CMB anomalies and the effects of local features of the inflaton potential

The European Physical Journal C, Apr 2017

Recent analysis of the WMAP and Planck data have shown the presence of a dip and a bump in the spectrum of primordial perturbations at the scales \(k=0.002\) Mpc\({}^{-1}\) and \(k=0.0035\) Mpc\({}^{-1}\), respectively. We analyze for the first time the effects of a local feature in the inflaton potential to explain the observed deviations from scale invariance in the primordial spectrum. We perform a best-fit analysis of the cosmic microwave background (CMB) radiation temperature and polarization data. The effects of the features can improve the agreement with observational data respect to the featureless model. The best-fit local feature affects the primordial curvature spectrum mainly in the region of the bump, leaving the spectrum unaffected on other scales.

A PDF file should load here. If you do not see its contents the file may be temporarily unavailable at the journal website or you do not have a PDF plug-in installed and enabled in your browser.

Alternatively, you can download the file locally and open with any standalone PDF reader:

https://link.springer.com/content/pdf/10.1140%2Fepjc%2Fs10052-017-4797-6.pdf

CMB anomalies and the effects of local features of the inflaton potential

Eur. Phys. J. C CMB anomalies and the effects of local features of the inflaton potential Alexander Gallego Cadavid 2 3 4 Antonio Enea Romano 1 2 3 Stefano Gariazzo 0 1 5 0 INFN, Sezione di Torino , Via P. Giuria 1, 10125 Turin , Italy 1 Department of Physics, University of Torino , Via P. Giuria 1, 10125 Turin , Italy 2 Yukawa Institute for Theoretical Physics, Kyoto University , Kyoto , Japan 3 Instituto de Fisica, Universidad de Antioquia , A.A.1226 Medellin , Colombia 4 ICRANet , Piazza della Repubblica 10, 65122 Pescara , Italy 5 Instituto de Física Corpuscular (CSIC-Universitat de València) , Paterna, Valencia , Spain Recent analysis of the WMAP and Planck data have shown the presence of a dip and a bump in the spectrum of primordial perturbations at the scales k = 0.002 Mpc−1 and k = 0.0035 Mpc−1, respectively. We analyze for the first time the effects of a local feature in the inflaton potential to explain the observed deviations from scale invariance in the primordial spectrum. We perform a best-fit analysis of the cosmic microwave background (CMB) radiation temperature and polarization data. The effects of the features can improve the agreement with observational data respect to the featureless model. The best-fit local feature affects the primordial curvature spectrum mainly in the region of the bump, leaving the spectrum unaffected on other scales. - There are important observational motivations to study modifications of the inflaton potential, like the observed deviations of the spectrum of primordial curvature perturbations from a power-law spectrum [1–21]. In Refs. [1–13] the authors study the effects of analyzing the cosmic microwave background (CMB) radiation using a free function for the spectrum of primordial scalar perturbations, i.e., they do not consider the usual power-law spectrum predicted by most of the simplest inflationary models [14,15,22]. For example, the primordial spectrum can be parametrized with wavelets [4,5], linear interpolation [6–8], interpolating spline functions [11–13], among other methods [1,16]. Some interesting evidence of these deviations were given in [1,16] where it was used a method based on a piecewise cubic Hermite interpolating polynomial (PCHIP) for the primordial power spectrum. This analysis showed that the spectrum of primordial perturbations can be approximated with a power law in the range of values 0.007 Mpc−1 < k < 0.2 Mpc−1, while in the range 0.001 Mpc−1 < k < 0.0035 Mpc−1 there are a dip and a bump at k = 0.002 Mpc−1 and k = 0.0035 Mpc−1, with a statistical significance of about 2σ and 1σ , respectively. Similar results were reported in several other analyses [1–3,14,23–34] using different techniques and both the WMAP [35] and the Planck [36,37] measurements. In this paper we study how local features