Searches for invisible decays of the Higgs boson in pp collisions at \( \sqrt{s} \) = 7, 8, and 13 TeV

Journal of High Energy Physics, Feb 2017

Searches for invisible decays of the Higgs boson are presented. The data collected with the CMS detector at the LHC correspond to integrated luminosities of 5.1, 19.7, and 2.3 fb−1 at centre-of-mass energies of 7, 8, and 13 TeV, respectively. The search channels target Higgs boson production via gluon fusion, vector boson fusion, and in association with a vector boson. Upper limits are placed on the branching fraction of the Higgs boson decay to invisible particles, as a function of the assumed production cross sections. The combination of all channels, assuming standard model production, yields an observed (expected) upper limit on the invisible branching fraction of 0.24 (0.23) at the 95% confidence level. The results are also interpreted in the context of Higgs-portal dark matter models.

A PDF file should load here. If you do not see its contents the file may be temporarily unavailable at the journal website or you do not have a PDF plug-in installed and enabled in your browser.

Alternatively, you can download the file locally and open with any standalone PDF reader:

Searches for invisible decays of the Higgs boson in pp collisions at \( \sqrt{s} \) = 7, 8, and 13 TeV

Received: October Searches for invisible decays of the Higgs boson in pp J. Pumplin 0 1 D.R. Stump 0 1 J. Huston 0 1 H.L. Lai 0 1 P.M. Nadolsky 0 1 W.K. Tung 0 1 New 0 1 0 University of California , San Diego, La Jolla , U.S.A 1 University , Budapest , Hungary Searches for invisible decays of the Higgs boson are presented. The data collected with the CMS detector at the LHC correspond to integrated luminosities of 5.1, 19.7, and 2.3 fb 1 at centre-of-mass energies of 7, 8, and 13 TeV, respectively. The search channels target Higgs boson production via gluon fusion, vector boson fusion, and in association with a vector boson. Upper limits are placed on the branching fraction of the Higgs boson decay to invisible particles, as a function of the assumed production cross sections. The combination of all channels, assuming standard model production, yields an observed (expected) upper limit on the invisible branching fraction of 0.24 (0.23) at the 95% con dence level. The results are also interpreted in the context of Higgs-portal dark matter models. p; s; Beyond Standard Model; Hadron-Hadron scattering (experiments); Higgs - 7; 8, and 13 TeV 1 Introduction 2 3 4 The CMS detector and object reconstruction Data samples and simulation Analyses included in the combination The VBF analysis The Z(`+` ) analysis Background estimation Background estimation Background estimation The V(jj) and monojet analyses Upper limits on B(H ! inv) assuming SM production Non-SM production and DM interpretations A Supplementary material A.1 Negative likelihood scans A.2 Non-SM production cross sections A.3 Uncertainty breakdown The CMS collaboration The Higgs boson (H) discovery and the study of its properties by the ATLAS and CMS Collaborations [1{3] at the CERN LHC have placed major constraints on potential models of new physics beyond the standard model (SM). Precision measurements of the couplings of the Higgs boson from a combination of the 7 and 8 TeV ATLAS and CMS data sets indicate a very good agreement between the measured properties of the Higgs boson and the SM predictions [4]. In particular, these measurements provide indirect constraints on additional contributions to the Higgs boson width from non-SM decay processes. The resulting indirect upper limit on the Higgs boson branching fraction to non-SM decays is 0.34 at the 95% con dence level (CL) [4]. A number of models for physics beyond the SM allow for invisible decay modes of the Higgs boson, such as decays to neutralinos in supersymmetric models [5] or graviscalars in models with extra spatial dimensions [6, 7]. More generally, invisible Higgs boson decays can be realised through interactions between the Higgs boson and dark matter (DM) [8]. In Higgs-portal models [9{12], the Higgs boson acts as a mediator between SM and DM particles allowing for direct production of DM at the LHC. Furthermore, cosmological models proposing that the Higgs boson played a central role in the evolution of the early universe motivate the study of the relationship between the Higgs boson and Direct searches for invisible decays of the Higgs boson increase the sensitivity to the invisible Higgs boson width beyond the indirect constraints. The typical signature at the LHC is a large missing transverse momentum recoiling against a distinctive visible system. Previous searches by the ATLAS and CMS Collaborations have targeted Higgs boson production in association with a vector boson (VH, where V denotes W or Z) [15{17] or with jets consistent with a vector boson fusion (VBF, via qq ! qqH) topology [17, 18]. A combination of direct searches for invisible Higgs boson decays in qqH and VH production, by the ATLAS Collaboration, yields an upper limit of 0.25 on the Higgs boson invisible branching fraction, B(H ! inv), at the 95% con dence level [19]. Additionally, searches by the ATLAS Collaboration for DM in events with missing transverse momentum accompanied by jets have been interpreted in the context of Higgs boson production via gluon fusion and subsequent decay to invisible particles [20]. In this paper, results from a combination of searches for invisible decays of the Higgs boson using data collected during 2011, 2012, and 2015 are presented. The searches target the qqH, VH, and ggH production modes. The searches for the VH production mode include searches targeting ZH production, in which the Z boson decays to a pair of leptons ) or bb, and searches for both the ZH and WH production modes, in which the W or Z boson decays to light- avour jets. Additional sensitivity is achieved in this analysis by including a search targeting gluon fusion production where the Higgs boson is produced accompanied by a gluon jet (gg ! gH). The diagrams for the qqH, VH, and ggH Higgs boson production processes are shown in gure 1. The contribution to ZH production from gluon fusion (gg ! ZH), as shown in gure 2, is included in this analysis. When combining the searches to determine an upper limit on B(H ! inv) SM production cross sections are assumed, consistent with the measured Higgs boson production rates [4]. In addition, upper limits on B(H ! inv) assuming non-SM production cross sections are provided. This paper is structured as follows: a brief overview of the CMS detector and event reconstruction is given in section 2, and the data sets and simulation used for the searches are presented in section 3. In section 4, the strategy for each search included in the combination is described, and in section 5 the results of the searches are presented and interpreted in terms of upper limits on B(H ! inv) and DM-nucleon interaction cross sections. Finally, a summary is presented in section 6. Higgs boson decays: (upper left) qq ! qqH, (upper right) qq ! VH, and (bottom) gg ! gH. (left) the top quark and the Higgs boson or (right) the Z and Higgs bosons. The CMS detector and object reconstruction The CMS detector is a multipurpose apparatus optimised to study high transverse momentum (pT) physics processes in proton-proton and heavy-ion collisions. A superconducting solenoid occupies its central region, providing a magnetic eld of 3.8 T parallel to the beam direction. Charged-particle trajectories are measured by the silicon pixel and strip trackers, which cover a pseudorapidity region of j j < 2:5. A lead tungstate crystal electromagnetic calorimeter (ECAL), and a brass and scintillator hadron calorimeter (HCAL) surround the tracking volume and cover j j < 3. The steel and quartz- bre Cherenkov hadron forward calorimeter extends the coverage to j j < 5. The muon system consists of gas-ionisation detectors embedded in the steel ux-return yoke outside the solenoid, and covers j j < 2:4. The rst level of the CMS trigger system, composed of custom hardware processors, is designed to select the most interesting events in less than 4 s, using information from the calorimeters and muon detectors. The high-level trigger processor farm then further reduces the event rate to less than 1 kHz. A more detailed description of the CMS detector, together with a de nition of the coordinate system used and the relevant kinematic variables, can be found in ref. [21]. Objects are reconstructed using the CMS particle- ow (PF) algorithm [22, 23], which optimally combines information from the various detector components to reconstruct and identify individual particles. The interaction vertex with the maximum value of Pi(piT)2, where piT is the transverse momentum of the ith track associated with the vertex, is selected as the primary vertex for the reconstruction of these objects. Jets are reconstructed by clustering PF candidates, using the anti-kT algorithm [24] with a distance parameter of 0.5 (0.4) for the 7 and 8 (13) TeV data set. Analyses exploring Lorentz-boosted hadronic objects employ large-radius jets, clustered using the CambridgeAachen algorithm [25] at 8 TeV and the anti-kT algorithm at 13 TeV, each with a distance parameter of 0.8. The combined secondary vertex algorithm is used to identify jets originating from b quarks (b jets) [26{28]. The selection used is roughly 70% e cient for b jets with pT > 30 GeV. The jet momentum is corrected to account for contamination from additional interactions in the same bunch crossing (pileup, PU) based on the event energy density scaled proportionally to the jet area [29]. Calibrations based on simulation and control samples in data are applied to correct the absolute scale of the jet energy [30]. The jets are further subjected to a standard set of identi cation criteria [31]. All jets are required to have pT > 30 GeV and j j < 4:7, unless stated otherwise. The missing transverse momentum vector p~miss is de ned as the projection on the plane perpendicular to the beams of the negative vector sum of the momenta of all PF candidates in the event. The magnitude of p~Tmiss is referred to as ETmiss. Dedicated quality lters are applied for tracks, muons, and other physics objects to remove events with large misreconstructed ETmiss. Electron (e), photon ( ), and muon ( ) candidates are required to be within the candidates in the transition region between the ECAL barrel and endcap (1:44 < j j < 1:57) are not considered because the reconstruction of electrons and photons in this region is not optimal. Details of the electron, photon, and muon reconstruction algorithms and their performance can be found in refs. [32, 33], and [34], respectively. Lepton isolation is based on the sum of the pT of additional PF candidates in a cone of radius R = 2 = 0:4 around each lepton, where di erences in azimuthal angle (in radians) and pseudorapidity between the lepton and each particle in the sum, respectively. The isolation sum is required to be smaller than 15% (12%) of the electron (muon) pT. In order to reduce the dependence of the isolation variable on the number of PU interactions, charged hadrons are included in the sum only if they are consistent with originating from the selected primary vertex of the event. To further correct for the contribution of neutral particles from PU events to the isolation sum in the case of electrons, the median transverse energy density, determined on an event-byevent basis as described in ref. [35], is subtracted from the sum. For muons the correction is made by subtracting half the sum of the transverse momenta of charged particles that are inside the cone and not associated with the primary vertex. The factor of one half accounts for the expectation that there are half the number of neutral particles as charged particles within the cone. Details of the reconstruction of leptons can be found in ref. [36]. The sum of the transverse momenta of all PF candidates within a cone of radius R < 0:3 around the candidates is required to be less than 5 GeV. For the purposes of event vetoes, a set of electron, photon, muon, and identi cation and isolation criteria are applied as de ned by the \loose" selections in refs. [32, 33, 37], and [36], respectively. To veto an event the electron, photon, or muon must have pT > 10 GeV and fall within the detector acceptance described above, while a -lepton must have pT > 15 GeV