Measurement of the transverse momentum spectra of weak vector bosons produced in proton-proton collisions at \( \sqrt{s}=8 \) TeV

Journal of High Energy Physics, Feb 2017

The transverse momentum spectra of weak vector bosons are measured in the CMS experiment at the LHC. The measurement uses a sample of proton-proton collisions at \( \sqrt{s}=8 \) TeV, collected during a special low-luminosity running that corresponds to an integrated luminosity of 18.4 ± 0.5 pb−1. The production of W bosons is studied in both electron and muon decay modes, while the production of Z bosons is studied using only the dimuon decay channel. The ratios of W− to W+ and Z to W differential cross sections are also measured. The measured differential cross sections and ratios are compared with theoretical predictions up to next-to-next leading order in QCD.

A PDF file should load here. If you do not see its contents the file may be temporarily unavailable at the journal website or you do not have a PDF plug-in installed and enabled in your browser.

Alternatively, you can download the file locally and open with any standalone PDF reader:

Measurement of the transverse momentum spectra of weak vector bosons produced in proton-proton collisions at \( \sqrt{s}=8 \) TeV

Received: June Measurement of the transverse momentum spectra of C. Martinez Rivero 0 1 2 3 F. Matorras 0 1 2 3 J. Piedra Gomez 0 1 2 3 T. Rodrigo 0 1 2 3 A.Y. Rodr guez-Marrero 0 1 2 3 0 vitch , B. Ille, F. Lagarde, I.B. Laktineh, M. Lethuillier, L. Mirabito, A.L. Pequegnot 1 Chulalongkorn University, Faculty of Science, Department of Physics , Bangkok 2 tute' (MEPhI) , Moscow , Russia 3 58: Also at Istanbul Bilgi University , Istanbul , Turkey The transverse momentum spectra of weak vector bosons are measured in the CMS experiment at the LHC. The measurement uses a sample of proton-proton collisions at p s = 8 TeV, collected during a special low-luminosity running that corresponds to an integrated luminosity of 18:4 momentum; Hadron-Hadron scattering (experiments); QCD - collisions at weak vector bosons produced in proton-proton . The production of W bosons is studied in both electron and muon decay modes, while the production of Z bosons is studied using only the dimuon decay channel. The ratios of W to W+ and Z to W di erential cross sections are also measured. The measured di erential cross sections and ratios are compared with theoretical predictions up to next-to-next leading order in QCD. Measurement of the transverse momentum spectra The W boson signal extraction 5.2 The Z boson signal extraction 1 Introduction 2 The CMS detector 3 Data and simulated samples 4 Event selection 6 Background estimation The W boson analysis 6.2 The Z boson analysis 7 Systematic uncertainty 8 Results 9 Summary The CMS collaboration Introduction The W and Z di erential cross sections Ratios of the cross sections + X, play an important role at hadron colliders. Their clean leptonic nal states allow for precise measurements with small experimental uncertainties that can be compared to theoretical predictions. In proton-proton collisions, the W and Z bosons (denoted as V) are produced with zero transverse momentum pT at leading order (LO). In a xed-order perturbation theory, such a description shows a divergent behaviour of the pT spectrum in the low-pT region, which is sensitive to initial-state radiation and nonperturbative e ects [1]. The high-pT region is more sensitive to perturbative e ects [2]; thus the experimental measurement of pTV constitutes a crucial test for both nonperturbative and perturbative quantum chromodynamics (QCD) calculations. This paper reports a measurement of the W and Z boson pT spectra and their ratios via electron and muon decay channels for the W and the muon decay channel for the Z boson within identical lepton ducial volumes. The low-pileup data sample used in this analysis was collected during low instantaneous luminosity proton-proton collisions at typically has only 4 collisions per bunch crossing (pileup) resulting in less background and improved resolution compared to ref. [4]. A ner binning at low Z boson pT and a lower lepton pT threshold of 20 GeV compared to the 25 GeV of ref. [4] also provide improvements over ref. [4]. The CDF and D0 Collaborations at the Fermilab Tevatron measured the W boson transverse momentum distribution in proton-antiproton collisions at p s = 1:8 TeV [5, 6] and the inclusive W and Z boson cross sections using the electron and muon decay channels electron or muon channel in proton-antiproton collisions at p s = 1:96 TeV [9{11]. production in the The high yield of W and Z boson events at the CERN LHC enables detailed studies of weak vector boson production mechanisms in di erent kinematic regions. The ATLAS and CMS Collaborations have performed several measurements of W and Z boson production via leptonic decays measured at both p the inclusive W and Z boson cross sections in both electrons and muons [3, 12, 13] and of the 18] and W bosons [19], but the latter has only been measured at p mass [14, 15]. The cross sections as a function of pT are measured for Z bosons [4, 16{ s = 7 TeV. LHCb Collaboration has measured the forward W and Z boson production cross sections and spectra for various kinematic variables at p s = 7 and 8 TeV using decays to lepton pairs [20{25]. All of the results are consistent with standard model (SM) expectations. The total and di erential DY production cross sections are currently calculated up to next-to-next-to-leading-order (NNLO) [2, 26] accuracy in perturbation theory, as implemented in the fewz (version 3.1) simulation code [27{29]. The theoretical treatment of soft-gluon emission is presently available to third order in the QCD coupling constant using resummation techniques as used in the ResBos (P and CP versions) programs [30{32]. The measured cross sections can also be compared with predictions from an event generator like powheg (version 1.0) [33{36], which uses next-to-leading-order (NLO) QCD matrix elements. This package uses parton shower and hadronization processes implemented in pythia (version 6.424) [37]. The paper is organized as follows. A brief description of the CMS detector is introduced in section 2. Event samples and Monte Carlo (MC) simulations are presented in section 3. We then describe the object reconstruction and event selection in section 4. These are followed by the background estimation and the measurement of W and Z boson pT spectra in sections 6 and 5, respectively. The evaluation of the systematic uncertainties is described in section 7. We then present the results in section 8 and the summary in section 9. The CMS detector The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal diameter that provides a magnetic eld of 3.8 T. Within the solenoid volume are a silicon pixel and strip tracker, a lead tungstate crystal electromagnetic calorimeter (ECAL), and a brass and scintillator hadron calorimeter (HCAL), each composed of a barrel and two endcap sections. Extensive forward calorimetry complements the coverage provided by the barrel and endcap detectors. Muons are measured in gas-ionization detectors embedded in the steel ux-return yoke outside the solenoid. A more detailed description of the CMS detector, together with de nitions of the coordinate system and the relevant kinematic variables such as pseudorapidity , can be found in ref. [38]. Data and simulated samples In this analysis, W boson candidates are reconstructed from their leptonic decays to elec), while Z bosons are reconstructed only via their ). The candidate events were collected by using dedicated singletrons (W ! e e) or muons (W ! dimuon decays (Z ! lepton triggers for low instantaneous luminosity operation of the LHC that required the presence of an electron (muon) with pT > 22 (15) GeV and j j < 2:5 (2:1). The W and Z boson processes are generated with powheg at NLO accuracy using the parton distribution function (PDF) set CT10 [39]. The factorization and the renorpTV refer to the mass and the transverse momentum, respectively, of the vector boson. For the background processes, parton showering and hadronization are implemented by using pythia with the kT-MLM prescription for the matrix element to parton showering matching, as described in ref. [40]. For the underlying event, the Z2* tune is used. The pythia Z2* tune is derived from the Z1 tune [41], which uses the CTEQ5L PDF set, whereas Z2* adopts CTEQ6L [42]. The e ect of QED nal-state radiation (FSR) is implemented by using pythia. The and diboson background event samples are generated with pythia. Inclusive tt and W + jets processes are generated with the MadGraph 5 (version 1.3.30) [43] LO to pythia using the CTEQ6L PDF set. The generated events are processed through the Geant4-based [44] detector simulation, trigger emulation, and event reconstruction chain of the CMS experiment. Independently simulated pileup events with pythia Z2* are superimposed on the generated event samples with a distribution that matches pileup events in data. Event selection The analysis uses the particle- ow (PF) algorithm [45, 46], which combines information from various detector subsystems to classify reconstructed objects or candidates according to particle type, thereby improving the precision of the particle energy and momentum measurements especially at low momenta. The electron reconstruction combines electromagnetic clusters in ECAL and tracks reconstructed in the silicon tracker using the Gaussian Sum Filter algorithm (GSF) [47]. Electron candidates are selected by requiring a good agreement between track and cluster variables in position and energy, as well as no signi cant contribution in the HCAL [48]. Electrons from photon conversions are rejected by the vertex method described in ref. [49]. The magnitude of the transverse impact parameter is required to be <0:02 cm and the longitudinal distance from the interaction vertex is required to be <0:1 cm for electrons; this ensures that the electron candidate is consistent with a particle originating from the primary interaction vertex, which is the vertex with the highest p2T sum of tracks associ The muon reconstruction starts from a candidate muon seed in the muon detectors followed by a global t that uses information from the muon detectors and the silicon tracker [50]. The track associated with each muon candidate is required to have at least one hit in the pixel detector and at least ve hits in di erent layers of the silicon tracker. The track is also required to have hits in at least two di erent muon detector planes. The magnitude of the transverse impact parameter is required to be <0:2 cm and the longitudinal distance from the interaction vertex is required to be <0.5 cm. The missing transverse momentum vector p~miss in the event is de ned as the projection of the negative vector sum of all the reconstructed particle momenta onto the plane perpendicular to the beam. Its magnitude is de ned as missing transverse energy ETmiss. The analysis of the inclusive W boson production in the electron (muon) channel requires events with a single isolated electron (muon) with pT > 25(20) GeV using the ETmiss distribution to evaluate the signal yield. Background events from QCD multijet processes are suppressed by requiring isolated leptons. For the W boson analysis, the isolation is based on the particle- ow information and is calculated by summing the pT of charged hadrons and neutral particles in a cone with radius electron (muon) events around the direction of the lepton at the interaction vertex R = p )2 < 0:3 (0:4) for IPF = X pcharged + max h0; X pneutral + X p T X pcharged + max h0; X pneutral + X p T =peT; =pT; where P pcharged is the scalar pT sum of charged hadrons originating from the primary T vertex, P pPTU is the energy deposited in the isolation cone by charged particles not associated with the primary vertex, and P pneutral and P p T are the scalar sums of the pT for neutral hadrons and photons, respectively. A correction is included in the isolation variables to account for the neutral particles from pileup and underlying events. For electrons, the average transverse-momentum density is calculated in each event by using the \jet area" Ajet [51], where coming from pileup in the event, where pjTet is the transverse momentum of a jet. This density is convolved with the e ective area Ae of the isolation cone, where the e ective area Ae is the geometric area of the isolation cone times an -dependent correction factor that accounts for the residual dependence of the isolation on pileup. For muons, the correction is applied by subtracting P pPU multiplied by a factor 0.5. This factor corresponds approximately to the ratio of neutral to charged particle production in the hadronization process. The W boson events are selected if IPeF < 0:15 or IPF < 0:12. For the W boson analysis, events with a second electron with peT > 20 GeV or a second muon with p T > 17 GeV that passes loose selection criteria are rejected as W boson events DY processes. The second electron selection uses a loose selection working point [48], which mainly relaxes the match of the energy and position between the GSF tracks and the associated clusters in the ECAL. For the second muon, the required number of hits in the pixel detector, the silicon tracker, and the muon detector are relaxed [50]. Several corrections are applied to the simulated events to account for the observed small discrepancies between data and simulation. A better description of the data is obtained by applying corrections to the lepton pT and ETmiss. There are two main sources of disagreement in the pT description: the momentum scale and the modeling of the pT resolution. The corrections for these e ects are determined from a comparison of the mass spectrum between data and simulation [13]. The lepton momentum scale correction factor is found to be close to unity with an uncertainty of 0.2% (0.1%) for electrons (muons). An additional smearing of the lepton pT- and -dependent resolution in the range 0.4 to 0.9 (0.1 to 0.7) GeV for electrons (muons) is applied to reproduce the distribution of the dilepton invariant mass observed in data. The vector boson recoil is de ned as the vector sum of the transverse momenta of all the observed particles, excluding the leptons produced in the vector boson decay. The ETmiss spectra in the W boson signal simulation rely on the modeling of the W boson recoil and the simulation of the detector response. The correction factors for the W boson recoil simulation are estimated using a comparison of the Z boson recoil between data and simulation [13, 52]. The factors for the recoil scale (resolution) range from 0.88 to 0.98 (from 0.84 to 1.09) as a function of the boson pT with an uncertainty of about 3 (5)%. They are applied to the simulated W boson recoil distributions. The corrected ETmiss and corrected lepton momenta are used to calculate the transverse mass MT of the W, MT = q the signal yield extraction for the muon channel in the high-pT region, as described in ETmiss;` is the azimuthal angle between p~miss and lepton p~T. T MT is used for A set of lepton e ciencies, namely the lepton reconstruction and identi cation, and trigger e ciencies, are estimated in simulation and then corrected for the di erences between data and simulation. These corrections are evaluated by using a \tag-and-probe" method [53] and the total e ciency correction factor for the simulated samples ranges 0:05) and 1:03 0:03) for electrons (muons). For the inclusive Z boson events we require two isolated oppositely charged muons with pT > 20 GeV. A vertex t is performed to ensure that the candidates originate from the same Z boson. The background due to cosmic ray muons passing through the detector and mimicking dimuon events is suppressed by requiring that the two muons are not backto-back, i.e. the three-dimensional opening angle between the two muons should be smaller 0:02 radians. Finally, the muon pair is required to have a reconstructed invariant mass in the range 60{120 GeV. For the Z boson analysis, the dimuon invariant mass selection and a vertex t enables the use of a simpler isolation variable based only on charged tracks. The track isolation variable Itrk is de ned as the scalar sum of the track momenta of charged particles lying within a cone of radius Itrk=pT < 0:1. Measurement of the transverse momentum spectra The transverse momentum of the vector boson pTV is computed from the momentum sum of the decay leptons for the Z boson, or the lepton and p~miss for the W boson. The measurements are performed within the lepton ducial volumes de ned by pT > 25 (20) GeV, j j < 2:5 (2:1) for the electron (muon) channel. The ducial region for the boson di erential cross section is de ned by the pT and requirements on the leptons. The transverse momentum spectra are analyzed as binned histograms, with bin widths varying from 7.5 (2.5) GeV for the W (Z) boson up to 350 GeV, in order to provide su cient resolution to observe the shape of the distribution, limit the migration of events between neighbouring bins, and ensure a su cient number of events in each bin. The cross section in the ith pTV bin is de ned as where Ni is the estimated number of signal events in the bin, i is the width of the bin, i is the e ciency of the event selection in that bin, and R Ldt is the integrated luminosity. The di erential distributions are unfolded to the lepton level before QED radiation (pre-FSR) within the same ducial volume. The W boson signal extraction The W boson signal yield and the backgrounds for each pTW bin are determined using an extended likelihood t to the ETmiss distributions. The ts constrain the sum of signal plus background to the data within each bin. Figure 1 shows an example of the t for the bin 17:5 < pTW < 24 GeV. The signal and background shapes are determined separately for W+ and W bosons to account for the di erence in the kinematical con guration arising from the parity-violating nature of the weak interaction. The signal yield and background contaminations are estimated from the t, which is performed simultaneously in the signal candidate sample and in the corresponding QCD control sample for each pTW bin. The QCD multijet-enriched control samples are de ned by inverting the selection on some identi cation variables for the electron channel, and by inverting the isolation requirement for the muon channel, while maintaining the rest of the signal selection criteria. The W boson signal and electroweak (EW) background (explained in section 6) templates are produced by using simulated events including all corrections described in section 4. The EW contribution is constrained for the W signal yield by xing the ratio of the theoretical cross section of the EW contribution to that of W boson production. The QCD shape of ETmiss distribution is parameterized by a modi ed Rayleigh function [3], f (x) = x exp and x = (ETmiss a) for pW < 17:5 GeV, where a is a parameter of the t needed to take into account the minimum ETmiss value at each pTW bin due to trigger requirements on the p` . The parameter 0 in eq. (5.2) is, however, kept oating separately in signal and T In the muon channel, the QCD multijet contribution decreases noticeably with increasing pTW because the probability of the background muon to pass the isolation criteria decreases. For pTW > 70 GeV the MT distributions, instead of ETmiss, are tted to maintain a good separation between the signal and the QCD background shape. The extracted signal and background yields are shown as a function of pTW in gure 2 for electrons (upper) and In order to obtain the di erential cross section before FSR, the detector resolution and FSR e ects need to be corrected. This is achieved by a two-step unfolding process using the singular value decomposition (SVD) method [54]. SVD uses two response matrices. The rst matrix maps the intra-bin migration e ects to the reconstructed pTW from leptons after a possible FSR (post-FSR) e ect, using the powheg simulated signal sample as the baseline, after applying lepton momentum resolution, e ciency, and recoil corrections. The second matrix maps the pTW distribution taking into account the FSR e ect of the lepton, i.e. from pre-FSR to post-FSR. The event reconstruction e ciency is corrected bin-by-bin after unfolding for the detector resolution by using the simulated signal sample. An acceptance correction is applied to the pre-FSR distribution after FSR unfolding; about 5.1% (1.9%) of the events with a preFSR level electron (muon) generated within the ducial region do not pass the post-FSR lepton requirements of the ducial volume. The Z boson signal extraction The number of observed Z boson events is obtained by subtracting the estimated number of background events from the total number of detected events in each of the pZT bins. The transverse momentum distribution of the dimuon system for the reconstructed events is shown in gure 3 separately for the low- and high-pZT regions to show the level of agreement between data and simulation. The NLO QCD calculation in powheg underestimates the data by 27% in the pZT range below 2.5 GeV. The measured p ZT distributions are corrected for bin migration e ects that arise from the detector resolution and FSR e ects with a similar technique to the W boson analysis described in section 5.1 using a matrix-based unfolding procedure [55]. The nal result is corrected by the bin width and is normalized by the measured total cross section the ducial region (section 5) in the range of the dimuon mass, 60 < m candidates for 17:5 < pW < 24 GeV (left) and the corresponding QCD multijet-enriched control T sample (right). Solid lines represent the results of the t. The dotted lines represent the signal shape after background subtraction. The bottom panels show the di erence between data and tted results divided by the statistical uncertainty in data, Data. Background estimation The W boson analysis QCD multijet events are the dominant source of background in the W boson analysis. The level of contamination is estimated from data as described