Anomalous magnetic and weak magnetic dipole moments of the \(\tau \) lepton in the simplest little Higgs model

The European Physical Journal C, Apr 2017

We obtain analytical expressions, both in terms of parametric integrals and Passarino–Veltman scalar functions, for the one-loop contributions to the anomalous weak magnetic dipole moment (AWMDM) of a charged lepton in the framework of the simplest little Higgs model (SLHM). Our results are general and can be useful to compute the weak properties of a charged lepton in other extensions of the standard model (SM). As a by-product we obtain generic contributions to the anomalous magnetic dipole moment (AMDM), which agree with previous results. We then study numerically the potential contributions from this model to the \(\tau \) lepton AMDM and AWMDM for values of the parameter space consistent with current experimental data. It is found that they depend mainly on the energy scale f at which the global symmetry is broken and the \(t_{\beta }\) parameter, whereas there is little sensitivity to a mild change in the values of other parameters of the model. While the \(\tau \) AMDM is of the order of \(10^{-9}\), the real (imaginary) part of its AWMDM is of the order of \(10^{-9}\) (\(10^{-10}\)). These values seem to be out of the reach of the expected experimental sensitivity of future experiments.

A PDF file should load here. If you do not see its contents the file may be temporarily unavailable at the journal website or you do not have a PDF plug-in installed and enabled in your browser.

Alternatively, you can download the file locally and open with any standalone PDF reader:

https://link.springer.com/content/pdf/10.1140%2Fepjc%2Fs10052-017-4803-z.pdf

Anomalous magnetic and weak magnetic dipole moments of the \(\tau \) lepton in the simplest little Higgs model

Eur. Phys. J. C Anomalous magnetic and weak magnetic dipole moments of the ? lepton in the simplest little Higgs model M. A. Arroyo-Ure?a 1 G. Hern?ndez-Tom? 0 1 G. Tavares-Velasco 1 0 Present address: Departamento de Fi?sica, Centro de Investigacio?n y de Estudios Avanzados del Instituto Polite?cnico Nacional , Apartado Postal 14-740, 07000 Mexico City , Mexico 1 Facultad de Ciencias Fi?sico-Matema?ticas, Beneme?rita Universidad Auto?noma de Puebla , C.P. 72570 Puebla, PUE , Mexico We obtain analytical expressions, both in terms of parametric integrals and Passarino-Veltman scalar functions, for the one-loop contributions to the anomalous weak magnetic dipole moment (AWMDM) of a charged lepton in the framework of the simplest little Higgs model (SLHM). Our results are general and can be useful to compute the weak properties of a charged lepton in other extensions of the standard model (SM). As a by-product we obtain generic contributions to the anomalous magnetic dipole moment (AMDM), which agree with previous results. We then study numerically the potential contributions from this model to the ? lepton AMDM and AWMDM for values of the parameter space consistent with current experimental data. It is found that they depend mainly on the energy scale f at which the global symmetry is broken and the t? parameter, whereas there is little sensitivity to a mild change in the values of other parameters of the model. While the ? AMDM is of the order of 10?9, the real (imaginary) part of its AWMDM is of the order of 10?9 (10?10). These values seem to be out of the reach of the expected experimental sensitivity of future experiments. The most general dimension-five effective interaction of a neutral V gauge boson (V = ? , Z ) to a charged lepton that respects Lorentz invariance can be written in terms of six independent form factors: - ? V (q2) = i e[??(FVV ? FAV ?5) ? q?(i FSV + FPV ?5) a e-mail: b e-mail: c e-mail: where q is the incoming transfer four-momentum of the gauge boson. The electromagnetic (weak) properties of the lepton are determined by the photon (Z gauge boson) vertex function. The C P-violating terms define the static electric dipole moment (EDM) and the static weak electric dipole moment (WEDM): Since the standard model (SM) predictions for these C Pviolating dipole moments are highly suppressed, they may serve to search for new sources of C P violation. In this work we are interested instead in the static anomalous magnetic dipole moment (AMDM) and the static anomalous weak magnetic dipole moment (AWMDM), which are defined in terms of the C P-even form factor as follows: The measurement of the AMDM of a lepton has long been considered a probe for the SM, which considers leptons as point-like objects. The AMDM of the electron ae, which receives its main contributions from quantum electrodynamics (QED), has been calculated up to order of ?5 [1] and the agreement between the theoretical and the experimental values has reached the level of ten significant digits [2], which represents one of the greatest milestones of QED. As far as the muon is concerned, the E821 experiment at Brookhaven National Lab (BNL) measured its AMDM a? with an unprecedent precision of 0.54 ppm. The current average experimental measurement is [3] a?Exp. = 11659209.1(5.4)(3.3) ? 10?10, and further improvement is expected at future experiments by the (g?2)? [4] and J-PARC (g?2)/EDM [5] Collaborations, which aim to reach a precision of ?0.2 ppm. As for the theoretical prediction of the SM [6] a?SM = 116591803(1)(42)(26) ? 10?11, there is still a large uncertainty in the estimate of the hadronic contribution, whereas the QED and electroweak contributions have been determined with a great precision [7]. Thus a more accurate evaluation of the leading order hadronic contribution together with the future experimental measurement are needed to settle down the discrepancy between the SM prediction and the experimental value of a?, which currently stands at the level of 3.6 standard deviations [6]: a? = a?Exp. ? a?SM = 288(63)(49) ? 10?11. Since the muon AMDM has become a powerful tool to test the validity of the SM and searching for new physics (NP) effects, a plethora of calculations within the framework of several SM extensions has been reported in the literature in order to explain the a? discrepancy [7,8]. As far as the ? lepton is concerned, the SM prediction is a?SM = 117721(5) ? 10?8 [9,10]. The error of the order of 10?8 hints that SM extensions predicting values for a? above this level could be worth studying. Since the SM prediction for a? is far from the experimental sensitivity, which is one order of magnitude below the leading QED contribution, a more precise determination of the experimental value is necessary. Due to its short lifetime (290.3 ? 0.5 ? 10?15 s) [11], the ? lepton does not allow for a high precision measurement of its AMDM via a spin precession method. The most stringent current bound on a? is [12] which was obtained using LEP1, SLD and LEP2 data for ? lepton production. It also has been pointed out recently that the ? electromagnetic moments can be probed in ? ? and ? e collisions at CLIC, which can lead to improved bounds [13,14]. In this regard, it has been pointed out that super B factories could allow for a precise determination of a? up to the 10?6 level using unpolarized or polarized electron beams [15?17]. Furthermore, due to its large mass, it is expected that the ? AMDM can be very sensitive to NP effects [18] since its electroweak contribution would be ten times larger than the uncertainty of the hadronic contribution [10]. Therefore, it is worth estimating the ? AMDM in any SM extension as future measurements may allow us to search for NP in a rather clean environment. Unlike the electromagnetic dipole moments of leptons, little attention has been paid to the study of their weak properties. In the experimental arena, the current best limits on the ? AWMDM and WEDM, with 95% C.L., are [19] Re(d?W ) < 0.5 ? 10?17 ecm, I m(d?W ) < 1.1 ? 