and j j < 2:3. These vetoes suppress backgrounds from leptonic decays of electroweak (EW) backgrounds and allow orthogonal control regions. Data samples and simulation The data used for the analyses described here comprise pp collisions collected with the CMS detector in the 2011, 2012, and 2015 data-taking periods of the LHC. The integrated luminosities are 4.9, 19.7, and 2.3 fb 1 at centre of mass energies of 7, 8, and 13 TeV, respectively. The uncertainties in the integrated luminosity measurements are 2.2%, 2.6%, and 2.7% at 7 [38], 8 [39], and 13 TeV [40], respectively. Simulated ggH and qqH events are generated with powheg 1.0 (powheg 2.0) [41{43] interfaced with pythia 6.4 [44] (pythia 8.1 [45]) at 7 and 8 (13) TeV. The inclusive cross section for ggH production is calculated to next-to-next-to-next-to-leading order (N3LO) precision in quantum chromodymanics (QCD) and next-to-leading order (NLO) in EW theory [46]. The qqH inclusive cross section calculation uses next-to-next-to-leading order (NNLO) QCD and NLO EW precision [47]. In the 8 TeV sample, the pT distribution of the Higgs boson in the ggH process is reweighted to match the NNLO plus next-to-nextto-leading-logarithmic (NNLL) prediction from HRes2.1 [48, 49]. The event generation at 13 TeV is tuned so that the pT distribution agrees between powheg 2.0 and HRes2.1. Associated VH production is generated using pythia 6.4 (pythia 8.1) at 7 and 8 (13) TeV and normalised to an inclusive cross section calculated at NNLO QCD and NLO EW precision [47]. The expected contribution from gg ! ZH production is estimated using events generated with powheg 2.0 interfaced with pythia 8.1. All signal processes are generated assuming a Higgs boson mass of 125 GeV, consistent with the combined ATLAS and CMS measurement of the Higgs boson mass [50]. The SM Higgs boson cross sections at 125 GeV and their uncertainties for all production mechanisms are taken from ref. [51] at all centre-of-mass energies. A summary of the simulation used for the di erent signal processes is given in table 1. The majority of background samples, including W+jets, Z+jets, tt, and triboson production, are generated using MadGraph 5.1 [52] (MadGraph 5 aMC@NLO2.2 [53]) with leading order (LO) precision, interfaced with pythia 6.4 (pythia 8.1) for hadronisation and fragmentation in the 7 and 8 (13) TeV analyses. Single top quark event samples are produced using powheg 1.0 [54] and diboson samples are generated using pythia 6.4 (pythia 8.1) at 7 and 8 (13) TeV. QCD multijet events are generated using either pythia Production process incl. cross section precision N3LO (QCD), NLO (EW) powheg 1.0+pythia 6.4 powheg 1.0+pythia 6.4 powheg 2.0+pythia 8.1 NNLO (QCD), NLO (EW) powheg 1.0+pythia 6.4 powheg 1.0+pythia 6.4 powheg 2.0+pythia 8.1 qq ! VH NNLO (QCD), NLO (EW) gg ! ZH NNLO (QCD), NLO (EW) powheg 2.0+pythia 8.1 powheg 2.0+pythia 8.1 powheg 2.0+pythia 8.1 analyses. The pT distribution of the ggH production is modi ed in the 8 TeV simulation to match that predicted with HRes as described in the text. The accuracy of the inclusive cross section used for each process is shown, details of which can be found in the text. 6.4 or MadGraph 5 aMC@NLO2.2, depending on the analysis. All signal and background samples use the CTEQ6L [55] ( NNPDF3.0 [56]) parton distribution functions (PDFs) at 7 and 8 (13) TeV. The underlying event simulation is done using parameters from the Z2* tune [57, 58] and the CUETP8M1 tune [58] for pythia 6.4 and pythia 8.1, respectively. The interactions of all nal-state particles with the CMS detector are simulated with Geant4 [59]. The simulated samples include PU interactions with the multiplicity of reconstructed primary vertices matching that in the relevant data sets. An uncertainty of 5% in the total inelastic pp cross section is propagated to the PU distribution and is treated as correlated between the data-taking periods. Analyses included in the combination The characteristic signature of invisible Higgs boson decays for all of the included searches of the production topologies. In order to reduce the contributions expected from the SM backgrounds, the properties of the visible recoiling system are exploited. The events are divided into several exclusive categories designed to target a particular production mode. A summary of the analyses included in the combination and the expected signal composition in each of them are given in table 2. The VBF search at 8 TeV used in this paper improves on the previous analysis [17] by using additional data samples from highrate triggers installed in CMS in 2012. These triggers wrote data to a special stream, and the events were reconstructed during the long shutdown of the LHC in 2013 [60]. The limit setting procedure has also been updated to allow for a common approach between the 8 and 13 TeV analyses. The Z(`+` ) search at 7 and 8 TeV is identical to the one described in ref. [17] but is described in this paper to allow for comparison to the 13 TeV analysis. Both the V(jj) and monojet analyses at 8 TeV are re-interpretations of a generic search for DM production described in ref. [61] with minor modi cations to the selection of events and limit extraction procedure. In addition to the channels described in the following sections, an 8 TeV analysis targeting ZH production in which the Z boson decays to a bb pair, described in ref. [17], is included in this combination. The signal in the VBF analysis is expected to be dominated by qqH production and the expected signals in the Z(`+` ) and Z(bb) analyses are composed entirely of ZH production. In contrast, the V(jj) and monojet analyses, which target events with a central, Lorentz 8 TeV 13 TeV 7 or 8 TeV 13 TeV qqH-tagged VBF jets ggH-tagged Monojet 4.9 [17] 19.7 [17] Expected signal composition (%) 7.8 (ggH), 92.2 (qqH) 9.1 (ggH), 90.9 (qqH) 25.1 (ggH), 5.1 (qqH), 38.7 (ggH), 7.1 (qqH), 23.0 (ZH), 46.8 (WH) 21.3 (ZH), 32.9 (WH) 70.4 (ggH), 20.4 (qqH), 69.3 (ggH), 21.9 (qqH), 3.5 (ZH), 5.7 (WH) 4.2 (ZH), 4.6 (WH) of 125 GeV in each analysis included in the combination. The relative contributions assume SM production cross sections. boosted jet, contain a mixture of the di erent production modes. This is due to the limited discrimination power of the jet identi cation used to categorise these events. As shown in table 2, the signal composition is similar across the 7 or 8, and 13 TeV data sets. In the V(jj) analysis the ZH contribution is larger, relative to the WH contribution, in the 13 TeV analysis compared to the 8 TeV analysis. This is because the lepton veto requirement is less e cient at removing leptonic Z boson decays in the case where the lepton pair is produced at high Lorentz boost causing the isolation cones of the two leptons to overlap more often at a centre-of-mass energy of 13 TeV compared to 8 TeV. Each analysis has been optimised separately for the speci c conditions and integrated luminosity of the 7, 8, and 13 TeV data sets leading to di erences in the kinematic requirements across the data sets. These di erences are discussed in the following sections. The VBF analysis The qqH Higgs boson production mode is characterised by the presence of two jets with a large separation in and a large invariant mass (mjj). The selection of events targeting qqH production exploits this distinctive topology to give good discrimination between the invisible decays of a Higgs boson and the large SM backgrounds. The contributions from )+jets and W(` )+jets backgrounds and the QCD multijet backgrounds are estimated using control regions in data. A simultaneous t to the yields in the signal and control regions is performed to extract any potential signal and place upper limits Events are selected online using a dedicated VBF trigger, in both the 8 and 13 TeV data sets, with thresholds optimised for the instantaneous luminosities during each data-taking period. The trigger requires a forward-backward pair of jets with a pseudorapidity sep(j1; j2)j > 3:5 and a large invariant mass. For the majority of the 8 TeV LHC conditions, and mjj > 700 GeV. For the 13 TeV data set, these were modi ed to pT > 40 GeV and mjj > 600 GeV. In addition, the trigger requires the presence of missing transverse energy, reconstructed using the ECAL and HCAL information only. The thresholds were ETmiss > 40 (140) GeV at 8 (13) TeV. The e ciency of the trigger was measured of this e ciency is then applied as a weight to simulated events. The subsequent selection after the full reconstruction is designed to maintain a trigger e ciency of greater than 80%. The selection of events is optimised for VBF production of the Higgs boson with a mass of 125 GeV, decaying to invisible particles. Events are required to contain at least two jets are required to have ETmiss > 90 (200) GeV at 8 (13) TeV. within j j < 4:7 with pseudorapidities of opposite sign, separated by j The two jets in the event with the highest pT satisfying this requirement form the dijet pair. The leading and subleading jets in this pair are required to have pjT1 > 50 (80) GeV, pjT2 > 45 (70) GeV, and dijet invariant mass mjj > 1200 (1100) GeV at 8 (13) TeV. Events events are required to satisfy S(ETmiss) > 4 GeV. For the 8 TeV dataset, an additional requirement is set on an approximate missing transverse energy signi cance variable S(ETmiss) de ned as the ratio of ETmiss to the square root of the scalar sum of the transverse energy of all PF objects in the event [62]. Selected In order to reduce the large backgrounds from QCD multijet production, the jets in and each jet in the event, (p~Tmiss; j), is determined. The minimum value of this angle (p~Tmiss; j) is required to be greater than 2.3. Finally, events containing at least one muon or electron with pT > 10 GeV are rejected to suppress backgrounds from leptonic decays of the vector boson. A summary of the event selection used in the 8 and 13 TeV data sets is given in table 3. Figure 3 shows the distribution of (j1; j2) and mjj in data and the predicted background contributions after the selection. The contribution expected from a Higgs boson with a mass of 125 GeV, produced assuming SM cross sections and decaying to invisible particles with 100% branching fraction, is also shown. The backgrounds have been normalised using the results of a simultaneous t, as described in section 4.1.2. H, B(H → inv)=100% H, B(H → inv)=100% 1500 2000 2500 3000 3500 4000 (j1; j2) and (right) mjj in events selected in the VBF analysis for data and simulation at 13 TeV. The background yields are scaled to their post- t values, with the total post- t uncertainty represented as the black hatched area. The last bin contains the over ow events. The expected contribution from a Higgs boson with a mass of 125 GeV, produced with the SM cross section and decaying to invisible particles with 100% branching fraction, is overlaid. Background estimation The dominant backgrounds to this search arise from Z( )+jets events and W(` )+jets events with the charged lepton outside of the detector acceptance or not identi ed. These backgrounds are estimated using data control regions, in which a Z or W boson, produced in association with the same dijet topology, decays to well-identi ed charged leptons. These control regions are designed to be as similar to the signal region as possible to limit the extrapolation required between di erent kinematic phase spaces. An additional control region, enriched in QCD multijet events, is de ned to estimate the contribution arising due to mismeasured jet energies causing apparent ETmiss. Additional smaller contributions due to diboson, tt, and single top quark production are estimated directly A dimuon control region is de ned, enriched in Z ! events, requiring a pair of oppositely charged muons with pT > 20 GeV, j j < 2:1, and an invariant mass m the range 60{120 GeV. Three single-lepton regions (one enriched in each of the W ! e , processes) are de ned by removing the lepton veto and requiring exactly one isolated lepton, with pT > 20 GeV, of a given avour, and no leptons of any other avour. The lepton is required to be within j j < 2:1; 2:4, or 2.3 for the single-muon, single-electron, or single lepton region, respectively. The remaining jets and ETmiss criteria are identical to the signal region, except in the W gion where the min (p~Tmiss; j) criterion is relaxed to min (p~Tmiss; j) > 1, taking the minimum over the leading two jets only, to ensure QCD