez Fernandez, E. Palencia Cortezon, S. Sanchez Cruz, I. Suarez Andres, J.M. Vizan Garcia Instituto de F sica de Cantabria (IFCA), CSIC-Universidad de Cantabria, Gomez, T. Rodrigo, A. Ruiz-Jimeno, L. Scodellaro, N. Trevisani, I. Vila, R. Vilar CERN, European Organization for Nuclear Research, Geneva, Switzerland D. Abbaneo, E. Au ray, G. Auzinger, M. Bachtis, P. Baillon, A.H. Ball, D. Barney, P. Bloch, A. Bocci, A. Bonato, C. Botta, T. Camporesi, R. Castello, M. Cepeda, G. Cerminara, M. D'Alfonso, D. d'Enterria, A. Dabrowski, V. Daponte, A. David, M. De Gruttola, A. De Roeck, E. Di Marco46, M. Dobson, B. Dorney, T. du Pree, D. Duggan, M. Dunser, N. Dupont, A. Elliott-Peisert, S. Fartoukh, G. Franzoni, J. Fulcher, W. Funk, D. Gigi, K. Gill, M. Girone, F. Glege, D. Gulhan, S. Gundacker, M. Gutho , J. Hammer, P. Harris, J. Hegeman, V. Innocente, P. Janot, J. Kieseler, H. Kirschenmann, V. Knunz, A. Kornmayer17, M.J. Kortelainen, K. Kousouris, M. Krammer1, C. Lange, P. Lecoq, C. Lourenco, M.T. Lucchini, L. Malgeri, M. Mannelli, A. Martelli, F. Meijers, J.A. Merlin, S. Mersi, E. Meschi, P. Milenovic47, F. Moortgat, S. Morovic, M. Mulders, H. Neugebauer, M. Stoye, Y. Takahashi, M. Tosi, D. Treille, A. Triossi, A. Tsirou, V. Veckalns50, G.I. Veres22, M. Verweij, N. Wardle, H.K. Wohri, A. Zagozdzinska37, W.D. Zeuner Paul Scherrer Institut, Villigen, Switzerland W. Bertl, K. Deiters, W. Erdmann, R. Horisberger, Q. Ingram, H.C. Kaestli, D. Kotlinski, U. Langenegger, T. Rohe Institute for Particle Physics, ETH Zurich, Zurich, Switzerland F. Bachmair, L. Bani, L. Bianchini, B. Casal, G. Dissertori, M. Dittmar, M. Donega, C. Grab, C. Heidegger, D. Hits, J. Hoss, G. Kasieczka, P. Lecomtey, W. Lustermann, B. Mangano, M. Marionneau, P. Martinez Ruiz del Arbol, M. Masciovecchio, M.T. Meinhard, D. Meister, F. Micheli, P. Musella, F. Nessi-Tedaldi, F. Pandol , J. Pata, F. Pauss, G. Perrin, L. Perrozzi, M. Quittnat, M. Rossini, M. Schonenberger, A. Starodumov51, V.R. Tavolaro, K. Theo latos, R. Wallny Universitat Zurich, Zurich, Switzerland T.K. Aarrestad, C. Amsler52, L. Caminada, M.F. Canelli, A. De Cosa, C. Galloni, A. Hinzmann, T. Hreus, B. Kilminster, J. Ngadiuba, D. Pinna, G. Rauco, P. Robmann, National Central University, Chung-Li, Taiwan V. Candelise, T.H. Doan, Sh. Jain, R. Khurana, M. Konyushikhin, C.M. Kuo, W. Lin, Y.J. Lu, A. Pozdnyakov, S.S. Yu National Taiwan University (NTU), Taipei, Taiwan Arun Kumar, P. Chang, Y.H. Chang, Y.W. Chang, Y. Chao, K.F. Chen, P.H. Chen, A. Psallidas, J.f. Tsai, Y.M. Tzeng Chulalongkorn University, Faculty of Science, Department of Physics, Bangkok, B. Asavapibhop, G. Singh, N. Srimanobhas, N. Suwonjandee Cukurova University - Physics Department, Science and Art Faculty A. Adiguzel, S. Cerci53, S. Damarseckin, Z.S. Demiroglu, C. Dozen, I. Dumanoglu, S. Girgis, G. Gokbulut, Y. Guler, I. Hos54, E.E. Kangal55, O. Kara, A. Kayis Topaksu, U. Kiminsu, M. Oglakci, G. Onengut56, K. Ozdemir57, D. Sunar Cerci53, H. Topakli58, S. Turkcapar, I.S. Zorbakir, C. Zorbilmez Middle East Technical