10?17 ecm, which were extracted from the data collected at the LEP from 1990 to 1995, corresponding to an integrated luminosity of 155 pb?1. Somewhat weaker bounds were obtained in [20] via a study of the pp ? ? +? ? and pp ? Z h ? ? +? ?h cross sections at the LHC. The current experimental bounds on a?W are well above the SM theoretical prediction, which was calculated in Ref. [21]: It is thus interesting to analyze whether NP contributions can give a significant enhancement and be at the reach of future experimental detection. In this work we evaluate the AMDM and AWMDM of a lepton, with special focus on those of the ? lepton, predicted by the simplest little Higgs model (SLHM) [22], which is an appealing SM extension. This model is aimed to deal with the hierarchy problem by conjecturing that the Higgs boson is a pseudo-Goldstone boson arising from a global symmetry broken spontaneously. At the same scale, the local symmetry is also broken by a collective symmetry breaking mechanism. The top quark and the electroweak gauge bosons have heavy partners that give rise to new contributions that exactly cancel the quadratic divergences to the Higgs boson mass at the one-loop level, thereby rendering a mass of about 100 GeV without the need of fine tuning [23,24]. The rest of this presentation is organized as follows. A brief review on the SLHM is presented in Sect. 2, whereas Sect. 3 is devoted to the analytical results for the AWMDM. As a by-product we will obtain the corresponding expressions for the AMDM. A brief discussion of the current constraints on the parameters of the model, and the numerical analysis of the ? electromagnetic and weak dipole moments is presented in Sect. 4. Section 5 is devoted to the conclusions, whereas the SLHM Feynman rules as well as explicit expressions for the loop integrals are shown in the appendices. 2 The simplest little Higgs model We now present an overview of the SLHM focusing only on the details relevant for our calculation. For a detailed account of this model and the study of its phenomenology we refer the reader to Refs. [22,25?28], which we will follow closely in our discussion below. The SLHM is the most economic version of simple-group little Higgs models, which have the feature that the SM gauge group is embedded into a larger simple gauge group instead of a product gauge group. the no-self conjugate neutral gauge boson Y0, and the neutral gauge boson Z0 (following Ref. [25] we will denote the gauge eigenstates with the subindex 0) 3 ? t W2 A8 + tW B X with masses of the order of f . Four gauge fields remain massless at this stage. While A1, A2, A3 identify with the SU (2)L gauge bosons W a , the charged gauge bosons W ? and the hypercharge gauge boson are 3 ? t W2 B X After the electroweak symmetry breaking (EWSB), the weak gauge bosons W ? and Z0 acquire mass and the heavy gauge boson masses get corrected. Up to order (v/ f )2 W , X and Y0 coincide with the mass eigenstates and their masses are [26] The SLHM has a [SU (3) ? U (1)]2 global symmetry and a SU (3)L ? U (1)X gauge symmetry, which requires the introduction of nine gauge bosons. At the TeV scale, the global symmetry is broken down spontaneously to [SU (2)?U (1)]2 via the vacuum expectation values (VEVs) f1 and f2 of two sigma fields 1 and 2, giving rise to ten Goldstone bosons. At the same scale the gauge group breaks to the SM gauge group SU (2)L ? U (1)Y and five Goldstone bosons are eaten by the heavy fields: a charged gauge boson X ?, a no-self conjugate neutral boson Y0 = Y0?, and an extra neutral gauge boson Z , which thus acquire masses of the order of the scale f1 ? f2. The remaining Goldstone bosons are accommodated in a complex doublet (the SM one) and a real singlet of SU (2). The Goldstone bosons can be parametrized by the triplets 1 = e where the pion matrix is 1 = f ?? here f = f12 + f22, h is the SU (2) complex doublet of the SM, and ? is a real scalar field. The normalization is chosen to produce canonical kinetic terms. The dynamics of the Goldstone bosons is described by a non-linear sigma model Lkin = |D? 1|2 + |D? 2|2, with the SU (3)L ? U (1)X covariant derivative D? = ?? + i gT a Aa? ? i gX Q X B?X , where T a (a = 1 . . . 8) are the SU (3)L generators in the fundamental representation, Aa? are the SU (3)L gauge fields, B?X is the U (1)X gauge field, and Q X = ?1/3 for 1 and 2. The new gauge bosons accommodate in a complex SU (2) ? U (1) doublet (X +, Y0) with hypercharge 21 and a neutral singlet Z0. The matching of the gauge coupling constants yields gX = 1 ? t W2 /3 with tW = sW /cW the tangent of the Weinberg angle ?W . As mentioned above, after the first stage of symmetry breaking, there emerge the pair of charged gauge bosons X ?, with t? = tan ? = f1/ f2. If higher order terms are considered W and X need to be rotated to obtain the physical states [26]. On the other hand, the photon and the light neutral Z0 gauge boson are given by Finally, Z0 and Z0 need to be rotated to obtain the mass eigenstates Z and Z , which are given by with ?Z = ? (1?tW28)cW3?tW2 vf 22 . The respective masses, up to order (v/ f )2, are [26] m Z = ?2g f The kinetic Lagrangian of the gauge bosons gives rise to the trilinear gauge boson couplings necessary for our calculation. It can be written as 1 1 Aa ?? Aa ?? , = ? 4 B X ?? B?X? ? 4 with the Abelian and non-Abelian gauge strength tensors A?? = ?? A? ? ?? A? + g fabc Ab? Ac? , a a a with fabc the structure constants of the SU (3) group. From the relations between gauge eigenstates and mass eigenstates (20)?(24) and (28)?(31) we can obtain after some lengthy algebra the Feynman rules listed in ?Appendix A? for the V V j?V j? vertices, namely AW ?W ?, A X ? X ?, Z W ?W ?, and Z X ? X ?. In the lepton sector of the SLHM, for each generation there is a left-handed triplet L mT = (?Lm , Lm , i NLm ), which is completed with a new neutral lepton NLm , and two righthanded singlets Rm and NRm . The Yukawa Lagrangian can be written, in the basis where flavor and mass Nm eigenstates coincide, as ? LY = i ?mN N Rm 2 Lm + i j k Rm i jk 1 2 Ln +H.c., (37) where = 4? f is the cut-off of the effective theory. Here m and n are generation indices, whereas i , j , and k are SU (3) indices. After EWSB this Lagrangian yields the lepton masses and the heavy neutrino masses up to order (v/ f )2 [26], where ?? = ?2vf t? represents the mixing between a heavy neutrino and a SM neutrino of the same generation. Notice also that the rotation that diagonalizes ?N does not necessarily diagonalizes ? so there is mixing between the charged leptons and the heavy neutrinos mediated by the charged gauge bosons. The charged lepton mass eigenstates Lm are thus related to the flavor eigenstates Lm0 by the rotation Lm0 = V mi Li , where V mi is a CKM-like mixing matrix. Also, in each generation, the SM and heavy neutrino mass eigenstates are obtained through NLm0 = where again the 0 subindex stands for flavor eigenstates. The lepton masses up to order (v/ f )2 are [26] m = ? The vertices of a gauge boson to a lepton pair are obtained from the lepton kinetic Lagrangian, which can be written as LF = L? m i ? ? D? Lm + ?Rm i ? ? D? Rm where the covariant derivative was given in Eq. (18), with Q X = ?1/3, 0 and 1 for Lm , Nm and m . We need to introduce the mass eigenstates to obtain the interactions of the physical gauge bosons Z , W , X , and Z to a lepton pair, which are necessary for our calculation of the AMDM and AWMDM of a lepton. They are given by + 21 ??2 N? Li ? ? NLi ? 2 (?? V im N? Lm ? ??Li + H.c.) 1 ?sW2 ?Ri ? ? Ri ? cW2 N? Li ? ? NLi ??2 + 1 ? 