multijet events are suppressed, while retaining a su cient number of events in the control region. Additionally, a requirement that min (p~Tmiss; j) < 2:3 is applied to maintain an orthogonal selection to the Finally, additional control regions are de ned in data that are identical to the signal region selection except for the requirement on min (p~Tmiss; j). In the 8 TeV analysis, a two-step procedure is used in which two control regions are de ned. The rst control region is de ned by min (p~Tmiss; j) < 1 and is used to determine the distribution of S(ETmiss) for QCD multijet events once the contributions from other backgrounds are subtracted. The distribution is normalised using events in a second region de ned as 3 < S(ETmiss) < 4 The integral of the normalised distribution in the region S(ETmiss) > 4 and 1 < min (p~Tmiss; j) < 2, where the signal contribution is expected to be negligible. the estimate of the QCD multijet event contribution in the signal region. In the 13 TeV analysis, an independent control region is de ned by a requirement of min 0:5 to enrich the QCD multijet contribution. Systematic uncertainties of 80% and 100% are included at 8 and 13 TeV to account for potential biases in the extrapolation to the Several sources of experimental systematic uncertainties are included in the predictions of the background components. The dominant ones are the jet energy scale and resolution [31] uncertainties, which are also propagated to the calculation of the ETmiss, resulting in uncertainties of up to 8% in the expected background yields. Smaller uncertainties are included to account for the PU description and lepton reconstruction e ciencies. Due to the looser selection applied in the W ! control region compared to the signal region, an additional systematic uncertainty of 20% in the prediction of the W tion is included. Finally, additional cross section uncertainties of 7% (10%) [63{67] for diboson production and 10% (20%) [68{70] for the top quark background at 8 (13) TeV In order to estimate the background contributions, a maximum likelihood t is performed simultaneously across each of the control regions, taking the expected background yields from simulation and observed event counts as inputs to the t. Two scale factors are included as free parameters in the t, one scaling both the W+jets and Z+jets processes and one scaling the QCD multijet yields across all of the regions. The t is thereby able to constrain the contributions from W+jets, Z+jets, and QCD multijets directly from data. The ratio of W(` )+jets to Z( )+jets is calculated using simulated samples, generated at LO. Separate samples are produced for the production of the jets through quark-gluon vertices (QCD) and production through quark-vector-boson vertices (EW). A theoretical systematic uncertainty in the expected ratio of the W(` )+jets to Z( )+jets yields is derived by comparing LO and NLO predictions after applying the full VBF kinematic selection using events generated with MadGraph 5 amc@nlo 2.2 interfaced with pythia 8.1, excluding events produced via VBF. A di erence of 30% is observed between the ratios predicted by the LO and NLO calculations and is included as a systematic uncertainty in the ratio of the W+jets to Z+jets contributions. The ratio of the production cross sections of W(` )+jets to Z( )+jets through EW vertices is compared at NLO and LO precision using vbf@nlo2.7 [71, 72] and found to agree within the 30% systematic uncertainty assigned. The observed yields in data for each of the control regions in the 13 TeV data set, and the expected contributions from the backgrounds after the t ignoring the signal region events, are given in table 4. mH = 125 GeV 13 TeV data set. The t ignores the constraints due to the data in the signal region. For the W and Z processes, jet production through QCD or EW vertices are listed as separate entries. The signal yields shown assume SM ggH and qqH production rates for a Higgs boson with a mass of 125 GeV, decaying to invisible particles with B(H ! inv) = 100%. The Z(`+` ) analysis The ZH production mode, where the Z boson decays to a pair of charged leptons, has a smaller cross section than qqH but a clean nal state with lower background. The search with a leptonic Z boson decay, produced in association with a large ETmiss. The background is dominated by the diboson processes, ZZ ! `` and WZ ! ` ``, which contribute roughly 70% and 25% of the total background, respectively. In the 7 and 13 TeV data sets the sensitivity of the search is enhanced by using the distribution of the transverse mass of the dilepton-ETmiss system mT, de ned as mT = where p`T` is the transverse momentum of the dilepton system and azimuthal angle between the dilepton system and the missing transverse momentum vector. In the 8 TeV data set, a two-dimensional t is performed to the distributions of mT and the azimuthal angle between the two leptons (`; `) to exploit the increased statistical precision available in that data set [17]. p`T`j=p`T` < =2 (p~Tmiss; j) requirement is applied only in the 1-jet category. events containing a from WZ production. Events for this channel are recorded using double-electron and double-muon triggers, with thresholds of peT > 17 (12) GeV and p T > 17 (8) GeV at 13 TeV and pe; > 17 (8) GeV at 7 T and 8 TeV, for the leading (subleading) electron or muon, respectively. Single-electron and single-muon triggers are also included in order to recover residual trigger ine ciencies. Selected events are required to have two well-identi ed, isolated leptons with the same avour and opposite charge (e+e ), each with pT > 20 GeV, and an invariant substantially suppressed by requiring =2. As little hadronic activity is expected in the Z(``)H channel, events with more than one jet with pT > 30 GeV are rejected. Events containing a muon with pT > 3 GeV and a b jet with pT > 30 GeV are vetoed to reduce backgrounds from top quark production. Diboson backgrounds are suppressed by rejecting events containing additional electrons or muons with pT > 10 GeV. In the 13 TeV analysis, lepton with pT > 20 GeV are vetoed to suppress the contributions The remainder of the selection has been optimised for a Higgs boson with a mass of 125 GeV, produced in the Z(``)H production mode. As a result of this optimisation, events are required to have ETmiss > 120 (100) GeV, (``; p~Tmiss) > 2:7 (2.8), and jETmiss p`T`j=p`T` < 0:25 (0:4), in the 7 and 8 (13) TeV data sets. Finally, the events are required to have mT > 200 GeV. A summary of the event selection used for the 7, 8, and 13 TeV data sets is given The selected events are separated into two categories, events that contain no jets with pT > 30 GeV and j j < 4:7, and events that contain exactly one such jet. An additional selection requiring (p~Tmiss; j) > 0:5 is applied in the 1-jet category at 13 TeV which signi cantly reduces the contribution from Z+jets events. The distributions of mT for selected events in data and simulation, combining electron and muon events, for the 0-jet and 1-jet categories at 13 TeV are shown in gure 4. H, B(H → inv)=100% H, B(H → inv)=100% 200 300 400 500 600 700 800 900 1000 200 300 400 500 600 700 800 900 1000 1-jet categories of the Z(`+` ) analysis at 13 TeV, combining dielectron and dimuon events. The background yields are normalised to 2.3 fb 1 . The shaded bands represent the total statistical and systematic uncertainties in the backgrounds. The horizontal bars on the data points represent the width of the bin centred at that point. The expectation from a Higgs boson with a mass of 125 GeV, from ZH production, decaying to invisible particles with a 100% branching fraction is shown in red. Background estimation The dominant backgrounds, ZZ ! `` and WZ ! ` ``, are generated at NLO using powheg 2.0, for production via qq. Corrections are applied to account for higher-order QCD and EW e ects which are roughly 10{15% each but with opposite sign. The contribution from gg ! ZZ is estimated using mcfm7.0 [73]. Uncertainties due to missing higher-order corrections for these processes are evaluated by varying the renormalisation and factorisation scales up and down by a factor of two, yielding systematic uncertainties between 4 and 10%. A 2% uncertainty is added to account for the jet category migration due to uncertainties in the PDFs used in the signal generation, calculated following the procedures outlined in ref. [74]. Additional uncertainties are included in the qq ! ZZ event yield to account for the uncertainties in the higher-order corrections applied. The Z+jets background is estimated using a data control region dominated by singlephoton production in association with jets ( +jets). The +jets events have similar jet kinematics to Z= (`+` )+jets, but with a much larger production rate. events are weighted, as a function of the photon pT, to match the distribution observed in Z= (`+` )+jets events in data. This accounts for the dependence of the ETmiss on the hadronic activity. A systematic uncertainty of 100% is included in the background estimate to account for the limited number of events at large pT in the data used to weight the The remaining, nonresonant backgrounds are estimated using a control sample selecting pairs of leptons of di erent avour and opposite charge (e ) that pass all of the signal region selections. These backgrounds consist mainly of leptonic W boson decays in tt and tW processes, and WW events. Additionally, leptonic lepton decays contribute to these backgrounds. As the branching fraction to the e nal states is twice that of nal states, the e control region provides precise estimates of the nonresonant backgrounds. In the 13 TeV analysis, the contribution from the nonresonant backgrounds is given by N`b`kg = Nedata(kee= + 1=kee= )=2; where Nedata is the number of events in the e backgrounds and kee= = p Nee=N control region after subtracting other is a correction factor accounting for the di erences events in data. An uncertainty of 70% in the estimated yield of the nonresonant backgrounds is included to account for the statistical and systematic uncertainties of the extrapolation from the e control region. A similar method using sideband regions around the Z boson mass peak was used to estimate these backgrounds in the 8 TeV analysis, as described in ref. [17]. This method was also used in the 13 TeV analysis as a cross check and the di erences between the results of the two methods of 10{15% are included as additional systematic uncertainties. Additional uncertainties in the background estimates arise from uncertainties in the lepton e ciencies, momentum scale, jet energy scale and resolution, and ETmiss energy scale and resolution. Each of these contributes around 2% uncertainty in the normalisation of the dominant backgrounds. Statistical uncertainties are included for all simulated samples. These uncertainties are propagated as both shape and normalisation variations of the predicted mT distributions. The numbers of expected and observed events for the 0-jet and 1-jet categories in the 13 TeV analysis are given in table 6. The signal yield assumes the SM ZH production rate for a Higgs boson with a mass of 125 GeV decaying to invisible particles with 100% The V(jj) and monojet analyses Searches for nal states with central jets and ETmiss su er from large backgrounds. However, the ggH mode and the VH associated mode, in which the vector boson decays hadronically, have relatively large signal contributions despite the tight requirements on the jets. The search strategies for the VH mode, in which the vector boson decays hadronically, and against jets from either gluon radiation or a hadronically decaying vector boson. Events are divided into two categories, depending on the jet properties. The dominant backgrounds )+jets and W(` )+jets events, accounting for 90% of the total background. These backgrounds are estimated using control regions in data and a simultaneous t to the ETmiss distribution of the events across all regions is performed to extract a potential signal. The data set is collected using a suite of triggers with requirements on ETmiss and hadronic activity. In the 8 TeV analysis two triggers are used: the rst requires ETmiss > 120 GeV, ZH, mH = 125 GeV Z= (`+` )+jets in the 13 TeV Z(`+` )-tagged analysis. The numbers are given for the 0-jet and 1-jet categories, separately for the e+e nal states. The uncertainties include statistical and