in section 5.1. It is about 40% and 19% of the selected W ! e and W ! event yields, respectively. The contributions of EW and tt background sources are estimated by using simulated events. The DY processes with Z= ! `+` contribute to the W ! ` background when one of the two leptons is not detected. These processes account for approximately 4.7% (5.0%) of the selected events in the electron (muon) channel. Events from W ! CMS 18.4 pb-1 (8 TeV) CMS 18.4 pb-1 (8 TeV) + (lower left), and W (lower right) as a function of the W boson pT. The points are data yields with statistical uncertainties. The stacked histogram shows the signal and background components estimated from a t to the ETmiss or MT distribution at each W boson pT bin. decays leptonically) have, in general, a softer lepton than the signal events. They are strongly suppressed by using a high value of the minimum p eT; requirement for acceptance. The background contribution from W is 1.7% (3.3%) of selected events in the electron (muon) channel. The background originating from tt production is estimated to be 0.35% (0.41%) of the selected events, while that from boson pair production (WW, WZ, and ZZ) is even smaller, about 0.03% of the selected events for both decay channels. The Z boson analysis The main sources of background in the dimuon analysis are Z ! , tt, W+jets, and diboson (WW, WZ, and ZZ) production with the subsequent decay of W, Z, and 18.4 pb-1 (8 TeV) 10−1 10−2 taaD 5 a t(aD −5 taaD 5 a t(aD −5 pZT ≥ 30 GeV reconstruction. Left (right): events for low (high) pZT, pZT < 30 ( 30) GeV. The lower panels show the di erence between the data and the simulation predictions divided by the statistical uncertainty in data, Data. muons. The simulation of these backgrounds is validated with data by measuring the pT of the nal state with an electron and a muon. The residual background contribution is due to QCD multijet hadronic processes that contain energetic muons, predominantly from the semileptonic decays of B hadrons. A control sample of events with a single muon that passes all the requirements of this analysis except the isolation criteria is selected to estimate the contribution of this source. This sample is subsequently used to estimate the probability for a muon to pass the isolation requirements as a function of the muon pT and . This probability is used to predict the number of background events with two isolated muons based on a sample of events with two nonisolated muons. This procedure, which is validated by using simulated events, predicts a negligible contribution from QCD multijet production over the full range of our pZT spectrum. After the full selection, the background contamination, which consists primarily of Z ! and tt processes, with an uncertainty dominated by the statistical uncertainties in the background simulation is estimated to be less than 1% of the total event yield. Systematic uncertainty The leading sources of systematic uncertainties are mostly common to both the W and Z boson analyses. They include the determination of the correction factors for the lepton e ciency (reconstruction, isolation, and trigger), the electron or muon momentum resolution parameters, and the construction of the response matrices for unfolding the detector resolution and FSR e ects. The simulated distributions are corrected for the e ciency differences between data and simulation using scale factors obtained from the tag-and-probe method. The variation of the measured scale factors due to di erent choices of signal and background models and the pT and binnings for the measured lepton are treated as sys B [nb] ( ducial) sections. The ducial volumes are de ned in section 5. tematic uncertainties. The momentum resolution is estimated by comparing data and the simulated Z boson mass distribution. The uncertainties in the parameterization of the mass distribution are propagated in the resolution calculation. The uncertainty in the modeldependent FSR simulation is estimated by reweighting the simulated data samples. We are using event-dependent weights from a soft collinear approach [56] and higher-order correc (p2T) [57]. The di erence in signal yields before and after reweighting is assigned as a systematic uncertainty. The systematic uncertainty in the luminosity measurement is completely canceled out since the results are presented as normalized distributions. The uncertainty in the recoil corrections to ETmiss is taken into account for the W boson analysis. The systematic uncertainty associated with the shape of the ETmiss distribution from the QCD multijet process is estimated by introducing an additional term eq. (5.2), where 2 is another shape parameter to describe the tail of ETmiss at the second order, and repeating the t procedure. A set of pseudo-experiments is generated by varying all parameters of the equation within their uncertainties. The bias in the measured values with the pseudo-experiments provides the systematic uncertainty in the parameterization of the shape. An additional uncertainty is assigned due to the simultaneous t procedure by oating the tail parameter 1 in the extraction of the signal yields. These are used to estimate the shape dependence of the ts to the QCD multijet-enriched control samples. The cross section for each of the EW backgrounds in the W boson analysis is varied around the central value within its uncertainty and the resulting uctuation of signal yield extraction by the t in each pTW bin is assigned as a systematic uncertainty. The unfolding procedure is sensitive to the statistical uncertainties in the construction of the response matrix. These uncertainties range from 0.1% to 1.0% depending on the channel and pTV bin. The boson distributions are compared with those obtained by using an alternative response matrix derived from a di erent generator, MadGraph 5. The di erence is taken as the unfolding bias. The background for the dimuon nal state is measured from simulation with correction factors derived from data, the corresponding uncertainty is estimated by varying its contribution. The uncertainty is about 0.4% level up to 40 GeV of dimuon pT. The ducial cross sections at pre-FSR level are calculated as the sum of contributions from all bins and listed in table 1. The low-pileup data is adjusted to the lepton ducial volume at post-FSR level used in ref. [3]. The results are 0:40 0:01 (lumi) nb for the Z channel and 0:14 (lumi) nb for the mean value of W electron and muon channel results weighted by uncertainties. These are consistent with the supplemental material of ref. [3], where the ducial inclusive Z boson cross section is 0:40 0:01 (lumi) nb and the W boson cross section is 5:42 0:02 (stat) 0:06 (syst) ducial cross section. Some uncertainties are canceled in the normalized cross sections, thus allowing for a more precise shape comparison. The uncertainties in the measurement of the lepton e ciencies are decreased by factors of 1.6 to 7.7 with respect to the cross section before the normalization. The uncertainties in the EW background cross sections a ect both the numerator and the denominator, hence the corresponding uncertainty is decreased by a factor of 20. The other sources of uncertainty remain at a level similar to the di erential cross section measurements before normalization. The di erential cross sections in the electron and muon channels, derived individually for W+ and W bosons, are combined after taking into account the possible correlations. The systematic uncertainties due to FSR and EW background cross sections are added linearly under the assumption that these uncertainties are 100% correlated. All other chargedependent uncertainties are assumed to be uncorrelated and are added in quadrature. The data unfolded to the pre-FSR level are compared to various theoretical predictions: ResBos-P version (CP version) with scale (scale and PDF) variation for the W (Z) boson result, powheg with PDF uncertainty, and fewz with PDF and renormalization and factorization scale uncertainties. ResBos adopts the Collins-Soper-Sterman formalism with four parameters (C1, C2, C3, and C4) for the resummation of the multiple and collinear gluon emissions [58, 59], which yields a next-to-next-to-leading-order accuracy. It allows also for the use of a K factor grid to get an e ective NNLO description. The scale mass of the lepton pair) as the nominal value and di erent grid points are generated nonperturbative function implemented in ResBos a ects mostly the low-pT region around 1{4 GeV and the intermediate-pT region with small contribution. The W and Z di erential cross sections The numerical results and all of the uncertainties for the normalized di erential cross section are listed in tables 2 and 3 for the electron and muon channels of the W boson decay, respectively. The results for the p ZT spectrum are summarized in table 4. After combining the e ects discussed in section 7, the total systematic uncertainty in each bin is found to be smaller than the corresponding statistical uncertainty for the Z boson and at a similar level for the W boson except in the high-pTW region. The results are compared to three di erent theoretical predictions: ResBos, powheg, and fewz using CT10 [39] PDFs with uncertainties estimated by the method described in 10.43 (8.89 15.67 (4.10 16.74 (1.65 24.67 (7.65 68.85 (8.98 44.11 (4.44 (1/ )(d /dpT) details are the same as in table 2. ), and systematic uncertainties from various sources in units of %. Other fewz calculates the cross section for gauge boson production at hadron colliders through order O( s2) in perturbative QCD. The pTW distribution is generated by fewz using perturbative QCD at NNLO. The CT10 NNLO PDF set is used with dynamic renormalization and factorization scales set to the value of of the CT10 PDF set is numerically propagated through fewz generation. Scale variations by factors of 1/2 and 2 are applied to estimate the uncertainty. The predictions of fewz are in agreement with the data across the whole range in pTW within large theoretical uncertainties, except around 60 GeV where it shows 10% discrepancy. The results for the Z boson di erential cross section are presented in gure 5. The ResBos-CP prediction shows good agreement with data in the accessible region of pZ , whereas powheg shows 30% lower expectation in the range 0{2.5 GeV and 18% excess for the interval 7.5{10 GeV. As anticipated, the fewz prediction with xed-order perturbation theory shows divergent behavior in the low p ZT bins (pZT . 