2 = cW2 The ? Z Z vertex vanish since ? is C P-odd scalar, but the H ? Z coupling does arise, though its contribution to the Notice that there is lepton flavor violation mediated by the charged gauge bosons. Finally, the interactions of the photon with a charged lepton pair are dictated by QED, The scalar Higgs bosons H and ? also contribute to a lepton AMDM and AWMDM. From the Lagrangian (17) we can obtain the respective interactions with the Z and Z gauge bosons. After some algebra one can extract the vertices Z Z H and Z Z H , which are given as follows to the leading order in (v/ f ): LZ Z H = g2v(1 ? t W2 ) H Z ? Z?, together with the Z Z H interaction LZ Z H = gm Z H Z ? Z?. From the Yukawa Lagrangian (37) we can also obtain the interactions of the scalar Higgs bosons H and ? to leptons, which we need for our calculation. They are diagonal and are given to leading order in (v/ f )2 by [25] LH ? = i g 2mW AMDM and AWMDM of a lepton vanishes. A similar result was found in Ref. [29], where the contributions of two-Higgs doublet models (THDMs) to the AWMDM of a fermion were calculated. Other details of this model are irrelevant for our calculation, so we refrain from presenting a discussion of the quark sector and the Coleman?Weinberg scalar potential. 3 Anomalous magnetic and weak magnetic dipole moments in the SLHM We now turn to a presentation of our results. All the Feynman rules necessary for our calculation follow straightforwardly from the above interaction Lagrangians and are presented in ?Appendix A?. Since we are interested in the ? V ? vertex with all the particles on their mass shell, the loop amplitudes will be gauge independent. We used the unitary gauge as it is best suited for our calculation method. In order to solve the loop integrals, we used both Feynman parametrization and the Passarino?Veltman reduction scheme. We will first present the results for the AWMDM, from which the results for the AMDM will follow easily. As far as the C P-violating properties are concerned, we will assume that there is no new sources of C P-violation in this model?s version, so both the EDM and the WEDM will vanish. In the most general scenario, C P-violation could arise from new additional phases in the extended Yukawa sector of the SLHM. 3.1 Anomalous weak magnetic dipole moment In the SLHM, in addition to the pure SM contributions, the AWMDM receives new physics contributions arising from the loops carrying only new particles, but also from loops involving only SM particles. The latter are due to corrections to the SM vertices and appear as a series of powers of v/ f , so it is enough to consider the leading order terms. The AWMDM of lepton i can thus be written as aW ?SL H M = aW ?SM + aW ?N P , i i i where aWi ?SM stands for the SM contributions and aWi ?N P for the new physics ones, which can be written as aW ?N P = aW ?Gauge + aW ?Scalar, i i i with aW ?Gauge (aW ?Scalar) the contributions arising from the i i gauge (scalar) sector of the SLHM. In the gauge sector, the NP contributions to the AWMDM arise from the Feynman diagrams of Fig. 1, where V stands for the charged gauge bosons W and X , ?i is a SM neutrino, and Nk is a heavy neutrino. According to our discussion Fig. 1 Feynman diagrams that contribute to the AWMDM of charged lepton i at the one-loop level in the gauge sector of the SLHM. Here V can be either the W gauge boson or the new charged X gauge boson, ?i and N j stand for a SM neutrino and a new heavy one predicted by the SLHM, respectively. Notice that diagram (4) involves the non-diagonal vertex Z ??i N j above, for the loops involving only W gauge bosons and SM neutrinos we consider the leading order v/ f contributions arising from the corrections to the W ?? vertex. The contributions to the AWMDM of each Feynman diagram will be written as follows: where the three-letter superscript stands for the particles circulating in each loop diagram ( A2 and A3 are the particles attached to the external Z gauge boson, whereas A1 is the particle attached to the external leptons). Here f ZA1 A2 A3 are coefficients involving all the couplings appearing in each amplitude, whereas I A1 A2 A3 stand for the loop integrals, which Z depend on the masses of the virtual particles. We present in ?Appendix B? both the f A1 A2 A3 coefficients and the loop Z integrals in terms of parametric integrals and Passarino? Veltman scalar functions. We have verified that the contribution of each diagram to the AWMDM is free of ultraviolet divergences. The full contribution of the gauge sector can be written as +aWi ?Z i i , where the index j runs over the three lepton families. In the scalar sector of the SLHM there are contributions to the AWMDM of a lepton arising from both the SM scalar boson H and the new pseudoscalar boson ? via the Feynman diagrams of Fig. 2. The contributions of the SM Higgs Fig. 2 Feynman diagrams that contributes to the AWMDM of a lepton in the scalar sector of the SLHM at the one-loop level. We do not show the diagram obtained by exchanging the Z (Z ) gauge boson and the Higgs boson in diagram (2). The new contributions of the SM Higgs boson contributions are due to the diagram with the Z gauge boson and also to corrections to the SM vertices H and H Z Z boson arise from corrections of the order of (v/ f )2 to the SM vertices H and H Z Z . The respective contributions to the AWMDM can also be written as in Eq. (56), where the f A1 A2 A3 coefficients and the IZA1 A2 A3 functions are presented Z in ?Appendix B?. Again we have verified that the contribution of each diagram to the AWMDM is ultraviolet finite. The full scalar contribution is thus V =Z,Z 3.2 Anomalous magnetic dipole moment In the gauge sector of the SLHM, the AMDM of a lepton arises from the Feynman diagrams (1) and (2) of Fig. 1, with the Z gauge boson replaced by the photon. There are also contributions arising from the scalar sector, which are induced by the scalar bosons H and ? via a Feynman diagram similar to diagram (1) of Fig. 2. The corresponding contributions to the AMDM can be obtained straightforwardly from those to the AWMDM by considering the limit m Z ? 0 and substituting the Z coupling constants by those of the photon. We can write the contributions to a arising from each diagram as where again the three-letter superscript corresponds to the three particles circulating in the loop. Explicit expressions for the f?A1 A2 A3 constants and the I?A1 A2 A3 functions are presented in ?Appendix B? in terms of parametric integral and Passarino?Veltman scalar functions. The overall NP contribution of the SLHM to a i is thus a Ni P = where the index j runs over the three lepton families. Table 1 Bound on the symmetry breaking scale f of the SLHM obtained from several observables Lower bound on f (TeV) It is worth mentioning that our results for the ? AMDM in terms of parametric integrals, obtained by a limiting procedure from our results for the AWMDM, agree with previous calculations presented in the literature [7,30]. This serves as a cross-check for our calculation. 4 Numerical analysis We now present our numerical results for the AMDM and AWMDM of the ? lepton in the context of the SLHM. We will briefly review the existing bounds on the free parameters of the model and afterwards analyze the potential contributions to the AMDM and the AWMDM of the ? lepton for parameter values consistent with these bounds. 4.1 Bounds on the parameter space of the SLHM The SLHM parameters involved in our calculation are f , t? , m Nk , m?, ?? , and the matrix elements Vlmi . We will discuss the current bounds on these parameters obtained from the study of experimental data of several observables as reported in the literature. Symmetry breaking scale f : bounds on this parameter arise from several observables. We list the most relevant in Table 1. We can observe that the most stringent bound f ? 5.6 TeV arises from electroweak precision data (EWPD), whereas the weakest limit f ? 1.7 TeV arises from parity violation in cesium. f1 t o f2 r ati o t? : a fit on 21 electroweak precision observables from LEP, SLC, Tevatron, and the Higgs boson data reported by the LHC ATLAS Collaboration and CMS Collaboration, allowed the authors of Refs. [33,34] to find the allowed region in the t? ? f plane, which we will take into account for our numerical analysis. For the strongest bound f ? 