systematic components. The signal prediction assumes a SM ZH production rate for a Higgs boson with the mass of 125 GeV and a 100% branching fraction to invisible particles. while the second requires ETmiss > 95 or 105 GeV, depending on the data-taking period, together with a jet of pT > 80 GeV and j j < 2:6. In the 13 TeV data set, the trigger requires ETmiss > 90 GeV and HTmiss > 90 GeV, where HTmiss is de ned as the magnitude of the vector sum of the pT of all jets with pT > 20 GeV. In both 8 and 13 TeV data sets the calculation of ETmiss does not include muons, allowing for the same triggers to be used in the signal, single-muon and dimuon control regions. For events selected for the analysis, the trigger e ciency is found to be greater than 99% (98%) at 8 (13) TeV. To reduce the QCD multijet background the events in the 8 TeV analysis that do not satisfy the requirement that the angle between the p~Tmiss and the leading jet are removed. In the 13 TeV data set the requirement is instead min where the minimum is over the four leading jets in the event. Events in the signal regions of the 8 (13) TeV analysis are vetoed if they contain an electron or muon with pT > 10 GeV, a photon with pT > 10 (15) GeV, or a lepton with pT > 18 (15) GeV. Backgrounds from top quark decays are suppressed by applying a veto on events containing a b jet with pT > 15 GeV. Selected events are classi ed by the topology of the jets in order to distinguish initialor nal-state radiation from hadronic vector boson decays. This results in two exclusive event categories to target two channels: the monojet and V(jj). If the vector boson decays hadronically and has su ciently high pT, its hadronic decay products are captured by a single reconstructed large-radius jet. Events in the V(jj) channel are required to have j j < 2:0 (2:4) in the 8 (13) TeV analysis. Additional requirements are included to better as de ned in refs. [75, 76], which identi es jets with a two subjet topology, and the pruned is required to be in the range 60{110 (65{105) GeV in the 8 (13) TeV analysis. The optimi2= 1 the 8 and 13 TeV data sets. The requirements on pjT and j jj refer to the highest pT (large-radius) jet in the monojet (V(jj)) events. The 8 TeV analysis uses only the leading jet in the de nition (p~Tmiss; j). In the 8 TeV number of jets Nj selection, events with one additional jet are allowed if this additional jet falls within of the leading jet as described in the text. sation of the selection for VH production is performed independently for the 8 and 13 TeV If an event fails the V(jj) selection, it can instead be included in the monojet channel. Events in this channel are required to contain at least one anti-kT jet, reconstructed with cone size 0.5 (0.4), with pT > 150 (100) GeV and j j < 2:0 (2.5) in the 8 (13) TeV analysis. In the 8 TeV analysis, only events with up to two jets are included in the V(jj) and monojet categories, provided that the separation of the second jet from the leading jet in azimuthal angle satis es < 2. For the purposes of this requirement, only jets reconstructed with the anti-kT algorithm using a cone size of 0.5 are counted beyond the leading jet in the V(jj) channel. This requirement on the maximum number of jets Nj was dropped for the 13 TeV analysis to increase the signal acceptance. Finally, events are required to have ETmiss > 200 GeV. A summary of the event selection for the V(jj) and monojet categories is given in vetoed to avoid an overlap with the VBF search. Background estimation The dominant Z( )+jets and W(` )+jets backgrounds are estimated from control regions in data consisting of dimuon, single-muon, and +jets events. In the 13 TeV analysis, addiin each control region is rede ned to mimic the ETmiss distribution of the Z( tional control regions consisting of dielectron and single-electron events are used. The ETmiss W(` )+jets backgrounds in the signal region by excluding the leptons or the photon from the computation of ETmiss. A dimuon control region is de ned by selecting events that contain two opposite-sign muons with p 1; 2 > 10 (20); 10 GeV at 8 (13) TeV and an invariant mass between 60 and 120 GeV. A single-muon control region is de ned by selecting events with an isolated muon with pT > 20 GeV. A dielectron control region in the 13 TeV data is de ned using similar requirements on the two electrons as for the dimuon control region. Single-electron triggers with a pT threshold of 27 GeV are used to record the events, and at least one of the selected electrons, after the full event reconstruction, is required to have pT > 40 GeV. Additionally a singlephoton trigger with a pT threshold of 165 GeV is used to recover events in which the pT of the Z boson is large (more than 600 GeV), leading to ine ciencies in the electron isolation requirements. A single-electron control sample is selected using the same triggers. The pT of the electron in this region is required to be greater than 40 GeV in order to reach the region in which the trigger is fully e cient. An additional requirement of ETmiss > 50 GeV is imposed on single-electron events in order to suppress the QCD multijet background. The use of dilepton events to constrain the Z( )+jets background su ers from large statistical uncertainties since the branching fraction of the Z boson to neutrinos is roughly six times larger than that to muons or electrons. In order to overcome this, +jets events are additionally used to reduce the statistical uncertainty at the cost of introducing theoretical uncertainties in their use for modelling Z( )+jets events [78]. The +jets control sample is constructed using single-photon triggers. Events are required to have a well isolated photon with pT > 170 (175) GeV and j j < 2:5 (1.44) in the 8 (13) TeV analysis to ensure a +jets purity of at least 95% [33]. The events in all control regions are required to pass all of the selection requirements applied in the signal region, except for the lepton and photon vetoes. As in the signal region, events in the control regions are separated into V(jj) and monojet channels. The ETmiss distribution of the Z( )+jets and W(` )+jets backgrounds is estimated from a maximum likelihood t, performed simultaneously across all ETmiss bins in the signal and control regions. The expected numbers of Z( )+jets (and W(` )+jets in the 8 TeV )+jets yield in the signal region to the corresponding yields of the Z( + analysis) in each bin of ETmiss are free parameters of the t. For each bin in ETmiss, the ratio Z(e+e )+jets and +jets processes in the dimuon, dielectron, and +jets control regions are used to determine the expectations in these control regions for given values of the t parameters [61]. Similarly, the ratio of the W(` )+jets yield in the signal region to the corresponding yields of the W( )+jets and W(e )+jets processes in the single-muon and single-electron control regions are used to determine the expectations in these two control regions. The ratios are determined from simulation after applying pT-dependent NLO QCD K-factors derived using the MadGraph5 aMC@NLO2.2 MC generator and pTdependent NLO EW K-factors derived from theoretical calculations [79{82]. In the 8 TeV analysis, the ratio between the two backgrounds is left unconstrained in the t. In the 13 TeV analysis, the ratio of W(` )+jets to Z( )+jets in the signal region is constrained to that predicted in simulation after the application of NLO QCD and EW K-factors. Systematic uncertainties are included to account for theoretical uncertainties in the to Z and W to Z di erential cross section ratios due to the choice of the renormalisation and factorisation scales and uncertainties in the PDFs used to generate the events [83]. The value of the systematic uncertainty in these di erential cross sections due to higherorder EW corrections is taken to be the full NLO EW correction, which can be as large as 20% for large values of ETmiss. For the kinematic region in which the K-factors are applied, the interference between QCD and EW e ects reduces the correction obtained compared to applying the K-factors independently [82]. The di erence between accounting for this interference or not is covered by the systematic uncertainties applied. Uncertainties in the selection e ciencies of muons, electrons, photons (up to 2%), and hadronically decaying leptons (3%) are included. The uncertainty in the modelling of ETmiss in simulation is dominated by the jet energy scale uncertainty and varies between 2 and 5%, depending on The remaining subdominant backgrounds due to top quark and diboson processes are estimated directly from simulation. Systematic uncertainties of 10 and 20% are included in the cross sections for the top quark [70] and diboson backgrounds [66, 67]. An additional 10% uncertainty is assigned to the top quark backgrounds to account for the discrepancies observed between data and the simulation in the pT distribution of the tt pair. An inefciency of the V(jj) tagging requirements can cause events to migrate between the V(jj) and monojet channels. An uncertainty in the V(jj) tagging e ciency of 13%, which allows for migration of events between the V(jj) and monojet channels, is included to account for this. This uncertainty comprises a statistical component which is uncorrelated between the 8 and 13 TeV analyses and a systematic component which is fully correlated. In the 8 TeV data set, the contribution from QCD multijet events is determined using simulation normalised to the data, while in the 13 TeV data set the contribution is determined using a dedicated control sample. Although large uncertainties are included to account for the extrapolation from the control region to the signal region, the impact on the nal results is small. Figure 5 shows the distribution of ETmiss in data for the V(jj) and monojet channels in the 13 TeV analysis and the background predicted after performing a simultaneous t, which ignores the constraints from data in the signal regions. The signal expectation assuming No signi cant deviations from the SM expectations are observed in any of the searches performed. The results are interpreted in terms of upper limits on B(H ! inv) under various assumptions about the Higgs boson production cross section, . Limits are calculated using an asymptotic approximation of the CLs prescription [84, 85] using a pro le likelihood ratio test statistic [86], in which systematic uncertainties are modelled as nuisance following a frequentist approach [87]. The pro le likelihood ratio is de ned as, q = L(dataj B(H ! inv)= (SM); ^ ) L(dataj B^(H ! inv)= (SM); ^) B^(H ! inv)= (SM) represents the value of imises the likelihood L for the data, and ^ and ^^ denote the unconditional maximum B(H ! inv)= (SM), which maxH, B(H → inv)=100% 10−1 10−2 r /P 1 H, B(H → inv)=100% Figure 5. Distributions of ETmiss in data and predicted background contributions in the (left) V(jj) and (right) monojet channels at 13 TeV. The background prediction is taken from a t using only the control regions and the shaded bands represent the statistical and systematic uncertainties in the backgrounds after that t. The horizontal bars on the data points represent the width of the bin centred at that point. The expectations from a Higgs boson with a mass of 125 GeV decaying to invisible particles with a branching fraction of 100% are superimposed. likelihood estimates for the nuisance parameters and the estimates for a speci c value of B(H ! inv)= (SM). The value of B(H ! inv)= (SM) is restricted to be positive when maximising the likelihood. The \data" here refers to the data in all of the control and signal regions for each analysis described in section 4. The statistical procedure accounts for correlations between the nuisance parameters in each of the analyses. The uncertainties in the diboson cross sections, the lepton e ciencies, momentum scales, and the integrated luminosity are correlated across all categories of a given data set. The uncertainties in the inclusive signal cross sections are additionally correlated across the measurements at 7, 8, and 13 TeV. The kinematics of the jets selected in the VBF channel are distinct from those selected in the V(jj) and monojet channels. For this reason, the jet energy scale and resolution uncertainties are considered uncorrelated between those channels. The b jet energy scale and resolution uncertainties for the Z(bb) channel are estimated using a di erent