Hunting for heavy majorana neutrinos with lepton number violating signatures at LHC

Journal of High Energy Physics, Apr 2017

The neutrinophilic two-Higgs-doublet model (ν2HDM) provides a natural way to generate tiny neutrino mass from interactions with the new doublet scalar Φ ν (H ± , H, A) and singlet neutrinos N R of TeV scale. In this paper, we perform detailed simulations for the lepton number violating (LNV) signatures at LHC arising from cascade decays of the new scalars and neutrinos with the mass order \( {m}_{N_R}<m{\varPhi}_{\nu } \) . Under constraints from lepton flavor violating processes and direct collider searches, their decay properties are explored and lead to three types of LNV signatures: , and 3ℓ ± ℓ ∓4j. We find that the same-sign trilepton signature is quite unique and is the most promising discovery channel at the high-luminosity LHC. Our analysis also yields the 95% C.L. exclusion limits in the plane of the Φ ν and N R masses at 13 (14) TeV LHC with an integrated luminosity of 100 (3000) fb−1.

A PDF file should load here. If you do not see its contents the file may be temporarily unavailable at the journal website or you do not have a PDF plug-in installed and enabled in your browser.

Alternatively, you can download the file locally and open with any standalone PDF reader:

https://link.springer.com/content/pdf/10.1007%2FJHEP04%282017%29065.pdf

Hunting for heavy majorana neutrinos with lepton number violating signatures at LHC

Received: January Hunting for heavy majorana neutrinos with lepton number violating signatures at LHC Chao Guo 0 1 3 6 7 Shu-Yuan Guo 0 1 3 6 7 Zhi-Long Han 0 1 3 6 7 Bin Li 0 1 3 6 7 Yi Liao 0 1 2 3 4 5 6 7 Open Access 0 1 3 7 c The Authors. 0 1 3 7 0 Hunan Normal University , Changsha, Hunan 410081 , China 1 Chinese Academy of Sciences , Beijing 100190 , China 2 Center for High Energy Physics, Peking University 3 Tianjin 300071 , China 4 CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics 5 Synergetic Innovation Center for Quantum E ects and Applications 6 School of Physics, Nankai University 7 Beijing 100871 , China The neutrinophilic two-Higgs-doublet model ( 2HDM) provides a natural way to generate tiny neutrino mass from interactions with the new doublet scalar (H ; H; A) and singlet neutrinos NR of TeV scale. In this paper, we perform detailed simulations for the lepton number violating (LNV) signatures at LHC arising from cascade decays of the new scalars and neutrinos with the mass order mNR < m constraints from lepton avor violating processes and direct collider searches, their decay properties are explored and lead to three types of LNV signatures: 2` 4j +E= T , 3` 4j +E= T , and 3` ` 4j. We nd that the same-sign trilepton signature 3` 4j + E= T is quite unique and is the most promising discovery channel at the high-luminosity LHC. Our analysis also yields the 95% C.L. exclusion limits in the plane of the TeV LHC with an integrated luminosity of 100 (3000) fb 1. Beyond Standard Model; Neutrino Physics; Higgs Physics Contents 1 Introduction 2 Model and constraints The model Constraints 3 Decay properties 2.1 2.2 3.1 5 Conclusion Introduction Neutrinophilic scalars Heavy Majorana neutrinos Dilepton signature Trilepton signature Four-lepton signature second Higgs doublet but not to the Majorana { 1 { is forbidden the scalar potential, framework of 2HDM. ne-tuning issues). In constraints from lepton Model and constraints The model : while couples to NR, (v + { 2 { the scalar potential is V = + m2 2 1( y )2 + + 3( y )( y ) + 4( y + H:c: : Assuming m2 ; and 1 2 ( 3 + 4)2 [174, 175], 2m2 { 3 { for instance, m 500 GeV, 2 10 GeV2 to arrive at v 10 MeV. Since v is thus stable against H = 0;r sin cos ; 0;r cos ; A = h = 0;i sin 0;i cos ; 0;r cos 0;r sin ; where the mixing angles are determined by ; tan 2 2 + ( 3 + 4)vv 2 + 1vv and their masses are m2H ' m2 + 2 3v2; m2A ' m2H ' m2H Since v v in our consideration here, , i.e., mH 3 = 4 = 0. This NR are given by with e = i 2 N RcmNR NR + H:c:; where m^ UPMNS = B s12c23 s12s23 c12c13 c12s23s13e i c12c23s13e i c12c23 c12s23 s12c13 s12s23s13e i s12c23s13e i c23c13 s23c13 CA (2.10) (2.11) (2.12) (2.13) !ij !21 0 1 0 u31 0 !31 1 0 1 0 A @ C B 0 u32 !32 CA ; !31 0 u31 0 !32 u32 with uij = (1 !i2j )1=2 and V`N = p is