20 GeV). A self-consistent test of fewz generation is ful lled by cross section comparison of the low, high, and full pZT region of the measurement. The ratio of the sum of 0{20 and 20{600 GeV to 0{600 GeV M W2 + (pTW)2. The uncertainty the lepton pre-FSR level as a function of pTW for electron (upper) and muon (lower) decay channels. The right panels show the ratios of theory predictions to the data. The bands include (i) the statistical uncertainties, uncertainties from scales, and PDF uncertainties for FEWZ; (ii) the statistical uncertainties and PDF uncertainties for POWHEG; (iii) the uncertainty from scales for ResBos-P; and (iv) the sum of the statistical and systematic uncertainties in quadrature for data. is unity within 10% uncertainty. The ratio of the expectation to data at 0{20 GeV is Ratios of the cross sections The ratios of the measured cross sections provide a powerful test of the accuracy of di erent theoretical predictions because of full or partial cancellation of theoretical uncertainties. The ratio of the normalized spectra corresponding to W is shown in gure 6. The statistical uncertainties in di erent pTV bins are considered to be uncorrelated. The systematic uncertainties are calculated by the method described in from data (solid symbols) with di erent theoretical predictions. The right panels show the ratios of theory predictions to the data. The ResBos-CP version with scale and PDF variation is used section 7 taking into account all correlations between charge-dependent W boson cross The ratios with the total uncertainty are listed in table 5. The results are compared to powheg, ResBos, and fewz predictions. The predictions describe the data reasonably well within experimental uncertainties. The ratio of di erential production cross sections for Z to those for W in the muon channel is shown in gure 7 where the total uncertainties of the measurements are considered to be uncorrelated. The ratios with the total uncertainty are listed in table 5. The powheg calculation shows good agreement with the data in the low- and high-pTV regions, The ResBos expectation also shows behavior similar to powheg, but it has larger than expected uncertainties because it employs di erent strategies in terms of the scale and PDF variations for the W and Z boson generation, which technically results in no cancellation for their ratio. fewz predictions describe the data well for pTV > 20 GeV. In gure 8 the ratio of di erential cross sections for the Z boson production measured at two di erent centre-of-mass energies, 7 and 8 TeV [18], are shown for the muon channel, separately for low- and high-pZT regions. The theoretical predictions describe the data well within the experimental uncertainties. The production cross sections of the weak vector bosons, W and Z, as a function of transcollisions during a special low luminosity running of the LHC at p verse momentum, are measured by the CMS experiment using a sample of proton-proton s = 8 TeV that corresponds to an integrated luminosity of 18.4 pb 1. The production of W bosons is analyzed to W+ for muon channel compared with theoretical predictions. Data points include the sum of the statistical and systematic uncertainties in quadrature. More details are given in the gure 4 caption. with theoretical predictions. The right panels show the ratios of theory predictions to the data. The larger than expected uncertainties for ResBos arise from the di erent strategies in terms of the scale and PDF variations between ResBos-P and ResBos-CP version. More details are given in the gure 4 and 5 caption. in both electron and muon decay modes, while the production of Z bosons is analyzed using only the dimuon decay channel. The measured normalized cross sections are compared to various theoretical predictions. All the predictions provide reasonable descriptions of the data, but powheg at NLO expectation in the p ZT range 0{2.5 GeV and 18% excess for the p ZT interval 7.5{10 GeV. ducial volume. The uncertainty is the sum of statistical and systematic uncertainties in quadrature. 18.4 pb-1(8 TeV) + 36 pb-1(7 TeV) 18.4 pb-1(8 TeV) + 36 pb-1(7 TeV) and fewz for pZT > 20 GeV. centre-of-mass energies of 7 and 8 TeV compared with the predictions from powheg for pZT < 20 GeV the low pZT region where bin widths are ner than those of the W boson study. ResBos-P but the CP version demonstrates good agreement with data in the accessible region of pZT. The ratios of W to W+, Z to W boson di erential cross sections, as well as the ratio of Z boson production cross sections at centre-of-mass energies 7 to 8 TeV are calculated to allow for more precise comparisons with data. Overall, the di erent theoretical models describe the ratios well. Acknowledgments We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative sta s at CERN and at other CMS institutes for their contributions to the success of the CMS e ort. In addition, we gratefully acknowledge the computing centres and personnel of the Worldwide LHC Computing Grid for delivering so e ectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: the Austrian Federal Ministry of Science, Research and Economy and the Austrian Science Fund; the Belgian Fonds de la Recherche Scienti que, and Fonds voor Wetenschappelijk Onderzoek; the Brazilian Funding Agencies (CNPq, CAPES, FAPERJ, and FAPESP); the Bulgarian Ministry of Education and Science; CERN; the Chinese Academy of Sciences, Ministry of Science and Technology, and National Natural Science Foundation of China; the Colombian Funding Agency (COLCIENCIAS); the Croatian Ministry of Science, Education and Sport, and the Croatian Science Foundation; the Research Promotion Foundation, Cyprus; the Secretariat for Higher Education, Science, Technology and Innovation, Ecuador; the Ministry of Education and Research, Estonian Research Council via IUT23-4 and IUT236 and European Regional Development Fund, Estonia; the Academy of Finland, Finnish Ministry of Education and Culture, and Helsinki Institute of Physics; the Institut National de Physique Nucleaire et de Physique des Particules / CNRS, and Commissariat a l'Energie Atomique et aux Energies Alternatives / CEA, France; the Bundesministerium fur Bildung und Forschung, Deutsche Forschungsgemeinschaft, and Helmholtz-Gemeinschaft Deutscher Forschungszentren, Germany; the General Secretariat for Research and Technology, Greece; the National Scienti c Research Foundation, and National Innovation O ce, Hungary; the Department of Atomic Energy and the Department of Science and Technology, India; the Institute for Studies in Theoretical Physics and Mathematics, Iran; the Science Foundation, Ireland; the Istituto Nazionale di Fisica Nucleare, Italy; the Ministry of Science, ICT and Future Planning, and National Research Foundation (NRF), Republic of Korea; the Lithuanian Academy of Sciences; the Ministry of Education, and University of Malaya (Malaysia); the Mexican Funding Agencies (BUAP, CINVESTAV, CONACYT, LNS, SEP, and UASLP-FAI); the Ministry of Business, Innovation and Employment, New Zealand; the Pakistan Atomic Energy Commission; the Ministry of Science and Higher Education and the National Science Centre, Poland; the Fundac~ao para a Ci^encia e a Tecnologia, Portugal; JINR, Dubna; the Ministry of Education and Science of the Russian Federation, the Federal Agency of Atomic Energy of the Russian Federation, Russian Academy of Sciences, and the Russian Foundation for Basic Research; the Ministry of Education, Science and Technological Development of Serbia; the Secretar a de Estado de Investigacion, Desarrollo e Innovacion and Programa Consolider-Ingenio 2010, Spain; the Swiss Funding Agencies (ETH Board, ETH Zurich, PSI, SNF, UniZH, Canton Zurich, and SER); the Ministry of Science and Technology, Taipei; the Thailand Center of Excellence in Physics, the Institute for the Promotion of Teaching Science and Technology of Thailand, Special Task Force for Activating Research and the National Science and Technology Development [24] LHCb collaboration, Measurement of the forward W boson cross-section in pp collisions at 094008 [hep-ph/0312266] [INSPIRE]. [arXiv:1011.3540] [INSPIRE]. Comput. Phys. Commun. 184 (2013) 208 [arXiv:1201.5896] [INSPIRE]. FEWZ, Phys. Rev. D 86 (2012) 094034 [arXiv:1208.5967] [INSPIRE]. [hep-ph/0212159] [INSPIRE]. leptonic angular distribution in inclusive neutral vector boson production, Phys. Rev. D 90 (2014) 014030 [arXiv:1309.1393] [INSPIRE]. simulations: the POWHEG method, JHEP 11 (2007) 070 [arXiv:0709.2092] [INSPIRE]. JHEP 11 (2004) 040 [hep-ph/0409146] [INSPIRE]. in POWHEG, JHEP 07 (2008) 060 [arXiv:0805.4802] [INSPIRE]. calculations in shower Monte Carlo programs: the POWHEG BOX, JHEP 06 (2010) 043 [arXiv:1002.2581] [INSPIRE]. (2006) 026 [hep-ph/0603175] [INSPIRE]. [arXiv:1007.2241] [INSPIRE]. JHEP 06 (2011) 128 [arXiv:1106.0522] [INSPIRE]. generation of parton distributions with uncertainties from global QCD analysis, JHEP 07 (2002) 012 [hep-ph/0201195] [INSPIRE]. (2003) 027 [hep-ph/0208156] [INSPIRE]. Instrum. Meth. A 506 (2003) 250 [INSPIRE]. and MET, CMS-PAS-PFT-09-001 (2009). [physics/0306087] [INSPIRE]. detector in proton-proton collisions at p [arXiv:1502.02701] [INSPIRE]. detector in proton-proton collisions at p [arXiv:1502.02702] [INSPIRE]. [46] CMS collaboration, Commissioning of the particle- ow event reconstruction with the rst LHC collisions recorded in the CMS detector, CMS-PAS-PFT-10-001 (2010). lter in the CMS tracker at LHC, eConf C 0303241 (2003) TULT009 [48] CMS collaboration, Performance of electron reconstruction and selection with the CMS [49] CMS collaboration, Performance of photon reconstruction and identi cation with the CMS s = 8 TeV, 2015 JINST 10 P06005 s = 8 TeV, 2015 JINST 10 P08010 [50] CMS collaboration, Performance of CMS muon reconstruction in pp collision events at [arXiv:0707.1378] [INSPIRE]. JINST 6 P09001 [arXiv:1106.5048] [INSPIRE]. 372 (1996) 469 [hep-ph/9509307] [INSPIRE]. [53] CMS collaboration, Measurements of inclusive W and Z cross sections in pp collisions at [hep-ph/0303260] [INSPIRE]. [57] H. Burkhardt and B. Pietrzyk, Update of the hadronic contribution to the QED vacuum polarization, Phys. Lett. B 513 (2001) 46 [INSPIRE]. [Erratum ibid. B 213 (1983) 545] [INSPIRE]. pair and W and Z boson production, Nucl. Phys. B 250 (1985) 199 [INSPIRE]. LHC, hep-ph/0605240 [INSPIRE]. Yerevan Physics Institute, Yerevan, Armenia V. Khachatryan, A.M. Sirunyan, A. Tumasyan Institut fur Hochenergiephysik der OeAW, Wien, Austria W. Adam, E. Asilar, T. Bergauer, J. Brandstetter, E. Brondolin, M. Dragicevic, J. Ero, M. Flechl, M. Friedl, R. Fruhwirth1, V.M. Ghete, C. Hartl, N. Hormann, J. Hrubec, M. Jeitler1, A. Konig, M. Krammer1, I. Kratschmer, D. Liko, T. Matsushita, I. Mikulec, D. Rabady, N. Rad, B. Rahbaran, H. Rohringer, J. Schieck1, R. Schofbeck, J. Strauss, W. Treberer-Treberspurg, W. Waltenberger, C.