University, Physics Department, Ankara, Turkey B. Bilin, S. Bilmis, B. Isildak59, G. Karapinar60, M. Yalvac, M. Zeyrek Bogazici University, Istanbul, Turkey E. Gulmez, M. Kaya61, O. Kaya62, E.A. Yetkin63, T. Yetkin64 Istanbul Technical University, Istanbul, Turkey A. Cakir, K. Cankocak, S. Sen65 Institute for Scintillation Materials of National Academy of Science of Ukraine, L. Levchuk, P. Sorokin National Scienti c Center, Kharkov Institute of Physics and Technology, University of Bristol, Bristol, U.K. R. Aggleton, F. Ball, L. Beck, J.J. Brooke, D. Burns, E. Clement, D. Cussans, H. Flacher, J. Goldstein, M. Grimes, G.P. Heath, H.F. Heath, J. Jacob, L. Kreczko, C. Lucas, D.M. Newbold66, S. Paramesvaran, A. Poll, T. Sakuma, S. Seif El Nasr-storey, D. Smith, Rutherford Appleton Laboratory, Didcot, U.K. K.W. Bell, A. Belyaev67, C. Brew, R.M. Brown, L. Calligaris, D. Cieri, D.J.A. Cockerill, J.A. Coughlan, K. Harder, S. Harper, E. Olaiya, D. Petyt, C.H. Shepherd-Themistocleous, A. Thea, I.R. Tomalin, T. Williams { 28 { M. Baber, R. Bainbridge, O. Buchmuller, A. Bundock, D. Burton, S. Casasso, M. Citron, D. Colling, L. Corpe, P. Dauncey, G. Davies, A. De Wit, M. Della Negra, R. Di Maria, P. Dunne, A. Elwood, D. Futyan, Y. Haddad, G. Hall, G. Iles, T. James, R. Lane, C. Laner, R. Lucas66, L. Lyons, A.-M. Magnan, S. Malik, L. Mastrolorenzo, J. Nash, A. Nikitenko51, J. Pela, B. Penning, M. Pesaresi, D.M. Raymond, A. Richards, A. Rose, C. Seez, S. Summers, A. Tapper, K. Uchida, M. Vazquez Acosta68, T. Virdee17, J. Wright, Brunel University, Uxbridge, U.K. Baylor University, Waco, U.S.A. J.E. Cole, P.R. Hobson, A. Khan, P. Kyberd, D. Leslie, I.D. Reid, P. Symonds, L. TeodorA. Borzou, K. Call, J. Dittmann, K. Hatakeyama, H. Liu, N. Pastika The University of Alabama, Tuscaloosa, U.S.A. S.I. Cooper, C. Henderson, P. Rumerio, C. West Boston University, Boston, U.S.A. D. Arcaro, A. Avetisyan, T. Bose, D. Gastler, D. Rankin, C. Richardson, J. Rohlf, L. Sulak, Brown University, Providence, U.S.A. G. Benelli, E. Berry, D. Cutts, A. Garabedian, J. Hakala, U. Heintz, J.M. Hogan, O. Jesus, K.H.M. Kwok, E. Laird, G. Landsberg, Z. Mao, M. Narain, S. Piperov, S. Sagir, E. Spencer, University of California, Davis, Davis, U.S.A. R. Breedon, G. Breto, D. Burns, M. Calderon De La Barca Sanchez, S. Chauhan, M. Chertok, J. Conway, R. Conway, P.T. Cox, R. Erbacher, C. Flores, G. Funk, M. Gardner, W. Ko, R. Lander, C. Mclean, M. Mulhearn, D. Pellett, J. Pilot, S. Shalhout, J. Smith, M. Squires, D. Stolp, M. Tripathi University of California, Los Angeles, U.S.A. C. Bravo, R. Cousins, A. Dasgupta, P. Everaerts, A. Florent, J. Hauser, M. Ignatenko, N. Mccoll, D. Saltzberg, C. Schnaible, E. Takasugi, V. Valuev, M. Weber University of California, Riverside, Riverside, U.S.A. K. Burt, R. Clare, J. Ellison, J.W. Gary, S.M.A. Ghiasi Shirazi, G. Hanson, J. Heilman, P. Jandir, E. Kennedy, F. Lacroix, O.R. Long, M. Olmedo Negrete, M.I. Paneva, A. Shrinivas, W. Si, H. Wei, S. Wimpenny, B. R. Yates University of California, San Diego, La