of the inflaton potential can model this type of local glitches of the spectrum of primordial curvature perturbations. We also study the effects of these features on the primordial tensorial perturbation spectrum. Features of the inflaton potential can affect the evolution of primordial curvature perturbations [1,38–59] and consequently generate a variation in the amplitude of the spectrum and bispectrum [38–46,56]. This can provide a better fit of the observational data in the regions where the spectrum shows some deviations from a power law [1–3,40,41,43– 46,51,52,60–62]. In this paper we perform a best-fit analysis of the CMB radiation temperature and polarization [63] data and we study the effects of a local feature of the inflation potential which affects the primordial curvature spectrum in the region of the bump. 2 Local features We consider a single scalar field minimally coupled to gravity with a standard kinetic term according to the action S = d4x √−g 21 M P2l R − 21 gμν ∂μφ∂ν φ − V (φ) , (1) where MPl = (8π G)−1/2 is the reduced Planck mass and gμν is the flat FLRW metric. The Friedmann equation and the equation of motion of the inflaton are obtained from the variation of the action with respect to the metric and the scalar field, respectively, H 2 ≡ a 2 ˙ a = 3M P2l where H is the Hubble parameter, and dots and ∂φ denote derivatives with respect to time and scalar field, respectively. The slow-roll parameters are defined We consider a potential energy given by [39] where V0(φ) is the featureless potential and VF corresponds to a step symmetrically dumped by an even power negative exponential factor. In this paper we will consider the case of a quadratic inflaton potential, The tensor-to-scalar ratio for a monomial potential φn is r ≈ 16n/(4Ne + n), where Ne is the number of e-folds before the end of inflation [14, 15]. In the case of quadratic inflation r ≈ 0.16 for Ne ≈ 50, which is not in good agreement with observational data. Our analysis confirms this when we fit data without the feature. We will show later that the effects Fig. 1 The numerically computed slow-roll parameters and η around the feature time t0 for λ = −4 × 10−12, σ = 0.05, and k0 = 1.2 × 10−3 (blue), λ = −10−12, σ = 0.05, and k0 = 1.3 × 10−3 (red), λ = −10−11, σ = 0.04, and k0 = 1.3 × 10−3 (green), and λ = −1.5 × 10−11, σ = 0.04, and k0 = 1.2 × 10−3 (orange). The dashed lines correspond to the featureless slow-roll parameters of local features improve the agreement with CMB data but not enough to get a χ 2 as low as the one of other inflationary models with lower values of r . This type of modification of the slow-roll potential is called a local feature (LF) [39] which differs from the branch feature (BF) [39, 56], since the potential is symmetric with respect to the location of the feature and it is only affected in a limited range of the scalar field value. Due to this the spectrum and bispectrum are only modified in a narrow range of scales, in contrast to the BF in which there are differences in the power spectrum between large and small scale which are absent in the case of LF. In some cases the step in the spectrum due to a BF can be very small, and the difference between large and small scale effects would not make BF observationally distinguishable from LF. Nevertheless in general the oscillation patterns produce in the spectrum by a single BF would be different because a single LF can be considered as the combination of two appropriate BF [39]. In this paper we use the local type effect of these features to model phenomenologically local glitches of the primordial scalar spectrum on the scales k = 0.002 Mpc−1 and k = 0.0035 Mpc−1 [1], and to study their effects on the primordial tensor spectrum, without affecting other scales. The effects of the feature on the slow-roll parameters are shown in Fig. 1, where we can see that there are oscillations of the slow-roll parameters around the feature time t0, defined as φ0 = φ (t0) [39]. The magnitude of the potential modification is controlled by the parameter λ, as its effect is such that larger value of λ give larger values of the slow-roll parameters. The size of the range of field values where the potential is affected by the feature is determined by the parameter σ and the slowroll parameters are smaller for larger σ . We define k0 as the scale exiting the horizon at the feature time t0, k0 = −1/τ0, where τ0 is the value of conformal time corresponding to t0. Oscillations occur around k0, and their location can be controlled by changing φ0. We adopt a system of units in which c = h¯ = MPl = 1. 