technique from that used for other jets and so are treated as uncorrelated with other searches [88]. Where simulation is used to model the ETmiss distributions of the signal or backgrounds, uncertainties are propagated from the jet and lepton energy scales and resolutions as well as from modelling of the unclustered energy. These uncertainties are treated as fully correlated between the 7, 8, and 13 TeV data sets, except for the 8 TeV V(jj) and monojet channels for which independent calibrations based on control samples in data are applied. Systematic uncertainties in the inclusive ggH, qqH, and VH production cross sections due to renormalisation and factorisation scales, and PDF uncertainties are taken directly from ref. [51] and treated as fully correlated across the 7, 8, and 13 TeV data sets. An generation of parton distributions with uncertainties from global QCD analysis, JHEP 07 (2002) 012 [hep-ph/0201195] [INSPIRE]. phenomenology, Nucl. Phys. B 849 (2011) 296 [arXiv:1101.1300] [INSPIRE]. [58] CMS collaboration, Event generator tunes obtained from underlying event and multiparton scattering measurements, Eur. Phys. J. C 76 (2016) 155 [arXiv:1512.00815] [INSPIRE]. Meth. A 506 (2003) 250 [INSPIRE]. CMS-DP-2012-022 (2012). [60] CMS collaboration, Data parking and data scouting at the CMS experiment, transverse momentum and vector boson tagged jets, JHEP 12 (2016) 083 [arXiv:1607.05764] [INSPIRE]. [62] CMS collaboration, Performance of the CMS missing transverse momentum reconstruction on anomalous triple gauge couplings in four-lepton nal states at p [63] CMS collaboration, Measurement of the pp ! ZZ production cross section and constraints s = 8 TeV, Phys. Lett. B 740 (2015) 250 [arXiv:1406.0113] [INSPIRE]. and limits on anomalous gauge couplings, Eur. Phys. J. C 76 (2016) 401 [arXiv:1507.03268] [INSPIRE]. [64] CMS collaboration, Measurement of the W+W cross section in pp collisions at ps = 8 TeV [71] K. Arnold et al., VBFNLO: A parton level Monte Carlo for processes with electroweak bosons | Manual for Version 2.5.0, arXiv:1107.4038 [INSPIRE]. [72] J. Baglio et al., Release note | VBFNLO 2.7.0, arXiv:1404.3940 [INSPIRE]. branching fraction in pp collisions at p [arXiv:1607.08834] [INSPIRE]. [65] CMS collaboration, Measurement of W+W and ZZ production cross sections in pp [66] CMS collaboration, Measurement of the ZZ production cross section and Z ! `+` `0+`0 s = 13 TeV, Phys. Lett. B 763 (2016) 280 [67] CMS collaboration, Measurement of the WZ production cross section in pp collisions at [68] CMS collaboration, Measurements of the tt production cross section in lepton+jets nal states in pp collisions at 8 TeV and ratio of 8 to 7 TeV cross sections, Eur. Phys. J. C 77 (2017) 15 [arXiv:1602.09024] [INSPIRE]. [69] CMS collaboration, Measurement of the t-channel single-top-quark production cross section and of the jVtbj CKM matrix element in pp collisions at p [arXiv:1403.7366] [INSPIRE]. s = 8 TeV, JHEP 06 (2014) 090 [70] CMS collaboration, Measurement of the top quark pair production cross section in proton-proton collisions at p [arXiv:1510.05302] [INSPIRE]. s = 13 TeV, Phys. Rev. Lett. 116 (2016) 052002 07 (2011) 018 [arXiv:1105.0020] [INSPIRE]. 023001 [arXiv:1510.03865] [INSPIRE]. (2011) 015 [arXiv:1011.2268] [INSPIRE]. [arXiv:0912.0033] [INSPIRE]. production to calibrate the standard model Z(! )+jets background to new physics processes at the LHC, JHEP 10 (2011) 058 [arXiv:1107.2803] [INSPIRE]. photon production at large transverse momenta, JHEP 03 (2006) 059 [hep-ph/0508253] automation and precise predictions for W+multijet production at the LHC, JHEP 04 (2015) 012 [arXiv:1412.5157] [INSPIRE]. automation and precise predictions for V+multijet production, arXiv:1505.05704 [INSPIRE]. predictions for V+jets including o -shell vector-boson decays and multijet merging, JHEP 04 (2016) 021 [arXiv:1511.08692] [INSPIRE]. [83] NNPDF collaboration, R.D. Ball et al., Parton distributions for the LHC Run II, JHEP 04 (2015) 040 [arXiv:1410.8849] [INSPIRE]. [84] T. Junk, Con dence level computation for combining searches with small statistics, Nucl. Instrum. Meth. A 434 (1999) 435 [hep-ex/9902006] [INSPIRE]. [arXiv:1007.1727] [INSPIRE]. [arXiv:1310.3687] [INSPIRE]. (2012) 155 [arXiv:1206.3572] [INSPIRE]. [90] S. Frixione and B.R. Webber, Matching NLO QCD computations and parton shower simulations, JHEP 06 (2002) 029 [hep-ph/0204244] [INSPIRE]. [arXiv:0803.0883] [INSPIRE]. production at hadron colliders, JHEP 07 (2003) 028 [hep-ph/0306211] [INSPIRE]. [93] R.D. Young and A.W. Thomas, Octet baryon masses and sigma terms from an SU(3) chiral extrapolation, Phys. Rev. D 81 (2010) 014503 [arXiv:0901.3310] [INSPIRE]. LUX exposure, Phys. Rev. Lett. 118 (2017) 021303 [arXiv:1608.07648] [INSPIRE]. weakly interacting massive particles with the CDMS low ionization threshold experiment, Phys. Rev. Lett. 116 (2016) 071301 [arXiv:1509.02448] [INSPIRE]. Yerevan Physics Institute, Yerevan, Armenia V. Khachatryan, A.M. Sirunyan, A. Tumasyan Institut fur Hochenergiephysik, Wien, Austria W. Adam, E. Asilar, T. Bergauer, J. Brandstetter, E. Brondolin, M. Dragicevic, J. Ero, M. Flechl, M. Friedl, R. Fruhwirth1, V.M. Ghete, C. Hartl, N. Hormann, J. Hrubec, M. Jeitler1, A. Konig, I. Kratschmer, D. Liko, T. Matsushita, I. Mikulec, D. Rabady, N. Rad, B. Rahbaran, H. Rohringer, J. Schieck1, J. Strauss, W. Waltenberger, C.-E. Wulz1 Institute for Nuclear Problems, Minsk, Belarus O. Dvornikov, V. Makarenko, V. Zykunov National Centre for Particle and High Energy Physics, Minsk, Belarus V. Mossolov, N. Shumeiko, J. Suarez Gonzalez Universiteit Antwerpen, Antwerpen, Belgium S. Alderweireldt, E.A. De Wolf, X. Janssen, J. Lauwers, M. Van De Klundert, H. Van Haevermaet, P. Van Mechelen, N. Van Remortel, A. Van Spilbeeck Vrije Universiteit Brussel, Brussel, Belgium S. Abu Zeid, F. Blekman, J. D'Hondt, N. Daci, I. De Bruyn, K. Deroover, S. Lowette, S. Moortgat, L. Moreels, A. Olbrechts, Q. Python, S. Tavernier, W. Van Doninck, P. Van Mulders, I. Van Parijs Universite Libre de Bruxelles, Bruxelles, Belgium H. Brun, B. Clerbaux, G. De Lentdecker, H. Delannoy, G. Fasanella, L. Favart, R. Goldouzian, A. Grebenyuk, G. Karapostoli, T. Lenzi, A. Leonard, J. Luetic, T. Maerschalk, A. Marinov, A. Randle-conde, T. Seva, C. Vander Velde, P. Vanlaer, R. Yonamine, F. Zenoni, F. Zhang2 Ghent University, Ghent, Belgium A. Cimmino, T. Cornelis, D. Dobur, A. Fagot, G. Garcia, M. Gul, I. Khvastunov, D. Poyraz, S. Salva, R. Schofbeck, A. Sharma, M. Tytgat, W. Van Driessche, E. Yazgan, N. Zaganidis Universite Catholique de Louvain, Louvain-la-Neuve, Belgium H. Bakhshiansohi, C. Belu 3, O. Bondu, S. Brochet, G. Bruno, A. Caudron, S. De Visscher, C. Delaere, M. Delcourt, B. Francois, A. Giammanco, A. Jafari, P. Jez, M. Komm, V. Lemaitre, A. Magitteri, A. Mertens, M. Musich, C. Nuttens, K. Piotrzkowski, L. Quertenmont, M. Selvaggi, M. Vidal Marono, S. Wertz Universite de Mons, Mons, Belgium Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil W.L. Alda Junior, F.L. Alves, G.A. Alves, L. Brito, C. Hensel, A. Moraes, M.E. Pol, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil G.G. Da Silveira5, D. De Jesus Damiao, C. De Oliveira Martins, S. Fonseca De Souza, L.M. Huertas Guativa, H. Malbouisson, D. Matos Figueiredo, C. Mora Herrera, L. Mundim, H. Nogima, W.L. Prado Da Silva, A. Santoro, A. Sznajder, E.J. Tonelli Manganote4, A. Vilela Pereira J.C. Ruiz Vargas Universidade Estadual Paulista a, Universidade Federal do ABC b, S~ao Paulo, S. Ahujaa, C.A. Bernardesb, S. Dograa, T.R. Fernandez Perez Tomeia, E.M. Gregoresb, P.G. Mercadanteb, C.S. Moona, S.F. Novaesa, Sandra S. Padulaa, D. Romero Abadb, Institute for Nuclear Research and Nuclear Energy, So a, Bulgaria A. Aleksandrov, R. Hadjiiska, P. Iaydjiev, M. Rodozov, S. Stoykova, G. Sultanov, University of So a, So a, Bulgaria A. Dimitrov, I. Glushkov, L. Litov, B. Pavlov, P. Petkov Beihang University, Beijing, China H. Zhang, J. Zhao Institute of High Energy Physics, Beijing, China M. Ahmad, J.G. Bian, G.M. Chen, H.S. Chen, M. Chen, Y. Chen7, T. Cheng, C.H. Jiang, D. Leggat, Z. Liu, F. Romeo, S.M. Shaheen, A. Spiezia, J. Tao, C. Wang, Z. Wang, State Key Laboratory of Nuclear Physics and Technology, Peking University, Y. Ban, G. Chen, Q. Li, S. Liu, Y. Mao, S.J. Qian, D. Wang, Z. Xu Universidad de Los Andes, Bogota, Colombia C. Avila, A. Cabrera, L.F. Chaparro Sierra, C. Florez, J.P. Gomez, C.F. Gonzalez Hernandez, J.D. Ruiz Alvarez, J.C. Sanabria University of Split, Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, Split, Croatia N. Godinovic, D. Lelas, I. Puljak, P.M. Ribeiro Cipriano, T. Sculac University of Split, Faculty of Science, Split, Croatia Z. Antunovic, M. Kovac Institute Rudjer Boskovic, Zagreb, Croatia V. Brigljevic, D. Ferencek, K. Kadija, S. Micanovic, L. Sudic, T. Susa University of Cyprus, Nicosia, Cyprus A. Attikis, G. Mavromanolakis, J. Mousa, C. Nicolaou, F. Ptochos, P.A. Razis, H. Rykaczewski, D. Tsiakkouri Charles University, Prague, Czech Republic M. Finger8, M. Finger Jr.8 Universidad San Francisco de Quito, Quito, Ecuador E. Carrera Jarrin Academy of Scienti c Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt Y. Assran9;10, T. Elkafrawy11, A. Mahrous12 National Institute of Chemical Physics and Biophysics, Tallinn, Estonia B. Calpas, M. Kadastik, M. Murumaa, L. Perrini, M. Raidal, A. Tiko, C. Veelken Department of Physics, University of Helsinki, Helsinki, Finland P. Eerola, J. Pekkanen, M. Voutilainen Helsinki Institute of Physics, Helsinki, Finland J. Harkonen, T. Jarvinen, V. Karimaki, R. Kinnunen, T. Lampen, K. Lassila-Perini, S. Lehti, T. Linden, P. Luukka, J. Tuominiemi, E. Tuovinen, L. Wendland Lappeenranta University of Technology, Lappeenranta, Finland J. Talvitie, T. Tuuva IRFU, CEA, Universite Paris-Saclay, Gif-sur-Yvette, France M. Besancon, F. Couderc, M. Dejardin, D. Denegri, B. Fabbro, J.L. Faure, C. Favaro, F. Ferri, S. Ganjour, S. Ghosh, A. Givernaud, P. Gras, G. Hamel de Monchenault, P. Jarry, I. Kucher, E. Locci, M. Machet, J. Malcles, J. Rander, A. Rosowsky, M. Titov, A. Zghiche Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, Institut Pluridisciplinaire Hubert Curien, Universite de Strasbourg, Universite de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France J.-L. Agram13, J. Andrea, A. Aubin, D. Bloch, J.-M. Brom, M. Buttignol, E.C. Chabert, N. Chanon, C. Collard, E. Conte13, X. Coubez, J.-C. Fontaine13, D. Gele, U. Goerlach, A.-C. Le Bihan, K. Skovpen, P. Van Hove Centre de Calcul de l'Institut National de Physique Nucleaire et de Physique des Particules, CNRS/IN2P3, Villeurbanne, France Universite de Lyon, Universite Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucleaire de Lyon, Villeurbanne, France S. Beauceron, C. Bernet, G. Boudoul, E. Bouvier, C.A. Carrillo Montoya, R. Chierici, D. Contardo, B. Courbon, P. Depasse, H. El Mamouni, J. Fan, J. Fay, S. Gascon, A.L. Pequegnot, S. Perries, A. Popov14, D. Sabes, V. Sordini, M. Vander Donckt, P. Verdier, T. Toriashvili15 Z. Tsamalaidze8 Georgian Technical University, Tbilisi, Georgia Tbilisi State University, Tbilisi, Georgia RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany C. Autermann, S. Beranek, L. Feld, A. Heister, M.K. Kiesel, K. Klein, M. Lipinski, A. Ostapchuk, M. Preuten, F. Raupach, S. Schael, C. Schomakers, J. Schulz, T. Verlage, RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany A. Albert, M. Brodski, E. Dietz-Laursonn, D. Duchardt, M. Endres, M. Erdmann, S. Erdweg, T. Esch, R. Fischer, A. Guth, M. Hamer, T. Hebbeker, C. Heidemann, K. Hoepfner, S. Knutzen, M. Merschmeyer, A. Meyer, P. Millet, S. Mukherjee, M. Olschewski, K. Padeken, T. Pook, M. Radziej, H. Reithler, M. Rieger, F. Scheuch, L. Sonnenschein, D. Teyssier, S. Thuer RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany V. Cherepanov, G. Flugge, F. Hoehle, B. Kargoll, T. Kress, A. Kunsken, J. Lingemann, T. Muller, A. Nehrkorn, A. Nowack, I.M. Nugent, C. Pistone, O. Pooth, A. Stahl16 Deutsches Elektronen-Synchrotron, Hamburg, Germany M. Aldaya Martin, T. Arndt, C. Asawatangtrakuldee, K. Beernaert, O. Behnke, U. Behrens, A.A. Bin Anuar, K. Borras17, A. Campbell, P. Connor, C. Contreras-Campana, F. Costanza, C. Diez Pardos, G. Dolinska, G. Eckerlin, D. Eckstein, T. Eichhorn, E. Eren, E. Gallo18, J. Garay Garcia, A. Geiser, A. Gizhko, J.M. Grados Luyando, P. Gun nellini, A. Harb, J. Hauk, M. Hempel19, H. Jung, A. Kalogeropoulos, O. Karacheban19, M. Kasemann, J. Keaveney, C. Kleinwort, I. Korol, D. Krucker, W. Lange, A. Lelek, J. Leonard, K. Lipka, A. Lobanov, W. Lohmann19, R. Mankel, I.