5.6 TeV, the allowed interval of t? values is 1?9. We will analyze below the dependence on t? of the ? AMDM and AWMDM in the allowed interval. Mixing between light and heavy neutrinos ?? : this parameter is experimentally constrained to be small [26], with the corresponding bound being flavor dependent: ??e ? 0.03, ??? ? 0.05, and ??? ? 0.09 with 95% C.L. Since we are interested in the study of the ? lepton, we need to make sure that we use values of f and t? consistent with the bound ?? = v/(?2 f t? ) ? 0.09, which in turn translates into the bound f t? 1932 GeV. Such a constraint is fulfilled for the values of f and t? chosen in our analysis. Pseudoscalar mass m?: this parameter is basically dependent on the ? parameter (m? ? ?) appearing in the scalar potential via the term ??2( 1? 2 + H.c.). In our analysis we will explore values consistent with the lower bound m? ? 7 GeV, which arises from the non-observation of the ? ? ?? decay [35]. Although the dominant contribution to the AMDM can arise from a very light pseudoscalar, with mass of the order of 10 GeV, this requires relatively large values of t? , which are already excluded according to the above discussion [33,34]. Mixing matrix elements V mi : previous studies on LFV within the SLHM [26?28,36,37] have parametrized the mixing matrix V and considered bounds on the mixing angles from experimental data on LFV processes. A simple approach was taken by the authors of Ref. [26] in which a scenario with mixing between the first and second families only was considered. It was found that the respective angle is tightly constrained: the limit on ? ? e conversion yields an upper bound on sin 2?12 of the order of 0.005. As we are interested in the ? AMDM and AWMDM, we will assume a scenario with mixing between the second and third families only, namely we will consider the following mixing matrix: We will analyze whether current experimental bounds on processes such as the muon AMDM and the ? ? ?? decay can be helpful to find a bound on the mixing angle ? . We already have presented the results for the AMDM and AWMDM of a lepton, we will now present the SLHM contribution to the ? ? ?? decay in terms of both parametric integrals and Passarino?Veltman scalar functions. The Feynman diagrams inducing this decay at the one-loop level are shown in Fig. 3. The corresponding amplitude can be written, in the limit of massless j , as with q = pi ? p j and FL given by e? 2 ?N N V V ?k j V ki fL (xk ) V =W,X where xk = (m Nk /mV )2 (V = W, X ), ?N N V = ?? for the 2 ?? ) for the X gauge W gauge boson, and ?N N V = (1 ? 2 Fig. 3 SLHM contribution to the i ? j ? decay at the one-loop level. In the loop circulate the charged W and X gauge bosons and a heavy neutrino Nk boson. The f (xk ) function is presented in ?Appendix C?. We have verified that our results are in agreement with [26]. The i ? j ? decay width is given by The current experimental limit BR(? ? ?? ) < 4.4 ? 10?8 [6] can translate into a bound on sin 2? . For this purpose, we introduce the mass splitting ?23 ? z3 ? z2 with zk = (m Nk /m X )2 and show in Fig. 4 the contours of the branching ratio of the ? ? ?? decay in the ?23 vs. t? plane for z2 = 1 and f = 2000 GeV. We conclude that even for a large splitting ?23, the branching ratio BR(? ? ?? ) would hardly reach a level above 10?8 for sin 2? of the order of unity, thereby yielding a very weak constraint on this parameter. On the other hand, the muon AMDM also does not yields a useful bound on ? as the heavy neutrino contribution is negative and cannot account for the muon AMDM discrepancy of Eq. (8). As we will see below, the only relevant contribution to the AMDM and WAMDM involving the mixing matrix elements is the contribution of the heavy neutrino, which has the generic form V ?i3V i3 F (xk ) (F (x? ) + sin2 ? (F (x?) ? F (x? ))). V =W,X i V =W,X V =W,X It turns out that the second term is subdominant for a small mixing angle ? and a small splitting ?23. Following the authors of Ref. [27] in their study of LFV hadronic ? decays, Fig. 4 Contours of the SLHM contribution to the ? ? ?? branching ratio in the ?23 vs. t? plane. We set z2 = 1 and f = 2000 GeV we will consider values of sin 2? of the order of 10?1. Under this assumption, the term proportional to sin2 ? becomes subdominant, which is equivalent to consider an approximately diagonal mixing matrix. In addition, we have found that there is little sensitivity of our results to a small change in the value of sin 2? . A larger value of this parameter would increase slightly the ? AMDM and AWMDM, but an enhancement larger than one order of magnitude would hardly be attained. Heavy neutrino mass: we will follow the approach of Ref. [26], in which m Nk is parametrized through the ratio zk = (m Nk /m X )2. As observed in Fig. 5, for the most stringent limit f = 5.6 TeV, m Nk ? 0.836 TeV, which corresponds to the value zk = 0.1, whereas m Nk ? 2.644 TeV for zk = 1. Again, the ? AMDM and AWMDM contributions arising from the heavy neutrinos show little sensitivity to moderate changes in the value of z3 and the mass splitting ?23, so we will use as reference values z3 1 and ?23 ? 0.1. In conclusion, we will use the set of values shown in Table 2 for the SLHM parameters involved in our numerical analysis. We have found that except for f and t? there is little sensitivity of the ? AMDM and AWMDM to a mild change in the values of the remaining parameters as far as they lie between the allowed intervals. In order to estimate the ? AMDM we used the Mathematica numerical routines to evaluate the parametric integrals involved in our calculation. A cross-check was done by evaluating the results expressed in terms of Passarino? Veltman scalar functions via the numerical FF/LoopTools routines [38,39]. As already mentioned, it is convenient to Fig. 5 Heavy neutrino mass as a function of f for t? = 9 and three values of zk = (m Nk /m X )2. The vertical lines represent the lower bounds on f arising from several observables (see Table 1) Table 2 Values used in our numerical analysis for the parameters involved in the AMDM and AWMDM of the ? lepton analyze the behavior of the AMDM and AWMDM as functions of the symmetry breaking scale f since the mass of the new particles and the corrections to the SM couplings and particle masses depend on it. Also, since the mixing angle ?? depends on t? , it is worth examining the dependence on this parameter in the allowed interval. f t? z3 ?23 m? ?? sin 2? In the left plot of Fig. 6 we show the absolute values of the main partial contributions to a?N P along with the total sum as a function of f for t? = 9, whereas in the right plot we set f = 4 TeV and show the dependence of a?N P on t? . For the remaining parameters we use the values shown in Table 2. We have refrained from showing the curves for the most suppressed contributions. We first discuss the behavior observed in Fig. 6a. Notice that the magnitude of each contribution depends highly on the respective f?A1 A2 A3 coefficient and to a lesser extent on the magnitude of the loop integral, which in turn dictates its behavior. Therefore, the ?? X X , N? W W , and ?? W W contributions, which are not shown in the plot, are the most suppressed ones, with values below the 10?10 level. This stems from the fact that the f?A1 A2 A3 coefficients associated with these contributions include two powers of the coupling constants gLV n , which are of the order of ?? ? v/ f , thereby being considerably suppressed for large f . Although the H ? ? and Z ? ? contributions are less suppressed, they are below the 10?9 level, whereas the ?? ? and N? X X contributions are the largest ones and can reach values up to the order of 10?8 for f around 2 TeV, which is a result of the fact that the respective f?A1 A2 A3 coefficients have no (v/ f )2 suppression