-E. Wulz1 National Centre for Particle and High Energy Physics, Minsk, Belarus V. Mossolov, N. Shumeiko, J. Suarez Gonzalez Universiteit Antwerpen, Antwerpen, Belgium S. Alderweireldt, T. Cornelis, E.A. De Wolf, X. Janssen, A. Knutsson, J. Lauwers, S. Luyckx, M. Van De Klundert, H. Van Haevermaet, P. Van Mechelen, N. Van Remortel, A. Van Spilbeeck Vrije Universiteit Brussel, Brussel, Belgium S. Abu Zeid, F. Blekman, J. D'Hondt, N. Daci, I. De Bruyn, K. Deroover, N. Heracleous, J. Keaveney, S. Lowette, S. Moortgat, L. Moreels, A. Olbrechts, Q. Python, D. Strom, S. Tavernier, W. Van Doninck, P. Van Mulders, I. Van Parijs Universite Libre de Bruxelles, Bruxelles, Belgium H. Brun, C. Caillol, B. Clerbaux, G. De Lentdecker, G. Fasanella, L. Favart, R. Goldouzian, A. Grebenyuk, G. Karapostoli, T. Lenzi, A. Leonard, T. Maerschalk, A. Marinov, A. Randle-conde, T. Seva, C. Vander Velde, P. Vanlaer, R. Yonamine, F. Zenoni, F. Zhang2 Ghent University, Ghent, Belgium L. Benucci, A. Cimmino, S. Crucy, D. Dobur, A. Fagot, G. Garcia, M. Gul, J. Mccartin, A.A. Ocampo Rios, D. Poyraz, D. Ryckbosch, S. Salva, M. Sigamani, M. Tytgat, W. Van Driessche, E. Yazgan, N. Zaganidis Universite Catholique de Louvain, Louvain-la-Neuve, Belgium S. Basegmez, C. Belu 3, O. Bondu, S. Brochet, G. Bruno, A. Caudron, L. Ceard, S. De Visscher, C. Delaere, M. Delcourt, D. Favart, L. Forthomme, A. Giammanco, A. Jafari, P. Jez, M. Komm, V. Lemaitre, A. Mertens, M. Musich, C. Nuttens, K. Piotrzkowski, L. Quertenmont, M. Selvaggi, M. Vidal Marono Universite de Mons, Mons, Belgium N. Beliy, G.H. Hammad Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil W.L. Alda Junior, F.L. Alves, G.A. Alves, L. Brito, M. Correa Martins Junior, M. Hamer, C. Hensel, A. Moraes, M.E. Pol, P. Rebello Teles { 25 { Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil E. Belchior Batista Das Chagas, W. Carvalho, J. Chinellato4, A. Custodio, E.M. Da Costa, D. De Jesus Damiao, C. De Oliveira Martins, S. Fonseca De Souza, L.M. Huertas Guativa, H. Malbouisson, D. Matos Figueiredo, C. Mora Herrera, L. Mundim, H. Nogima, W.L. Prado Da Silva, A. Santoro, A. Sznajder, E.J. Tonelli Manganote4, A. Vilela Pereira Universidade Estadual Paulista a, Universidade Federal do ABC b, S~ao Paulo, E.M. Gregoresb, P.G. Mercadanteb, C.S. Moona;5, S.F. Novaesa, Sandra S. Padulaa, D. Romero Abadb, J.C. Ruiz Vargas Institute for Nuclear Research and Nuclear Energy, So a, Bulgaria A. Aleksandrov, R. Hadjiiska, P. Iaydjiev, M. Rodozov, S. Stoykova, G. Sultanov, M. VuUniversity of So a, So a, Bulgaria A. Dimitrov, I. Glushkov, L. Litov, B. Pavlov, P. Petkov Beihang University, Beijing, China Institute of High Energy Physics, Beijing, China M. Ahmad, J.G. Bian, G.M. Chen, H.S. Chen, M. Chen, T. Cheng, R. Du, C.H. Jiang, D. Leggat, R. Plestina7, F. Romeo, S.M. Shaheen, A. Spiezia, J. Tao, C. Wang, Z. Wang, Beijing, China State Key Laboratory of Nuclear Physics and Technology, Peking University, C. Asawatangtrakuldee, Y. Ban, Q. Li, S. Liu, Y. Mao, S.J. Qian, D. Wang, Z. Xu Universidad de Los Andes, Bogota, Colombia C. Avila, A. Cabrera, L.F. Chaparro Sierra, C. Florez, J.P. Gomez, B. Gomez Moreno, University of Split, Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, Split, Croatia N. Godinovic, D. Lelas, I. Puljak, P.M. Ribeiro Cipriano University of Split, Faculty of Science, Split, Croatia Z. Antunovic, M. Kovac Institute Rudjer Boskovic, Zagreb, Croatia V. Brigljevic, D. Ferencek, K. Kadija, J. Luetic, S. Micanovic, L. Sudic University of Cyprus, Nicosia, Cyprus A. Attikis, G. Mavromanolakis, J. Mousa, C. Nicolaou, F. Ptochos, P.A. Razis, Charles University, Prague, Czech Republic M. Finger8, M. Finger Jr.8 Universidad San Francisco de Quito, Quito, Ecuador E. Carrera Jarrin Academy of Scienti c Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt A. Awad, S. Elgammal9, A. Mohamed10, E. Salama9;11 National Institute of Chemical Physics and Biophysics, Tallinn, Estonia B. Calpas, M. Kadastik, M. Murumaa, L. Perrini, M. Raidal, A. Tiko, C. Veelken Department of Physics, University of Helsinki, Helsinki, Finland P. Eerola, J. Pekkanen, M. Voutilainen Helsinki Institute of Physics, Helsinki, Finland J. Harkonen, V. Karimaki, R. Kinnunen, T. Lampen, K. Lassila-Perini, S. Lehti, T. Linden, P. Luukka, T. Peltola, J. Tuominiemi, E. Tuovinen, L. Wendland Lappeenranta University of Technology, Lappeenranta, Finland J. Talvitie, T. Tuuva DSM/IRFU, CEA/Saclay, Gif-sur-Yvette, France M. Besancon, F. Couderc, M. Dejardin, D. Denegri, B. Fabbro, J.L. Faure, C. Favaro, F. Ferri, S. Ganjour, A. Givernaud, P. Gras, G. Hamel de Monchenault, P. Jarry, E. Locci, M. Machet, J. Malcles, J. Rander, A. Rosowsky, M. Titov, A. Zghiche Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, Institut Pluridisciplinaire Hubert Curien, Universite de Strasbourg, Universite de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France J.-L. Agram12, J. Andrea, A. Aubin, D. Bloch, J.-M. Brom, M. Buttignol, E.C. Chabert, N. Chanon, C. Collard, E. Conte12, X. Coubez, J.-C. Fontaine12, D. Gele, U. Goerlach, C. Goetzmann, A.-C. Le Bihan, J.A. Merlin13, K. Skovpen, P. Van Hove Centre de Calcul de l'Institut National de Physique Nucleaire et de Physique des Particules, CNRS/IN2P3, Villeurbanne, France Universite de Lyon, Universite Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucleaire de Lyon, Villeurbanne, France S. Beauceron, C. Bernet, G. Boudoul, E. Bouvier, C.A. Carrillo Montoya, R. Chierici, D. Contardo, B. Courbon, P. Depasse, H. El Mamouni, J. Fan, J. Fay, S. Gascon, M. GouzeS. Perries, A. Popov14, J.D. Ruiz Alvarez, D. Sabes, V. Sordini, M. Vander Donckt, P. Verdier, S. Viret A. Khvedelidze8 Z. Tsamalaidze8 Georgian Technical University, Tbilisi, Georgia Tbilisi State University, Tbilisi, Georgia RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany C. Autermann, S. Beranek, L. Feld, A. Heister, M.K. Kiesel, K. Klein, M. Lipinski, A. Ostapchuk, M. Preuten, F. Raupach, S. Schael, J.F. Schulte, T. Verlage, H. Weber, V. Zhukov14 RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany M. Ata, M. Brodski, E. Dietz-Laursonn, D. Duchardt, M. Endres, M. Erdmann, S. Erdweg, T. Esch, R. Fischer, A. Guth, T. Hebbeker, C. Heidemann, K. Hoepfner, S. Knutzen, M. Merschmeyer, A. Meyer, P. Millet, S. Mukherjee, M. Olschewski, K. Padeken, P. Papacz, T. Pook, M. Radziej, H. Reithler, M. Rieger, F. Scheuch, L. Sonnenschein, D. Teyssier, RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany V. Cherepanov, Y. Erdogan, G. Flugge, H. Geenen, M. Geisler, F. Hoehle, B. Kargoll, T. Kress, A. Kunsken, J. Lingemann, A. Nehrkorn, A. Nowack, I.M. Nugent, C. Pistone, O. Pooth, A. Stahl13 Deutsches Elektronen-Synchrotron, Hamburg, Germany M. Aldaya Martin, I. Asin, K. Beernaert, O. Behnke, U. Behrens, K. Borras15, A. Burgmeier, A. Campbell, C. Contreras-Campana, F. Costanza, C. Diez Pardos, G. Dolinska, S. Dooling, G. Eckerlin, D. Eckstein, T. Eichhorn, E. Gallo16, J. Garay Garcia, A. Geiser, A. Gizhko, P. Gunnellini, A. Harb, J. Hauk, M. Hempel17, H. Jung, A. Kalogeropoulos, O. Karacheban17, M. Kasemann, P. Katsas, J. Kieseler, C. Kleinwort, I. Korol, W. Lange, J. Leonard, K. Lipka, A. Lobanov, W. Lohmann17, R. Mankel, I.A. Melzer-Pellmann, A.B. Meyer, G. Mittag, J. Mnich, A. Mussgiller, E. Ntomari, D. Pitzl, R. Placakyte, A. Raspereza, B. Roland, M.O . Sahin, P. Saxena, T. Schoerner-Sadenius, C. Seitz, S. Spannagel, N. Stefaniuk, K.D. Trippkewitz, G.P. Van Onsem, R. Walsh, University of Hamburg, Hamburg, Germany V. Blobel, M. Centis Vignali, A.R. Draeger, T. Dreyer, J. Er e, E. Garutti, K. Goebel, D. Gonzalez, M. Gorner, J. Haller, M. Ho mann, R.S. Hoing, A. Junkes, R. Klanner, R. Kogler, N. Kovalchuk, T. Lapsien, T. Lenz, I. Marchesini, D. Marconi, M. Meyer, M. Niedziela, D. Nowatschin, J. Ott, F. Pantaleo13, T. Pei er, A. Perieanu, N. Pietsch, J. Poehlsen, C. Sander, C. Scharf, P. Schleper, E. Schlieckau, A. Schmidt, S. Schumann, J. Schwandt, H. Stadie, G. Steinbruck, F.M. Stober, H. Tholen, D. Troendle, E. Usai, L. Vanelderen, A. Vanhoefer, B. Vormwald Institut fur Experimentelle Kernphysik, Karlsruhe, Germany C. Barth, C. Baus, J. Berger, C. Boser, E. Butz, T. Chwalek, F. Colombo, W. De Boer, Institute of Nuclear and Particle Physics (INPP), NCSR Demokritos, Aghia Paraskevi, Greece A. Psallidas, I. Topsis-Giotis G. Anagnostou, G. Daskalakis, T. Geralis, V.A. Giakoumopoulou, A. Kyriakis, D. Loukas, National and Kapodistrian University of Athens, Athens, Greece A. Agapitos, S. Kesisoglou, A. Panagiotou, N. Saoulidou, E. Tziaferi University of Ioannina, Ioannina, Greece I. Evangelou, G. Flouris, C. Foudas, P. Kokkas, N. Loukas, N. Manthos, I. Papadopoulos, E. Paradas, J. Strologas MTA-ELTE Lendulet CMS Particle and Nuclear Physics Group, Eotvos Lorand Wigner Research Centre for Physics, Budapest, Hungary G. Bencze, C. Hajdu, P. Hidas, D. Horvath18, F. Sikler, V. Veszpremi, G. Vesztergombi19, Institute of Nuclear Research ATOMKI, Debrecen, Hungary N. Beni, S. Czellar, J. Karancsi20, J. Molnar, Z. Szillasi University of Debrecen, Debrecen, Hungary M. Bartok19, A. Makovec, P. Raics, Z.L. Trocsanyi, B. Ujvari National Institute of Science Education and Research, Bhubaneswar, India S. Choudhury21, P. Mal, K. Mandal, A. Nayak, D.K. Sahoo, N. Sahoo, S.K. Swain Panjab University, Chandigarh, India S. Bansal, S.B. Beri, V. Bhatnagar, R. Chawla, N. Dhingra, R. Gupta, U.Bhawandeep, A.K. Kalsi, A. Kaur, M. Kaur, R. Kumar, A. Mehta, M. Mittal, J.B. Singh, G. Walia University of Delhi, Delhi, India Ashok Kumar, A. Bhardwaj, B.C. Choudhary, R.B. Garg, S. Keshri, A. Kumar, S. Malhotra, M. Naimuddin, N. Nishu, K. Ranjan, R. Sharma, V. Sharma Saha Institute of Nuclear Physics, Kolkata, India R. Bhattacharya, S. Bhattacharya, K. Chatterjee, S. Dey, S. Dutta, S. Ghosh, N. Majumdar, A. Modak, K. Mondal, S. Mukhopadhyay, S. Nandan, A. Purohit, A. Roy, D. Roy, S. Roy Chowdhury, S. Sarkar, M. Sharan Bhabha Atomic Research Centre, Mumbai, India R. Chudasama, D. Dutta, V. Jha, V. Kumar, A.K. Mohanty13, L.M. Pant, P. Shukla, Tata Institute of Fundamental Research, Mumbai, India T. Aziz, S. Banerjee, S. Bhowmik22, R.M. Chatterjee, R.K. Dewanjee, S. Dugad, S. Ganguly, S. Ghosh, M. Guchait, A. Gurtu23, Sa. Jain, G. Kole, S. Kumar, B. Mahakud, M. Maity22, G. Majumder, K. Mazumdar, S. Mitra, G.B. Mohanty, B. Parida, T. Sarkar22, N. Sur, B. Sutar, N. Wickramage24 Indian Institute of Science Education and Research (IISER), Pune, India S. Chauhan, S. Dube, A. Kapoor, K. Kothekar, A. Rane, S. Sharma Institute for Research in Fundamental Sciences (IPM), Tehran, Iran H. Bakhshiansohi, H. Behnamian, S.M. Etesami25, A. Fahim26, M. Khakzad, M. Mohammadi Najafabadi, M. Naseri, S. Paktinat Mehdiabadi, F. Rezaei Hosseinabadi, B. Safarzadeh27, M. Zeinali University College Dublin, Dublin, Ireland M. Felcini, M. Grunewald INFN Sezione di Bari a, Universita di Bari b, Politecnico di Bari c, Bari, Italy M. Abbresciaa;b, C. Calabriaa;b, C. Caputoa;b, A. Colaleoa, D. Creanzaa;c, L. Cristellaa;b, N. De Filippisa;c, M. De Palmaa;b, L. Fiorea, G. Iasellia;c, G. Maggia;c, M. Maggia, G. Minielloa;b, S. Mya;b, S. Nuzzoa;b, A. Pompilia;b, G. Pugliesea;c, R. Radognaa;b, A. Ranieria, G. Selvaggia;b, L. Silvestrisa;13, R. Vendittia;b INFN Sezione di Bologna a, Universita di Bologna b, Bologna, Italy G. Abbiendia, C. Battilana13, D. Bonacorsia;b, S. Braibant-Giacomellia;b, L. Brigliadoria;b, R. Campaninia;b, P. Capiluppia;b, A. Castroa;b, F.R. Cavalloa, S.S. Chhibraa;b, G. Codispotia;b, M. Cu ania;b, G.M. Dallavallea, F. Fabbria, A. Fanfania;b, D. Fasanellaa;b, P. Giacomellia, C. Grandia, L. Guiduccia;b, S. Marcellinia, G. Masettia, A. Montanaria, F.L. Navarriaa;b, A. Perrottaa, A.M. Rossia;b, T. Rovellia;b, G.P. Sirolia;b, N. Tosia;b;13 INFN Sezione di Catania a, Universita di Catania b, Catania, Italy