Observation of Y(1S) pair production in proton-proton collisions at \( \sqrt{s}=8 \) TeV

Journal of High Energy Physics, May 2017

Pair production of Y(1S) mesons is observed at the LHC in proton-proton collisions at \( \sqrt{s}=8 \) TeV by the CMS experiment in a data sample corresponding to an integrated luminosity of 20.7 fb−1. Both Y(1S) candidates are fully reconstructed via their decays to μ + μ −. The fiducial acceptance region is defined by an absolute Y(1S) rapidity smaller than 2.0. The fiducial cross section for the production of Y(1S) pairs, assuming that both mesons decay isotropically, is measured to be 68.8±12.7 (stat)±7.4 (syst)±2.8 (\( \mathrm{\mathcal{B}} \)) pb, where the third uncertainty comes from the uncertainty in the branching fraction of Y(1S) decays to μ + μ −. Assuming instead that the Y(1S) mesons are produced with different polarizations leads to variations in the measured cross section in the range from −38% to +36%.

A PDF file should load here. If you do not see its contents the file may be temporarily unavailable at the journal website or you do not have a PDF plug-in installed and enabled in your browser.

Alternatively, you can download the file locally and open with any standalone PDF reader:

https://link.springer.com/content/pdf/10.1007%2FJHEP05%282017%29013.pdf

Observation of Y(1S) pair production in proton-proton collisions at \( \sqrt{s}=8 \) TeV