factor. Another point worth to mention is that all the partial contributions are negative except for the H ? ? and N? W W ones. Since these contributions are relatively small, they will not interfere with the dominant contributions, which will add up constructively. In conclusion both the ?? ? and the N? X X contributions will represent the bulk of the total contribution to a?N P , which is of the order of 10?8 for f = 2 TeV, but has a decrease of about one order of magnitude as f increases up to 6 TeV, as observed in the plot. Fig. 6 Absolute values of the main partial contributions from the SLHM to a?N P as functions of f for t? = 9 (left plot) and as functions of t? for f = 4 TeV (right plot). For the remaining parameters of the model we use the values shown in Table 2. The partial contributions below the 10?10 level are not shown. The three-letter tags denote the virtual particles circulating in each type of Feynman diagram. All the contributions are negative except the H ? ? one. The absolute value of the sum all of the contributions is also shown (solid lines with squares) Fig. 7 Contours of the SLHM contribution to |a?N P | in the f vs. t? plane. For the remaining parameters of the model we use the values shown in Table 2 We now turn to a discussion of the dependence of a?N P on the t? parameter as depicted in Fig. 6b. We observe that the N? X X contribution, which has a very slight dependence on t? indeed, is the dominant one, with marginal contributions arising from other diagrams. In the allowed t? interval, the H ? ? contribution is negligible and is not shown in the plot. For low t? , the ?? W W and N? W W contributions can be as large as the N? X X one, but the ?? ? contribution is the one that becomes important when t? increases. Since these contributions are directly proportional to the square of the mixing parameter ?? = v/(?2t? f ), they get suppressed by two orders of magnitude as t? goes from 1 to 9. We observe that the total contribution of the SLHM to a?N P remains almost constant in this t? interval as it is dominated by the N? X X contribution. The behavior of the SLHM contribution to a?N P is best illustrated in Fig. 7, where we plot the contours of |a?N P | in the f vs. t? plane for the parameter values of Table 2. We observe that the SLHM contribution to a?N P is of the order of 10?8 for f between 2 and 5 TeV, but it is below 10?9 for f above 5 TeV and decreases rapidly as f increases. So, if we consider the most stringent constraint on f , namely 5.6 TeV, we can expect values of a?N P of the order of 10?9. We also observe that there is little dependence of a?N P on the value of t? , but such dependence is more pronounced for large f . It is interesting to make a comparison with the typical predictions of some popular extension models as reported in the literature. In this respect, several extension models predict values for a?N P lying in the interval between 10?9 and 10?6 [40?43]. We note that although the SLHM contribution is of the same order than the potential contribution of leptoquark models (LQM) [40], it is disfavored with respect to the contributions of THDMs [29,44], the minimal supersymmetric standard model (MSSM) [45,46], and unparticles (UP) [41], which can reach values as high as 10?6. 4.3 Anomalous weak magnetic dipole moment of the ? lepton We now present the analysis of the NP contribution of the SLHM to the AWMDM of the ? lepton. There are some differences with respect to the behavior of the AMDM: apart that the AWMDM receives extra contributions, it can develop an imaginary part, which arises from the diagrams where the external Z gauge boson is attached to a couple of particles whose total mass is lower than m Z . This occurs when there are two internal SM neutrinos or ? leptons in the loop. Again, the magnitude of each partial contribution to the AWMDM is highly dependent on the corresponding f A1 A2 A3 coefficient, Z while its behavior is dictated by the loop integral. We show in Fig. 8 the real part of the dominant partial contributions of the SLHM to a?W ?N P as well as the total sum as functions of f for t? = 9 (left plot) and as functions of t? for f = 4 TeV (right plot). For the remaining parameters we use the same set of values used in our analysis of the AMDM. All the contributions not shown in the plots are negligible. We first discuss the behavior of Re[a?W ?N P ] as a function of f as shown Fig. 8a. Numerical evaluation shows that for f around 2 TeV the magnitude of the partial contributions ranges from 10?14 to 10?9, with an additional suppression of at least one order of magnitude for f around 5 TeV. The most suppressed contributions are the ?? X X , X ?? ?? and W N? N? ones, which are proportional to the (v/ f )2 factor and are below the 10?13 level. Other contributions such as ? H Z , ?? W W , W N? ?? , N? W W , ?? ? , H ? ? , and X X N? are less suppressed but are also below the 10?10 level. In fact, only the contributions shown in the plot, ? H Z , N? X X , and W ?? ?? , are relevant for the total sum. While the ? H Z contribution is the dominant one, the N? X X contribution plays a subdominant role, which again is due to the fact that the f N? X X Z coefficient is not suppressed by the (v/ f )2 factor. We also observe that the W ?? ?? contribution, which together with the ? H Z contribution are absent in the AMDM, is below the 10?9 level. Very interestingly, the H ? ? and ?? ? contributions, which were not very suppressed in the AMDM case, are now negligible as they are proportional to the small gVZ coupling. Note also that all the contributions shown in the plot are positive except for the ? H Z one. As a result the total contribution will have an additional suppression as the main contributions will have a large cancelation due to their opposite signs. This becomes evident in the curve for the total Fig. 8 Absolute value of the real part of the main partial contributions to a?W ?N P and the total sum as a function of f for t? = 9 (left plot) and as a function of t? for f = 4 TeV (right plot). For the remaining parameters of the model we use the values of Table 2. The contributions below the 10?10 level are not shown. All the contributions are positive except the ? H Z one. The absolute value of the sum all of the contributions is also shown (solid lines with squares). In the bottom-right corner of the right plot we zoom into the region where a?W ?N P changes from positive to negative due to the cancellation between the distinct partial contributions contribution, which appears below the curve for the ? H Z contribution. As far as the behavior of the real part of a?W ?N P as a function of t? is concerned, we observe in Fig. 8b that the ? H Z and W ?? ?? contributions are highly dependent on t? : in the interval where this parameter increases from 1 to 10, the ? H Z contribution is negative and increases by one order of magnitude, whereas the W ?? ?? contribution is positive and decreases by one order of magnitude. On the other hand, the N? X X contribution is positive and remains almost constant throughout this t? interval. It is interesting that due to the opposite signs of the partial contributions, there is a flip of sign of the total contribution around t? = 6.8. For low t? , the total contribution is positive as it arises mainly from the N? X X and W ?? ?? contributions, with the ? H Z contribution being subdominant. As t? increases, the magnitude of the ? H Z contribution increases, whereas that of the W ?? ?? contribution decreases. Therefore, the total sum cancels out around t? = 6.8 and becomes negative above this value since the ? H Z contribution becomes the dominant one. This effect is evident in the large dip of the total contribution curve, which is due to the flip of sign of the AWMDM. This behavior of the partial and total contributions around t? = 6.8 is best illustrated in the zoomed region displayed at the bottom-right corner of Fig. 8b, where we show the ? AWMDM contributions without taking their absolute values. The behavior of the real part of a?W ?N P as a function of f and t? is best illustrated in Fig. 9, where we show the contours of the real part of the total SLHM contribution to a?W ?N P in the f vs t? plane. It can be observed that the real part of a?W ?N P reaches its largest values, of the order of 10?9, for low and high t? , irrespective of the value of f . There is a band centered around t? ? 