the Dirac phase and y = 10 MeV, mNR 200 GeV, and y 0:006 whence we have V`N section 2.2, the choice of v 0, the charged scalars As will be clear in { 4 { We show in gure 1 BR( 1 MeV is and thus BR( mij me e and thus BR( mH+v & mNR 2#1=4 BR( ! e ) 100 GeV 600 GeV MeV; (2.18) 0:1 when mNR m . Hence, for mNR 200 GeV for instance, MeV, which can also be seen 2HDM [196]. and heavy as `+` Decay properties scenario with mNR > m { 6 { Neutrinophilic scalars In the scenario of mNR < m widths are (H+ H+ As mentioned earlier, we the branching ratios. In ! `+NRi) as a X BR(H+ X BR(H+ ! e+NRi) < ! e+NRi) > X BR(H+ X BR(H+ +NRi) +NRi) X BR(H+ X BR(H+ +NRi) for NH; (3.3) +NRi) for IH: (3.4) ! `+NRi). The NRi) is BR(H=A ! for BR(H+ { 8 { is suppressed by V`N 10 7 and v =v 10 5 (for v pp ! H+H ; H H; H A; HA: in the mass interval 100 There are many possible H, H A and HA production, H, H A production, 3` ` 4j from H+H production, While the same sign { 13 { 2l±4j+ET IH 2l±4j+ET NH 3l±4j+ET IH 3l±4j+ET NH 3l±l¡4j IH 3l±l¡4j NH 2l±4j+ET IH 2l±4j+ET NH 3l±4j+ET IH 3l±4j+ET NH 3l±l¡4j IH 3l±l¡4j NH Dilepton signature subsequent decays: pp ! H pp ! HA ! NR NR ! ` W ` W ` jj ` jj; and W relative distances avor structure pT (`) > 10 GeV; j (`)j < 2:5; pT (j) > 20 GeV; j (j)j < 5; Rjj;``;j` > 0:4: { 14 { −4 −2 −3 −2 −6 pT(j ) (GeV) ET (GeV) (`), missing backgrounds at 13 TeV LHC. { 15 { −4 pT(l) (GeV) Basic cuts in Eq: (4.5) W W W jj 51 (1770) 63 (2425) 16 (566) 20 (775) 5.8 (210) 7.2 (288) 1020 (35023) 1043 (37909) 155 (4623) 16 (569) 20 (779) 5.0 (179) 6.1 (245) 1.8 (65) 2.2 (88) N (b) = 0 8.3 (319) 10 (436) 2.4 (90) 3.0 (124) 0.87 (31) 1.1 (43) 325 (10917) 54 (1810) 232 (8188) 43 (1213) 39 (1399) 32 (901) N (` ) = 2 3.9 (164) 4.9 (224) 1.3 (49) 1.6 (67) 0.47 (17) 0.58 (23) 18 (580) 2.9 (172) 12 (334) 0.65 (4.64) 0.79 (6.20) 0.22 (1.44) 0.27 (1.96) 0.08 (0.51) 0.10 (0.70) Mjjl ±l± (GeV) LHC for the SSD signature. all cuts. As shown in Rj`;`` that it is ! ` ` jj can be used to via the invariant mass { 16 { 13TeVž100fb-1 BP-C 14TeVž3000fb-1 NH IH plane for the SSD signature in the nal states. We see that NR and H LHC14@3000. with m space for the gure 9. As also shown clearly in Trilepton signature ` W { 17 { VVV(V) VVV(V) VVV(V) N(j ) VVV(V) VVV(V) pT(j )(GeV) VVV(V) ET(GeV) 50 100 150 200 250 300 pT(l)(GeV) 350 Rj` for the SST signature distances { 18 { Basic cuts in eq. (4.5) ttV V V V V (V ) NH IH NH NH IH 11 (378) 13 (458) 2.9 (102) 3.5 (124) 0.96 (36) 1.2 (43) 1 (36) 0.5 (16) BP-B BP-C VVV(V) 3.7 (127) 4.5 (153) 1.1 (37) 1.3 (44) 0.38 (13) 0.46 (16) 0.25 (8.5) 0.15 (5) 3.7 (126) 4.5 (152) 1.0 (36) 1.3 (44) 0.37 (13) 0.44 (16) 0.24 (8.3) 0.08 (2.7) 1.85 (10.8) 2.05 (11.9) 0.87 (5.25) 1.02 (5.93) 0.45 (2.65) 0.51 (3.08) BP-B BP-C VVV(V) Mjjl ±l± (GeV) into account as well. excess for NH (IH). In particles at 13 TeV LHC. plane. Our results are presented in could be excluded up to { 19 { 13TeVž100fb-1 BP-B BP-C IH 14TeVž3000fb-1 330 GeV. With . 640 GeV, mNR . Four-lepton signature chains: pp ! H+H ! 3` ` 4j: the four-lepton signature: (4.10) be shown below. { 20 { N (` ) = 1 0.74 (29) 1.3 (43) 0.27 (8.7) 0.47 (15) 0.09 (3.2) 0.16 (5.6) 0 (0) 0 (0) 0 (0) 0.86 (5.39) 1.14 (6.56) 0.52 (2.95) 0.69 (3.87) 0.30 (1.79) 0.40 (2.37) BP-B BP-C bkg Mj j l±l± (GeV) Basic cuts 23 (805) 40 (1404) 7.2 (242) 13 (422) 2.4 (89) 4.2 (155) 403 (33431) 125 (11316) BP-B BP-C bkg 5.6 (195) 9.8 (340) 1.7 (58) 3.0 (102) 0.58 (21) 1.0 (37) 36 (2869) 11 (971) 6043 (488674) 538 (41943) and charged scalars H respectively. . 500 GeV. , and results in interesting { 21 { BP-C 14TeVž3000fb-1 13TeVž100fb-1 for NR of a few hundreds GeV. at LHC. mNR < m mass hierarchy and the and NR. In particular, we expect for short), (mNR; m { 22 { LNV signatures BP-A BP-B BP-C MNR 0.65 (4.64) 1.85 (10.8) 0.86 (5.39) 0.79 (6.20) 2.05 (11.9) 1.14 (6.56) 0.22 (1.44) 0.87 (5.25) 0.52 (2.95) 0.27 (1.96) 1.02 (5.93) 0.69 (3.87) 0.08 (0.51) 0.45 (2.65) 0.30 (1.79) 0.10 (0.70) 0.51 (3.08) 0.40 (2.37) 200 (320) 215 (340) 230 (360) 250 (390) 280 (500) 305 (530) 350 (600) 380 (640) 230 (420) 250 (460) 270 (470) 310 (530) mNR . 300 GeV and m . 600 GeV by the SST signature. Acknowledgments Open Access. [INSPIRE]. [hep-ph/9805219] [INSPIRE]. [3] P. Minkowski, 421 [INSPIRE]. { 23 { (1980) 61 [INSPIRE]. The Netherlands (1979). U(1) models U(1) theories, Phys. Rev. D 22 (1980) 2227 [INSPIRE]. 