3 Spectrum of curvature tensor perturbations In order to study the curvature perturbations we expand perturbatively the action with respect to the background FLRW solution. The second order action for scalar perturbations in the comoving gauge takes the form [64] S2 = The equation for curvature perturbations ζ obtained from the Lagrange equations is Fig. 2 The power spectrum of primordial curvature perturbations Pζ is plotted for λ = −4 × 10−12, σ = 0.05, and k0 = 1.2 × 10−3 (blue), λ = −10−12, σ = 0.05, and k0 = 1.3 × 10−3 (red), λ = −10−11, σ = 0.04, and k0 = 1.3 × 10−3 (green), and λ = −1.5 × 10−11, σ = 0.04, and k0 = 1.2 × 10−3 (orange). The dashed lines correspond to the featureless spectrum Fig. 3 The power spectrum of primordial tensor perturbations Ph is plotted for λ = −4 × 10−12, σ = 0.05, and k0 = 1.2 × 10−3 (blue), λ = −10−12, σ = 0.05, and k0 = 1.3 × 10−3 (red), λ = −10−11, σ = 0.04, and k0 = 1.3 × 10−3 (green), and λ = −1.5 × 10−11, σ = 0.04, and k0 = 1.2 × 10−3 (orange). The dashed lines correspond to the featureless spectrum. The plot on the right corresponds to a zoom of the left plot. As can be seen, the effects of the different features on the spectrum Ph are rather small and the spectra of the models with features are difficult to distinguish from the featureless model spectrum where k is the comoving wave number, z ≡ a√2 , and primes denote a derivative with respect to the conformal time. The two-point function of curvature perturbations is The effects of the features on the primordial scalar spectrum are plotted in Fig. 2 for different values of the parameters λ, σ , and k0 [39]. The spectrum of primordial curvature perturbations has oscillations around k0, whose amplitude is larger for larger λ since the latter controls the magnitude of the potential modification. The amplitude of the spectrum oscillations is larger for smaller σ , because in this case the change in the potential is more abrupt and consequently the slow-roll parameters are larger. The equation for tensor perturbations can be derived in a way similar to the case of scalar perturbations, giving where again k is the comoving wave number. The power spectrum of tensor perturbations is obtained from the twopoint function as Ph (k) ≡ from which the tensor-to-scalar ratio can be defined as the ratio between the spectrum of tensor and scalar perturbations as The effects of the features on the primordial tensor spectrum are plotted in Fig. 3 for different values of the parameters λ, σ , and k0. These effects are not very significant and in fact the observational data analysis we will present in the rest of the paper confirms that local features affect mainly the curvature spectrum. 4 Effects of local features on the CMB spectrum In Fig. 4 we show the effects of local features on the temperature (TT) CMB spectrum. Since we are considering a feature of local type, as theoretically expected, the spectrum is not affected on scales sufficiently far from k0. Branch features [39] could on the contrary also introduce a step in the power spectrum, modifying it also on scales far from k0, and for this reason LF are more appropriate to model local deviations of the spectrum. The main effects produced by the LF appear between = 10 and = 100 in the TT spectrum. They correspond to the wiggles of the primordial scalar fluctuations shown in Fig. 2. The class of LF we consider allows one to fit the small bump at 40 better than the dip at 20 in the CMB spectrum. The impact of the LF on the BB spectrum is much smaller, Table 1 Constraints on the cosmological parameters and χ 2 for the model with and without feature. All the constraints are given at 1σ confidence level. The lower limits on the feature parameters correspond to the limits we used as a prior. The best-fit values are the values inside curly brackets. We separately report the different contributions to the χ 2 (Planck low- , Planck high- and from the priors on the nuisance parameters) and the total [0.05, 1.23) {1.12} 5.3 +−13..11 since, as discussed previously, the effect of the feature on the primordial tensorial perturbations spectrum is negligible. 