7 where the lowest values of real part ? t Fig. 9 Contours of the SLHM contribution to the absolute value of the real part of a?W ?N P in the f vs. t? plane. For the remaining parameters of the model we use the values shown in Table 2 of a?W ?N P are reached. Such a band (darkest region) widens as f increases. We observe that, for t? around 10, there is a slow decrease of Re[aWW ?N P ] as f increases but in general its magnitude is of the order of 10?10 ? 10?9. A comparison of the SLHM contribution with typical predictions of some SM extensions allow us to conclude that, for f up to 4 TeV, the SLHM contribution can be above the 10?9 level and can be larger than the contributions predicted by THDMs, the MSSM and UP, which are of the order of 10?10. For f 4 TeV, the SLHM contribution decreases and it is expected to be smaller than the values predicted by other extension models. We now turn to an examination of the behavior of the imaginary part of the partial contributions of the SLHM to a?W ?N P . We will follow the same approach as that used for the analysis of the real part. There are only four contributions to a?W ?N P that can develop an imaginary part. In Fig. 10a we show the behavior of such contributions as a function of f for t? = 9. Contrary to what happens with the real part, the imaginary part of the W ?? ?? contribution is the dominant one by far, at the level of 10?10, with the imaginary parts of the ?? ? , H ? ? , and Z ? ? contributions suppressed by more than one order of magnitude. Therefore, the imaginary part of a?W ?N P will be completely dominated by the W ?? ?? contribution. In fact the curves for the W ?? ?? contribution and the total contribution overlap. In this region of the parameter space of the SLHM, the imaginary part of a?W ?N P is positive, with a magnitude of the order of 10?10, which slightly decreases as f increases. As far as the behavior of the imaginary part of a?W ?N P as a function of t? is concerned (Fig. 10b), there is no considerable change in the analysis as in the allowed t? interval the imaginary part of the W ?? ?? contribution is dominant, whereas the remaining contributions are negligibly small. For low t? , the imaginary part of the total contribution to a?W ?N P can be of the order of 10?9, but it decreases by almost one order of magnitude as t? goes up to 10. Finally we present the contours of the imaginary part of a?W ?N P in the f vs. t? plane in Fig. 11. We observe that the imaginary part of a?W ?N P can be of the order of 10?9 for low values of t? , irrespective of the value of f . This is also true for t? ? 10 and f ? 3 TeV, but there is a pronounced decrease of about one order of magnitude for larger values of f . We also can observe that Im[a?W ?N P ] decreases mildly as f increases. As far as the values predicted by other extension models, although the imaginary part of the total contribution of the SLHM is larger than that predicted by type-I and type-II LQMs (of the order of 10?10) it is well below the contributions predicted by THDMs and the MSSM (of the order of 10?7). 5 Conclusions In this work we have calculated analytical expressions, both in terms of parametric integrals and Passarino?Veltman scalar functions, for the one-loop contributions to the static anomalous magnetic and weak magnetic dipole moments of a charged lepton in the context of the SLHM. We have considered the scenario in which there is no C P violation in the model and thereby there are no electric nor weak electric dipole moments. The expressions presented for the weak properties are very general and can be useful to compute the weak properties of a charged lepton in other extension models. For the numerical analysis we have focused on the case of the ? lepton since their electromagnetic and weak properties are the least studied in the literature and also because they have great potential to be experimentally tested in the future. For values of the parameters of the model allowed by current experimental data we find that the respective contribution to the ? AMDM is of the order of 10?9, whereas the real (imaginary) part of the ? AWMDM is of the order of 10?9 (10?10). The SLHM contribution to the ? AMDM could have some enhancement in the scenario in which there is a very light pseudoscalar boson ?, with a mass of the order of about 10 GeV, and t? is of the order of 20. However, such a value of t? are already excluded according to the bounds obtained from experimental data. Proposed future experiments are expected to reach a sensitivity to the ? AMDM and the real part of the AWMDM of the order of 10?6 [15?17] and 10?4 [21]. Therefore, the values predicted for these observables by the SLHM would be out of the reach of the experimental detection. One further remark is in order here. Little Higgs models are effective theories valid up to the cut-off scale = 4? f . Below this scale a good prediction is provided by the effective theory, but at higher energies the physics would become strongly coupled and the effective theory must be replaced by its ultraviolet (UV) completion, which would be a QCD-like gauge theory with a confinement scale around 10 TeV (see for instance [47]). This gives rise to the possibility that the EWSB is driven by strong dynamics such as occurs in technicolor theories. It is thus possible that the ? AMDM and AWMDM can receive some enhancement from the UV completion, but an analysis along these lines is beyond the scope of the present work. Acknowledgements We acknowledge financial support from Sistema Nacional de Investigadores (Mexico), Consejo Nacional de Ciencia y Tecnolog?a (Mexico) and Vicerrector?a de Investigaci?n y Estudios de Posgrado (BUAP). Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecomm ons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. Funded by SCOAP3. Appendix A: Feynman rules in the SLHM We now present the Feynman rules necessary for our calculation (see [26] for a complete set of SLHM Feynman rules). We note that the coupling constant associated with the A1 A2 A3 vertex will be written as i eg A1 A2 A3 , so the f A1 A2 A3 V (V = Z , ? ) coefficients of Eqs. (56) and (59) will be given in terms of the g A1 A2 A3 constants. In Table 3 we show the Feynman rules for the trilinear gauge boson couplings Vi V j+V j?, whereas in Table 4 we show the ones for the vertices of a gauge boson to a fermion pair V f?i f j . Finally, Table 5 gathers all the Feynman rules for the scalar interactions. Table 3 Feynman rules for the trilinear gauge boson couplings V?( p1)V?+( p2)V??