287 [INSPIRE]. [arXiv:0905.2710] [INSPIRE]. [INSPIRE]. { 24 { ! e and [INSPIRE]. [INSPIRE]. [INSPIRE]. [INSPIRE]. [INSPIRE]. [INSPIRE]. { 25 { ! e and [arXiv:1601.02714] [INSPIRE]. [INSPIRE]. [INSPIRE]. [INSPIRE]. [INSPIRE]. [INSPIRE]. [INSPIRE]. { 26 { [INSPIRE]. in SU(2)1 [INSPIRE]. SU(2)2 [arXiv:0708.3371] [INSPIRE]. [INSPIRE]. { 27 { [INSPIRE]. avor violating processes [INSPIRE]. [arXiv:0807.0361] [INSPIRE]. [arXiv:1212.4806] [INSPIRE]. , Phys. { 28 { [arXiv:1512.09048] [INSPIRE]. [INSPIRE]. [INSPIRE]. [hep-ph/0610253] [INSPIRE]. { 29 { [arXiv:1507.06779] [INSPIRE]. [arXiv:1401.1775] [INSPIRE]. [INSPIRE]. [INSPIRE]. { 30 { neutrinos from p [INSPIRE]. fusion at hadron [INSPIRE]. [INSPIRE]. [arXiv:1505.01934] [INSPIRE]. [arXiv:1604.01388] [INSPIRE]. { 31 { arXiv:1106.4462 [INSPIRE]. [INSPIRE]. [arXiv:1206.0256] [INSPIRE]. [arXiv:1505.05880] [INSPIRE]. [arXiv:1604.08596] [INSPIRE]. [arXiv:1607.03504] [INSPIRE]. arXiv:1612.05977 [INSPIRE]. [INSPIRE]. [arXiv:1107.1026] [INSPIRE]. [arXiv:1207.7214] [INSPIRE]. { 32 { collisions at p [INSPIRE]. [arXiv:0907.4186] [INSPIRE]. collision data at p decay of 136Xe [arXiv:1605.02889] [INSPIRE]. [hep-ph/0102255] [INSPIRE]. [arXiv:1510.04284] [INSPIRE]. { 33 { avour violating decay 2 and LFV + jets and e e + jets + jets events in pp collisions at p [INSPIRE]. collisions at p [INSPIRE]. [INSPIRE]. [1] S. Weinberg , Baryon and Lepton Nonconserving Processes , Phys. Rev. Lett . 43 ( 1979 ) 1566 [2] E. Ma , Pathways to naturally small neutrino masses , Phys. Rev. Lett . 81 ( 1998 ) 1171 [5] M. Gell-Mann , P. Ramond , R. Slansky , Complex spinors and uni ed theories , in [6] S.L. Glashow , The future of elementary particle physics , in Quarks and leptons, Cargese lectures, M. Levy et al. eds., Plenum Press, New York, U.S.A. ( 1980 ). [7] R.N. Mohapatra and G. Senjanovic , Neutrino mass and spontaneous parity violation , Phys. [8] M. Magg and C. Wetterich , Neutrino mass problem and gauge hierarchy , Phys. Lett. B 94 [9] T.P. Cheng and L.-F. Li , Neutrino masses, mixings and oscillations in SU(2) [10] J. Schechter and J.W.F. Valle , Neutrino masses in SU(2) [11] G. Lazarides , Q. Sha and C. Wetterich , Proton lifetime and fermion masses in an SO(10) [12] R.N. Mohapatra and G. Senjanovic , Neutrino masses and mixings in gauge models with spontaneous parity violation , Phys. Rev. D 23 ( 1981 ) 165 [INSPIRE]. [13] R. Foot , H. Lew , X.G. He and G.C. Joshi , Seesaw neutrino masses induced by a triplet of [14] D. Wyler and L. Wolfenstein , Massless neutrinos in left-right symmetric models , Nucl. [15] R.N. Mohapatra and J.W.F. Valle , Neutrino mass and baryon number nonconservation in superstring models , Phys. Rev. D 34 ( 1986 ) 1642 [INSPIRE]. [16] E. Ma , Lepton number nonconservation in E6 superstring models , Phys. Lett. B 191 ( 1987 ) [17] E.K. Akhmedov , M. Lindner , E. Schnapka and J.W.F. Valle , Left-right symmetry breaking in NJLS approach, Phys . Lett . B 368 ( 1996 ) 270 [hep-ph/9507275] [INSPIRE]. [18] E.K. Akhmedov , M. Lindner , E. Schnapka and J.W.F. Valle , Dynamical left-right symmetry breaking , Phys. Rev. D 53 ( 1996 ) 2752 [hep-ph/9509255] [INSPIRE]. [19] M. Malinsky , J.C. Romao and J.W.F. Valle , Novel supersymmetric SO(10) seesaw mechanism , Phys. Rev. Lett . 95 ( 2005 ) 161801 [hep-ph/0506296] [INSPIRE]. [20] K.S. Babu and C.N. Leung , Classi cation of e ective neutrino mass operators, Nucl . Phys. [21] K.S. Babu , S. Nandi and Z. Tavartkiladze , New mechanism for neutrino mass generation [22] F. Bonnet , D. Hernandez , T. Ota and W. Winter , Neutrino masses from higher than D = 5 [23] I. Picek and B. Radovcic , Novel TeV-scale seesaw mechanism with Dirac mediators , Phys. [24] Y. Liao , Unique neutrino mass operator at any mass dimension , Phys. Lett . B 694 ( 2011 ) [25] Y. Liao , Cascade seesaw for tiny neutrino mass , JHEP 06 ( 2011 ) 098 [arXiv:1011.3633] [26] B. Ren , K. Tsumura and X.