4.1 The observational data analysis method To study the effects produced by local features on the CMB spectrum, we modified the Boltzmann code CAMB [65] that computes the theoretical spectra and the corresponding Markov chain monte carlo (MCMC) code CosmoMC [66] in Fig. 5 A comparison between the model with and without features is given for the parameters H0, ωb, ωc, θ , τ and ln(1010 As ). All the results are obtained considering the Planck low- +high data combinaorder to use a non-standard power spectrum for the primordial curvature perturbations. As a base model we considered the standard parameterization of the CDM model for the evolution of the universe, which includes four parameters: the current energy density of baryons and of cold dark matter (CDM) bh2 and ch2, the ratio between the sound horizon and the angular diameter distance at decoupling θ , and the optical depth to reionization τ . tion. As can be seen the effects of the feature on the estimation of these non-inflationary cosmological parameters is negligible The parameterization of the primordial power spectra is modified to take into account the presence of the local feature. To see the effects of the feature, we compare the results obtained in the featureless model with the ones obtained when a local feature is added. The comparison of the effects of LF of different inflationary potentials is left for future studies. The data sets that we use to test the LF are taken from the last release from the Planck Collaboration [37] for the Fig. 7 The numerically computed spectrum of the primordial curvature fluctuations Pζ and of the tensor perturbations Ph are plotted for the best-fit values in Table 1: λ = −1.12 × 10−12, σ = 0.053, and k0 = 1.13 × 10−3 (blue). On the left, the red lines correspond to the best-fit reconstructed primordial power spectrum from Ref. [16]. The dashed lines correspond to the featureless spectrum temperature and E-mode polarization modes. We consider the temperature and polarization power spectra in the range 2 ≤ ≤ 29 (low- ) and only the temperature power spectrum at higher multipoles, 30 ≤ ≤ 2500 (high- ). Since the polarization spectra at high multipoles are still under discussion and some residual systematics were detected by the Planck Collaboration [67, 68], we do not include the full polarization spectra obtained by Planck. Moreover, we Fig. 8 The 1, 2 and 3σ constraints obtained from observational data analysis are plotted for the primordial curvature perturbations spectrum for the model with local features. The spectrum for the featureless model is plotted with a red line do not include the data on the BB spectrum as obtained from the Bicep2/Keck Collaboration [69], because the baseline inflationary model that we consider (φ2) cannot reproduce the small amount of primordial tensor modes that are observed after cleaning the Bicep2/Keck data using the polarized dust emission obtained by the high frequency maps by Planck [70]. 5 Results The results of the data fitting analysis are reported in Table 1 and in Figs. 5, 6, 7 and 8. In Table 1 we show the best-fit values written inside brackets and the 1σ constraints of the parameters. It should be noted that the bounds we obtain are more stringent than the Planck ones because ns is not a free parameter. Fixing the value of scalar spectral index reduces the confidence ranges for the others parameters, and consequently our bounds are smaller. If we had left free the potential of the inflaton in a generic monomial form V0 ∼ φn, then we could have obtained larger bounds as in the Planck team analysis where ns is a free parameter. This could be done in a