Jolla, U.S.A. J.G. Branson, G.B. Cerati, S. Cittolin, M. Derdzinski, R. Gerosa, A. Holzner, D. Klein, V. Krutelyov, J. Letts, I. Macneill, D. Olivito, S. Padhi, M. Pieri, M. Sani, V. Sharma, S. Simon, M. Tadel, A. Vartak, S. Wasserbaech69, C. Welke, J. Wood, F. Wurthwein, A. Yagil, G. Zevi Della Porta University of California, Santa Barbara - Department of Physics, Santa Bar N. Amin, R. Bhandari, J. Bradmiller-Feld, C. Campagnari, A. Dishaw, V. Dutta, M. Franco Sevilla, C. George, F. Golf, L. Gouskos, J. Gran, R. Heller, J. Incandela, S.D. Mullin, A. Ovcharova, H. Qu, J. Richman, D. Stuart, I. Suarez, J. Yoo California Institute of Technology, Pasadena, U.S.A. D. Anderson, A. Apresyan, J. Bendavid, A. Bornheim, J. Bunn, Y. Chen, J. Duarte, J.M. Lawhorn, A. Mott, H.B. Newman, C. Pena, M. Spiropulu, J.R. Vlimant, S. Xie, Carnegie Mellon University, Pittsburgh, U.S.A. University of Colorado Boulder, Boulder, U.S.A. J.P. Cumalat, W.T. Ford, F. Jensen, A. Johnson, M. Krohn, T. Mulholland, K. Stenson, Cornell University, Ithaca, U.S.A. J. Alexander, J. Chaves, J. Chu, S. Dittmer, K. Mcdermott, N. Mirman, G. Nicolas Kaufman, J.R. Patterson, A. Rinkevicius, A. Ryd, L. Skinnari, L. So , S.M. Tan, Z. Tao, J. Thom, J. Tucker, P. Wittich, M. Zientek Fair eld University, Fair eld, U.S.A. Fermi National Accelerator Laboratory, Batavia, U.S.A. S. Abdullin, M. Albrow, G. Apollinari, S. Banerjee, L.A.T. Bauerdick, A. Beretvas, J. Berryhill, P.C. Bhat, G. Bolla, K. Burkett, J.N. Butler, H.W.K. Cheung, F. Chlebana, S. Cihangiry, M. Cremonesi, V.D. Elvira, I. Fisk, J. Freeman, E. Gottschalk, L. Gray, D. Green, S. Grunendahl, O. Gutsche, D. Hare, R.M. Harris, S. Hasegawa, J. Hirschauer, Z. Hu, B. Jayatilaka, S. Jindariani, M. Johnson, U. Joshi, B. Klima, B. Kreis, S. Lammel, J. Linacre, D. Lincoln, R. Lipton, M. Liu, T. Liu, R. Lopes De Sa, J. Lykken, K. Maeshima, N. Magini, J.M. Marra no, S. Maruyama, D. Mason, P. McBride, P. Merkel, S. Mrenna, S. Nahn, C. Newman-Holmesy, V. O'Dell, K. Pedro, O. Prokofyev, G. Rakness, L. Ristori, E. Sexton-Kennedy, A. Soha, W.J. Spalding, L. Spiegel, S. Stoynev, J. Strait, N. Strobbe, L. Taylor, S. Tkaczyk, N.V. Tran, L. Uplegger, E.W. Vaandering, C. Vernieri, M. Verzocchi, R. Vidal, M. Wang, H.A. Weber, A. Whitbeck, Y. Wu University of Florida, Gainesville, U.S.A. D. Acosta, P. Avery, P. Bortignon, D. Bourilkov, A. Brinkerho , A. Carnes, M. Carver, D. Curry, S. Das, R.D. Field, I.K. Furic, J. Konigsberg, A. Korytov, J.F. Low, P. Ma, K. Matchev, H. Mei, G. Mitselmakher, D. Rank, L. Shchutska, D. Sperka, L. Thomas, J. Wang, S. Wang, J. Yelton Florida International University, Miami, U.S.A. S. Linn, P. Markowitz, G. Martinez, J.L. Rodriguez A. Ackert, J.R. Adams, T. Adams, A. Askew, S. Bein, B. Diamond, S. Hagopian, V. Hagopian, K.F. Johnson, A. Khatiwada, H. Prosper, A. Santra, R. Yohay Florida Institute of Technology, Melbourne, U.S.A. M.M. Baarmand, V. Bhopatkar, S. Colafranceschi, M. Hohlmann, D. Noonan, T. Roy, University of Illinois at Chicago (UIC), Chicago, U.S.A. M.R. Adams, L. Apanasevich, D. Berry, R.R. Betts, I. Bucinskaite, R. Cavanaugh, O. Evdokimov, L. Gauthier, C.E. Gerber, D.J. Hofman, K. Jung, P. Kurt, C. O'Brien, I.D. Sandoval Gonzalez, P. Turner, N. Varelas, H. Wang, Z. Wu, M. Zakaria, J. Zhang The University of Iowa, Iowa City, U.S.A. B. Bilki70, W. Clarida, K. Dilsiz, S. Durgut, R.P. Gandrajula, M. Haytmyradov, V. Khristenko, J.