G. Cappellob, M. Chiorbolia;b, S. Costaa;b, A. Di Mattiaa, F. Giordanoa;b, R. Potenzaa;b, A. Tricomia;b, C. Tuvea;b INFN Sezione di Firenze a, Universita di Firenze b, Firenze, Italy G. Barbaglia, V. Ciullia;b, C. Civininia, R. D'Alessandroa;b, E. Focardia;b, V. Goria;b, P. Lenzia;b, M. Meschinia, S. Paolettia, G. Sguazzonia, L. Viliania;b;13 INFN Laboratori Nazionali di Frascati, Frascati, Italy L. Benussi, S. Bianco, F. Fabbri, D. Piccolo, F. Primavera13 INFN Sezione di Genova a, Universita di Genova b, Genova, Italy V. Calvellia;b, F. Ferroa, M. Lo Veterea;b, M.R. Mongea;b, E. Robuttia, S. Tosia;b INFN Sezione di Milano-Bicocca a, Universita di Milano-Bicocca b, Milano, L. Brianza, M.E. Dinardoa;b, S. Fiorendia;b, S. Gennaia, R. Gerosaa;b, A. Ghezzia;b, P. Govonia;b, S. Malvezzia, R.A. Manzonia;b;13, B. Marzocchia;b, D. Menascea, L. Moronia, M. Paganonia;b, D. Pedrinia, S. Pigazzini, S. Ragazzia;b, N. Redaellia, T. Tabarelli de INFN Sezione di Napoli a, Universita di Napoli 'Federico II' b, Napoli, Italy, Universita della Basilicata c, Potenza, Italy, Universita G. Marconi d, Roma, S. Buontempoa, N. Cavalloa;c, S. Di Guidaa;d;13, M. Espositoa;b, F. Fabozzia;c, A.O.M. Iorioa;b, G. Lanzaa, L. Listaa, S. Meolaa;d;13, M. Merolaa, P. Paoluccia;13, C. Sciaccaa;b, F. Thyssen Trento c, Trento, Italy INFN Sezione di Padova a, Universita di Padova b, Padova, Italy, Universita di P. Azzia;13, N. Bacchettaa, L. Benatoa;b, D. Biselloa;b, A. Bolettia;b, A. Brancaa;b, R. Carlina;b, P. Checchiaa, M. Dall'Ossoa;b;13, T. Dorigoa, U. Dossellia, F. Gasparinia;b, U. Gasparinia;b, A. Gozzelinoa, K. Kanishcheva;c, S. Lacapraraa, M. Margonia;b, G. Marona;28, A.T. Meneguzzoa;b, J. Pazzinia;b;13, N. Pozzobona;b, P. Ronchesea;b, F. Simonettoa;b, E. Torassaa, M. Tosia;b, S. Venturaa, M. Zanetti, P. Zottoa;b, A. Zucchettaa;b;13 INFN Sezione di Pavia a, Universita di Pavia b, Pavia, Italy A. Braghieria, A. Magnania;b, P. Montagnaa;b, S.P. Rattia;b, V. Rea, C. Riccardia;b, P. Salvinia, I. Vaia;b, P. Vituloa;b INFN Sezione di Perugia a, Universita di Perugia b, Perugia, Italy L. Alunni Solestizia;b, G.M. Bileia, D. Ciangottinia;b, L. Fanoa;b, P. Laricciaa;b, R. Leonardia;b, G. Mantovania;b, M. Menichellia, A. Sahaa, A. Santocchiaa;b INFN Sezione di Pisa a, Universita di Pisa b, Scuola Normale Superiore di Pisa c, Pisa, Italy K. Androsova;29, P. Azzurria;13, G. Bagliesia, J. Bernardinia, T. Boccalia, R. Castaldia, M.A. Cioccia;29, R. Dell'Orsoa, S. Donatoa;c, G. Fedi, L. Foaa;cy, A. Giassia, M.T. Grippoa;29, F. Ligabuea;c, T. Lomtadzea, L. Martinia;b, A. Messineoa;b, F. Pallaa, A. Rizzia;b, A. Savoy-Navarroa;30, P. Spagnoloa, R. Tenchinia, G. Tonellia;b, A. Venturia, P.G. Verdinia INFN Sezione di Roma a, Universita di Roma b, Roma, Italy L. Baronea;b, F. Cavallaria, G. D'imperioa;b;13, D. Del Rea;b;13, M. Diemoza, S. Gellia;b, C. Jordaa, E. Longoa;b, F. Margarolia;b, P. Meridiania, G. Organtinia;b, R. Paramattia, F. Preiatoa;b, S. Rahatloua;b, C. Rovellia, F. Santanastasioa;b INFN Sezione di Torino a, Universita di Torino b, Torino, Italy, Universita del Piemonte Orientale c, Novara, Italy N. Amapanea;b, R. Arcidiaconoa;c;13, S. Argiroa;b, M. Arneodoa;c, N. Bartosika, R. Bellana;b, C. Biinoa, N. Cartigliaa, M. Costaa;b, R. Covarellia;b, A. Deganoa;b, N. Demariaa, L. Fincoa;b, B. Kiania;b, C. Mariottia, S. Masellia, E. Migliorea;b, V. Monacoa;b, E. Monteila;b, M.M. Obertinoa;b, L. Pachera;b, N. Pastronea, M. Pelliccionia, G.L. Pinna Angionia;b, F. Raveraa;b, A. Romeroa;b, M. Ruspaa;c, R. Sacchia;b, V. Solaa, A. Solanoa;b, A. Staianoa INFN Sezione di Trieste a, Universita di Trieste b, Trieste, Italy S. Belfortea, V. Candelisea;b, M. Casarsaa, F. Cossuttia, G. Della Riccaa;b, B. Gobboa, C. La Licataa;b, A. Schizzia;b, A. Zanettia Kangwon National University, Chunchon, Korea Kyungpook National University, Daegu, Korea S.I. Pak, D.C. Son, H. Yusupov Chonbuk National University, Jeonju, Korea J.A. Brochero Cifuentes, H. Kim, T.J. Kim31 K. Butanov, D.H. Kim, G.N. Kim, M.S. Kim, D.J. Kong, S. Lee, S.W. Lee, Y.D. Oh, Chonnam National University, Institute for Universe and Elementary Particles, Kwangju, Korea Korea University, Seoul, Korea J. Lim, S.K. Park, Y. Roh Seoul National University, Seoul, Korea University of Seoul, Seoul, Korea S. Cho, S. Choi, Y. Go, D. Gyun, B. Hong, Y. Kim, B. Lee, K. Lee, K.S. Lee, S. Lee, M. Choi, H. Kim, H. Kim, J.H. Kim, J.S.H. Lee, I.C. Park, G. Ryu, M.S. Ryu Sungkyunkwan University, Suwon, Korea Y. Choi, J. Goh, D. Kim, E. Kwon, J. Lee, I. Yu Vilnius University, Vilnius, Lithuania V. Dudenas, A. Juodagalvis, J. Vaitkus National Centre for Particle Physics, Universiti Malaya, Kuala Lumpur, Malaysia I. Ahmed, Z.A. Ibrahim, J.R. Komaragiri, M.A.B. Md Ali32, F. Mohamad Idris33, W.A.T. Wan Abdullah, M.N. Yusli, Z. Zolkapli Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico E. Casimiro Linares, H. Castilla-Valdez, E. De La Cruz-Burelo, I. Heredia-De La Cruz34, A. Hernandez-Almada, R. Lopez-Fernandez, J. Mejia Guisao, A. Sanchez-Hernandez Universidad Iberoamericana, Mexico City, Mexico S. Carrillo Moreno, F. Vazquez Valencia Benemerita Universidad Autonoma de Puebla, Puebla, Mexico I. Pedraza, H.A. Salazar Ibarguen, C. Uribe Estrada Universidad Autonoma de San Luis Potos , San Luis Potos , Mexico A. Morelos Pineda University of Auckland, Auckland, New Zealand D. Krofcheck P.H. Butler University of Canterbury, Christchurch, New Zealand National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan A. Ahmad, M. Ahmad, Q. Hassan, H.R. Hoorani, W.A. Khan, T. Khurshid, M. Shoaib, National Centre for Nuclear Research, Swierk, Poland H. Bialkowska, M. Bluj, B. Boimska, T. Frueboes, M. Gorski, M. Kazana, K. Nawrocki, K. Romanowska-Rybinska, M. Szleper, P. Traczyk, P. Zalewski Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland G. Brona, K. Bunkowski, A. Byszuk35, K. Doroba, A. Kalinowski, M. Konecki, J. Krolikowski, M. Misiura, M. Olszewski, M. Walczak Laboratorio de Instrumentac~ao e F sica Experimental de Part culas, Lisboa, Joint Institute for Nuclear Research, Dubna, Russia A. Malakhov, V. Matveev36;37, P. Moisenz, V. Palichik, V. Perelygin, M. Savina, S. Shmatov, S. Shulha, N. Skatchkov, V. Smirnov, N. Voytishin, A. Zarubin Petersburg Nuclear Physics Institute, Gatchina (St. Petersburg), Russia V. Golovtsov, Y. Ivanov, V. Kim38, E. Kuznetsova39, P. Levchenko, V. Murzin, V. Oreshkin, I. Smirnov, V. Sulimov, L. Uvarov, S. Vavilov, A. Vorobyev Institute for Nuclear Research, Moscow, Russia Yu. Andreev, A. Dermenev, S. Gninenko, N. Golubev, A. Karneyeu, M. Kirsanov, N. Krasnikov, A. Pashenkov, D. Tlisov, A. Toropin Institute for Theoretical and Experimental Physics, Moscow, Russia V. Epshteyn, V. Gavrilov, N. Lychkovskaya, V. Popov, I. Pozdnyakov, G. Safronov, A. Spiridonov, M. Toms, E. Vlasov, A. Zhokin National Research Nuclear University 'Moscow Engineering Physics Institute' (MEPhI), Moscow, Russia R. Chistov, M. Danilov, O. Markin, V. Rusinov, E. Tarkovskii P.N. Lebedev Physical Institute, Moscow, Russia V. Andreev, M. Azarkin37, I. Dremin37, M. Kirakosyan, A. Leonidov37, G. Mesyats, Moscow, Russia Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, A. Baskakov, A. Belyaev, E. Boos, M. Dubinin40, L. Dudko, A. Ershov, A. Gribushin, V. Klyukhin, O. Kodolova, I. Lokhtin, I. Miagkov, S. Obraztsov, S. Petrushanko, V. Savrin, State Research Center of Russian Federation, Institute for High Energy Physics, Protvino, Russia I. Azhgirey, I. Bayshev, S. Bitioukov, V. Kachanov, A. Kalinin, D. Konstantinov, V. Krychkine, V. Petrov, R. Ryutin, A. Sobol, L. Tourtchanovitch, S. Troshin, N. Tyurin, A. Uzunian, A. Volkov University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia P. Adzic41, P. Cirkovic, D. Devetak, J. Milosevic, V. Rekovic nologicas (CIEMAT), Madrid, Spain J. Alcaraz Maestre, E. Calvo, M. Cerrada, M. Chamizo Llatas, N. Colino, B. De La Cruz, A. Delgado Peris, A. Escalante Del Valle, C. Fernandez Bedoya, J.P. Fernandez Ramos, J. Flix, M.C. Fouz, P. Garcia-Abia, O. Gonzalez Lopez, S. Goy Lopez, J.M. Hernandez, M.I. Josa, E. Navarro De Martino, A. Perez-Calero Yzquierdo, J. Puerta Pelayo, A. Quintario Olmeda, I. Redondo, L. Romero, M.S. Soares Universidad Autonoma de Madrid, Madrid, Spain J.F. de Troconiz, M. Missiroli, D. Moran Universidad de Oviedo, Oviedo, Spain J. Cuevas, J. Fernandez Menendez, S. Folgueras, I. Gonzalez Caballero, E. Palencia Cortezon13, J.M. Vizan Garcia Santander, Spain Instituto de F sica de Cantabria (IFCA), CSIC-Universidad de Cantabria, I.J. Cabrillo, A. Calderon, J.R. Castin~eiras De Saa, E. Curras, P. De Castro Manzano, M. Fernandez, J. Garcia-Ferrero, G. Gomez, A. Lopez Virto, J. Marco, R. Marco, A. Ruiz-Jimeno, L. Scodellaro, N. Trevisani, I. Vila, R. Vilar Cortabitarte CERN, European Organization for Nuclear Research, Geneva, Switzerland D. Abbaneo, E. Au ray, G. Auzinger, M. Bachtis, P. Baillon, A.H. Ball, D. Barney, A. Benaglia, L. Benhabib, G.M. Berruti, P. Bloch, A. Bocci, A. Bonato, C. Botta, H. Breuker, T. Camporesi, R. Castello, M. Cepeda, G. Cerminara, M. D'Alfonso, D. d'Enterria, A. Dabrowski, V. Daponte, A. David, M. De Gruttola, F. De Guio, A. De Roeck, E. Di Marco42, M. Dobson, M. Dordevic, B. Dorney, T. du Pree, D. Duggan, M. Dunser, F. Glege, R. Guida, S. Gundacker, M. Gutho , J. Hammer, P. Harris, J. Hegeman, V. Innocente, P. Janot, H. Kirschenmann, V. Knunz, M.J. Kortelainen, K. Kousouris, P. Lecoq, C. Lourenco, M.T. Lucchini, N. Magini, L. Malgeri, M. Mannelli, A. Martelli, L. Masetti, F. Meijers, S. Mersi, E. Meschi, F. Moortgat, S. Morovic, M. Mulders, H. Neugebauer, S. Orfanelli43, L. Orsini, L. Pape, E. Perez, M. Peruzzi, A. Petrilli, G. Petrucciani, A. Pfei er, M. Pierini, D. Piparo, A. Racz, T. Reis, G. Rolandi44, M. Rovere, M. Ruan, H. Sakulin, J.B. Sauvan, C. Schafer, C. Schwick, M. Seidel, A. Sharma, P. Silva, M. Simon, P. Sphicas45, J. Steggemann, M. Stoye, Y. Takahashi, D. Treille, A. Triossi, A. Tsirou, V. Veckalns46, G.I. Veres19, N. Wardle, H.K. Wohri, A. Zagozdzinska35, W.D. Zeuner Paul Scherrer Institut, Villigen, Switzerland W. Bertl, K. Deiters, W. Erdmann, R. Horisberger, Q. Ingram, H.C. Kaestli, D. Kotlinski, U. Langenegger, T. Rohe Institute for Particle Physics, ETH Zurich, Zurich, Switzerland F. Bachmair, L. Bani, L. Bianchini, B. Casal, G. Dissertori, M. Dittmar, M. Donega, P. Eller, C. Grab, C. Heidegger, D. Hits, J. Hoss, G. Kasieczka, P. Lecomtey, W. Lustermann, B. Mangano, M. Marionneau, P. Martinez Ruiz del Arbol, M. Masciovecchio, M.T. Meinhard, D. Meister, F. Micheli, P. Musella, F. Nessi-Tedaldi, F. Pandol , J. Pata, F. Pauss, G. Perrin, L. Perrozzi, M. Quittnat, M. Rossini, M. Schonenberger, A. Starodumov47, M. Takahashi, V.R. Tavolaro, K. Theo latos, R. Wallny Universitat Zurich, Zurich, Switzerland T.K. Aarrestad, C. Amsler48, L. Caminada, M.F. Canelli, V. Chiochia, A. De Cosa, C. Galloni, A. Hinzmann, T. Hreus, B. Kilminster, C. Lange, J. Ngadiuba, D. Pinna, G. Rauco, P. Robmann, D. Salerno, Y. Yang National Central University, Chung-Li, Taiwan K.H. Chen, T.H. Doan, Sh. Jain, R. Khurana, M. Konyushikhin, C.M. Kuo, W. Lin, Y.J. Lu, A. Pozdnyakov, S.S. Yu National Taiwan University (NTU), Taipei, Taiwan Arun Kumar, P. Chang, Y.H. Chang, Y.W. Chang, Y. Chao, K.F. Chen, P.H. Chen, C. Dietz, F. Fiori, U. Grundler, W.