future work, but it goes beyond the scope of the present paper. Comparing the results obtained with and without feature we can see that the presence of the LF has no impact on the background cosmological parameters. This is clear from the marginalized 1D and 2D plots in Fig. 5. The effect of the feature is evident around the location of the bump of the CMB temperature spectrum (see Fig. 4), and it corresponds to an improvement of the total χ 2. As reported in Table 1, the improvement comes from the χ 2 of the low- Planck likelihood. Our analysis cannot be compared with the Planck results [68,70], we are assuming the φ2 inflationary model instead of using a phenomenological approach with independent ns and r . Quadratic inflation corresponds to high values of r which are not in agreement with the Planck bestfit model obtained using ns and r as independent parameters. The effects of the feature improve the χ 2 with respect to the featureless φ2 case, but this improvement is not large enough to make it competitive with other models. Nevertheless, the same LF could be applied to other inflationary scenarios to produce an analogous improvement of the χ 2. The analyses of the effects of the LF for inflationary models that are in better agreement with the observed CMB spectra are left for future studies. In Fig. 6 we show the 1D marginalized posterior distributions and the correlations between the feature parameters. From the correlation plot between λ and k0 we can see that the size of the feature can be larger if the feature is located at a smaller wavemode k0. This is because the CMB temperature spectrum does not allow any wiggles above 60, thus limiting the amplitude of the feature. The 2D plots for the parameter σ seem to show that there is no lower bound on it. This is not in tension with the 1σ constraints on the σ parameter reported in Table 1, because of volume effects that occur in the Bayesian marginalization procedure. The preference for a non-minimum value of σ is mild, indeed there is no lower bound at 2σ confidence level. The constraints on the primordial scalar spectrum are shown in Figs. 7 and 8. In the left panel of Fig. 7 we compare the best-fit primordial power spectrum of scalar perturbations obtained in our analysis (blue) and the reconstructed one from Ref. [16]. The comparison underlines how a local feature can reproduce the behavior of the primordial spectrum, but further studies, which will be presented in some future work, on the feature potential are required in order to obtain a perfect agreement. The right panel of the same Fig. 7 shows that the effect of the feature is very small in the tensor spectrum. In Fig. 8 we plot the marginalized constraints on the primordial scalar spectrum. The 1, 2, and 3σ bands refer to the model with LF, while the solid black line shows the corresponding best-fit spectrum, computed from the entire set of primordial spectra obtained from the MCMC scan. The red dashed line shows the spectrum obtained for the same cosmological parameters but without the feature. From the figures we can note that the effects that the LF brings about are more important for the scalar spectrum, while they are negligible for the tensor spectrum. For this reason, we do not show the same plot as for Fig. 8 for the tensor spectrum. 6 Conclusions We have studied the effects of local features in the inflaton potential on the spectra of primordial curvature perturbations and their impact on the temperature anisotropies of the CMB. In order to study the effects on the CMB spectrum we have modified the CAMB and CosmoMC codes in order to use a non-standard power-law power spectrum for the primordial perturbations, to take into account the presence of the local feature. We have performed a best-fit analysis of CMB temperature and polarization data from Planck. We have found no significant effects on cosmological parameters related to the propagation of CMB photons after decoupling, while LF improve the fit of the CMB temperature and polarization data. We have also confirmed the theoretical expectation that local features do not affect the primordial