( p3). The Feynman rule for all these couplings have the generic form iegVi Vj Vj (g?? ( p2 ? p1)? +g?? ( p3 ? p2)? +g?? ( p1 ? p3)? ), where the gVi Vj Vj constants are shown in the right column. All the four-momenta are taken incoming Table 4 Feynman rules for the vertices of a gauge boson to a lepton pair V? f?i f j . The Feynman rule for this class of vertices has the generic form ie(gLV f?i f j PL + gRV f?i f j PR)??, with PL and PR the left- and rightchirality projectors, where the gLV f?i f j and gVR f?i f j constants are shown in the second and third columns. The vector and axial couplings are 2gVV f?i f j = gLV f?i f j + gRV f?i f j and 2gVA f?i f j = gLV f?i f j ? gRV f?i f j Vi Vj Vj vertex Z X + X ? Z W +W ? Table 5 Feynman rules for the vertices involving the scalar bosons H and ? at the leading order in v/ f in the SLHM A1 A2 A3 vertex H Z? Z? Appendix B: Loop integrals Appendix B.1.1: Anomalous weak magnetic dipole moment The AWMDM and AWMDM of a lepton are given by Eqs. (56) and (59). The f A1 A2 A3 coefficients are shown in Table V 6 and the loop functions IVA1 A2 A?3 (V = Z , ? ) will be presented below. The loop integration was performed via both Feynman parametrization and the Passarino?Veltman method [48]. For the Dirac algebra and the Passarino? Veltman reduction we used the Feyncalc routines [49], and a further simplification was done with the help of the Mathematica symbolic algebra routines. We will first present the results in terms of parametric integrals. Appendix B.1: Parametric integrals After introducing Feynman parameters and integrating over the four-momentum space, the IVA1 A2 A3 loop integrals can be cast in the following form after one Feynman parameter is integrated out: F A1 A2 A3 (x )dx . We will first present the F A1 A2 A3 (x ) functions necessary to Z calculate the AWMDM of a lepton. Table 6 Coefficients fZA1 A2 A3 and f?A1 A2 A3 required in Eqs. (56) and (59), respectively, to compute the AWMDM and AMDM of a charged lepton arising from loops carrying the A1 A2 A3 particles. Here n is the SM neutrino ? or a heavy one N . The coupling constants g A1 A2 A3 are shown in ?Appendix A? H V (V = Z , Z ) We start by introducing the functions f1A1 A2 A3 (x ) = f2A1 A2 A3 (x ) = log[Y A1 A2 A3 (x )]. For diagram (1) we obtain F nV V (x ) = x x ((3x (2 ? x ) ? 2)xZ + 6x 2 ? 8x + 2) Z ?4) f2nV V (x ) + (2(x 3(xZ ? 2)(xn + x ? 1) +x 2(2xn(3 ? 2xZ ) ? 2(xZ ? 1)x + 3xZ ? 8) +x (xn (5xZ ? 4) + xZ x ? 2) ? 2xn xZ ) +Z nV V (x )(4x 2(xZ ? 2) + x (12 ? 9xZ ) +4(xZ ? 1))) ? f1nV V (x ) , X nV V (x ) = x xZ , Y nV V (x ) = (1 ? x ) (xn ? x x ) + x , Z nV V (x ) = xZ (4Y nV V (x ) ? x 2xZ ), where we have introduced the dimensionless variable xa = (ma /mV )2. As for the contribution of diagram (2), the FZZ function can be written as = (gLZ ? x (3x ? 2)gLZ X Z Y Z Z Z F Z Z?L (x )(gLZ Z?R (x ) = F Z +x (3x ?) f2Z + gRZ )[2(1 ? 2x )x (x ) + 2(2x 2(2y + 1) ? 14x (x )(3x ? 2) + 12) f1Z with ya = (ma /m Z )2 and We now present the contribution of diagram (3): F V nn(x ) = x [2x (2x ? 1) + (2 ? 3x )x f2V nn(x ) Z +(4x 2(xn ? 2x ? 3) + 4x (2(x ? xn) + 9) +2Z V nn(x ) (2 ? 3x ) ? 24) f1V nn(x )], (B.15) X V nn(x ) = x xZ , Y V nn(x ) = x (xn ? x ? 1) + x 2x + 1, Z V nn(x ) = xZ (Y V nn(x ) ? x 2xZ ). Finally, the loop function arising from diagram (4) is given by F V ? N (x ) = xZ [4x (2x ? 1)xZ + 2x xN ( f2V1? N (x ) ? f2V2? N (x )) + x (2 ? 3x )xZ ( f2V1? N (x ) + f2V2? N (x )) + 2?xZ ((x ? 2)x xN xZ ?(x ? 2)x N2 ? (3x ? 2)Z V nn(x ) ?2(x ? 1)xZ (2x x + 3x ? 6)) where the functions f1Aa1 A2 A3 (x ) and f2Aa1 A2 A3 (x ) are obtained from f1A1 A2 A3 (x ) and f2A1 A2 A3 (x ) after the replacements X A1 A2 A3 (x ) ? XaA1 A2 A3 (x ) and Y A1 A2 A3 (x ) ? YaA1 A2 A3 (x ), respectively. In addition X V ? N (x ) = x xZ ? xn, X V ? N (x ) = x xZ + xn, We now turn to the parametric integrals for the diagrams of Fig. 2. For diagram (1) we obtain FZH (x ) = ?8x (2 ? x )w f1H (x ), with wa = (ma /m H )2 and X H (x ) = x wZ , FZ? (x ) = 8x 2z f1? (x ), with za = (ma /m?)2, X ? (x ) = X H (x ) [wa ? za ], and Z ? (x ) = Z H (x ) [wa ? za ]. As for the contribution of diagram (2) and the one obtained by exchanging the internal gauge boson with the scalar boson, it is as follows: ?x FZH V (x ) = ?xZ [4x (1 ? 2x )xZ + ((1 ? 2x )x H + 2x ? 3) ( f21H V (x ) ? f22H V (x )) +(3x ? 2)x xZ ( f21H V (x ) + f22H V (x )) ?2?xZ (x 2xZ (5x H + 2xZ ? 28x + 5) ?x (x H (3xZ ? 4) + 2x H2 ? 20xZ x + 5xZ + 2) +x H (x H ? 4) + 3x 3xZ (4x ? xZ ) ?4xZ x + 3) ? ( f11H V (x ) ? f12H V (x ))], (B.29) +x xZ (2 ? 8x ) + 4xZ x ? 1. Appendix B.1.2: Anomalous magnetic dipole moment For completeness we present the contributions to the AMDM, which can be obtained from the AWMDM results after taking the limit m Z ? 0 and substituting the Z coupling constants by the photon ones. The f?A1 A2 A3 coefficients of Eq. (59) are presented in Table 6, whereas the respective loop integrals are of the form of (B.1). As far as Fig. 1 is concerned, there are only contributions from diagrams (1) and (2), but with the external Z gauge boson replaced by the photon. The contribution of diagram (1) can be written as x x F?nV V (x ) = ? Y nnV (x ) (x 2 (xn + x + 2) ?x (3xn + x ? 2) + 2xn). As for the contribution of diagram (2), the F?Z function is given by an analogous expression to Eq. (B.8) but now F Z ? ?L (x ), with ? ?R (x ) = F Z F Z 4x y (x 2 (y + 1) ? 3x + 2), (x 2 y ? 2(x ? 1)). ?45))) + 18xn3 log(xn)), I?Z?L R = ?3I?Z?L = 4y . Finally, there are also contributions of the scalar bosons H and ? arising from the diagram (1) of Fig. 2, with the Z gauge boson replaced by the photon. The respective F?A1 A2 A3 (x ) functions can be written as All of the above results agree with previous calculations of the AMDM of a lepton (see for instance [7,30]). Appendix B.2: Passarino?Veltman scalar functions We now present the results for the AWMDM and AMDM of a lepton in terms of Passarino?Veltman scalar functions. Appendix B.2.1: Anomalous weak magnetic dipole moment We first introduce the following ultraviolet finite functions given in terms of two-point Passarino?Veltman scalar integrals, 1 = B0(0, m2N , m2V ) ? B0(m2, m2N , m2V ), 2 = B0(m2Z , m2V , m2V ) ? B0(m2, m2N , m2V ), 3 = B0(0, m2, m2Z ) ? B0(m2, m2, m2Z ), 4 = B0(m2Z , m2, m2) ? B0(m2, m2, m2Z ), 5 = B0(m2Z , m2N , m2N ) ? B0(m2, m2N , m2V ), 7 = B0(m2, 0, m2V ) ? B0(m2Z , 0, m2N ), 8 = B0(m2Z , 0, m2N ) ? B0(0, 0, m2V ), and we use a shorthand notation for the following three-point scalar functions: C1 = m2V C0(m2, m2, m2Z , m2V , m2N , m2V ), C2 = m2Z C0(m2, m2, m2Z , m2, m2Z , m2), C3 = m2V C0(m2, m2, m2Z , m2N , m2V , m2N ), C4 = m2V C 0(m2, m2, m2Z , m2N , m2V , 0). The IZA1 A2 A3 loop functions arising from the diagrams of Fig. 1 are given as follows. For diagram (1) we obtain x 2 [ 4x ? xZ xZ ? 2 ? 4 ?4 ?4x xn ? 1 4x ? xZ xZ ? 2 1 ? x xZ xZ + 8 ? 60 + 2 xn 3xn ?4 xZ xZ ? 3 ? 6 2 + 2 x 2 24 ? 5xn xZ ?14xZ + 24 + 3x Z2 ? xZ ? 34 +x 3 xZ ? 2 ? 2x Z2 + 4xZ + 12 C1], whereas the loop function arising from diagram (2) is given by a similar expression to Eq. (B.8): IZZ = (gLZ IZZ?R = IZZ?L (gLZ IZZ?L R = IZZ?L = ? ? gLZ y ? 1 4y ? yZ gLZ y 4y ? yZ + 34 2 ? 7y + 2yZ [y 4y ? yZ + y ? 1 4y ?yZ 3 ? y 4y ? yZ + 10 z Z ? 4z + z Z ? 10z 2 [z z Z ? 4z ? z ? 1 4z ?z Z where 11, 12, and C6 are obtained from 9, 10 and C5, respectively, after the replacement m H ? m?. As for diagram (2) of Fig. 2, it yields 2?x + x ? 1 x 14 ? 4x 15 ? 2xZ 16 +2 2x x H + xZ ? 1 ? x H xZ C7], As for diagram (3), the respective loop integral is IZV nn = xZ ?x 4x 2 [ x + 2 xZ ? 4x xn ? 1 x + 2 xZ ? 4x + x 2xn + xZ ? 22 ? 2 xn xZ + 6 ?5xZ ? 6 + 2x2 ?x 2xn xZ ? 5 + xn + 8xZ + 17 + xn2 xZ 2 Finally, the loop function arising from diagram (4) obeys xZ ? 4x [2x xZ x + 2 xZ ? 4x +xZ xn ? 1 x + 2 xZ ? 4x ? 2x 3 6xn + xZ + x 2 xZ ? 18 xZ ?2xn 3xZ + 4 + x xZ 20 ? 4xn + 9xZ ?2x Z2 2x 3 xZ ? 6xn + x 2 8xn xZ + 1 + xZ ? 26 xZ + xZ x 4 ? 2xn xZ + 4 7 ? x 2x 2 xZ ? 6xn +4 ? 5xZ ? 6 8 + 2x x 2 2xn xZ ? 3xn ?2xZ xn xZ ? 5 + 8xZ + 17 ?2x 3xZ C4]. We now present the loop functions for the diagrams of Fig. 2. We will use the following additional Passarino?Veltman scalar functions: 9 = B0(0, m2H , m2) ? B0(m2Z , m2, m2), 10 = B0(m2, m2H , m2) ? B0(m2Z , m2, m2), C5 = m2H C0(m2, m2, m2Z , m2, m2H , m2). For diagram (1) we obtain for the contribution of the SM Higgs boson H ? (w ? 1) (4w ? wZ ) 9 +(16w 2 ? 2w (2wZ + 5) + wZ ) 10 ?6w (4w ? wZ ? 1) C5], 13 = B0(0, m2H , m2) ? B0(0, m2H , m2V ), 14 = B0(0, m2H , m2V ) ? B0(0, m2, m2V ), 15 = B0(m2, m2H , m2) ? B0(m2, m2, m2V ), 16 = B0(m2, m2, m2V ) ? B0(m2Z , m2H , m2V ), C7 = m2V C0(m2, m2, m2Z , m2H , m2, m2V ). Appendix B.3: Anomalous magnetic dipole moment For the loop integrals of the contributions to the AMDM of the diagrams analogue to those of Fig. 1, but with the external Z boson replaced by the photon, we have for diagram (1) I?nV V = ? 