-S. Hou, Y. Hsiung, Y.F. Liu, R.-S. Lu, M. Min~ano Moya, E. Petrakou, J.f. Tsai, Y.M. Tzeng B. Asavapibhop, K. Kovitanggoon, G. Singh, N. Srimanobhas, N. Suwonjandee Cukurova University, Adana, Turkey kut, S. Girgis, G. Gokbulut, Y. Guler, E. Gurpinar, I. Hos, E.E. Kangal51, G. Onengut52, K. Ozdemir53, A. Polatoz, D. Sunar Cerci50, H. Topakli49, C. Zorbilmez Middle East Technical University, Physics Department, Ankara, Turkey B. Bilin, S. Bilmis, B. Isildak54, G. Karapinar55, M. Yalvac, M. Zeyrek Bogazici University, Istanbul, Turkey E. Gulmez, M. Kaya56, O. Kaya57, E.A. Yetkin58, T. Yetkin59 Istanbul Technical University, Istanbul, Turkey A. Cakir, K. Cankocak, S. Sen60, F.I. Vardarl Institute for Scintillation Materials of National Academy of Science of Ukraine, Kharkov, Ukraine Kharkov, Ukraine L. Levchuk, P. Sorokin National Scienti c Center, Kharkov Institute of Physics and Technology, University of Bristol, Bristol, United Kingdom R. Aggleton, F. Ball, L. Beck, J.J. Brooke, D. Burns, E. Clement, D. Cussans, H. Flacher, J. Goldstein, M. Grimes, G.P. Heath, H.F. Heath, J. Jacob, L. Kreczko, C. Lucas, Z. Meng, D.M. Newbold61, S. Paramesvaran, A. Poll, T. Sakuma, S. Seif El Nasr-storey, S. Senkin, D. Smith, V.J. Smith Rutherford Appleton Laboratory, Didcot, United Kingdom K.W. Bell, A. Belyaev62, C. Brew, R.M. Brown, L. Calligaris, D. Cieri, D.J.A. Cockerill, J.A. Coughlan, K. Harder, S. Harper, E. Olaiya, D. Petyt, C.H. Shepherd-Themistocleous, A. Thea, I.R. Tomalin, T. Williams, S.D. Worm Imperial College, London, United Kingdom M. Baber, R. Bainbridge, O. Buchmuller, A. Bundock, D. Burton, S. Casasso, M. Citron, D. Colling, L. Corpe, P. Dauncey, G. Davies, A. De Wit, M. Della Negra, P. Dunne, A. Elwood, D. Futyan, Y. Haddad, G. Hall, G. Iles, R. Lane, R. Lucas61, L. Lyons, A.M. Magnan, S. Malik, L. Mastrolorenzo, J. Nash, A. Nikitenko47, J. Pela, B. Penning, M. Pesaresi, D.M. Raymond, A. Richards, A. Rose, C. Seez, A. Tapper, K. Uchida, M. Vazquez Acosta63, T. Virdee13, S.C. Zenz Brunel University, Uxbridge, United Kingdom J.E. Cole, P.R. Hobson, A. Khan, P. Kyberd, D. Leslie, I.D. Reid, P. Symonds, L. Teodorescu, M. Turner A. Borzou, K. Call, J. Dittmann, K. Hatakeyama, H. Liu, N. Pastika The University of Alabama, Tuscaloosa, U.S.A. O. Charaf, S.I. Cooper, C. Henderson, P. Rumerio Boston University, Boston, U.S.A. D. Arcaro, A. Avetisyan, T. Bose, D. Gastler, D. Rankin, C. Richardson, J. Rohlf, L. Sulak, Brown University, Providence, U.S.A. J. Alimena, G. Benelli, E. Berry, D. Cutts, A. Ferapontov, A. Garabedian, J. Hakala, U. Heintz, O. Jesus, E. Laird, G. Landsberg, Z. Mao, M. Narain, S. Piperov, S. Sagir, University of California, Davis, Davis, U.S.A. R. Breedon, G. Breto, M. Calderon De La Barca Sanchez, S. Chauhan, M. Chertok, J. Conway, R. Conway, P.T. Cox, R. Erbacher, G. Funk, M. Gardner, W. Ko, R. Lander, C. Mclean, M. Mulhearn, D. Pellett, J. Pilot, F. Ricci-Tam, S. Shalhout, J. Smith, M. Squires, D. Stolp, M. Tripathi, S. Wilbur, R. Yohay University of California, Los Angeles, U.S.A. R. Cousins, P. Everaerts, A. Florent, J. Hauser, M. Ignatenko, D. Saltzberg, E. Takasugi, V. Valuev, M. Weber University of California, Riverside, Riverside, U.S.A. K. Burt, R. Clare, J. Ellison, J.W. Gary, G. Hanson, J. Heilman, M. Ivova PANEVA, P. Jandir, E. Kennedy, F. Lacroix, O.R. Long, M. Malberti, M. Olmedo Negrete, A. Shrinivas, H. Wei, S. Wimpenny, B. R. Yates University of California, San Diego, La Jolla, U.S.A. J.G. Branson, G.B. Cerati, S. Cittolin, R.T. D'Agnolo, M. Derdzinski, A. Holzner, R. Kelley, D. Klein, J. Letts, I. Macneill, D. Olivito, S. Padhi, M. Pieri, M. Sani, V. Sharma, S. Simon, M. Tadel, A. Vartak, S. Wasserbaech64, C. Welke, J. Wood, F. Wurthwein, A. Yagil, G. Zevi Della Porta University of California, Santa Barbara, Santa Barbara, U.S.A. J. Bradmiller-Feld, C. Campagnari, A. Dishaw, V. Dutta, K. Flowers, M. Franco Sevilla, P. Ge ert, C. George, F. Golf, L. Gouskos, J. Gran, J. Incandela, N. Mccoll, S.D. Mullin, J. Richman, D. Stuart, I. Suarez, C. West, J. Yoo California Institute of Technology, Pasadena, U.S.A. D. Anderson, A. Apresyan, J. Bendavid, A. Bornheim, J. Bunn, Y. Chen, J. Duarte, A. Mott, H.B. Newman, C. Pena, M. Spiropulu, J.R. Vlimant, S. Xie, R.Y. Zhu Carnegie Mellon University, Pittsburgh, U.S.A. M.B. Andrews, V. Azzolini, A. Calamba, B. Carlson, T. Ferguson, M. Paulini, J. Russ, M. Sun, H. Vogel, I. Vorobiev J.P. Cumalat, W.T. Ford, A. Gaz, F. Jensen, A. Johnson, M. Krohn, T. Mulholland, U. Nauenberg, K. Stenson, S.R. Wagner Cornell University, Ithaca, U.S.A. J. Alexander, A. Chatterjee, J. Chaves, J. Chu, S. Dittmer, N. Eggert, N. Mirman, G. Nicolas Kaufman, J.R. Patterson, A. Rinkevicius, A. Ryd, L. Skinnari, L. So , W. Sun, S.M. Tan, W.D. Teo, J. Thom, J. Thompson, J. Tucker, Y. Weng, P. Wittich Fermi National Accelerator Laboratory, Batavia, U.S.A. S. Abdullin, M. Albrow, G. Apollinari, S. Banerjee, L.A.T. Bauerdick, A. Beretvas, J. Berryhill, P.C. Bhat, G. Bolla, K. Burkett, J.N. Butler, H.W.K. Cheung, F. Chlebana, S. Cihangir, V.D. Elvira, I. Fisk, J. Freeman, E. Gottschalk, L. Gray, D. Green, S. Grunendahl, O. Gutsche, J. Hanlon, D. Hare, R.M. Harris, S. Hasegawa, J. Hirschauer, Z. Hu, B. Jayatilaka, S. Jindariani, M. Johnson, U. Joshi, B. Klima, B. Kreis, S. Lammel, J. Lewis, J. Linacre, D. Lincoln, R. Lipton, T. Liu, R. Lopes De Sa, J. Lykken, K. Maeshima, J.M. Marra no, S. Maruyama, D. Mason, P. McBride, P. Merkel, S. Mrenna, S. Nahn, C. Newman-Holmesy, V. O'Dell, K. Pedro, O. Prokofyev, G. Rakness, E. SextonKennedy, A. Soha, W.J. Spalding, L. Spiegel, S. Stoynev, N. Strobbe, L. Taylor, S. Tkaczyk, N.V. Tran, L. Uplegger, E.W. Vaandering, C. Vernieri, M. Verzocchi, R. Vidal, M. Wang, H.A. Weber, A. Whitbeck University of Florida, Gainesville, U.S.A. D. Acosta, P. Avery, P. Bortignon, D. Bourilkov, A. Brinkerho , A. Carnes, M. Carver, D. Curry, S. Das, R.D. Field, I.K. Furic, J. Konigsberg, A. Korytov, K. Kotov, P. Ma, K. Matchev, H. Mei, P. Milenovic65, G. Mitselmakher, D. Rank, R. Rossin, L. Shchutska, M. Snowball, D. Sperka, N. Terentyev, L. Thomas, J. Wang, S. Wang, J. Yelton Florida International University, Miami, U.S.A. S. Linn, P. Markowitz, G. Martinez, J.L. Rodriguez Florida State University, Tallahassee, U.S.A. A. Ackert, J.R. Adams, T. Adams, A. Askew, S. Bein, J. Bochenek, B. Diamond, J. Haas, S. Hagopian, V. Hagopian, K.F. Johnson, A. Khatiwada, H. Prosper, M. Weinberg Florida Institute of Technology, Melbourne, U.S.A. M.M. Baarmand, V. Bhopatkar, S. Colafranceschi66, M. Hohlmann, H. Kalakhety, D. Noonan, T. Roy, F. Yumiceva University of Illinois at Chicago (UIC), Chicago, U.S.A. M.R. Adams, L. Apanasevich, D. Berry, R.R. Betts, I. Bucinskaite, R. Cavanaugh, O. Evdokimov, L. Gauthier, C.E. Gerber, D.J. Hofman, P. Kurt, C. O'Brien, I.D. Sandoval Gonzalez, P. Turner, N. Varelas, Z. Wu, M. Zakaria, J. Zhang The University of Iowa, Iowa City, U.S.A. B. Bilki67, W. Clarida, K. Dilsiz, S. Durgut, R.P. Gandrajula, M. Haytmyradov, V. Khristenko, J.-P. Merlo, H. Mermerkaya68, A. Mestvirishvili, A. Moeller, J. Nachtman, H. Ogul, Y. Onel, F. Ozok69, A. Penzo, C. Snyder, E. Tiras, J. Wetzel, K. Yi I. Anderson, B.A. Barnett, B. Blumenfeld, A. Cocoros, N. Eminizer, D. Fehling, L. Feng, A.V. Gritsan, P. Maksimovic, M. Osherson, J. Roskes, U. Sarica, M. Swartz, M. Xiao, Y. Xin, C. You The University of Kansas, Lawrence, U.S.A. P. Baringer, A. Bean, C. Bruner, J. Castle, R.P. Kenny III, A. Kropivnitskaya, D. Majumder, M. Malek, W. Mcbrayer, M. Murray, S. Sanders, R. Stringer, Q. Wang Kansas State University, Manhattan, U.S.A. A. Ivanov, K. Kaadze, S. Khalil, M. Makouski, Y. Maravin, A. Mohammadi, L.K. Saini, N. Skhirtladze, S. Toda Lawrence Livermore National Laboratory, Livermore, U.S.A. D. Lange, F. Rebassoo, D. Wright University of Maryland, College Park, U.S.A. C. Anelli, A. Baden, O. Baron, A. Belloni, B. Calvert, S.C. Eno, C. Ferraioli, J.A. Gomez, N.J. Hadley, S. Jabeen, R.G. Kellogg, T. Kolberg, J. Kunkle, Y. Lu, A.C. Mignerey, Y.H. Shin, A. Skuja, M.B. Tonjes, S.C. Tonwar Massachusetts Institute of Technology, Cambridge, U.S.A. A. Apyan, R. Barbieri, A. Baty, R. Bi, K. Bierwagen, S. Brandt, W. Busza, I.A. Cali, Z. Demiragli, L. Di Matteo, G. Gomez Ceballos, M. Goncharov, D. Gulhan, D. Hsu, Y. Iiyama, G.M. Innocenti, M. Klute, D. Kovalskyi, K. Krajczar, Y.S. Lai, Y.-J. Lee, A. Levin, P.D. Luckey, A.C. Marini, C. Mcginn, C. Mironov, S. Narayanan, X. Niu, C. Paus, C. Roland, G. Roland, J. Salfeld-Nebgen, G.S.F. Stephans, K. Sumorok, K. Tatar, M. Varma, D. Velicanu, J. Veverka, J. Wang, T.W. Wang, B. Wyslouch, M. Yang, University of Minnesota, Minneapolis, U.S.A. A.C. Benvenuti, B. Dahmes, A. Evans, A. Finkel, A. Gude, P. Hansen, S. Kalafut, S.C. Kao, K. Klapoetke, Y. Kubota, Z. Lesko, J. Mans, S. Nourbakhsh, N. Ruckstuhl, R. Rusack, N. Tambe, J. Turkewitz University of Mississippi, Oxford, U.S.A. J.G. Acosta, S. Oliveros University of Nebraska-Lincoln, Lincoln, U.S.A. E. Avdeeva, R. Bartek, K. Bloom, S. Bose, D.R. Claes, A. Dominguez, C. Fangmeier, R. Gonzalez Suarez, R. Kamalieddin, D. Knowlton, I. Kravchenko, F. Meier, J. Monroy, F. Ratnikov, J.E. Siado, G.R. Snow, B. Stieger State University of New York at Bu alo, Bu alo, U.S.A. M. Alyari, J. Dolen, J. George, A. Godshalk, C. Harrington, I. Iashvili, J. Kaisen, A. Kharchilava, A. Kumar, A. Parker, S. Rappoccio, B. Roozbahani G. Alverson, E. Barberis, D. Baumgartel, M. Chasco, A. Hortiangtham, A. Massironi, D.M. Morse, D. Nash, T. Orimoto, R. Teixeira De Lima, D. Trocino, R.