power spectrum at scales far from the characteristic scale k0, which leaves the horizon around the feature time. In the future it will be interesting to analyze the effects of local features in order to explain other deviations of the CMB spectrum, such as for example the anomalies occurring around l ≈ 800 [2]. It will also be important to study the effects of LF in inflationary models with different featureless V0 potentials, and to compare them to the effects of branch features. Acknowledgements This work was supported by the European Union (European Social Fund, ESF) and Greek national funds under the ARISTEIA II? Action. Part of the work of SG was supported by the Theoretical Astroparticle Physics research Grant No. 2012CPPYP7 under the Program PRIN 2012 funded by the Ministero dell’Istruzione, Università e della Ricerca (MIUR), and in part is also supported by the Spanish Grants FPA2014-58183-P, Multidark CSD2009-00064 and SEV-20140398 (MINECO), and PROMETEOII/2014/084 (Generalitat Valenciana). The work of AGC was supported by the Colombian Department of Science, Technology, and Innovation COLCIENCIAS research Grant No. 617-2013. AGC acknowledges the partial support from the International Center for Relativistic Astrophysics Network ICRANet. For part of the calculations we used the Cloud infrastructure of the Centro di Calcolo in the Torino section of INFN. AER work was supported by the Dedicacion exclusica and Sostenibilidad programs at UDEA, the UDEA CODI project 2015-4044 and 2016-10945, and Colciencias mobility program. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecomm ons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. Funded by SCOAP3. 1. S. Gariazzo , C. Giunti , M. Laveder , JCAP 1504 , 023 ( 2015 ). arXiv:1412.7405 2. D.K. Hazra , A. Shafieloo , T. Souradeep , JCAP 1411 , 011 ( 2014 ). arXiv:1406.4827 3. P. Hunt , S. Sarkar , JCAP 1401 , 025 ( 2014 ). arXiv:1308.2317 4. P. Mukherjee , Y. Wang , Astrophys . J. 593 , 38 ( 2003 ). arXiv:astro-ph/0301058 5. P. Mukherjee , Y. Wang , Astrophys . J. 599 , 1 ( 2003 ). arXiv:astro-ph/0303211 6. S.L. Bridle , A.M. Lewis , J. Weller , G. Efstathiou , Mon. Not. Roy. Astron. Soc. 342, L72 ( 2003 ). arXiv:astro-ph/0302306 7. D.K. Hazra , A. Shafieloo , G.F. Smoot , JCAP 1312 , 035 ( 2013 ). arXiv:1310.3038 8. J.A. Vazquez , M. Bridges , Y.-Z. Ma , M.P. Hobson , JCAP 1308 , 001 ( 2013 ). arXiv:1303.4014 9. S. Hannestad , Phys. Rev. D 63 , 043009 ( 2001 ). arXiv:astro-ph/0009296 10. M. Bridges , F. Feroz , M.P. Hobson , A.N. Lasenby , Mon. Not. Roy. Astron. Soc. 400 , 1075 ( 2009 ). arXiv:0812.3541 11. D.K. Hazra , A. Shafieloo , G.F. Smoot , A.A. Starobinsky , JCAP 1406 , 061 ( 2014 ). arXiv:1403.7786 12. C. Gauthier , M. Bucher , JCAP 1210 , 050 ( 2012 ). arXiv:1209.2147 13. R. de Putter , E.V. Linder , A. Mishra , Phys. Rev. D 89 , 103502 ( 2014 ). arXiv:1401.7022 14. Planck Collaboration , P. Ade et al., arXiv:1502. 02114 ( 2015 ) 15. Planck Collaboration , P. Ade et al., arXiv:1303. 5082 ( 2013 ) 16. E. Di Valentino , S. Gariazzo , M. Gerbino , E. Giusarma , O. Mena , Phys. Rev. D 93 , 083523 ( 2016 ). arXiv:1601.07557 17. M. Benetti , J.S. Alcaniz , Phys. Rev. D 94 , 023526 ( 2016 ). arXiv:1604.08156 18. X. Chen , C. Dvorkin , Z. Huang , M.H. Namjoo , L. Verde , JCAP 1611 , 014 ( 2016 ). arXiv:1605.09365 19. Y. Xu , J. Hamann , X. Chen , arXiv:1607. 00817 ( 2016 ) 20. X. Chen , P.D. Meerburg , M. Mnchmeyer , JCAP 1609 , 023 ( 2016 ). arXiv:1605.09364 21. D.K. Hazra , A. Shafieloo , G.F. Smoot , A.A. Starobinsky , JCAP 1609 , 009 ( 2016 ). arXiv:1605.02106 22. J. Martin , C. Ringeval , V. Vennin , arXiv:1303.3787 ( 2013 ) 23. A. Shafieloo , T. Souradeep , Phys. Rev. D 70 , 043523 ( 2004 ). arXiv:astro-ph/0312174 24. G. Nicholson , C.R. Contaldi , JCAP 0907 , 011 ( 2009 ). arXiv:0903.1106 25. D.K. Hazra , A. Shafieloo , T. Souradeep , Phys. Rev. D 87 , 123528 ( 2013 ). arXiv:1303.5336 26. G. Nicholson , C.R. Contaldi , P. Paykari , JCAP 1001 , 016 ( 2010 ). arXiv:0909.5092 27. P. Hunt , S. Sarkar , arXiv:1510.03338 ( 2015 ) 28. G. Goswami , J. Prasad , Phys. Rev. D 88 , 023522 ( 2013 ). arXiv:1303.4747 