-G. He , A Higgs quadruplet for type III seesaw and implications e conversion , Phys. Rev. D 84 ( 2011 ) 073004 [arXiv:1107.5879] [27] K. Kumericki , I. Picek and B. Radovcic , Exotic seesaw-motivated heavy leptons at the LHC , Phys. Rev . D 84 ( 2011 ) 093002 [arXiv:1106.1069] [INSPIRE]. [28] K. Kumericki , I. Picek and B. Radovcic , TeV-scale seesaw with quintuplet fermions , Phys. [29] I. Picek and B. Radovcic , Enhancement of h ! [30] K.L. McDonald , Minimal tree-level seesaws with a heavy intermediate fermion , JHEP 07 [31] S.S.C. Law and K.L. McDonald , Generalized inverse seesaw mechanisms , Phys. Rev. D 87 [32] A. Zee , A theory of lepton number violation, neutrino majorana mass and oscillation , Phys. Lett . B 93 ( 1980 ) 389 [Erratum ibid . B 95 ( 1980 ) 461] [INSPIRE]. [33] L. Wolfenstein , A theoretical pattern for neutrino oscillations, Nucl . Phys . B 175 ( 1980 ) 93 [34] A. Zee , Quantum numbers of Majorana neutrino masses, Nucl . Phys . B 264 ( 1986 ) 99 [35] K.S. Babu , Model of `calculable' Majorana neutrino masses , Phys. Lett . B 203 ( 1988 ) 132 [36] K.S. Babu and E. Ma , Natural hierarchy of radiatively induced Majorana neutrino masses , [37] E. Ma , Veri able radiative seesaw mechanism of neutrino mass and dark matter , Phys. Rev. [38] J. Kubo , E. Ma and D. Suematsu , Cold dark matter, radiative neutrino mass, [39] P.-H. Gu and U. Sarkar , Radiative neutrino mass, dark matter and leptogenesis , Phys. Rev. [40] D. Aristizabal Sierra , J. Kubo , D. Restrepo , D. Suematsu and O. Zapata , Radiative seesaw: avour violating signals , Phys. Rev. D 79 ( 2009 ) [41] E. Ma and D. Suematsu , Fermion triplet dark matter and radiative neutrino mass , Mod. [42] S. Kanemura , T. Nabeshima and H. Sugiyama , Neutrino masses from loop-induced Dirac Yukawa couplings , Phys. Lett . B 703 ( 2011 ) 66 [arXiv:1106.2480] [INSPIRE]. [43] S. Kanemura , O. Seto and T. Shimomura , Masses of dark matter and neutrino from TeV scale spontaneous U (1)B L breaking, Phys. Rev. D 84 ( 2011 ) 016004 [arXiv:1101.5713] [44] S. Kanemura and H. Sugiyama , Dark matter and a suppression mechanism for neutrino masses in the Higgs triplet model , Phys. Rev. D 86 ( 2012 ) 073006 [arXiv:1202.5231] [45] F. Bonnet , M. Hirsch , T. Ota and W. Winter , Systematic study of the D = 5 Weinberg [48] D. Schmidt , T. Schwetz and T. Toma , Direct detection of leptophilic dark matter in a model with radiative neutrino masses , Phys. Rev. D 85 ( 2012 ) 073009 [arXiv:1201.0906] [49] M. Hirsch , R.A. Lineros , S. Morisi , J. Palacio , N. Rojas and J.W.F. Valle , WIMP dark matter as radiative neutrino mass messenger , JHEP 10 ( 2013 ) 149 [arXiv:1307.8134] [50] S.S.C. Law and K.L. McDonald , A class of inert N-tuplet models with radiative neutrino [51] S. Kanemura , T. Matsui and H. Sugiyama , Loop suppression of Dirac neutrino mass in the neutrinophilic two Higgs doublet model , Phys. Lett. B 727 ( 2013 ) 151 [arXiv:1305.4521] [52] D. Restrepo , O. Zapata and C.E. Yaguna , Models with radiative neutrino masses and viable [53] V. Brdar , I. Picek and B. Radovcic , Radiative neutrino mass with scotogenic scalar triplet , [54] H. Okada and K. Yagyu , Radiative generation of lepton masses with the U(1)0 gauge [55] W. Wang and Z.-L. Han , Radiative linear seesaw model , dark matter and U(1) B L , Phys. [56] R. Longas , D. Portillo , D. Restrepo and O. Zapata , The inert Zee model , JHEP 03 ( 2016 ) [57] R. Adhikari , D. Borah and E. Ma , New U(1) gauge model of radiative lepton masses with sterile neutrino and dark matter , Phys. Lett . B 755 ( 2016 ) 414 [arXiv:1512.05491] [58] H. Okada and Y. Orikasa , Radiative neutrino model with an inert triplet scalar , Phys. Rev. [59] A. Ibarra, C.E. Yaguna and O. Zapata, Direct detection of fermion dark matter in the [60] R. Ding, Z.-L. Han, Y. Liao and X.-D. Ma, Interpretation of 750 GeV diphoton excess at [61] A. Ahriche, K.L. McDonald, S. Nasri and I. Picek, A critical analysis of one-loop neutrino mass models with minimal dark matter, Phys. Lett. B 757 (2016) 399 [arXiv:1603.01247] [64] T. Nomura, H. Okada and Y. Orikasa, SU(2)L septet scalar linking to a radiative neutrino [63] E. Ma, N. Pollard, O. Popov and M. Zakeri, Gauge B [66] P.-H. Gu, E. Ma and U. Sarkar, Connecting radiative neutrino mass, neutron-antineutron oscillation, proton decay and leptogenesis through dark matter, Phys. Rev. D 94 (2016) [67] D. Borah and A. Dasgupta, Common origin of neutrino mass, dark matter and Dirac [68] S.-Y. Guo, Z.