-A. Melzer-Pellmann, A.B. Meyer, G. Mittag, J. Mnich, A. Mussgiller, E. Ntomari, D. Pitzl, R. Placakyte, A. Raspereza, B. Roland, M.O . Sahin, P. Saxena, T. Schoerner-Sadenius, C. Seitz, S. Spannagel, N. Stefaniuk, G.P. Van Onsem, R. Walsh, C. Wissing University of Hamburg, Hamburg, Germany V. Blobel, M. Centis Vignali, A.R. Draeger, T. Dreyer, E. Garutti, D. Gonzalez, J. Haller, M. Ho mann, A. Junkes, R. Klanner, R. Kogler, N. Kovalchuk, T. Lapsien, T. Lenz, I. Marchesini, D. Marconi, M. Meyer, M. Niedziela, D. Nowatschin, F. Pantaleo16, T. Pei er, A. Perieanu, J. Poehlsen, C. Sander, C. Scharf, P. Schleper, A. Schmidt, S. Schumann, J. Schwandt, H. Stadie, G. Steinbruck, F.M. Stober, M. Stover, H. Tholen, D. Troendle, E. Usai, L. Vanelderen, A. Vanhoefer, B. Vormwald Institut fur Experimentelle Kernphysik, Karlsruhe, Germany M. Akbiyik, C. Barth, S. Baur, C. Baus, J. Berger, E. Butz, R. Caspart, T. Chwalek, I. Topsis-Giotis Institute of Nuclear and Particle Physics (INPP), NCSR Demokritos, Aghia G. Anagnostou, G. Daskalakis, T. Geralis, V.A. Giakoumopoulou, A. Kyriakis, D. Loukas, National and Kapodistrian University of Athens, Athens, Greece S. Kesisoglou, A. Panagiotou, N. Saoulidou, E. Tziaferi University of Ioannina, Ioannina, Greece I. Evangelou, G. Flouris, C. Foudas, P. Kokkas, N. Loukas, N. Manthos, I. Papadopoulos, MTA-ELTE Lendulet CMS Particle and Nuclear Physics Group, Eotvos Lorand University, Budapest, Hungary Wigner Research Centre for Physics, Budapest, Hungary G. Bencze, C. Hajdu, P. Hidas, D. Horvath20, F. Sikler, V. Veszpremi, G. Vesztergombi21, Institute of Nuclear Research ATOMKI, Debrecen, Hungary N. Beni, S. Czellar, J. Karancsi22, A. Makovec, J. Molnar, Z. Szillasi University of Debrecen, Debrecen, Hungary M. Bartok21, P. Raics, Z.L. Trocsanyi, B. Ujvari National Institute of Science Education and Research, Bhubaneswar, India S. Bahinipati, S. Choudhury23, P. Mal, K. Mandal, A. Nayak24, D.K. Sahoo, N. Sahoo, Panjab University, Chandigarh, India S. Bansal, S.B. Beri, V. Bhatnagar, R. Chawla, U.Bhawandeep, A.K. Kalsi, A. Kaur, M. Kaur, R. Kumar, P. Kumari, A. Mehta, M. Mittal, J.B. Singh, G. Walia University of Delhi, Delhi, India Ashok Kumar, A. Bhardwaj, B.C. Choudhary, R.B. Garg, S. Keshri, S. Malhotra, M. Naimuddin, N. Nishu, K. Ranjan, R. Sharma, V. Sharma Saha Institute of Nuclear Physics, Kolkata, India R. Bhattacharya, S. Bhattacharya, K. Chatterjee, S. Dey, S. Dutt, S. Dutta, S. Ghosh, N. Majumdar, A. Modak, K. Mondal, S. Mukhopadhyay, S. Nandan, A. Purohit, A. Roy, D. Roy, S. Roy Chowdhury, S. Sarkar, M. Sharan, S. Thakur Indian Institute of Technology Madras, Madras, India Bhabha Atomic Research Centre, Mumbai, India R. Chudasama, D. Dutta, V. Jha, V. Kumar, A.K. Mohanty16, P.K. Netrakanti, L.M. Pant, P. Shukla, A. Topkar B. Sutar Tata Institute of Fundamental Research-A, Mumbai, India T. Aziz, S. Dugad, G. Kole, B. Mahakud, S. Mitra, G.B. Mohanty, B. Parida, N. Sur, Tata Institute of Fundamental Research-B, Mumbai, India S. Banerjee, S. Bhowmik25, R.K. Dewanjee, S. Ganguly, M. Guchait, Sa. Jain, S. Kumar, M. Maity25, G. Majumder, K. Mazumdar, T. Sarkar25, N. Wickramage26 Indian Institute of Science Education and Research (IISER), Pune, India S. Chauhan, S. Dube, V. Hegde, A. Kapoor, K. Kothekar, A. Rane, S. Sharma Institute for Research in Fundamental Sciences (IPM), Tehran, Iran H. Behnamian, S. Chenarani27, E. Eskandari Tadavani, S.M. Etesami27, A. Fahim28, M. Khakzad, M. Mohammadi Najafabadi, M. Naseri, S. Paktinat Mehdiabadi29, F. Rezaei Hosseinabadi, B. Safarzadeh30, M. Zeinali University College Dublin, Dublin, Ireland M. Felcini, M. Grunewald INFN Sezione di Bari a, Universita di Bari b, Politecnico di Bari c, Bari, Italy M. Abbresciaa;b, C. Calabriaa;b, C. Caputoa;b, A. Colaleoa, D. Creanzaa;c, L. Cristellaa;b, N. De Filippisa;c, M. De Palmaa;b, L. Fiorea, G. Iasellia;c, G. Maggia;c, M. Maggia, G. Minielloa;b, S. Mya;b, S. Nuzzoa;b, A. Pompilia;b, G. Pugliesea;c, R. Radognaa;b, A. Ranieria, G. Selvaggia;b, L. Silvestrisa;16, R. Vendittia;b, P. Verwilligena INFN Sezione di Bologna a, Universita di Bologna b, Bologna, Italy G. Abbiendia, C. Battilana, D. Bonacorsia;b, S. Braibant-Giacomellia;b, L. Brigliadoria;b, R. Campaninia;b, P. Capiluppia;b, A. Castroa;b, F.R. Cavalloa, S.S. Chhibraa;b, G. Codispotia;b, M. Cu ania;b, G.M. Dallavallea, F. Fabbria, A. Fanfania;b, D. Fasanellaa;b, P. Giacomellia, C. Grandia, L. Guiduccia;b, S. Marcellinia, G. Masettia, A. Montanaria, F.L. Navarriaa;b, A. Perrottaa, A.M. Rossia;b, T. Rovellia;b, G.P. Sirolia;b, N. Tosia;b;16 INFN Sezione di Catania a, Universita di Catania b, Catania, Italy S. Albergoa;b, M. Chiorbolia;b, S. Costaa;b, A. Di Mattiaa, F. Giordanoa;b, R. Potenzaa;b, A. Tricomia;b, C. Tuvea;b INFN Sezione di Firenze a, Universita di Firenze b, Firenze, Italy G. Barbaglia, V. Ciullia;b, C. Civininia, R. D'Alessandroa;b, E. Focardia;b, V. Goria;b, P. Lenzia;b, M. Meschinia, S. Paolettia, G. Sguazzonia, L. Viliania;b;16 INFN Laboratori Nazionali di Frascati, Frascati, Italy L. Benussi, S. Bianco, F. Fabbri, D. Piccolo, F. Primavera16 INFN Sezione di Genova a, Universita di Genova b, Genova, Italy V. Calvellia;b, F. Ferroa, M. Lo Veterea;b, M.R. Mongea;b, E. Robuttia, S. Tosia;b INFN Sezione di Milano-Bicocca a, Universita di Milano-Bicocca b, INFN Sezione di Napoli a, Universita di Napoli 'Federico II' b, Napoli, Italy, Universita della Basilicata c, Potenza, Italy, Universita G. Marconi d, Roma, S. Buontempoa, N. Cavalloa;c, G. De Nardo, S. Di Guidaa;d;16, M. Espositoa;b, F. Fabozzia;c, F. Fiengaa;b, A.O.M. Iorioa;b, G. Lanzaa, L. Listaa, S. Meolaa;d;16, P. Paoluccia;16, C. Sciaccaa;b, F. Thyssen INFN Sezione di Padova a, Universita di Padova b, Padova, Italy, Universita di Trento c, Trento, Italy P. Azzia;16, N. Bacchettaa, L. Benatoa;b, D. Biselloa;b, A. Bolettia;b, R. Carlina;b, A. Carvalho Antunes De Oliveiraa;b, P. Checchiaa, M. Dall'Ossoa;b, P. De Castro Manzanoa, T. Dorigoa, U. Dossellia, F. Gasparinia;b, U. Gasparinia;b, A. Gozzelinoa, S. Lacapraraa, M. Margonia;b, A.T. Meneguzzoa;b, J. Pazzinia;b, N. Pozzobona;b, P. Ronchesea;b, F. Simonettoa;b, E. Torassaa, M. Zanetti, P. Zottoa;b, G. Zumerlea;b INFN Sezione di Pavia a, Universita di Pavia b, Pavia, Italy A. Braghieria, A. Magnania;b, P. Montagnaa;b, S.P. Rattia;b, V. Rea, C. Riccardia;b, P. Salvinia, I. Vaia;b, P. Vituloa;b INFN Sezione di Perugia a, Universita di Perugia b, Perugia, Italy L. Alunni Solestizia;b, G.M. Bileia, D. Ciangottinia;b, L. Fanoa;b, P. Laricciaa;b, R. Leonardia;b, G. Mantovania;b, M. Menichellia, A. Sahaa, A. Santocchiaa;b INFN Sezione di Pisa a, Universita di Pisa b, Scuola Normale Superiore di Pisa c, K. Androsova;31, P. Azzurria;16, G. Bagliesia, J. Bernardinia, T. Boccalia, R. Castaldia, M.A. Cioccia;31, R. Dell'Orsoa, S. Donatoa;c, G. Fedi, A. Giassia, M.T. Grippoa;31, F. Ligabuea;c, T. Lomtadzea, L. Martinia;b, A. Messineoa;b, F. Pallaa, A. Rizzia;b, A. Savoy-Navarroa;32, P. Spagnoloa, R. Tenchinia, G. Tonellia;b, A. Venturia, P.G. Verdinia INFN Sezione di Roma a, Universita di Roma b, Roma, Italy L. Baronea;b, F. Cavallaria, M. Cipriania;b, D. Del Rea;b;16, M. Diemoza, S. Gellia;b, E. Longoa;b, F. Margarolia;b, Marzocchia;b, G. Organtinia;b, R. Paramattia, F. Preiatoa;b, S. Rahatloua;b, C. Rovellia, F. Santanastasioa;b INFN Sezione di Torino a, Universita di Torino b, Torino, Italy, Universita del Piemonte Orientale c, Novara, Italy N. Amapanea;b, R. Arcidiaconoa;c;16, S. Argiroa;b, M. Arneodoa;c, N. Bartosika, R. Bellana;b, C. Biinoa, N. Cartigliaa, F. Cennaa;b, M. Costaa;b, R. Covarellia;b, A. Deganoa;b, N. Demariaa, L. Fincoa;b, B. Kiania;b, C. Mariottia, S. Masellia, E. Migliorea;b, V. Monacoa;b, E. Monteila;b, M.M. Obertinoa;b, L. Pachera;b, N. Pastronea, M. Pelliccionia, G.L. Pinna Angionia;b, F. Raveraa;b, A. Romeroa;b, M. Ruspaa;c, R. Sacchia;b, K. Shchelinaa;b, V. Solaa, A. Solanoa;b, A. Staianoa, P. Traczyka;b INFN Sezione di Trieste a, Universita di Trieste b, Trieste, Italy S. Belfortea, M. Casarsaa, F. Cossuttia, G. Della Riccaa;b, A. Zanettia Kyungpook National University, Daegu, Korea D.H. Kim, G.N. Kim, M.S. Kim, S. Lee, S.W. Lee, Y.D. Oh, S. Sekmen, D.C. Son, A. Lee Chonbuk National University, Jeonju, Korea Chonnam National University, Institute for Universe and Elementary Particles, Hanyang University, Seoul, Korea J.A. Brochero Cifuentes, T.J. Kim Korea University, Seoul, Korea S. Lee, J. Lim, S.K. Park, Y. Roh Seoul National University, Seoul, Korea University of Seoul, Seoul, Korea M. Choi, H. Kim, J.H. Kim, J.S.H. Lee, I.C. Park, G. Ryu, M.S. Ryu Sungkyunkwan University, Suwon, Korea Y. Choi, J. Goh, C. Hwang, J. Lee, I. Yu Vilnius University, Vilnius, Lithuania V. Dudenas, A. Juodagalvis, J. Vaitkus S. Cho, S. Choi, Y. Go, D. Gyun, S. Ha, B. Hong, Y. Jo, Y. Kim, B. Lee, K. Lee, K.S. Lee, J. Almond, J. Kim, H. Lee, S.B. Oh, B.C. Radburn-Smith, S.h. Seo, U.K. Yang, H.D. Yoo, { 44 { National Centre for Particle Physics, Universiti Malaya, Kuala Lumpur, Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico H. Castilla-Valdez, E. De La Cruz-Burelo, I. Heredia-De La Cruz35, A. Hernandez-Almada, R. Lopez-Fernandez, R. Magan~a Villalba, J. Mejia Guisao, A. Sanchez-Hernandez Universidad Iberoamericana, Mexico City, Mexico S. Carrillo Moreno, C. Oropeza Barrera, F. Vazquez Valencia Benemerita Universidad Autonoma de Puebla, Puebla, Mexico S. Carpinteyro, I. Pedraza, H.A. Salazar Ibarguen, C. Uribe Estrada Universidad Autonoma de San Luis Potos , San Luis Potos , Mexico A. Morelos Pineda University of Auckland, Auckland, New Zealand University of Canterbury, Christchurch, New Zealand National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan A. Ahmad, M. Ahmad, Q. Hassan, H.R. Hoorani, W.A. Khan, A. Saddique, M.A. Shah, M. Shoaib, M. Waqas National Centre for Nuclear Research, Swierk, Poland H. Bialkowska, M. Bluj, B. Boimska, T. Frueboes, M. Gorski, M. Kazana, K. Nawrocki, K. Romanowska-Rybinska, M. Szleper, P. Zalewski Institute of Experimental Physics, Faculty of Physics, University of Warsaw, K. Bunkowski, A. Byszuk36, K. Doroba, A. Kalinowski, M. Konecki, J. Krolikowski, M. Misiura, M. Olszewski, M. Walczak Laboratorio de Instrumentac~ao e F sica Experimental de Part culas, Lisboa, P. Bargassa, A. Di Francesco, P. Faccioli, P.G. Ferreira Parracho, M. Gallinaro, J. Hollar, N. Leonardo, L. Lloret Iglesias, M.V. Nemallapudi, J. Rodrigues Antunes, J. Seixas, O. Toldaiev, D. Vadruccio, J. Varela, Joint Institute for Nuclear Research, Dubna, Russia P. Bunin, M. Gavrilenko, I. Golutvin, I. Gorbunov, A. Kamenev, V. Karjavin, A. Lanev, A. Malakhov, V. Matveev37;38, V. Palichik, V. Perelygin, M. Savina, S. Shmatov, S. Shulha, N. Skatchkov, V. Smirnov, N. Voytishin, A. Zarubin Petersburg Nuclear Physics Institute, Gatchina (St. Petersburg), Russia L. Chtchipounov, V. Golovtsov, Y. Ivanov, V. Kim39, E. Kuznetsova40, V. Murzin, V. Oreshkin, V. Sulimov, A. Vorobyev Institute for Nuclear Research, Moscow, Russia Yu. Andreev, A. Dermenev, S. Gninenko, N. Golubev, A. Karneyeu, M. Kirsanov, N. Krasnikov, A. Pashenkov, D. Tlisov, A. Toropin Institute for Theoretical and Experimental Physics, Moscow, Russia V. Epshteyn, V. Gavrilov, N. Lychkovskaya, V. Popov, I. Pozdnyakov, G. Safronov, A. Spiridonov, M. Toms, E. Vlasov, A. Zhokin Moscow Institute of Physics and Technology A. Bylinkin38 National Research Nuclear University 'Moscow Engineering Physics Institute' (MEPhI), Moscow, Russia R. Chistov41, M. Danilov41, V. Rusinov P.N. Lebedev Physical Institute, Moscow, Russia V. Andreev, M. Azarkin38, I. Dremin38, M. Kirakosyan, A. Leonidov38, S.V. Rusakov, Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, A. Baskakov, A. Belyaev, E. Boos, V. Bunichev, M. Dubinin42, L. Dudko, A. Gribushin, V. Klyukhin, O. Kodolova, I. Lokhtin, I. Miagkov, S. Obraztsov, M. Per lov, S. Petrushanko, V. Savrin V. Blinov43, Y.Skovpen43 Physics, Protvino, Russia Novosibirsk State University (NSU), Novosibirsk, Russia State Research Center of Russian Federation, Institute for High Energy I. Azhgirey, I. Bayshev, S. Bitioukov, D. Elumakhov, V. Kachanov, A. Kalinin, D. Konstantinov, V. Krychkine, V. Petrov, R. Ryutin, A. Sobol, S. Troshin, N. Tyurin, A. Uzunian, A. Volkov University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia P. Adzic44, P. Cirkovic, D. Devetak, M. Dordevic, J. Milosevic, V. Rekovic