29. M. Matsumiya , M. Sasaki , J. Yokoyama , Phys. Rev. D 65 , 083007 ( 2002 ). arXiv:astro-ph/0111549 30. M. Matsumiya , M. Sasaki , J. Yokoyama , JCAP 0302 , 003 ( 2003 ). arXiv:astro-ph/0210365 31. N. Kogo , M. Matsumiya , M. Sasaki , J. Yokoyama , Astrophys . J. 607 , 32 ( 2004 ). arXiv:astro-ph/0309662 32. N. Kogo , M. Sasaki , J. Yokoyama , Prog. Theor. Phys. 114 , 555 ( 2005 ). arXiv:astro-ph/0504471 33. R. Nagata , J. Yokoyama , Phys. Rev. D 78 , 123002 ( 2008 ). arXiv:0809.4537 34. E. Di Valentino , S. Gariazzo , E. Giusarma , O. Mena , Phys. Rev. D 91 , 123505 ( 2015 ). arXiv:1503.00911 35. WMAP, C. Bennett et al., Astrophys. J. Suppl . 208 , 20 ( 2013 ). arXiv:1212.5225 36. Planck Collaboration , P. Ade et al., arXiv:1303. 5062 ( 2013 ) 37. Planck , R. Adam et al., arXiv:1502. 01582 ( 2015 ) 38. A. Gallego Cadavid , Primordial non-Gaussianities produced by features in the potential of single slow-roll inflationary models . Master's thesis , University of Antioquia, 2013 . arXiv:1508.05684 39. A.G. Cadavid , A.E. Romano , S. Gariazzo , Eur. Phys. J. C 76 , 385 ( 2016 ). arXiv:1508.05687 40. H. Motohashi , W. Hu , arXiv:1503.04810 ( 2015 ) 41. E. Komatsu et al., arXiv:0902. 4759 ( 2009 ) 42. F. Arroja , A.E. Romano , M. Sasaki , Phys. Rev. D 84 , 123503 ( 2011 ). arXiv:1106.5384 43. P. Adshead , C. Dvorkin , W. Hu , E.A. Lim , Phys. Rev. D 85 , 023531 ( 2012 ). arXiv:1110.3050 44. X. Chen , R. Easther , E.A. Lim , JCAP 0706 , 023 ( 2007 ). arXiv:astro-ph/0611645 45. X. Chen , R. Easther , E.A. Lim , JCAP 0804 , 010 ( 2008 ). arXiv:0801.3295 46. J.A. Adams , B. Cresswell , R. Easther , Phys. Rev. D 64 , 123514 ( 2001 ). arXiv:astro-ph/0102236 47. J. Chluba , J. Hamann , S.P. Patil , Int. J. Mod. Phys. D 24 , 1530023 ( 2015 ). arXiv:1505.01834 48. X. Chen , JCAP 1201 , 038 ( 2012 ). arXiv:1104.1323 49. G.A. Palma , JCAP 1504 , 035 ( 2015 ). arXiv:1412.5615 50. A.A. Starobinsky , JETP Lett . 55 , 489 ( 1992 ) 51. J. Hamann , L. Covi , A. Melchiorri , A. Slosar , Phys. Rev. D 76 , 023503 ( 2007 ). arXiv:astro-ph/0701380 52. D.K. Hazra , M. Aich , R.K. Jain , L. Sriramkumar , T. Souradeep , JCAP 1010 , 008 ( 2010 ). arXiv:1005.2175 53. D.K. Hazra , A. Shafieloo , G.F. Smoot , A.A. Starobinsky , Phys. Rev. Lett . 113 , 071301 ( 2014 ). arXiv:1404.0360 54. D.K. Hazra , A. Shafieloo , G.F. Smoot , A.A. Starobinsky , JCAP 1408 , 048 ( 2014 ). arXiv:1405.2012 55. J. Martin , L. Sriramkumar , D.K. Hazra , JCAP 1409 , 039 ( 2014 ). arXiv:1404.6093 56. A.G. Cadavid , A.E. Romano , Eur. Phys. J. C 75 , 589 ( 2015 ). arXiv:1404.2985 57. A. Ashoorioon , A. Krause , arXiv:hep-th/ 0607001 ( 2006 ) 58. A. Ashoorioon , A. Krause , K. Turzynski , JCAP 0902 , 014 ( 2009 ). arXiv:0810.4660 59. Y.-F. Cai , E.G.M. Ferreira , B. Hu , J. Quintin , Phys. Rev. D 92 , 121303 ( 2015 ). arXiv:1507.05619 60. M. Joy , V. Sahni , A.A. Starobinsky , Phys. Rev. D 77 , 023514 ( 2008 ). arXiv:0711.1585 61. M. Joy , A. Shafieloo , V. Sahni , A.A. Starobinsky , JCAP 0906 , 028 ( 2009 ). arXiv:0807.3334 62. M.J. Mortonson , C. Dvorkin , H.V. Peiris , W. Hu , Phys. Rev. D 79 , 103519 ( 2009 ). arXiv:0903.4920 63. R. Keisler et al., Astrophys. J . 807 , 151 ( 2015 ). arXiv:1503.02315 64. J.M. Maldacena, JHEP 0305 , 013 ( 2003 ). arXiv:astro-ph/0210603 65. A. Lewis , A. Challinor , A. Lasenby , Astrophys . J. 538 , 473 ( 2000 ). arXiv:astro-ph/9911177 66. A. Lewis , S. Bridle , Phys. Rev. D 66 , 103511 ( 2002 ). arXiv:astro-ph/0205436 67. N. Aghanim et al., Submitted to: Astron. Astrophys . ( 2015 ). arXiv:1507.02704 68. Planck , P.A.R. Ade et al., arXiv:1502. 01589 ( 2015 ) 69. P.A.R. Ade et al., Astrophys. J . 811 , 126 ( 2015 ). arXiv:1502.00643 70. BICEP2 Collaboration, Planck Collaboration , P. Ade et al., Phys. Rev. Lett . 114 , 101301 ( 2015 ). arXiv:1502.00612


This is a preview of a remote PDF: https://link.springer.com/content/pdf/10.1140%2Fepjc%2Fs10052-017-4797-6.pdf

Alexander Gallego Cadavid, Antonio Enea Romano, Stefano Gariazzo. CMB anomalies and the effects of local features of the inflaton potential, The European Physical Journal C, 2017, 242, DOI: 10.1140/epjc/s10052-017-4797-6