-L. Han and Y. Liao, Testing the type-II radiative seesaw model: From dark matter detection to LHC signatures, Phys. Rev. D 94 (2016) 115014 [arXiv:1609.01018] [69] T. Nomura, H. Okada and Y. Orikasa, Radiative neutrino model with SU(2)L triplet elds, [70] W. Wang and Z.-L. Han, Naturally small Dirac neutrino mass with intermediate SU(2)l [71] L.T. Hue, A.B. Arbuzov, N.T.K. Ngan and H.N. Long, Probing neutrino and Higgs sectors [72] E. Ma, Z(3) dark matter and two-loop neutrino mass, Phys. Lett. B 662 (2008) 49 [73] S. Kanemura, T. Nabeshima and H. Sugiyama, TeV-scale seesaw with loop-induced Dirac [74] S. Baek, P. Ko, H. Okada and E. Senaha, Can Zee-Babu model implemented with scalar [75] Y. Kajiyama, H. Okada and K. Yagyu, Two loop radiative seesaw model with inert triplet [76] Y. Kajiyama, H. Okada and T. Toma, Multicomponent dark matter particles in a two-loop [77] S. Baek, H. Okada and T. Toma, Two loop neutrino model and dark matter particles with [78] H. Okada, Two loop induced Dirac neutrino model and dark matters with global U(1)0 [79] S. Kanemura, T. Matsui and H. Sugiyama, Neutrino mass and dark matter from gauged [80] M. Aoki and T. Toma, Impact of semi-annihilation of Z3 symmetric dark matter with [81] H. Okada, T. Toma and K. Yagyu, Inert extension of the Zee-Babu model, Phys. Rev. D 90 [82] D. Aristizabal Sierra, A. Degee, L. Dorame and M. Hirsch, Systematic classi cation of [84] S. Kashiwase, H. Okada, Y. Orikasa and T. Toma, Two loop neutrino model with dark matter and leptogenesis, Int. J. Mod. Phys. A 31 (2016) 1650121 [arXiv:1505.04665] [85] H. Okada and Y. Orikasa, Two-loop neutrino model with exotic leptons, Phys. Rev. D 93 [86] R. Ding, Z.-L. Han, Y. Liao and W.-P. Xie, Radiative neutrino mass with Z3 dark matter: from relic density to LHC signatures, JHEP 05 (2016) 030 [arXiv:1601.06355] [INSPIRE]. [87] T. Nomura and H. Okada , Generalized Zee-Babu model with 750 GeV diphoton resonance , Phys. Lett . B 756 ( 2016 ) 295 [arXiv:1601.07339] [INSPIRE]. [88] T. Nomura, H. Okada and Y. Orikasa, Radiative neutrino mass in alternative left-right [89] C. Bonilla, E. Ma, E. Peinado and J.W.F. Valle, Two-loop Dirac neutrino mass and WIMP [90] T. Nomura and H. Okada, An extended colored Zee-Babu model, Phys. Rev. D 94 (2016) [91] W.-F. Chang, S.-C. Liou, C.-F. Wong and F. Xu, Charged lepton [92] T. Nomura and H. Okada, Two-loop induced Majorana neutrino mass in a radiatively induced quark and lepton mass model, Phys. Rev. D 94 (2016) 093006 [arXiv:1609.01504] [93] L.M. Krauss, S. Nasri and M. Trodden, A model for neutrino masses and dark matter, [94] K. Cheung and O. Seto, Phenomenology of TeV right-handed neutrino and the dark matter [95] M. Aoki, S. Kanemura and O. Seto, Neutrino mass, dark matter and baryon asymmetry via TeV-scale physics without ne-tuning, Phys. Rev. Lett. 102 (2009) 051805 [96] M. Gustafsson, J.M. No and M.A. Rivera, Predictive model for radiatively induced neutrino masses and mixings with dark matter, Phys. Rev. Lett. 110 (2013) 211802 [97] J.N. Ng and A. de la Puente, Top quark as a dark portal and neutrino mass generation, [98] Y. Kajiyama, H. Okada and K. Yagyu, T7 [99] A. Ahriche, C.-S. Chen, K.L. McDonald and S. Nasri, Three-loop model of neutrino mass [100] H. Hatanaka, K. Nishiwaki, H. Okada and Y. Orikasa, A three-loop neutrino model with [101] K. Nishiwaki, H. Okada and Y. Orikasa, Three loop neutrino model with isolated k [102] H. Okada and K. Yagyu, Three-loop neutrino mass model with doubly charged particles from [104] S. Kanemura, K. Nishiwaki, H. Okada, Y. Orikasa, S.C. Park and R. Watanabe, LHC 750 GeV diphoton excess in a radiative seesaw model, PTEP 2016 (2016) 123B04 [105] H. Okada and K. Yagyu, Renormalizable model for neutrino mass, dark matter, muon g [106] P. Ko, T. Nomura, H. Okada and Y. Orikasa, Confronting a new three-loop seesaw model with the 750 GeV diphoton excess, Phys. Rev. D 94 (2016) 013009 [arXiv:1602.07214] [107] T. Nomura, H. Okada and Y. Orikasa, Radiative seesaw model with degenerate Majorana [108] D. Cherigui, C. Guella, A. Ahriche and S. Nasri, Probing radiative neutrino mass models using trilepton channel at the LHC, Phys. Lett. B 762 (2016) 225 [arXiv:1605.03640] [109] T. Nomura, H. Okada and N. Okada, A colored KNT neutrino model, Phys. Lett. B 762 [110] K. Cheung, H. Ishida and H. Okada, Accommodation of the Dirac phase in the [111] K. Cheung, T. Nomura and H. Okada, Three-loop neutrino mass model with a colored triplet scalar, Phys. Rev. D 95 (2017) 015026 [arXiv:1610.04986] [INSPIRE]. [112] S.M. Boucenna , S. Morisi and J.W.F. Valle , The low-scale approach to neutrino masses , Adv. High Energy Phys . 