-P. Merlo, H. Mermerkaya71, A. Mestvirishvili, A. Moeller, J. Nachtman, H. Ogul, Y. Onel, F. Ozok72, A. Penzo, C. Snyder, E. Tiras, J. Wetzel, K. Yi Johns Hopkins University, Baltimore, U.S.A. I. Anderson, B. Blumenfeld, A. Cocoros, N. Eminizer, D. Fehling, L. Feng, A.V. Gritsan, P. Maksimovic, C. Martin, M. Osherson, J. Roskes, U. Sarica, M. Swartz, M. Xiao, Y. Xin, The University of Kansas, Lawrence, U.S.A. A. Al-bataineh, P. Baringer, A. Bean, S. Boren, J. Bowen, C. Bruner, J. Castle, L. Forthomme, R.P. Kenny III, S. Khalil, A. Kropivnitskaya, D. Majumder, W. Mcbrayer, M. Murray, S. Sanders, R. Stringer, J.D. Tapia Takaki, Q. Wang Kansas State University, Manhattan, U.S.A. A. Ivanov, K. Kaadze, Y. Maravin, A. Mohammadi, L.K. Saini, N. Skhirtladze, S. Toda Lawrence Livermore National Laboratory, Livermore, U.S.A. F. Rebassoo, D. Wright University of Maryland, College Park, U.S.A. C. Anelli, A. Baden, O. Baron, A. Belloni, B. Calvert, S.C. Eno, C. Ferraioli, J.A. Gomez, N.J. Hadley, S. Jabeen, R.G. Kellogg, T. Kolberg, J. Kunkle, Y. Lu, A.C. Mignerey, F. Ricci-Tam, Y.H. Shin, A. Skuja, M.B. Tonjes, S.C. Tonwar Massachusetts Institute of Technology, Cambridge, U.S.A. D. Abercrombie, B. Allen, A. Apyan, R. Barbieri, A. Baty, R. Bi, K. Bierwagen, S. Brandt, W. Busza, I.A. Cali, Z. Demiragli, L. Di Matteo, G. Gomez Ceballos, M. Goncharov, D. Hsu, Y. Iiyama, G.M. Innocenti, M. Klute, D. Kovalskyi, K. Krajczar, Y.S. Lai, Y.-J. Lee, A. Levin, P.D. Luckey, B. Maier, A.C. Marini, C. Mcginn, C. Mironov, S. Narayanan, X. Niu, C. Paus, C. Roland, G. Roland, J. Salfeld-Nebgen, G.S.F. Stephans, K. Sumorok, K. Tatar, M. Varma, D. Velicanu, J. Veverka, J. Wang, T.W. Wang, B. Wyslouch, M. Yang, V. Zhukova { 31 { A.C. Benvenuti, R.M. Chatterjee, A. Evans, A. Finkel, A. Gude, P. Hansen, S. Kalafut, S.C. Kao, Y. Kubota, Z. Lesko, J. Mans, S. Nourbakhsh, N. Ruckstuhl, R. Rusack, N. Tambe, J. Turkewitz University of Mississippi, Oxford, U.S.A. J.G. Acosta, S. Oliveros University of Nebraska-Lincoln, Lincoln, U.S.A. E. Avdeeva, R. Bartek73, K. Bloom, D.R. Claes, A. Dominguez73, C. Fangmeier, R. Gon J.E. Siado, G.R. Snow, B. Stieger State University of New York at Bu alo, Bu alo, U.S.A. M. Alyari, J. Dolen, J. George, A. Godshalk, C. Harrington, I. Iashvili, J. Kaisen, A. Kharchilava, A. Kumar, A. Parker, S. Rappoccio, B. Roozbahani Northeastern University, Boston, U.S.A. G. Alverson, E. Barberis, A. Hortiangtham, A. Massironi, D.M. Morse, D. Nash, T. Orimoto, R. Teixeira De Lima, D. Trocino, R.