nologicas (CIEMAT), Madrid, Spain M. Barrio Luna, E. Calvo, M. Cerrada, M. Chamizo N. Colino, B. De La Cruz, A. Delgado Peris, A. Escalante Del Valle, C. Fernandez Bedoya, J.P. Fernandez Ramos, J. Flix, M.C. Fouz, P. Garcia-Abia, tino, A. Perez-Calero Yzquierdo, J. Puerta Pelayo, A. Quintario Olmeda, I. Redondo, L. Romero, M.S. Soares Universidad Autonoma de Madrid, Madrid, Spain J.F. de Troconiz, M. Missiroli, D. Moran Universidad de Oviedo, Oviedo, Spain J. Cuevas, J. Fernandez Menendez, I. Gonzalez Caballero, J.R. Gonzalez Fernandez, E. Palencia Cortezon, S. Sanchez Cruz, I. Suarez Andres, J.M. Vizan Garcia Instituto de F sica de Cantabria (IFCA), CSIC-Universidad de Cantabria, I.J. Cabrillo, A. Calderon, J.R. Castin~eiras De Saa, E. Curras, M. Fernandez, J. Garcia-Ferrero, G. Gomez, A. Lopez Virto, J. Marco, C. Martinez Rivero, F. Matorras, J. Piedra Gomez, T. Rodrigo, A. Ruiz-Jimeno, L. Scodellaro, N. Trevisani, I. Vila, R. Vilar Cortabitarte CERN, European Organization for Nuclear Research, Geneva, Switzerland D. Abbaneo, E. Au ray, G. Auzinger, M. Bachtis, P. Baillon, A.H. Ball, D. Barney, P. Bloch, A. Bocci, A. Bonato, C. Botta, T. Camporesi, R. Castello, M. Cepeda, G. Cerminara, M. D'Alfonso, D. d'Enterria, A. Dabrowski, V. Daponte, A. David, M. De Gruttola, A. De Roeck, E. Di Marco45, M. Dobson, B. Dorney, T. du Pree, D. Duggan, M. Dunser, N. Dupont, A. Elliott-Peisert, S. Fartoukh, G. Franzoni, J. Fulcher, W. Funk, D. Gigi, K. Gill, M. Girone, F. Glege, D. Gulhan, S. Gundacker, M. Gutho , J. Hammer, P. Harris, J. Hegeman, V. Innocente, P. Janot, J. Kieseler, H. Kirschenmann, V. Knunz, A. Kornmayer16, M.J. Kortelainen, K. Kousouris, M. Krammer1, C. Lange, P. Lecoq, C. Lourenco, M.T. Lucchini, L. Malgeri, M. Mannelli, A. Martelli, F. Meijers, J.A. Merlin, S. Mersi, E. Meschi, F. Moortgat, S. Morovic, M. Mulders, H. Neugebauer, S. Orfanelli, L. Orsini, L. Pape, E. Perez, M. Peruzzi, A. Petrilli, G. Petrucciani, A. Pfei er, M. Pierini, A. Racz, T. Reis, G. Rolandi46, M. Rovere, M. Ruan, H. Sakulin, J.B. Sauvan, C. Schafer, C. Schwick, M. Seidel, A. Sharma, P. Silva, P. Sphicas47, J. Steggemann, M. Stoye, Y. Takahashi, M. Tosi, D. Treille, A. Triossi, A. Tsirou, V. Veckalns48, G.I. Veres21, N. Wardle, A. Zagozdzinska36, W.D. Zeuner Paul Scherrer Institut, Villigen, Switzerland W. Bertl, K. Deiters, W. Erdmann, R. Horisberger, Q. Ingram, H.C. Kaestli, D. Kotlinski, Institute for Particle Physics, ETH Zurich, Zurich, Switzerland F. Bachmair, L. Bani, L. Bianchini, B. Casal, G. Dissertori, M. Dittmar, M. Donega, C. Grab, C. Heidegger, D. Hits, J. Hoss, G. Kasieczka, P. Lecomtey, W. Lustermann, B. Mangano, M. Marionneau, Ruiz del Arbol, M. Masciovecchio, M.T. Meinhard, D. Meister, F. Micheli, P. Musella, F. Nessi-Tedaldi, F. Pandol , J. Pata, F. Pauss, G. Perrin, L. Perrozzi, M. Quittnat, M. Rossini, M. Schonenberger, A. Starodumov49, V.R. Tavolaro, K. Theo latos, R. Wallny T.K. Aarrestad, C. Amsler50, L. Caminada, M.F. Canelli, A. De Cosa, C. Galloni, A. Hinzmann, T. Hreus, B. Kilminster, J. Ngadiuba, D. Pinna, G. Rauco, P. Robmann, D. Salerno, Y. Yang, A. Zucchetta National Central University, Chung-Li, Taiwan V. Candelise, T.H. Doan, Sh. Jain, R. Khurana, M. Konyushikhin, C.M. Kuo, W. Lin, Y.J. Lu, A. Pozdnyakov, S.S. Yu National Taiwan University (NTU), Taipei, Taiwan Arun Kumar, P. Chang, Y.H. Chang, Y.W. Chang, Y. Chao, K.F. Chen, P.H. Chen, A. Psallidas, J.f. Tsai, Y.M. Tzeng Chulalongkorn University, Faculty of Science, Department of Physics, Bangkok, B. Asavapibhop, G. Singh, N. Srimanobhas, N. Suwonjandee Cukurova University, Adana, Turkey A. Adiguzel, M.N. Bakirci51, S. Damarseckin, Z.S. Demiroglu, C. Dozen, E. Eskut, S. Girgis, G. Gokbulut, Y. Guler, I. Hos, E.E. Kangal52, O. Kara, U. Kiminsu, M. Oglakci, G. Onengut53, K. Ozdemir54, S. Ozturk51, A. Polatoz, D. Sunar Cerci55, S. Turkcapar, I.S. Zorbakir, C. Zorbilmez Middle East Technical University, Physics Department, Ankara, Turkey B. Bilin, S. Bilmis, B. Isildak56, G. Karapinar57, M. Yalvac, M. Zeyrek Bogazici University, Istanbul, Turkey E. Gulmez, M. Kaya58, O. Kaya59, E.A. Yetkin60, T. Yetkin61 Istanbul Technical University, Istanbul, Turkey A. Cakir, K. Cankocak, S. Sen62 Institute for Scintillation Materials of National Academy of Science of Ukraine, L. Levchuk, P. Sorokin National Scienti c Center, Kharkov Institute of Physics and Technology, University of Bristol, Bristol, United Kingdom R. Aggleton, F. Ball, L. Beck, J.J. Brooke, D. Burns, E. Clement, D. Cussans, H. Flacher, J. Goldstein, M. Grimes, G.P. Heath, H.F. Heath, J. Jacob, L. Kreczko, C. Lucas, D.M. Newbold63, S. Paramesvaran, A. Poll, T. Sakuma, S. Seif El Nasr-storey, D. Smith, Rutherford Appleton Laboratory, Didcot, United Kingdom A. Thea, I.R. Tomalin, T. Williams Imperial College, London, United Kingdom M. Baber, R. Bainbridge, O. Buchmuller, A. Bundock, D. Burton, S. Casasso, M. Citron, D. Colling, L. Corpe, P. Dauncey, G. Davies, A. De Wit, M. Della Negra, R. Di Maria, P. Dunne, A. Elwood, D. Futyan, Y. Haddad, G. Hall, G. Iles, T. James, R. Lane, C. Laner, R. Lucas63, L. Lyons, A.-M. Magnan, S. Malik, L. Mastrolorenzo, J. Nash, A. Nikitenko49, J. Pela, B. Penning, M. Pesaresi, D.M. Raymond, A. Richards, A. Rose, C. Seez, S. Summers, A. Tapper, K. Uchida, M. Vazquez Acosta65, T. Virdee16, J. Wright, Brunel University, Uxbridge, United Kingdom J.E. Cole, P.R. Hobson, A. Khan, P. Kyberd, D. Leslie, I.D. Reid, P. Symonds, L. Teodorescu, M. Turner Baylor University, Waco, U.S.A. A. Borzou, K. Call, J. Dittmann, K. Hatakeyama, H. Liu, N. Pastika The University of Alabama, Tuscaloosa, U.S.A. O. Charaf, S.I. Cooper, C. Henderson, P. Rumerio, C. West Boston University, Boston, U.S.A. D. Arcaro, A. Avetisyan, T. Bose, D. Gastler, D. Rankin, C. Richardson, J. Rohlf, L. Sulak, Brown University, Providence, U.S.A. G. Benelli, E. Berry, D. Cutts, A. Garabedian, J. Hakala, U. Heintz, J.M. Hogan, O. Jesus, K.H.M. Kwok, E. Laird, G. Landsberg, Z. Mao, M. Narain, S. Piperov, S. Sagir, E. Spencer, University of California, Davis, Davis, U.S.A. R. Breedon, G. Breto, D. Burns, M. Calderon De La Barca Sanchez, S. Chauhan, M. Chertok, J. Conway, R. Conway, P.T. Cox, R. Erbacher, C. Flores, G. Funk, M. Gardner, W. Ko, R. Lander, C. Mclean, M. Mulhearn, D. Pellett, J. Pilot, S. Shalhout, J. Smith, M. Squires, D. Stolp, M. Tripathi, S. Wilbur, R. Yohay University of California, Los Angeles, U.S.A. C. Bravo, R. Cousins, P. Everaerts, A. Florent, J. Hauser, M. Ignatenko, N. Mccoll, D. Saltzberg, C. Schnaible, E. Takasugi, V. Valuev, M. Weber University of California, Riverside, Riverside, U.S.A. K. Burt, R. Clare, J. Ellison, J.W. Gary, S.M.A. Ghiasi Shirazi, G. Hanson, J. Heilman, P. Jandir, E. Kennedy, F. Lacroix, O.R. Long, M. Olmedo Negrete, M.I. Paneva, A. Shrinivas, W. Si, H. Wei, S. Wimpenny, B. R. Yates { 49 { J.G. Branson, G.B. Cerati, S. Cittolin, M. Derdzinski, R. Gerosa, A. Holzner, D. Klein, V. Krutelyov, J. Letts, I. Macneill, D. Olivito, S. Padhi, M. Pieri, M. Sani, V. Sharma, S. Simon, M. Tadel, A. Vartak, S. Wasserbaech66, C. Welke, J. Wood, F. Wurthwein, A. Yagil, G. Zevi Della Porta University of California, Santa Barbara - Department of Physics, Santa BarN. Amin, R. Bhandari, J. Bradmiller-Feld, C. Campagnari, A. Dishaw, V. Dutta, K. Flowers, M. Franco Sevilla, P. Ge ert, C. George, F. Golf, L. Gouskos, J. Gran, R. Heller, J. Incandela, S.D. Mullin, A. Ovcharova, J. Richman, D. Stuart, I. Suarez, California Institute of Technology, Pasadena, U.S.A. D. Anderson, A. Apresyan, J. Bendavid, A. Bornheim, J. Bunn, Y. Chen, J. Duarte, J.M. Lawhorn, A. Mott, H.B. Newman, C. Pena, M. Spiropulu, J.R. Vlimant, S. Xie, Carnegie Mellon University, Pittsburgh, U.S.A. M.B. Andrews, V. Azzolini, T. Ferguson, M. Paulini, J. Russ, M. Sun, H. Vogel, I. Vorobiev, University of Colorado Boulder, Boulder, U.S.A. J.P. Cumalat, W.T. Ford, F. Jensen, A. Johnson, M. Krohn, T. Mulholland, K. Stenson, Cornell University, Ithaca, U.S.A. J. Alexander, J. Chaves, J. Chu, S. Dittmer, K. Mcdermott, N. Mirman, G. Nicolas Kaufman, J.R. Patterson, A. Rinkevicius, A. Ryd, L. Skinnari, L. So , S.M. Tan, Z. Tao, J. Thom, J. Tucker, P. Wittich, M. Zientek Fair eld University, Fair eld, U.S.A. Fermi National Accelerator Laboratory, Batavia, U.S.A. S. Abdullin, M. Albrow, G. Apollinari, S. Banerjee, L.A.T. Bauerdick, A. Beretvas, J. Berryhill, P.C. Bhat, G. Bolla, K. Burkett, J.N. Butler, H.W.K. Cheung, F. Chlebana, S. Cihangiry, M. Cremonesi, V.D. Elvira, I. Fisk, J. Freeman, E. Gottschalk, L. Gray, D. Green, S. Grunendahl, O. Gutsche, D. Hare, R.M. Harris, S. Hasegawa, J. Hirschauer, Z. Hu, B. Jayatilaka, S. Jindariani, M. Johnson, U. Joshi, B. Klima, B. Kreis, S. Lammel, J. Linacre, D. Lincoln, R. Lipton, T. Liu, R. Lopes De Sa, J. Lykken, K. Maeshima, N. Magini, J.M. Marra no, S. Maruyama, D. Mason, P. McBride, P. Merkel, S. Mrenna, S. Nahn, C. Newman-Holmesy, V. O'Dell, K. Pedro, O. Prokofyev, G. Rakness, L. Ristori, E. Sexton-Kennedy, A. Soha, W.J. Spalding, L. Spiegel, S. Stoynev, N. Strobbe, L. Taylor, S. Tkaczyk, N.V. Tran, L. Uplegger, E.W. Vaandering, C. Vernieri, M. Verzocchi, R. Vidal, M. Wang, H.A. Weber, A. Whitbeck D. Acosta, P. Avery, P. Bortignon, D. Bourilkov, A. Brinkerho , A. Carnes, M. Carver, D. Curry, S. Das, R.D. Field, I.K. Furic, J. Konigsberg, A. Korytov, P. Ma, K. Matchev, H. Mei, P. Milenovic67, G. Mitselmakher, D. Rank, L. Shchutska, D. Sperka, L. Thomas, J. Wang, S. Wang, J. Yelton Florida International University, Miami, U.S.A. S. Linn, P. Markowitz, G. Martinez, J.L. Rodriguez Florida State University, Tallahassee, U.S.A. A. Ackert, J.R. Adams, T. Adams, A. Askew, S. Bein, B. Diamond, S. Hagopian, V. Hagopian, K.F. Johnson, A. Khatiwada, H. Prosper, A. Santra Florida Institute of Technology, Melbourne, U.S.A. M.M. Baarmand, V. Bhopatkar, S. Colafranceschi68, M. Hohlmann, D. Noonan, T. Roy, University of Illinois at Chicago (UIC), Chicago, U.S.A. M.R. Adams, L. Apanasevich, D. Berry, R.R. Betts, I. Bucinskaite, R. Cavanaugh, O. Evdokimov, L. Gauthier, C.E. Gerber, D.J. Hofman, K. Jung, P. Kurt, C. O'Brien, I.D. Sandoval Gonzalez, P. Turner, N. Varelas, H. Wang, Z. Wu, M. Zakaria, J. Zhang The University of Iowa, Iowa City, U.S.A. B. Bilki69, W. Clarida, K. Dilsiz, S. Durgut, R.P. Gandrajula, M. Haytmyradov, V. Khristenko, J.-P. Merlo, H. Mermerkaya70, A. Mestvirishvili, A. Moeller, J. Nachtman, H. Ogul, Y. Onel, F. Ozok71, A. Penzo, C. Snyder, E. Tiras, J. Wetzel, K. Yi Johns Hopkins University, Baltimore, U.S.A. I. Anderson, B. Blumenfeld, A. Cocoros, N. Eminizer, D. Fehling, L. Feng, A.V. Gritsan, P. Maksimovic, C. Martin, M. Osherson, J. Roskes, U. Sarica, M. Swartz, M. Xiao, Y. Xin, The University of Kansas, Lawrence, U.S.A. A. Al-bataineh, P. Baringer, A. Bean, S. Boren, J. Bowen, C. Bruner, J. Castle, L. Forthomme, R.P. Kenny III, A. Kropivnitskaya, D. Majumder, W. Mcbrayer, M. Murray, S. Sanders, R. Stringer, J.D. Tapia Takaki, Q. Wang Kansas State University, Manhattan, U.S.A. A. Ivanov, K. Kaadze, S. Khalil, Y. Maravin, A. Mohammadi, L.K. Saini, N. Skhirtladze, F. Rebassoo, D. Wright Lawrence Livermore National Laboratory, Livermore, U.S.A. University of Maryland, College Park, U.S.A. C. Anelli, A. Baden, O. Baron, A. Belloni, B. Calvert, S.C. Eno, C. Ferraioli, J.A. Gomez, N.J. Hadley, S. Jabeen, R.G. Kellogg, T. Kolberg, J. Kunkle, Y. Lu, A.C. Mignerey, F. Ricci-Tam, Y.H. Shin, A. Skuja, M.B. Tonjes, S.C. Tonwar D. Abercrombie, B. Allen, A. Apyan, R. Barbieri, A. Baty, R. Bi, K. Bierwagen, S. Brandt, W. Busza, I.A. Cali, Z. Demiragli, L. Di Matteo, G. Gomez Ceballos, M. Goncharov, D. Hsu, Y. Iiyama, G.M. Innocenti, M. Klute, D. Kovalskyi, K. Krajczar, Y.S. Lai, Y.-J. Lee, A. Levin, P.D. Luckey, B. Maier, A.C. Marini, C. Mcginn, C. Mironov, S. Narayanan, X. Niu, C. Paus, C. Roland, G. Roland, J. Salfeld-Nebgen, G.S.F. Stephans, K. Sumorok, K. Tatar, M. Varma, D. Velicanu, J. Veverka, J. Wang, T.W. Wang, B. Wyslouch, M. Yang, V. Zhukova University of Minnesota, Minneapolis, U.S.A. A.C. Benvenuti, R.M. Chatterjee, A. Evans, A. Finkel, A. Gude, P. Hansen, S. Kalafut, S.C. Kao, Y. Kubota, Z. Lesko, J. Mans, S. Nourbakhsh, N. Ruckstuhl, R. Rusack, N. Tambe, J. Turkewitz University of Mississippi, Oxford, U.S.A. J.G. Acosta, S. Oliveros University of Nebraska-Lincoln, Lincoln, U.S.A. E. Avdeeva, R. Bartek, K. Bloom, D.R. Claes, A. Dominguez, C. Fangmeier, R. Gonzalez Suarez, R. Kamalieddin, I. Kravchenko, A. Malta Rodrigues, F. Meier, J. Monroy, J.E. Siado, G.R. Snow, B. Stieger State University of New York at Bu alo, Bu alo, U.S.A. M. Alyari, J. Dolen, J. George, A. Godshalk, C. Harrington, I. Iashvili, J. Kaisen, A. Kharchilava, A. Kumar, A. Parker, S. Rappoccio, B. Roozbahani Northeastern University, Boston, U.S.A. G. Alverson, E. Barberis, A. Hortiangtham, A. Massironi, D.M. Morse, D. Nash, T. Orimoto, R. Teixeira De Lima, D. Trocino, R.