2014 ( 2014 ) 831598 [arXiv:1404.3751] [INSPIRE]. [113] M.-C. Chen and J. Huang , TeV scale models of neutrino masses and their phenomenology , Mod. Phys. Lett. A 26 ( 2011 ) 1147 [arXiv:1105.3188] [INSPIRE]. [114] E. Ma , Naturally small seesaw neutrino mass with no new physics beyond the TeV scale , [115] E. Ma and D.P. Roy , Heavy triplet leptons and new gauge boson, Nucl . Phys . B 644 ( 2002 ) [116] F. Wang , W. Wang and J.M. Yang , Split two-Higgs-doublet model and neutrino [117] S. Gabriel and S. Nandi , A new two Higgs doublet model , Phys. Lett. B 655 (2007) 141 [118] S.M. Davidson and H.E. Logan , Dirac neutrinos from a second Higgs doublet , Phys. Rev . D [119] P. Bandyopadhyay , S. Choubey and M. Mitra , Two Higgs doublet type III seesaw with - [120] G. Marshall , M. McCaskey and M. Sher , A supersymmetric model with Dirac neutrino [121] N. Haba and K. Tsumura , -two Higgs doublet model and its collider phenomenology , JHEP [122] N. Haba , K. Kaneta and Y. Shimizu , Phenomenology of supersymmetry SU(5) GUT with [123] U. Maitra , B. Mukhopadhyaya , S. Nandi , S.K. Rai and A. Shivaji , Searching for an elusive charged Higgs boson at the Large Hadron Collider , Phys. Rev . D 89 ( 2014 ) 055024 [124] S. Chakdar , K. Ghosh and S. Nandi , A predictive model of Dirac neutrinos , Phys. Lett . B [125] O. Seto , Large invisible decay of a Higgs boson to neutrinos , Phys. Rev . D 92 ( 2015 ) 073005 [126] F.-X. Josse-Michaux and E. Molinaro , A common framework for dark matter, leptogenesis and neutrino masses , Phys. Rev. D 84 ( 2011 ) 125021 [arXiv:1108.0482] [INSPIRE]. [127] P. Mitropoulos , Right-handed sneutrinos as asymmetric DM and neutrino masses from neutrinophilic Higgs bosons , JCAP 11 ( 2013 ) 008 [arXiv:1307.2823] [INSPIRE]. [128] K.-Y. Choi , O. Seto and C.S. Shin , Phenomenology in supersymmetric neutrinophilic Higgs model with sneutrino dark matter , JHEP 09 ( 2014 ) 068 [arXiv:1406.0228] [INSPIRE]. [129] A. Adulpravitchai and M.A. Schmidt , Sterile neutrino dark matter production in the neutrino-phillic two Higgs doublet model , JHEP 12 ( 2015 ) 023 [arXiv:1507.05694] [130] S. Baek and T. Nomura , Dark matter physics in neutrino speci c two Higgs doublet model , [131] N. Haba and O. Seto , Low scale thermal leptogenesis in neutrinophilic Higgs doublet models , [132] N. Haba and O. Seto , Thermal leptogenesis in a supersymmetric neutrinophilic Higgs model , Phys. Rev. D 84 ( 2011 ) 103524 [arXiv:1106.5354] [INSPIRE]. [133] W. Chao and M.J. Ramsey-Musolf , Hidden from view: Neutrino masses, dark matter and TeV-scale leptogenesis in a neutrinophilic two-Higgs-doublet model , Phys. Rev. D 89 ( 2014 ) [134] N. Haba , O. Seto and Y. Yamaguchi , Neutrino mass from neutrinophilic Higgs and [135] J.D. Clarke , R. Foot and R.R. Volkas , Natural leptogenesis and neutrino masses with two [136] N. Haba and M. Hirotsu , TeV-scale seesaw from a multi-Higgs model , Eur. Phys. J. C 69 [137] A. Datta , M. Guchait and A. Pilaftsis , Probing lepton number violation via Majorana [138] F.M.L. Almeida , Jr., Y. do Amaral Coutinho, J.A. Martins Simoes and M.A.B. do Vale , On [139] O. Panella , M. Cannoni , C. Carimalo and Y.N. Srivastava , Signals of heavy Majorana [140] T. Han and B. Zhang , Signatures for Majorana neutrinos at hadron colliders , Phys. Rev. [141] F. del Aguila and J.A. Aguilar-Saavedra , Distinguishing seesaw models at LHC with [142] A. Atre , T. Han , S. Pascoli and B. Zhang , The search for heavy Majorana neutrinos , JHEP [143] A. Das and N. Okada , Inverse seesaw neutrino signatures at the LHC and ILC, Phys. Rev. [144] A. Das , P.S. Bhupal Dev and N. Okada , Direct bounds on electroweak scale pseudo-Dirac s = 8 TeV LHC data, Phys . Lett . B 735 ( 2014 ) 364 [arXiv:1405.0177] [145] P.S.B. Dev , A. Pilaftsis and U.-k. Yang, New production mechanism for heavy neutrinos at the LHC , Phys. Rev. Lett . 