-J. Wang, D. Wood Northwestern University, Evanston, U.S.A. S. Bhattacharya, O. Charaf, K.A. Hahn, A. Kubik, A. Kumar, N. Mucia, N. Odell, B. Pollack, M.H. Schmitt, K. Sung, M. Trovato, M. Velasco University of Notre Dame, Notre Dame, U.S.A. N. Dev, M. Hildreth, K. Hurtado Anampa, C. Jessop, D.J. Karmgard, N. Kellams, K. Lannon, N. Marinelli, F. Meng, C. Mueller, Y. Musienko38, M. Planer, A. Reinsvold, R. Ruchti, G. Smith, S. Taroni, M. Wayne, M. Wolf, A. Woodard The Ohio State University, Columbus, U.S.A. J. Alimena, L. Antonelli, J. Brinson, B. Bylsma, L.S. Durkin, S. Flowers, B. Francis, A. Hart, C. Hill, R. Hughes, W. Ji, B. Liu, W. Luo, D. Puigh, B.L. Winer, H.W. Wulsin Princeton University, Princeton, U.S.A. S. Cooperstein, O. Driga, P. Elmer, J. Hardenbrook, P. Hebda, D. Lange, J. Luo, D. Marlow, J. Mc Donald, T. Medvedeva, K. Mei, M. Mooney, J. Olsen, C. Palmer, P. Piroue, D. Stickland, A. Svyatkovskiy, C. Tully, A. Zuranski University of Puerto Rico, Mayaguez, U.S.A. Purdue University, West Lafayette, U.S.A. A. Barker, V.E. Barnes, S. Folgueras, L. Gutay, M.K. Jha, M. Jones, A.W. Jung, D.H. Miller, N. Neumeister, J.F. Schulte, X. Shi, J. Sun, F. Wang, W. Xie Purdue University Calumet, Hammond, U.S.A. N. Parashar, J. Stupak A. Adair, B. Akgun, Z. Chen, K.M. Ecklund, F.J.M. Geurts, M. Guilbaud, W. Li, B. Michlin, M. Northup, B.P. Padley, R. Redjimi, J. Roberts, J. Rorie, Z. Tu, J. Zabel University of Rochester, Rochester, U.S.A. B. Betchart, A. Bodek, P. de Barbaro, R. Demina, Y.t. Duh, T. Ferbel, M. Galanti, Rutgers, The State University of New Jersey, Piscataway, U.S.A. A. Agapitos, J.P. Chou, E. Contreras-Campana, Y. Gershtein, T.A. Gomez Espinosa, E. Halkiadakis, M. Heindl, D. Hidas, E. Hughes, S. Kaplan, R. Kunnawalkam Elayavalli, S. Kyriacou, A. Lath, K. Nash, H. Saka, S. Salur, S. Schnetzer, D. She eld, S. Somalwar, R. Stone, S. Thomas, P. Thomassen, M. Walker University of Tennessee, Knoxville, U.S.A. A.G. Delannoy, M. Foerster, J. Heideman, G. Riley, K. Rose, S. Spanier, K. Thapa Texas A&M University, College Station, U.S.A. O. Bouhali74, A. Celik, M. Dalchenko, M. De Mattia, A. Delgado, S. Dildick, R. Eusebi, J. Gilmore, T. Huang, E. Juska, T. Kamon75, R. Mueller, Y. Pakhotin, R. Patel, A. Perlo , L. Pernie, D. Rathjens, A. Rose, A. Safonov, A. Tatarinov, K.A. Ulmer Texas Tech University, Lubbock, U.S.A. N. Akchurin, C. Cowden, J. Damgov, F. De Guio, C. Dragoiu, P.R. Dudero, J. Faulkner, E. Gurpinar, S. Kunori, K. Lamichhane, S.W. Lee, T. Libeiro, T. Peltola, S. Undleeb, I. Volobouev, Z. Wang Vanderbilt University, Nashville, U.S.A. S. Tuo, J. Velkovska, Q. Xu University of Virginia, Charlottesville, U.S.A. T. Sinthuprasith, X. Sun, Y. Wang, E. Wolfe, F. Xia Wayne State University, Detroit, U.S.A. C. Clarke, R. Harr, P.E. Karchin, J. Sturdy S. Greene, A. Gurrola, R. Janjam, W. Johns, C. Maguire, A. Melo, H. Ni, P. Sheldon, M.W. Arenton, P. Barria, B. Cox, J. Goodell, R. Hirosky, A. Ledovskoy, H. Li, C. Neu, University of Wisconsin - Madison, Madison, WI, U.S.A. D.A. Belknap, J. Buchanan, C. Caillol, S. Dasu, L. Dodd, S. Duric, B. Gomber, M. Grothe, M. Herndon, A. Herve, P. Klabbers, A. Lanaro, A. Levine, K. Long, R. Loveless, I. Ojalvo, T. Perry, G.A. Pierro, G. Polese, T. Ruggles, A. Savin, N. Smith, W.H. Smith, D. Taylor, 