-J. Wang, D. Wood Northwestern University, Evanston, U.S.A. S. Bhattacharya, K.A. Hahn, A. Kubik, A. Kumar, J.F. Low, N. Mucia, N. Odell, B. Pollack, M.H. Schmitt, K. Sung, M. Trovato, M. Velasco University of Notre Dame, Notre Dame, U.S.A. N. Dev, M. Hildreth, K. Hurtado Anampa, C. Jessop, D.J. Karmgard, N. Kellams, K. Lannon, N. Marinelli, F. Meng, C. Mueller, Y. Musienko37, M. Planer, A. Reinsvold, R. Ruchti, G. Smith, S. Taroni, M. Wayne, M. Wolf, A. Woodard The Ohio State University, Columbus, U.S.A. J. Alimena, L. Antonelli, J. Brinson, B. Bylsma, L.S. Durkin, S. Flowers, B. Francis, A. Hart, C. Hill, R. Hughes, W. Ji, B. Liu, W. Luo, D. Puigh, B.L. Winer, H.W. Wulsin Princeton University, Princeton, U.S.A. S. Cooperstein, O. Driga, P. Elmer, J. Hardenbrook, P. Hebda, D. Lange, J. Luo, D. Marlow, J. Mc Donald, T. Medvedeva, K. Mei, M. Mooney, J. Olsen, C. Palmer, P. Piroue, D. Stickland, C. Tully, A. Zuranski Purdue University, West Lafayette, U.S.A. A. Barker, V.E. Barnes, S. Folgueras, L. Gutay, M.K. Jha, M. Jones, A.W. Jung, Purdue University Calumet, Hammond, U.S.A. N. Parashar, J. Stupak Rice University, Houston, U.S.A. A. Adair, B. Akgun, Z. Chen, K.M. Ecklund, F.J.M. Geurts, M. Guilbaud, W. Li, B. Michlin, M. Northup, B.P. Padley, R. Redjimi, J. Roberts, J. Rorie, Z. Tu, J. Zabel University of Rochester, Rochester, U.S.A. B. Betchart, A. Bodek, P. de Barbaro, R. Demina, Y.t. Duh, T. Ferbel, M. Galanti, A. Garcia-Bellido, J. Han, O. Hindrichs, A. Khukhunaishvili, K.H. Lo, P. Tan, M. Verzetti Rutgers, The State University of New Jersey, Piscataway, U.S.A. A. Agapitos, J.P. Chou, E. Contreras-Campana, Y. Gershtein, T.A. Gomez Espinosa, E. Halkiadakis, M. Heindl, D. Hidas, E. Hughes, S. Kaplan, R. Kunnawalkam Elayavalli, S. Kyriacou, A. Lath, K. Nash, H. Saka, S. Salur, S. Schnetzer, D. She eld, S. Somalwar, R. Stone, S. Thomas, P. Thomassen, M. Walker University of Tennessee, Knoxville, U.S.A. A.G. Delannoy, M. Foerster, J. Heideman, G. Riley, K. Rose, S. Spanier, K. Thapa Texas A&M University, College Station, U.S.A. O. Bouhali72, A. Celik, M. Dalchenko, M. De Mattia, A. Delgado, S. Dildick, R. Eusebi, J. Gilmore, T. Huang, E. Juska, T. Kamon73, R. Mueller, Y. Pakhotin, R. Patel, A. Perlo , L. Pernie, D. Rathjens, A. Rose, A. Safonov, A. Tatarinov, K.A. Ulmer Texas Tech University, Lubbock, U.S.A. N. Akchurin, C. Cowden, J. Damgov, F. De Guio, C. Dragoiu, P.R. Dudero, J. Faulkner, E. Gurpinar, S. Kunori, K. Lamichhane, S.W. Lee, T. Libeiro, T. Peltola, S. Undleeb, I. Volobouev, Z. Wang Vanderbilt University, Nashville, U.S.A. S. Greene, A. Gurrola, R. Janjam, W. Johns, C. Maguire, A. Melo, H. Ni, P. Sheldon, S. Tuo, J. Velkovska, Q. Xu University of Virginia, Charlottesville, U.S.A. M.W. Arenton, P. Barria, B. Cox, J. Goodell, R. Hirosky, A. Ledovskoy, H. Li, C. Neu, T. Sinthuprasith, X. Sun, Y. Wang, E. Wolfe, F. Xia Wayne State University, Detroit, U.S.A. C. Clarke, R. Harr, P.E. Karchin, J. Sturdy { 53 { D.A. Belknap, C. Caillol, S. Dasu, L. Dodd, S. Duric, B. Gomber, M. Grothe, M. Herndon, A. Herve, P. Klabbers, A. Lanaro, A. Levine, K. Long, R. Loveless, I. Ojalvo, T. Perry, G.A. Pierro, G. Polese, T. Ruggles, A. Savin, N. Smith, W.H. Smith, D. Taylor, N. Woods 1: Also at Vienna University of Technology, Vienna, Austria 2: Also at State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, 3: Also at Institut Pluridisciplinaire Hubert Curien, Universite de Strasbourg, Universite de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France 4: Also at Universidade Estadual de Campinas, Campinas, Brazil 5: Also at Universidade Federal de Pelotas, Pelotas, Brazil 6: Also at Universite Libre de Bruxelles, Bruxelles, Belgium 7: Also at Deutsches Elektronen-Synchrotron, Hamburg, Germany 8: Also at Joint Institute for Nuclear Research, Dubna, Russia 9: Also at Suez University, Suez, Egypt 10: Now at British University in Egypt, Cairo, Egypt 11: Also at Ain Shams University, Cairo, Egypt 12: Now at Helwan University, Cairo, Egypt 13: Also at Universite de Haute Alsace, Mulhouse, France 14: Also at Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, 15: Also at Tbilisi State University, Tbilisi, Georgia 16: Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland 17: Also at RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany 18: Also at University of Hamburg, Hamburg, Germany 19: Also at Brandenburg University of Technology, Cottbus, Germany 20: Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary 21: Also at MTA-ELTE Lendulet CMS Particle and Nuclear Physics Group, Eotvos Lorand 22: Also at University of Debrecen, Debrecen, Hungary 23: Also at Indian Institute of Science Education and Research, Bhopal, India 24: Also at Institute of Physics, Bhubaneswar, India 25: Also at University of Visva-Bharati, Santiniketan, India 26: Also at University of Ruhuna, Matara, Sri Lanka 27: Also at Isfahan University of Technology, Isfahan, Iran 28: Also at University of Tehran, Department of Engineering Science, Tehran, Iran 29: Also at Yazd University, Yazd, Iran 30: Also at Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran 31: Also at Universita degli Studi di Siena, Siena, Italy 32: Also at Purdue University, West Lafayette, U.S.A. 33: Also at International Islamic University of Malaysia, Kuala Lumpur, Malaysia 34: Also at Malaysian Nuclear Agency, MOSTI, Kajang, Malaysia 35: Also at Consejo Nacional de Ciencia y Tecnolog a, Mexico city, Mexico 36: Also at Warsaw University of Technology, Institute of Electronic Systems, Warsaw, Poland at National Research Nuclear University 'Moscow Engineering Physics Institute' (MEPhI), Moscow, Russia 39: Also at St. Petersburg State Polytechnical University, St. Petersburg, Russia 40: Also at University of Florida, Gainesville, U.S.A. 41: Also at P.N. Lebedev Physical Institute, Moscow, Russia 42: Also at California Institute of Technology, Pasadena, U.S.A. 43: Also at Budker Institute of Nuclear Physics, Novosibirsk, Russia 44: Also at Faculty of Physics, University of Belgrade, Belgrade, Serbia 45: Also at INFN Sezione di Roma; Universita di Roma, Roma, Italy 46: Also at Scuola Normale e Sezione dell'INFN, Pisa, Italy 47: Also at National and Kapodistrian University of Athens, Athens, Greece 48: Also at Riga Technical University, Riga, Latvia 49: Also at Institute for Theoretical and Experimental Physics, Moscow, Russia 50: Also at Albert Einstein Center for Fundamental Physics, Bern, Switzerland 51: Also at Gaziosmanpasa University, Tokat, Turkey 52: Also at Mersin University, Mersin, Turkey 53: Also at Cag University, Mersin, Turkey 54: Also at Piri Reis University, Istanbul, Turkey 55: Also at Adiyaman University, Adiyaman, Turkey 56: Also at Ozyegin University, Istanbul, Turkey 57: Also at Izmir Institute of Technology, Izmir, Turkey 58: Also at Marmara University, Istanbul, Turkey 59: Also at Kafkas University, Kars, Turkey 60: Also at Istanbul Bilgi University, Istanbul, Turkey 61: Also at Yildiz Technical University, Istanbul, Turkey 62: Also at Hacettepe University, Ankara, Turkey 64: Also at School of Physics and Astronomy, University of Southampton, Southampton, United 65: Also at Instituto de Astrof sica de Canarias, La Laguna, Spain 66: Also at Utah Valley University, Orem, U.S.A. 67: Also at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, 68: Also at Facolta Ingegneria, Universita di Roma, Roma, Italy 69: Also at Argonne National Laboratory, Argonne, U.S.A. 70: Also at Erzincan University, Erzincan, Turkey 71: Also at Mimar Sinan University, Istanbul, Istanbul, Turkey 72: Also at Texas A&M University at Qatar, Doha, Qatar 73: Also at Kyungpook National University, Daegu, Korea [56] R.D. Ball et al., Impact of heavy quark masses on parton distributions and LHC [59] GEANT4 collaboration , S. Agostinelli et al., GEANT4: A simulation toolkit, Nucl . Instrum. [61] CMS collaboration, Search for dark matter in proton-proton collisions at 8 TeV with missing [74] J. Butterworth et al., PDF4LHC recommendations for LHC Run II, J. Phys. G 43 (2016) [75] J. Thaler and K. Van Tilburg, Identifying boosted objects with N-subjettiness, JHEP 03 [76] J. Thaler and K. Van Tilburg, Maximizing boosted top identi cation by minimizing N-subjettiness, JHEP 02 (2012) 093 [arXiv:1108.2701] [INSPIRE]. [77] S.D. Ellis, C.K. Vermilion and J.R. Walsh, Recombination algorithms and jet substructure: Pruning as a tool for heavy particle searches, Phys. Rev. D 81 (2010) 094023 [78] S. Ask, M.A. Parker, T. Sandoval, M.E. Shea and W.J. Stirling, Using gamma+jets [79] J.H. Kuhn, A. Kulesza, S. Pozzorini and M. Schulze, Electroweak corrections to hadronic [80] S. Kallweit, J.M. Lindert, P. Maierhofer, S. Pozzorini and M. Schonherr, NLO electroweak [81] S. Kallweit, J.M. Lindert, S. Pozzorini, M. Schonherr and P. Maierhofer, NLO QCD+EW [82] S. Kallweit, J.M. Lindert, P. Maierhofer, S. Pozzorini and M. Schonherr, NLO QCD+EW [85] A.L. Read, Presentation of search results: the CLs technique, J. Phys. G 28 (2002) 2693 [86] G. Cowan, K. Cranmer, E. Gross and O. Vitells, Asymptotic formulae for likelihood-based tests of new physics, Eur. Phys. J. C 71 (2011) 1554 [Erratum ibid. C 73 (2013) 2501] [87] ATLAS, CMS and The LHC Higgs Combination Group collaborations, Procedure for the LHC Higgs boson search combination in Summer 2011, ATL-PHYS-PUB-2011-11 (2011). [88] CMS collaboration, Search for the standard model Higgs boson produced in association with a W or a Z boson and decaying to bottom quarks, Phys. Rev. D 89 (2014) 012003 [89] K. Hamilton, P. Nason and G. Zanderighi, MINLO: multi-scale improved NLO, JHEP 10 [94] MILC collaboration, D. Toussaint and W. Freeman, The strange quark condensate in the avor QCD, Phys. Rev. Lett. 103 (2009) 122002 [arXiv:0905.2432] [95] LUX collaboration, D.S. Akerib et al., Results from a search for dark matter in the complete [96] PandaX-II collaboration, A. Tan et al., Dark matter results from rst 98.7 Days of data from the PandaX-II experiment, Phys. Rev. Lett. 117 (2016) 121303 [arXiv:1607.07400] [97] SuperCDMS collaboration, R. Agnese et al., New results from the search for low-mass E. Belchior Batista Das Chagas, W. Carvalho, J. Chinellato4, A. Custodio, E.M. Da Costa, Brazil France A. Abdulsalam, I. Antropov, S. Ba oni, F. Beaudette, P. Busson, L. Cadamuro, E. Chapon, C. Charlot, O. Davignon, R. Granier de Cassagnac, M. Jo, S. Lisniak, P. Mine, M. Nguyen, C. Ochando, G. Ortona, P. Paganini, P. Pigard, S. Regnard, R. Salerno, Y. Sirois, T. Strebler, Y. Yilmaz, A. Zabi F. Colombo, W. De Boer, A. Dierlamm, S. Fink, B. Freund, R. Friese, M. Gi els, A. Gilbert, P. Goldenzweig, D. Haitz, F. Hartmann16, S.M. Heindl, U. Husemann, I. Katkov14, S. Kudella, P. Lobelle Pardo, H. Mildner, M.U. Mozer, Th. Muller, M. Plagge, G. Quast, K. Rabbertz, S. Rocker, F. Roscher, M. Schroder, I. Shvetsov, G. Sieber, H.J. Simonis, R. Ulrich, J. Wagner-Kuhr, S. Wayand, M. Weber, T. Weiler, S. Williamson, C. Wohrmann, Italy Italy L. Brianza16, M.E. Dinardoa;b, S. Fiorendia;b, S. Gennaia, A. Ghezzia;b, P. Govonia;b, M. Malberti, S. Malvezzia, R.A. Manzonia;b;16, D. Menascea, L. Moronia, M. Paganonia;b, D. Pedrinia, S. Pigazzini, S. Ragazzia;b, T. Tabarelli de Fatisa;b Malaysia I. Ahmed, Z.A. Ibrahim, J.R. Komaragiri, M.A.B. Md Ali33, F. Mohamad Idris34, W.A.T. Wan Abdullah, M.N. Yusli, Z. Zolkapli Portugal C. Dietz, F. Fiori, W.-S. Hou, Y. Hsiung, Y.F. Liu, R.-S. Lu, M. Min~ano Moya, E. Paganis, Thailand K.W. Bell, A. Belyaev64, C. Brew, R.M. Brown, L. Calligaris, D. Cieri, D.J.A. Cockerill, J.A. Coughlan, K. Harder, S. Harper, E. Olaiya, D. Petyt, C.H. Shepherd-Themistocleous, D.H. Miller, N. Neumeister, J.F. Schulte, X. Shi, J. Sun, A. Svyatkovskiy, F. Wang, W. Xie, China 37: Also at Institute for Nuclear Research, Moscow, Russia Kingdom 63: Also at Rutherford Appleton Laboratory, Didcot, United Kingdom

This is a preview of a remote PDF:

Searches for invisible decays of the Higgs boson in pp collisions at \( \sqrt{s} \) = 7, 8, and 13 TeV, Journal of High Energy Physics, 2017, DOI: 10.1007/JHEP02(2017)135