112 ( 2014 ) 081801 [arXiv:1308.2209] [INSPIRE]. [146] D. Alva , T. Han and R. Ruiz , Heavy Majorana neutrinos from W [147] S. Banerjee , P.S.B. Dev , A. Ibarra , T. Mandal and M. Mitra , Prospects of heavy neutrino searches at future lepton colliders , Phys. Rev. D 92 ( 2015 ) 075002 [arXiv:1503.05491] [148] J.N. Ng , A. de la Puente and B. W.-P. Pan , Search for heavy right-handed neutrinos at the [149] A. Das and N. Okada , Improved bounds on the heavy neutrino productions at the LHC , [150] R. Leonardi , L. Alunni , F. Romeo , L. Fano and O. Panella , Hunting for heavy composite Majorana neutrinos at the LHC , Eur. Phys. J. C 76 ( 2016 ) 593 [arXiv:1510.07988] [151] A. Das , P. Konar and S. Majhi , Production of heavy neutrino in next-to-leading order QCD [152] F.F. Deppisch , P.S. Bhupal Dev and A. Pilaftsis , Neutrinos and collider physics, New J. [153] J. Chakrabortty , J. Gluza , R. Sevillano and R. Szafron , Left-right symmetry at LHC and [154] J. Gluza , T. Jelinski and R. Szafron , Lepton number violation and ` Diracness' of massive [155] S. Antusch , E. Cazzato and O. Fischer , Sterile neutrino searches at future e e+ , pp and [156] Z.-z. Xing, Naturalness and testability of TeV seesaw mechanisms , Prog. Theor. Phys. [157] X.-G. He , S. Oh , J. Tandean and C.-C. Wen , Large mixing of light and heavy neutrinos in seesaw models and the LHC , Phys. Rev . D 80 ( 2009 ) 073012 [arXiv:0907.1607] [INSPIRE]. [158] W.-Y. Keung and G. Senjanovic , Majorana neutrinos and the production of the right-handed charged gauge boson , Phys. Rev. Lett . 50 ( 1983 ) 1427 [INSPIRE]. [159] K. Huitu , S. Khalil , H. Okada and S.K. Rai , Signatures for right-handed neutrinos at the Large Hadron Collider , Phys. Rev. Lett . 101 ( 2008 ) 181802 [arXiv:0803.2799] [INSPIRE]. [160] L. Basso , A. Belyaev , S. Moretti and C.H. Shepherd-Themistocleous , Phenomenology of the minimal B-L extension of the standard model: Z0 and neutrinos , Phys. Rev. D 80 ( 2009 ) [161] D.G. Cerdeno and O. Seto , Right-handed sneutrino dark matter in the NMSSM , JCAP 08 [162] L. Basso , Phenomenology of the minimal B-L extension of the standard model at the LHC , [163] C.-Y. Chen and P.S.B. Dev , Multi-lepton collider signatures of heavy Dirac and Majorana neutrinos , Phys. Rev. D 85 ( 2012 ) 093018 [arXiv:1112.6419] [INSPIRE]. [164] C.-Y. Chen , P.S.B. Dev and R.N. Mohapatra , Probing heavy-light neutrino mixing in left-right seesaw models at the LHC , Phys. Rev . D 88 ( 2013 ) 033014 [arXiv:1306.2342] [165] S.P. Das , F.F. Deppisch , O. Kittel and J.W.F. Valle , Heavy neutrinos and lepton avour violation in left-right symmetric models at the LHC , Phys. Rev . D 86 ( 2012 ) 055006 [166] T. Han , I. Lewis , R. Ruiz and Z. -g . Si, Lepton number violation and W 0 chiral couplings at [167] J. Gluza and T. Jelinski , Heavy neutrinos and the pp ! lljj CMS data, Phys . Lett . B 748 [168] A.M. Gago , P. Hernandez , J. Jones-Perez , M. Losada and A. Moreno Bricen~o, Probing the type I seesaw mechanism with displaced vertices at the LHC , Eur. Phys. J. C 75 ( 2015 ) 470 [169] Z. Kang , P. Ko and J. Li , New avenues to heavy right-handed neutrinos with pair production [170] M. Lindner , F.S. Queiroz , W. Rodejohann and C.E. Yaguna , Left-right symmetry and [171] M. Mitra , R. Ruiz , D.J. Scott and M. Spannowsky , Neutrino jets from high-mass WR gauge bosons in TeV-scale left-right symmetric models , Phys. Rev. D 94 (2016) 095016 [172] E. Accomando , L. Delle Rose , S. Moretti , E. Olaiya and C. Shepherd-Themistocleous , [173] W. Wang and Z.-L. Han , Global U(1) L breaking in neutrinophilic 2HDM: from LHC [174] G.C. Branco , P.M. Ferreira , L. Lavoura , M.N. Rebelo , M. Sher and J.P. Silva , Theory and [175] J.F. Gunion and H.E. Haber , The CP conserving two Higgs doublet model: the approach to [176] T. Morozumi , H. Takata and K. Tamai , Quantum correction to tiny vacuum expectation [177] N. Haba and T. Horita , Vacuum stability in neutrinophilic Higgs doublet model , Phys. Lett. [181] P.A.N. Machado , Y.F. Perez , O. Sumensari , Z. Tabrizi and R.Z. Funchal , On the viability of minimal neutrinophilic two-Higgs-doublet models , JHEP 12 ( 2015 ) 160 [arXiv:1507.07550] [182] D.V. Forero , M. Tortola and J.W.F. Valle , Neutrino oscillations re tted , Phys. Rev. D 90 [183] J.A. Casas and A. Ibarra , Oscillating neutrinos and muon ! e, , Nucl . Phys . B 618 [184] A. Ibarra and G.G. Ross , Neutrino phenomenology: the case of two right-handed neutrinos , [185] P. Fileviez Perez , T. Han and T. Li , Testability of type I seesaw at the CERN LHC: [187] J. Lesgourgues and S. Pastor , Neutrino mass from cosmology, Adv. High Energy Phys . 