-J. Wang, D. Wood, Northwestern University, Evanston, U.S.A. S. Bhattacharya, K.A. Hahn, A. Kubik, J.F. Low, N. Mucia, N. Odell, B. Pollack, M.H. Schmitt, K. Sung, M. Trovato, M. Velasco University of Notre Dame, Notre Dame, U.S.A. N. Dev, M. Hildreth, C. Jessop, D.J. Karmgard, N. Kellams, K. Lannon, N. Marinelli, F. Meng, C. Mueller, Y. Musienko36, M. Planer, A. Reinsvold, R. Ruchti, N. Rupprecht, G. Smith, S. Taroni, N. Valls, M. Wayne, M. Wolf, A. Woodard The Ohio State University, Columbus, U.S.A. L. Antonelli, J. Brinson, B. Bylsma, L.S. Durkin, S. Flowers, A. Hart, C. Hill, R. Hughes, W. Ji, T.Y. Ling, B. Liu, W. Luo, D. Puigh, M. Rodenburg, B.L. Winer, H.W. Wulsin Princeton University, Princeton, U.S.A. O. Driga, P. Elmer, J. Hardenbrook, P. Hebda, S.A. Koay, P. Lujan, D. Marlow, T. Medvedeva, M. Mooney, J. Olsen, C. Palmer, P. Piroue, D. Stickland, C. Tully, University of Puerto Rico, Mayaguez, U.S.A. Purdue University, West Lafayette, U.S.A. A. Barker, V.E. Barnes, D. Benedetti, D. Bortoletto, L. Gutay, M.K. Jha, M. Jones, A.W. Jung, K. Jung, D.H. Miller, N. Neumeister, B.C. Radburn-Smith, X. Shi, I. Shipsey, D. Silvers, J. Sun, A. Svyatkovskiy, F. Wang, W. Xie, L. Xu Purdue University Calumet, Hammond, U.S.A. N. Parashar, J. Stupak Rice University, Houston, U.S.A. A. Adair, B. Akgun, Z. Chen, K.M. Ecklund, F.J.M. Geurts, M. Guilbaud, W. Li, B. Michlin, M. Northup, B.P. Padley, R. Redjimi, J. Roberts, J. Rorie, Z. Tu, J. Zabel University of Rochester, Rochester, U.S.A. B. Betchart, A. Bodek, P. de Barbaro, R. Demina, Y.t. Duh, Y. Eshaq, T. Ferbel, M. Galanti, A. Garcia-Bellido, J. Han, O. Hindrichs, A. Khukhunaishvili, K.H. Lo, P. Tan, Rutgers, The State University of New Jersey, Piscataway, U.S.A. J.P. Chou, E. Contreras-Campana, Y. Gershtein, E. Halkiadakis, M. Heindl, D. Hidas, E. Hughes, S. Kaplan, R. Kunnawalkam Elayavalli, A. Lath, K. Nash, H. Saka, S. Salur, S. Schnetzer, D. She eld, S. Somalwar, R. Stone, S. Thomas, P. Thomassen, M. Walker M. Foerster, J. Heideman, G. Riley, K. Rose, S. Spanier, K. Thapa Texas A&M University, College Station, U.S.A. O. Bouhali70, A. Castaneda Hernandez70, A. Celik, M. Dalchenko, M. De Mattia, A. Delgado, S. Dildick, R. Eusebi, J. Gilmore, T. Huang, T. Kamon71, V. Krutelyov, R. Mueller, I. Osipenkov, Y. Pakhotin, R. Patel, A. Perlo , L. Pernie, D. Rathjens, A. Rose, A. Safonov, A. Tatarinov, K.A. Ulmer Texas Tech University, Lubbock, U.S.A. N. Akchurin, C. Cowden, J. Damgov, C. Dragoiu, P.R. Dudero, J. Faulkner, S. Kunori, K. Lamichhane, S.W. Lee, T. Libeiro, S. Undleeb, I. Volobouev, Z. Wang Vanderbilt University, Nashville, U.S.A. E. Appelt, A.G. Delannoy, S. Greene, A. Gurrola, R. Janjam, W. Johns, C. Maguire, Y. Mao, A. Melo, H. Ni, P. Sheldon, S. Tuo, J. Velkovska, Q. Xu University of Virginia, Charlottesville, U.S.A. M.W. Arenton, P. Barria, B. Cox, B. Francis, J. Goodell, R. Hirosky, A. Ledovskoy, H. Li, C. Neu, T. Sinthuprasith, X. Sun, Y. Wang, E. Wolfe, F. Xia Wayne State University, Detroit, U.S.A. C. Clarke, R. Harr, P.E. Karchin, C. Kottachchi Kankanamge Don, P. Lamichhane, University of Wisconsin - Madison, Madison, WI, U.S.A. D.A. Belknap, D. Carlsmith, S. Dasu, L. Dodd, S. Duric, B. Gomber, M. Grothe, M. Herndon, A. Herve, P. Klabbers, A. Lanaro, A. Levine, K. Long, R. Loveless, A. Mohapatra, I. Ojalvo, T. Perry, G.A. Pierro, G. Polese, T. Ruggles, T. Sarangi, A. Savin, A. Sharma, N. Smith, W.H. Smith, D. Taylor, P. Verwilligen, N. Woods 1: Also at Vienna University of Technology, Vienna, Austria 2: Also at State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, 3: Also at Institut Pluridisciplinaire Hubert Curien, Universite de Strasbourg, Universite de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France 4: Also at Universidade Estadual de Campinas, Campinas, Brazil 5: Also at Centre National de la Recherche Scienti que (CNRS) - IN2P3, Paris, France 6: Also at Universite Libre de Bruxelles, Bruxelles, Belgium 7: Also at Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France 8: Also at Joint Institute for Nuclear Research, Dubna, Russia 9: Now at British University in Egypt, Cairo, Egypt 10: Also at Zewail City of Science and Technology, Zewail, Egypt 11: Now at Ain Shams University, Cairo, Egypt 12: Also at Universite de Haute Alsace, Mulhouse, France 13: Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland 15: Also at RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany 16: Also at University of Hamburg, Hamburg, Germany 17: Also at Brandenburg University of Technology, Cottbus, Germany 18: Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary 19: Also at MTA-ELTE Lendulet CMS Particle and Nuclear Physics Group, Eotvos Lorand University, Budapest, Hungary 20: Also at University of Debrecen, Debrecen, Hungary 21: Also at Indian Institute of Science Education and Research, Bhopal, India 22: Also at University of Visva-Bharati, Santiniketan, India 23: Now at King Abdulaziz University, Jeddah, Saudi Arabia 24: Also at University of Ruhuna, Matara, Sri Lanka 25: Also at Isfahan University of Technology, Isfahan, Iran 26: Also at University of Tehran, Department of Engineering Science, Tehran, Iran 27: Also at Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran 28: Also at Laboratori Nazionali di Legnaro dell'INFN, Legnaro, Italy 29: Also at Universita degli Studi di Siena, Siena, Italy 30: Also at Purdue University, West Lafayette, U.S.A. 31: Now at Hanyang University, Seoul, Korea 32: Also at International Islamic University of Malaysia, Kuala Lumpur, Malaysia 33: Also at Malaysian Nuclear Agency, MOSTI, Kajang, Malaysia 34: Also at Consejo Nacional de Ciencia y Tecnolog a, Mexico city, Mexico 35: Also at Warsaw University of Technology, Institute of Electronic Systems, Warsaw, Poland 36: Also at Institute for Nuclear Research, Moscow, Russia at National Research Nuclear University 'Moscow Engineering Physics Insti38: Also at St. Petersburg State Polytechnical University, St. Petersburg, Russia 39: Also at University of Florida, Gainesville, U.S.A. 40: Also at California Institute of Technology, Pasadena, U.S.A. 41: Also at Faculty of Physics, University of Belgrade, Belgrade, Serbia 42: Also at INFN Sezione di Roma; Universita di Roma, Roma, Italy 43: Also at National Technical University of Athens, Athens, Greece 44: Also at Scuola Normale e Sezione dell'INFN, Pisa, Italy 45: Also at National and Kapodistrian University of Athens, Athens, Greece 46: Also at Riga Technical University, Riga, Latvia 47: Also at Institute for Theoretical and Experimental Physics, Moscow, Russia 48: Also at Albert Einstein Center for Fundamental Physics, Bern, Switzerland 49: Also at Gaziosmanpasa University, Tokat, Turkey 50: Also at Adiyaman University, Adiyaman, Turkey 51: Also at Mersin University, Mersin, Turkey 52: Also at Cag University, Mersin, Turkey 53: Also at Piri Reis University, Istanbul, Turkey 54: Also at Ozyegin University, Istanbul, Turkey 55: Also at Izmir Institute of Technology, Izmir, Turkey 56: Also at Marmara University, Istanbul, Turkey 57: Also at Kafkas University, Kars, Turkey 59: Also at Yildiz Technical University, Istanbul, Turkey 60: Also at Hacettepe University, Ankara, Turkey 61: Also at Rutherford Appleton Laboratory, Didcot, United Kingdom 62: Also at School of Physics and Astronomy, University of Southampton, Southampton, United 63: Also at Instituto de Astrof sica de Canarias, La Laguna, Spain 64: Also at Utah Valley University, Orem, U.S.A. 65: Also at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, 66: Also at Facolta Ingegneria, Universita di Roma, Roma, Italy 67: Also at Argonne National Laboratory, Argonne, U.S.A. 68: Also at Erzincan University, Erzincan, Turkey 69: Also at Mimar Sinan University, Istanbul, Istanbul, Turkey 70: Also at Texas A&M University at Qatar, Doha, Qatar 71: Also at Kyungpook National University, Daegu, Korea [25] LHCb collaboration, Measurement of forward W and Z boson production in pp collisions at [26] C. Anastasiou, L.J. Dixon, K. Melnikov and F. Petriello, High precision QCD at hadron colliders: Electroweak gauge boson rapidity distributions at NNLO, Phys. Rev. D 69 (2004) [27] R. Gavin, Y. Li, F. Petriello and S. Quackenbush, FEWZ 2.0: a code for hadronic Z production at next-to-next-to-leading order, Comput. Phys. Commun. 182 (2011) 2388 [28] R. Gavin, Y. Li, F. Petriello and S. Quackenbush, W Physics at the LHC with FEWZ 2.1, [29] Y. Li and F. Petriello, Combining QCD and electroweak corrections to dilepton production in [30] G.A. Ladinsky and C.P. Yuan, The Nonperturbative regime in QCD resummation for gauge boson production at hadron colliders, Phys. Rev. D 50 (1994) R4239 [hep-ph/9311341] [31] F. Landry, R. Brock, P.M. Nadolsky and C.P. Yuan, Tevatron Run-1 Z boson data and Collins-Soper-Sterman resummation formalism, Phys. Rev. D 67 (2003) 073016 [32] M. Guzzi, P.M. Nadolsky and B. Wang, Nonperturbative contributions to a resummed [33] S. Frixione, P. Nason and C. Oleari, Matching NLO QCD computations with Parton Shower [34] P. Nason, A new method for combining NLO QCD with shower Monte Carlo algorithms, [35] S. Alioli, P. Nason, C. Oleari and E. Re, NLO vector-boson production matched with shower [36] S. Alioli, P. Nason, C. Oleari and E. Re, A general framework for implementing NLO [37] T. Sjostrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 physics and manual, JHEP 05 [38] CMS collaboration, The CMS experiment at the CERN LHC, 2008 JINST 3 S08004 [39] H.-L. Lai et al., New parton distributions for collider physics, Phys. Rev. D 82 (2010) 074024 [40] J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer and T. Stelzer, MadGraph 5: going beyond, [42] J. Pumplin, D.R. Stump, J. Huston, H.L. Lai, P.M. Nadolsky and W.K. Tung, New [43] F. Maltoni and T. Stelzer, MadEvent: automatic event generation with MadGraph, JHEP 02 [44] GEANT4 collaboration, S. Agostinelli et al., GEANT4 | A simulation toolkit, Nucl. [45] CMS collaboration, Particle- ow event reconstruction in CMS and performance for jets, taus [47] W. Adam, R. Fruhwirth, A. Strandlie and T. Todorov, Reconstruction of electrons with the [51] M. Cacciari and G.P. Salam, Pileup subtraction using jet areas, Phys. Lett. B 659 (2008) 119 [52] CMS collaboration, Missing transverse energy performance of the CMS detector, 2011 [54] A. Hocker and V. Kartvelishvili, SVD approach to data unfolding, Nucl. Instrum. Meth. A [55] V. Blobel, An unfolding method for high-energy physics experiments, hep-ex/0208022 [56] G. Nanava and Z. Was, How to use SANC to improve the PHOTOS Monte Carlo simulation of bremsstrahlung in leptonic W boson decays, Acta Phys. Polon. B 34 (2003) 4561 [58] J.C. Collins and D.E. Soper, Back-to-back jets in QCD, Nucl. Phys. B 193 (1981) 381 Brazil S. Ahujaa, C.A. Bernardesb, A. De Souza Santosb, S. Dograa, T.R. Fernandez Perez Tomeia, France A. Abdulsalam, I. Antropov, S. Ba oni, F. Beaudette, P. Busson, L. Cadamuro, E. Chapon, C. Charlot, O. Davignon, R. Granier de Cassagnac, M. Jo, S. Lisniak, P. Mine, I.N. Naranjo, M. Nguyen, C. Ochando, G. Ortona, P. Paganini, P. Pigard, S. Regnard, R. Salerno, Y. Sirois, T. Strebler, Y. Yilmaz, A. Zabi A. Descroix, A. Dierlamm, S. Fink, F. Frensch, R. Friese, M. Gi els, A. Gilbert, D. Haitz, F. Hartmann13, S.M. Heindl, U. Husemann, I. Katkov14, A. Kornmayer13, P. Lobelle Pardo, B. Maier, H. Mildner, M.U. Mozer, T. Muller, Th. Muller, M. Plagge, G. Quast, K. Rabbertz, S. Rocker, F. Roscher, M. Schroder, G. Sieber, H.J. Simonis, R. Ulrich, J. Wagner-Kuhr, S. Wayand, M. Weber, T. Weiler, S. Williamson, C. Wohrmann, R. Wolf University Italy Italy Malaysia Portugal P. Bargassa, C. Beir~ao Da Cruz E Silva, A. Di Francesco, P. Faccioli, P.G. Ferreira Parracho, M. Gallinaro, J. Hollar, N. Leonardo, L. Lloret Iglesias, M.V. Nemallapudi, F. Nguyen, J. Rodrigues Antunes, J. Seixas, O. Toldaiev, D. Vadruccio, J. Varela, P. Vischia S. Afanasiev, M. Gavrilenko, I. Golutvin, I. Gorbunov, A. Kamenev, V. Karjavin, A. Lanev, N. Dupont, A. Elliott-Peisert, G. Franzoni, J. Fulcher, W. Funk, D. Gigi, K. Gill, M. Girone, Thailand A. Adiguzel, M.N. Bakirci49, S. Cerci50, S. Damarseckin, Z.S. Demiroglu, C. Dozen, E. EsChina 14: Also at Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Kingdom

This is a preview of a remote PDF:

Measurement of the transverse momentum spectra of weak vector bosons produced in proton-proton collisions at \( \sqrt{s}=8 \) TeV, Journal of High Energy Physics, 2017, DOI: 10.1007/JHEP02(2017)096