1: Also at Vienna University of Technology, Vienna, Austria CNRS/IN2P3, Strasbourg, France 3: Also at Institut Pluridisciplinaire Hubert Curien (IPHC), Universite de Strasbourg, 4: Also at Universidade Estadual de Campinas, Campinas, Brazil 5: Also at Universidade Federal de Pelotas, Pelotas, Brazil 6: Also at Universite Libre de Bruxelles, Bruxelles, Belgium 7: Also at Deutsches Elektronen-Synchrotron, Hamburg, Germany 8: Also at Joint Institute for Nuclear Research, Dubna, Russia 9: Also at Suez University, Suez, Egypt 10: Now at British University in Egypt, Cairo, Egypt 11: Also at Ain Shams University, Cairo, Egypt 12: Now at Helwan University, Cairo, Egypt 13: Also at Universite de Haute Alsace, Mulhouse, France 15: Also at Tbilisi State University, Tbilisi, Georgia 16: Also at Ilia State University, Tbilisi, Georgia 14: Also at Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, 17: Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland 18: Also at RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany 19: Also at University of Hamburg, Hamburg, Germany 20: Also at Brandenburg University of Technology, Cottbus, Germany 21: Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary 22: Also at MTA-ELTE Lendulet CMS Particle and Nuclear Physics Group, Eotvos Lorand 23: Also at Institute of Physics, University of Debrecen, Debrecen, Hungary 24: Also at Indian Institute of Science Education and Research, Bhopal, India 25: Also at Institute of Physics, Bhubaneswar, India 26: Also at University of Visva-Bharati, Santiniketan, India 27: Also at University of Ruhuna, Matara, Sri Lanka 28: Also at Isfahan University of Technology, Isfahan, Iran 29: Also at University of Tehran, Department of Engineering Science, Tehran, Iran 30: Also at Yazd University, Yazd, Iran 31: Also at Plasma Physics Research Center, Science and Research Branch, Islamic Azad 32: Also at Universita degli Studi di Siena, Siena, Italy 33: Also at Purdue University, West Lafayette, U.S.A. 34: Also at International Islamic University of Malaysia, Kuala Lumpur, Malaysia 35: Also at Malaysian Nuclear Agency, MOSTI, Kajang, Malaysia 36: Also at Consejo Nacional de Ciencia y Tecnolog a, Mexico city, Mexico 37: Also at Warsaw University of Technology, Institute of Electronic Systems, Warsaw, Poland 38: Also at Institute for Nuclear Research, Moscow, Russia at National Research Nuclear University 'Moscow Engineering Physics Insti40: Also at St. Petersburg State Polytechnical University, St. Petersburg, Russia 41: Also at University of Florida, Gainesville, U.S.A. 42: Also at P.N. Lebedev Physical Institute, Moscow, Russia 43: Also at California Institute of Technology, Pasadena, U.S.A. 45: Also at Faculty of Physics, University of Belgrade, Belgrade, Serbia 46: Also at INFN Sezione di Roma; Universita di Roma, Roma, Italy 47: Also at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, 48: Also at Scuola Normale e Sezione dell'INFN, Pisa, Italy 49: Also at National and Kapodistrian