81x [ xn x 5x + 12 ? 7xn2x ? 9xn + 3xn3 ?x x ? 12 x + 17 + 6 C1 15 ? 4xn x where the primed scalar functions i and Ci are obtained from the unprimed ones by setting m Z = 0. We note that all the three-point functions Ci appearing in the AMDM are of the generic type C0(m2A, m2A, 0, m2B , m2 , m2B ), which can C be written in terms of two-point scalar functions as follows [50]: ?( m2A ? m2B ? mC2 +2 m2A ? m2B + mC2 ), B ? 2mC2 C with ?(x , y, z) = (x ? y ? z)2 ? 4yz and B0(0, m2X , m2X ) ? B0(m2A, m2B , mC2 ). fL (xk ) = 2(1 + xk ) ? x i xk As for diagram (2) we obtain a similar expression to Eq. (B.54), where where x i = (m i /mV )2 (V = W, X ), whereas the fL function is given as I?Z?R = I?Z?L = ? 41y [ 3y ? 1 4y ? 3 C2 +2 1 ? y 2 ?2y y + 1 ] 3 + y ? 3 2y ? 1 I?Z?L R = ? 21 [ 5 ? 12y C2 + 2 y ? 1 + 5 ? 2y Finally, the diagram (1) of Fig. 2 with the Z replaced by the photon yields the loop functions + 5 ? 8w ? 1 C5] 11 + 5 12 + 4x ? 3 C6]. Again the primed scalar functions i and Ci are obtained from the unprimed ones by setting m Z = 0. Appendix C: Decay i ? In this appendix we present the amplitude for the i ? j ? decay both in terms of parametric integrals and Passarino? Veltman scalar functions. The contributions arise from the Feynman diagrams of Fig. 3. The decay width is given in Eq. (64). We have obtained the fL (xk ) function [xk = (m Nk /mV )2] appearing in Eq. (63) via the Feynman parameters technique using the approximation of massless final lepton m j = 0. We first define the function 1 + x (x ? 1)x i + z ? 1 1 + x(z ? 1) x i (x ? 1)x2 (2x ? 1)x i + z ? 1 x (x ? 1)x i + z ? 1 + 1 ?x i z ? 2 +(x ? 1) ?2 x + 1 z (1 ? x) (z + 2)x2 + (z ? 6)x + 4 x(z ? 1) + 1 For the sake of completeness we also include the amplitude in terms of Passarino?Veltman scalar functions. The result reads 2xk (1 + xk )xk ? 2 ? x i xk ? 2 x i xk ? 1 ? B i Nk V + 2 2(1 ? x i ) + xk C i Nk V , where we have defined B i Nk V = 1 ? xk B0(m2i , m2Nk , m2Nk ) +xk B0(0, m2Nk , m2Nk ) ? B0(0, m2V , m2V ), C i Nk V = m2V C0(m2i , 0, 0, m2Nk , m2V , m2V ). 1. T. Aoyama , M. Hayakawa , T. Kinoshita , M. Nio , Phys. Rev. Lett . 109 , 111807 ( 2012 ). doi:10.1103/PhysRevLett.109.111807 2. D. Hanneke , S. Fogwell , G. Gabrielse , Phys. Rev. Lett . 100 , 120801 ( 2008 ). doi:10.1103/PhysRevLett.100.120801 3. G.W. Bennett et al., Phys. Rev. D 73 , 072003 ( 2006 ). doi:10.1103/ PhysRevD.73.072003 4. J. Kaspar , Nucl. Part. Phys. Proc . 260 , 243 ( 2015 ). doi:10.1016/j. nuclphysbps. 2015 .02.051 5. N. Saito , A.I.P. Conf . Proc. 1467 , 45 ( 2012 ). doi:10.1063/1. 4742078 6. C. Patrignani et al., Chin. Phys. C 40(10) , 100001 ( 2016 ). doi:10. 1088/ 1674 - 1137 /40/10/100001 7. F. Jegerlehner , A. Nyffeler , Phys. Rep. 477 , 1 ( 2009 ). doi:10.1016/ j.physrep. 2009 .04.003 8. M. Lindner , M. Platscher , F.S. Queiroz , arXiv:1610.06587 [hep-ph] 9. M.A. Samuel , G.W. Li , R. Mendel , Phys. Rev. Lett . 67 , 668 ( 1991 ). doi:10.1103/ PhysRevLett.67.668 (erratum: Phys. Rev. Lett . 69 , 995 , 1992 ) 10. S. Eidelman , M. Passera , Mod. Phys. Lett. A 22 , 159 ( 2007 ). doi:10. 1142/S0217732307022694 11. K.A. Olive et al., Chin. Phys. C 38 , 090001 ( 2014 ). doi:10.1088/ 1674 - 1137 /38/9/090001 12. G.A. Gonzalez-Sprinberg , A. Santamaria , J. Vidal , Nucl. Phys . B 582 , 3 ( 2000 ). doi:10.1016/S0550-3213(00)00275- 3 13. A.A. Billur , M. Koksal , Phys. Rev . D 89 ( 3 ), 037301 ( 2014 ). doi:10. 1103/PhysRevD.89.037301 14. Y. Ozguven , S.C. Inan , A.A. Billur , M. Koksal , M.K. Bahar , arXiv:1609.08348 [hep-ph] 15. J. Bernabeu , G.A. Gonzalez-Sprinberg , J. Papavassiliou , J. Vidal , Nucl. Phys . B 790 , 160 ( 2008 ). doi:10.1016/j.nuclphysb. 2007 .09. 001 16. M. Fael , L. Mercolli , M. Passera , Nucl. Phys. Proc. Suppl . 253 - 255 , 103 ( 2014 ). doi:10.1016/j.nuclphysbps. 2014 .09.025 17. S. Eidelman , D. Epifanov , M. Fael , L. Mercolli , M. Passera , JHEP 03 , 140 ( 2016 ). doi:10.1007/ JHEP03(2016)140 18. A. Pich , Prog. Part. Nucl. Phys. 75 , 41 ( 2014 ). doi:10.1016/j.ppnp. 2013 .11.002 19. A. Heister et al., Eur. Phys. J. C 30 , 291 ( 2003 ). doi:10.1140/epjc/ s2003- 01286 -1 20. A. Hayreter , G. Valencia , Phys. Rev . D 88 ( 1 ), 013015 ( 2013 ). doi:10.1103/PhysRevD.88.013015, doi:10.1103/PhysRevD.91. 099902 21. J. Bernabeu , G.A. Gonzalez-Sprinberg , M. Tung , J. Vidal , Nucl. Phys . B 436 , 474 ( 1995 ). doi:10.1016/ 0550 -3213(94) 00525 - J 22. M. Schmaltz , JHEP 08 , 056 ( 2004 ). doi:10.1088/ 1126 - 6708 /2004/ 08/056 23. N. Arkani-Hamed , A.G. Cohen , H. Georgi , Phys. Rev. Lett . 86 , 4757 ( 2001 ). doi:10.1103/PhysRevLett.86.4757 24. N. Arkani-Hamed , A.G. Cohen , H. Georgi , Phys. Lett . B 513 , 232 ( 2001 ). doi:10.1016/S0370-2693(01)00741- 9 25. T. Han , H.E. Logan , L.T. Wang , JHEP 01 , 099 ( 2006 ). doi:10.1088/ 1126 - 6708 /2006/01/099 26. F. del Aguila , J.I. Illana , M.D. Jenkins , JHEP 03 , 080 ( 2011 ). doi:10.1007/ JHEP03(2011)080 27. A. Lami , J. Portoles , P. Roig , Phys. Rev . D 93 ( 7 ), 076008 ( 2016 ). doi:10.1103/PhysRevD.93.076008 28. A. Lami , P. Roig , Phys. Rev . D 94 ( 5 ), 056001 ( 2016 ). doi:10.1103/ PhysRevD.94.056001 29. J. Bernabeu , D. Comelli , L. Lavoura , J.P. Silva , Phys. Rev. D 53 , 5222 ( 1996 ). doi:10.1103/PhysRevD.53.5222 30. J.P. Leveille, Nucl. Phys . B 137 , 63 ( 1978 ). doi:10.1016/ 0550 -3 2 31. G. Marandella , C. Schappacher , A. Strumia , Phys. Rev. D 72 , 035014 ( 2005 ). doi:10.1103/PhysRevD.72.035014 32. A.G. Dias , C.A. de S Pires, P.S. Rodrigues da Silva , Phys. Rev. D 77 , 055001 ( 2008 ). doi:10.1103/PhysRevD.77.055001 33. J. Reuter , M. Tonini , JHEP 02 , 077 ( 2013 ). doi:10.1007/ JHEP02(2013)077 34. J. Reuter , M. Tonini , M. de Vries, in Snowmass 2013 : Workshop on Energy Frontier Seattle, 30 June-3 July 2013 ( 2013 ). https:// inspirehep.net/record/1243423/files/arXiv:1307.5010.pdf 35. R. Balest et al., Phys. Rev. D 51 , 2053 ( 1995 ). doi:10.1103/ PhysRevD.51. 2053 36. L. Wang , X.F. Han , Phys. Rev. D 85 , 013011 ( 2012 ). doi:10.1103/ PhysRevD.85.013011 37. X. Han , Mod. Phys. Lett. A 27 , 1250158 ( 2012 ). doi:10.1142/ S0217732312501581 38. G.J. van Oldenborgh , J.A.M. Vermaseren , Z. Phys . C 46 , 425 ( 1990 ). doi:10.1007/BF01621031 39. T. Hahn , M. Perez-Victoria , Comput. Phys. Commun . 118 , 153 ( 1999 ). doi:10.1016/S0010-4655(98)00173- 8 40. A. Bola?os , A. Moyotl , G. Tavares-Velasco , Phys. Rev . D 89 ( 5 ), 055025 ( 2014 ). doi:10.1103/PhysRevD.89.055025 41. A. Moyotl , G. Tavares-Velasco , Phys. Rev. D 86 , 013014 ( 2012 ). doi:10.1103/PhysRevD.86.013014 42. T. Ibrahim , P. Nath , Phys. Rev. D 78 , 075013 ( 2008 ). doi:10.1103/ PhysRevD.78.075013 43. M. Arroyo-Urena , E. Diaz , J. Phys. G43 (4), 045002 ( 2016 ). doi:10. 1088/ 0954 - 3899 /43/4/045002 44. D. Gomez-Dumm , G.A. Gonzalez-Sprinberg , Eur. Phys. J. C 11 , 293 ( 1999 ). doi:10.1007/s100520050633 45. W. Hollik , J.I. Illana , C. Schappacher , D. Stockinger , S. Rigolin , Nucl. Phys . B 557 , 407 ( 1999 ). doi:10.1016/ S0550-3213(99) 00396 - X 46. W. Hollik , J.I. Illana , S. Rigolin , C. Schappacher , D. Stockinger , Nucl. Phys . B 551 , 3 ( 1999 ). doi:10.1016/S0550-3213(99)00201- 1 47. E. Katz , J.Y. Lee , A.E. Nelson , D.G.E. Walker , JHEP 10 , 088 ( 2005 ). doi:10.1088/ 1126 - 6708 /2005/10/088 48. G. Passarino , M.J.G. Veltman , Nucl. Phys . B 160 , 151 ( 1979 ). doi:10.1016/ 0550 -3213( 7 49. R. Mertig , M. Bohm , A. Denner , Comput. Phys. Commun . 64 , 345 ( 1991 ). doi:10.1016/ 0010 -4655(91) 90130 - D 50. G. Devaraj , R.G. Stuart , Nucl. Phys . B 519 , 483 ( 1998 ). doi:10. 1016/S0550-3213(98)00035- 2


This is a preview of a remote PDF: https://link.springer.com/content/pdf/10.1140%2Fepjc%2Fs10052-017-4803-z.pdf

Anomalous magnetic and weak magnetic dipole moments of the \(\tau \) lepton in the simplest little Higgs model, The European Physical Journal C, 2017, DOI: 10.1140/epjc/s10052-017-4803-z