2012 [188] Planck collaboration , P. A.R. Ade et al., Planck 2013 results. XVI. Cosmological [189] S.M. Bilenky and C. Giunti , Neutrinoless double-beta decay: a brief review, Mod . Phys. [190] S. Dell'Oro , S. Marcocci , M. Viel and F. Vissani , Neutrinoless double beta decay: 2015 [191] EXO-200 collaboration , M. Auger et al., Search for neutrinoless double-beta decay in 136Xe [192] EXO-200 collaboration , J.B. Albert et al., Search for Majorana neutrinos with the rst two [193] KamLAND-Zen collaboration, A. Gando et al., Limit on neutrinoless [196] E. Bertuzzo , Y.F. Perez G. , O. Sumensari and R. Zukanovich Funchal , Limits on [197] MEG collaboration , J. Adam et al., New constraint on the existence of the + ! e+ decay , Phys. Rev. Lett . 110 ( 2013 ) 201801 [arXiv:1303.0754] [INSPIRE]. [198] MEG collaboration, A.M. Baldini et al., Search for the lepton [199] R. Ding , Z.-L. Han , Y. Liao , H.-J. Liu and J.-Y. Liu , Phenomenology in the minimal [213] N.D. Christensen and C. Duhr , FeynRules | Feynman rules made easy, Comput . Phys. [201] T. Fukuyama , H. Sugiyama and K. Tsumura , Constraints from muon g [202] Z.-L. Han , R. Ding and Y. Liao , LHC phenomenology of type II seesaw: nondegenerate [203] Z.-L. Han , R. Ding and Y. Liao , LHC phenomenology of the type-II seesaw mechanism: [207] LEP , DELPHI, OPAL, ALEPH, L3 collaboration, G. Abbiendi et al., Search for charged Higgs bosons: combined results using LEP data, Eur . Phys. J. C 73 ( 2013 ) 2463 [209] L3 collaboration , P. Achard et al., Search for heavy isosinglet neutrino in e+e annihilation [200] T. Toma and A. Vicente , Lepton avor violation in the scotogenic model , JHEP 01 ( 2014 ) [215] A. Alloul , N.D. Christensen , C. Degrande , C. Duhr and B. Fuks , FeynRules 2.0 | A complete toolbox for tree-level phenomenology , Comput. Phys. Commun . 185 ( 2014 ) 2250 [arXiv:1310. 1921 ] [INSPIRE]. [216] C. Degrande , C. Duhr , B. Fuks , D. Grellscheid , O. Mattelaer and T. Reiter , UFO | The Universal FeynRules Output, Comput . Phys. Commun . 183 ( 2012 ) 1201 [arXiv:1108. 2040 ] [217] J. Alwall , M. Herquet , F. Maltoni , O. Mattelaer and T. Stelzer , MadGraph 5: going beyond, [218] J. Alwall et al., The automated computation of tree-level and next-to-leading order [219] R .D. Ball et al., Parton distributions with LHC data, Nucl . Phys . B 867 ( 2013 ) 244 [220] NNPDF collaboration , R.D. Ball et al., Parton distributions for the LHC Run II , JHEP 04 [221] T. Sjostrand , S. Mrenna and P.Z. Skands , PYTHIA 6.4 physics and manual , JHEP 05 [222] S. Ovyn , X. Rouby and V. Lemaitre , DELPHES, a framework for fast simulation of a [223] DELPHES 3 collaboration , J. de Favereau et al., DELPHES 3, a modular framework for fast simulation of a generic collider experiment , JHEP 02 ( 2014 ) 057 [arXiv:1307.6346] [224] E. Conte , B. Fuks and G. Serret , MadAnalysis 5, a user-friendly framework for collider phenomenology , Comput. Phys. Commun . 184 ( 2013 ) 222 [arXiv:1206.1599] [INSPIRE]. [225] E. Conte , B. Dumont , B. Fuks and C. Wymant , Designing and recasting LHC analyses with MadAnalysis 5, Eur . Phys. J. C 74 ( 2014 ) 3103 [arXiv:1405.3982] [INSPIRE]. [226] B. Dumont et al., Toward a public analysis database for LHC new physics searches using MADANALYSIS 5, Eur . Phys. J. C 75 ( 2015 ) 56 [arXiv:1407.3278] [INSPIRE]. [227] M. Drees , H. Dreiner , D. Schmeier , J. Tattersall and J.S. Kim , CheckMATE: confronting your favourite new physics model with LHC data, Comput . Phys. Commun . 187 ( 2015 ) 227 [228] D. Dercks , N. Desai , J.S. Kim , K. Rolbiecki , J. Tattersall and T. Weber , CheckMATE 2 : [229] S. Hoeche et al., Matching parton showers and matrix elements , hep-ph/ 0602031 [INSPIRE]. [230] CMS collaboration, Identi cation of b-quark jets with the CMS experiment , 2013 JINST 8


This is a preview of a remote PDF: https://link.springer.com/content/pdf/10.1007%2FJHEP04%282017%29065.pdf

Hunting for heavy majorana neutrinos with lepton number violating signatures at LHC, Journal of High Energy Physics, 2017, DOI: 10.1007/JHEP04(2017)065