University of Athens, Athens, Greece 50: Also at Riga Technical University, Riga, Latvia 51: Also at Institute for Theoretical and Experimental Physics, Moscow, Russia 52: Also at Albert Einstein Center for Fundamental Physics, Bern, Switzerland 53: Also at Adiyaman University, Adiyaman, Turkey 54: Also at Istanbul Aydin University, Istanbul, Turkey 55: Also at Mersin University, Mersin, Turkey 56: Also at Cag University, Mersin, Turkey 57: Also at Piri Reis University, Istanbul, Turkey 58: Also at Gaziosmanpasa University, Tokat, Turkey 59: Also at Ozyegin University, Istanbul, Turkey 60: Also at Izmir Institute of Technology, Izmir, Turkey 61: Also at Marmara University, Istanbul, Turkey 62: Also at Kafkas University, Kars, Turkey 63: Also at Istanbul Bilgi University, Istanbul, Turkey 64: Also at Yildiz Technical University, Istanbul, Turkey 65: Also at Hacettepe University, Ankara, Turkey 66: Also at Rutherford Appleton Laboratory, Didcot, U.K. 67: Also at School of Physics and Astronomy, University of Southampton, Southampton, U.K. 68: Also at Instituto de Astrof sica de Canarias, La Laguna, Spain 69: Also at Utah Valley University, Orem, U.S.A. 70: Also at Argonne National Laboratory, Argonne, U.S.A. 71: Also at Erzincan University, Erzincan, Turkey 72: Also at Mimar Sinan University, Istanbul, Istanbul, Turkey 73: Now at The Catholic University of America, Washington, U.S.A. 74: Also at Texas A&M University at Qatar, Doha, Qatar 75: Also at Kyungpook National University, Daegu, Korea [7] B. Gripaios, Composite leptoquarks at the LHC, JHEP 02 (2010) 045 [arXiv:0910.1789] [17] M. Cacciari, G.P. Salam and G. Soyez, The Anti-kt jet clustering algorithm, JHEP 04 (2008) [18] CMS collaboration, Pileup jet identi cation, CMS-PAS-JME-13-005 (2013). [24] CMS collaboration, Performance of -lepton reconstruction and identi cation in CMS, 2012 [25] J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer and T. Stelzer, MadGraph 5: going beyond, [26] T. Sjostrand et al., An introduction to PYTHIA 8.2, Comput. Phys. Commun. 191 (2015) [27] GEANT4 collaboration, S. Agostinelli et al., GEANT4: a simulation toolkit, Nucl. Instrum. [28] M. Kramer, T. Plehn, M. Spira and P.M. Zerwas, Pair production of scalar leptoquarks at the CERN LHC, Phys. Rev. D 71 (2005) 057503 [hep-ph/0411038] [INSPIRE]. [29] S. Hoche, Y. Li and S. Prestel, Drell-Yan lepton pair production at NNLO QCD with parton showers, Phys. Rev. D 91 (2015) 074015 [arXiv:1405.3607] [INSPIRE]. [30] R. Boughezal, C. Focke, X. Liu and F. Petriello, W -boson production in association with a jet at next-to-next-to-leading order in perturbative QCD, Phys. Rev. Lett. 115 (2015) 062002 [31] M. Czakon and A. Mitov, NNLO corrections to top-pair production at hadron colliders: the [34] J. Butterworth et al., PDF4LHC recommendations for LHC Run II, J. Phys. G 43 (2016) [36] G. Miu and T. Sjostrand, W production in an improved parton shower approach, Phys. Lett. [38] A.L. Read, Presentation of search results: The CLs technique, J. Phys. G 28 (2002) 2693 [39] E. Akhmedov, A. Kartavtsev, M. Lindner, L. Michaels and J. Smirnov, Improving electro-weak ts with TeV-scale sterile neutrinos, JHEP 05 (2013) 081 [arXiv:1302.1872] E. Belchior Batista Das Chagas, W. Carvalho, J. Chinellato4, A. Custodio, E.M. Da Costa, Brazil France A. Abdulsalam, I. Antropov, S. Ba oni, F. Beaudette, P. Busson, L. Cadamuro, E. Chapon, C. Charlot, O. Davignon, R. Granier de Cassagnac, M. Jo, S. Lisniak, P. Mine, M. Nguyen, C. Ochando, G. Ortona, P. Paganini, P. Pigard, S. Regnard, R. Salerno, Y. Sirois, T. Strebler, Y. Yilmaz, A. Zabi F. Colombo, W. De Boer, A. Dierlamm, S. Fink, B. Freund, R. Friese, M. Gi els, A. Gilbert, P. Goldenzweig, D. Haitz, F. Hartmann17, S.M. Heindl, U. Husemann, I. Katkov14, S. Kudella, P. Lobelle Pardo, H. Mildner, M.U. Mozer, Th. Muller, M. Plagge, G. Quast, K. Rabbertz, S. Rocker, F. Roscher, M. Schroder, I. Shvetsov, G. Sieber, H.J. Simonis, R. Ulrich, J. Wagner-Kuhr, S. Wayand, M. Weber, T. Weiler, S. Williamson, C. Wohrmann, Italy Italy L. Brianza17, M.E. Dinardoa;b, S. Fiorendia;b;17, S. Gennaia, A. Ghezzia;b, P. Govonia;b, M. Malberti, S. Malvezzia, R.A. Manzonia;b, D. Menascea, L. Moronia, M. Paganonia;b, D. Pedrinia, S. Pigazzini, S. Ragazzia;b, T. Tabarelli de Fatisa;b S. Cho, S. Choi, Y. Go, D. Gyun, S. Ha, B. Hong, Y. Jo, Y. Kim, B. Lee, K. Lee, K.S. Lee, J. Almond, J. Kim, H. Lee, S.B. Oh, B.C. Radburn-Smith, S.h. Seo, U.K. Yang, H.D. Yoo, Malaysia I. Ahmed, Z.A. Ibrahim, J.R. Komaragiri, M.A.B. Md Ali34, F. Mohamad Idris35, W.A.T. Wan Abdullah, M.N. Yusli, Z. Zolkapli Portugal P. Bargassa, C. Beir~ao Da Cruz E Silva, B. Calpas, A. Di Francesco, P. Faccioli, P.G. Ferreira Parracho, M. Gallinaro, J. Hollar, N. Leonardo, L. Lloret Iglesias, M.V. Nemallapudi, J. Rodrigues Antunes, J. Seixas, O. Toldaiev, D. Vadruccio, J. Varela, P. Vischia Cortabitarte I.J. Cabrillo, A. Calderon, J.R. Castin~eiras De Saa, E. Curras, M. Fernandez, J. GarciaFerrero, G. Gomez, A. Lopez Virto, J. Marco, C. Martinez Rivero, F. Matorras, J. Piedra S. Orfanelli, L. Orsini, L. Pape, E. Perez, M. Peruzzi, A. Petrilli, G. Petrucciani, A. Pfei er, M. Pierini, A. Racz, T. Reis, G. Rolandi48, M. Rovere, M. Ruan, H. Sakulin, J.B. Sauvan, C. Schafer, C. Schwick, M. Seidel, A. Sharma, P. Silva, P. Sphicas49, J. Steggemann, C. Dietz, F. Fiori, W.-S. Hou, Y. Hsiung, Y.F. Liu, R.-S. Lu, M. Min~ano Moya, E. Paganis, Thailand M.B. Andrews, V. Azzolini, T. Ferguson, M. Paulini, J. Russ, M. Sun, H. Vogel, I. Vorobiev, zalez Suarez, R. Kamalieddin, I. Kravchenko, A. Malta Rodrigues, F. Meier, J. Monroy, A. Garcia-Bellido, J. Han, O. Hindrichs, A. Khukhunaishvili, K.H. Lo, P. Tan, M. Verzetti


This is a preview of a remote PDF: https://link.springer.com/content/pdf/10.1007%2FJHEP03%282017%29077.pdf

V. Khachatryan, A. M. Sirunyan, A. Tumasyan, W. Adam. Search for heavy neutrinos or third-generation leptoquarks in final states with two hadronically decaying τ leptons and two jets in proton-proton collisions at \( \sqrt{s}=13 \) TeV, Journal of High Energy Physics, 2017, 77, DOI: 10.1007/JHEP03(2017)077