Received: October (1S) pair production in proton-proton collisions at s Open Access 0 1 Copyright CERN 0 1 0 University , Budapest , Hungary 1 4: Also at Universidade Estadual de Campinas , Campinas , Brazil Pair production of smaller than 2.0. The ducial cross section for the production of (1S) pairs, assuming that both mesons decay isotropically, is measured to be 68:8 Hadron-Hadron scattering (experiments); Quarkonium - (1S) mesons is observed at the LHC in proton-proton integrated luminosity of 20.7 fb 1. Both (1S) candidates are fully reconstructed via their . The ducial acceptance region is de ned by an absolute 12:7 (stat) 7:4 (syst) 2:8 (B) pb, where the third uncertainty comes from the uncertainty in the branching fraction of . Assuming instead that the (1S) mesons are produced with di erent polarizations leads to variations in the measured cross section in the range from 1 Introduction 2 3 4 The CMS detector and muon reconstruction Data, simulation, and event selection ciency and acceptance Systematic uncertainties The CMS collaboration The measurement of quarkonium pair production in proton-proton (pp) collisions provides insight into the underlying mechanism of particle production. The production mechanisms of heavy-quarkonium pairs such as J= are especially valuable as they probe these interactions in both perturbative and nonperturbative regimes [1]. In this paper, the rst state, in pp collisions from the CERN LHC at p s = 8 TeV is reported. cross section measurement of (1S) pair production, reconstructed in the four-muon nal Proton collisions can be described by parton models [2] in quantum chromodynamics (QCD). In this framework, each colliding hadron is characterized as a collection of free elementary constituents. Because of the composite nature of hadrons, in a single hadronhadron collision two partons often undergo a single interaction (single-parton scattering, SPS). However, it is also possible that multiple distinct interactions (multiple-parton interactions, MPIs) occur, the simplest case being double-parton scattering (DPS). The SPS mechanism for heavy-quarkonium pair production can be described by a nonrelativistic e ective theory [3] of QCD. However, contributions from the DPS mechanism are not addressed in a simple way within the framework of perturbative QCD [4], and DPS or MPIs are widely invoked to account for the observations that cannot be explained otherwise, such as the rates for multiple heavy- avor production [5]. There are still large uncertainties owing to possible higher-order SPS contributions and the limited knowledge of the proton transverse pro le [6]. Heavy-quarkonium nal states are expected to probe the distribution of gluons in a proton since their production is dominated by gluon-gluon (gg) Quarkonium pair production in pp collisions via DPS is assumed to result from two interactions [7, 8]. Cross section measurements of quarkonium pair production are essential in understanding SPS and DPS contributions and the parton structure of the proton. The rst quarkonium pair production measurement dates back to 1982 when the NA3 experiment at CERN observed direct production of two J= interactions with beam energy of 150 GeV and 280 GeV, where the main contribution is quark-antiquark annihilation. Early theoretical calculations of the pair production cross section assumed only color-singlet states [10{12]. However, because of the high parton ux and high center-of-mass energy at the LHC, DPS is expected to play a signi cant role in quarkonium pair production [13]. independent SPS occurrences [7, 13]. Several DPS production processes, including nal states with associated jets, are commonly described by an e ective cross section ( e ) that characterizes the transverse area of the hard partonic interactions [14, 15]. It is estimated as the product of single quarkonium production cross sections divided by the corresponding DPS quarkonium pair cross section [16]. Assuming the parton distribution functions are not correlated, e is expected to be independent of the nal state and the center-of-mass energy. Recent measurements of e in nal states with jets are in the range 12{20 mb [17{20]. However, measurements of J= pair [21] and J= production in pp collisions yield values of 4.8 and 2.2 mb, respectively. From a di erential cross section measurements of J= pair production with CMS [23], Lansberg and Shao [24] estimate an e ective cross section of 8.2 mb. In this paper, we report the rst observation of (1S) pair production and estimate e using this result, along with The CMS detector and muon reconstruction The central feature of the CMS apparatus is a 13 m long superconducting solenoid of 6 m internal diameter, providing a magnetic eld of 3.8 T. Within the solenoid volume are a silicon pixel and strip tracker, a lead tungstate crystal electromagnetic calorimeter, and a brass and scintillator hadron calorimeter, each composed of a barrel and two endcap sections. Extensive forward calorimetry complements the coverage provided by the barrel and endcap detectors. Muons are measured in gas-ionization detectors embedded in the steel ux-return yoke outside the solenoid. The main subdetectors used for the present analysis are the muon detection system and the silicon tracker. Charged particle trajectories are reconstructed by the silicon tracker in the pseudorapidity range j j < 2:5. The innermost component of the tracker consists of three cylindrical layers of pixel detectors in the barrel region and two endcap disks at each end of the barrel. The strip tracker has 10 barrel layers and 12 endcap disks at each end of the barrel. There are 66 million 100 150 m2 silicon pixels and more than 9 million silicon strips. Strip pitches vary between 80 m and 120 m in the inner barrel, while the inner disk sensors have a pitch between 100 m and 141 m. For charged particles of transverse momentum 1 < pT < 10 GeV and j j < 1:4, the relative track resolution is typically 1.5% in pT and 25{90 (45{50) m in the transverse (longitudinal) impact parameter [25]. The outermost part of the CMS detector is the muon system, which covers j j < 2.4. It consists of four layers of detection planes made of drift tubes, cathode strip chambers, and resistive-plate chambers. Muon reconstruction and identi cation begins within the muon system using hits in the muon chambers. A matching algorithm makes the best association between a track segment in the muon system and a track segment in the inner tracker. A track t is performed combining all hits from both subsystems to select high-purity muon Data are collected with a two-level trigger system. The rst level of the trigger system, composed of custom hardware processors, uses information from the calorimeters and muon detectors to select events that pass the trigger requirements in a xed time interval of about 4 s, of which 1 s is available for data processing. The second stage, the high-level trigger (HLT), is a processor farm that further reduces the event rate from around 100 kHz to less than 1 kHz before data storage. The HLT has full access to all the event information, including tracking, and therefore selections based on algorithms similar to those applied o ine are used. A more detailed description of the CMS detector, together with a de nition of the coordinate system used and the relevant kinematic variables, can be found in ref. [26]. Data, simulation, and event selection The data sample used in this analysis was collected with the CMS detector at the LHC in proton-proton collisions at a center-of-mass energy of 8 TeV and corresponds to an integrated luminosity of 20.7 fb 1 . The average number of simultaneous pp collisions in a bunch crossing (pileup) during this run was 16. Two separate simulated samples that account for the di erent production mechanisms of (1S) meson pairs are used to validate the e ciency and acceptance correction methods and parameterize the kinematic distributions of the data. Strongly correlated pairs produced via SPS are generated with the cascade 2.3.13 simulation program [27], (1S) meson pairs produced via DPS are generated with the pythia 8.1.58 package [28]. The cascade event simulation uses an o -shell matrix-element description of the g g (1S) (1S) production and includes the kT-dependent parton distribution function JH-2013-set2 [29]. The parton evolution follows the CCFM prescription [30{32], which forms a bridge between the DGLAP and BFKL parton resummation models. The CMS detector response is simulated with the Geant4 toolkit [33]. These samples are simulated with the appropriate conditions for the analysed data, including the e ects of alignment, e ciency, and pileup. For the rest of the paper, the notation will be used to denote any pair-wise combination of (1S), (3S) mesons. Candidate events are required to have four or more muons that pass the rst-level muon trigger, of which at least three must be identi ed as muons by the HLT. There must be at least one pair of oppositely charged muons that have an invariant mass M between 8.5 and 11 GeV, and a vertex ( 2) probability greater than 0.5%, as determined from a Kalman- lter algorithm [34]. The o ine selection of candidates begins with a search for four muons with the sum of their charges equal to 0. Selected muons are further required to pass the following quality criteria: tracks of muon candidates must have at least six hits in the silicon tracker, at least one hit in the pixel detector, and they must match at least one muon segment in the muon detector. Loose selection cuts are applied on the longitudinal and transverse impact parameters of the muons to reject muons from cosmic rays and weakly decaying hadrons. To ensure a nearly uniform single-muon acceptance and a well-de ned kinematic region, the muon candidates must have pT > 3:5 GeV and j j < 2:4. To reconstruct the decay, a kinematic t [35] is performed on oppositely charged muon pairs and then on the four muons. The t incorporates the decay and production kinematic properties to reconstruct the full decay chain of the user-de ned process. To be compatible with the trigger requirements, each reconstructed is required to have a vertex t 2 probability larger than 0.5%, as determined by kinematic tting, and an invariant mass between 8.5 and 11 GeV. To suppress contributions from pileup events, all four muons are also required to be associated with a common vertex having a t 2 probability larger than 5%. In order to measure the cross section in a well-de ne kinematic region, both dates must have jy j < 2:0, where y is the rapidity. Some of the events containing more than four muons result in multiple candidates per event since multiple dimuon pairs can pass the trigger and selection requirements. These events constitute about 4% of the selected events and are discarded from further analysis. After all selection criteria are applied, a total of 313 candidates are found. The major contribution of background comes from miscombined muons from Drell-Yan production and semileptonic b ! + X decays that pass the trigger and selection requirements. To extract the signal yield of (1S) (1S) events, a two-dimensional (2D) unbinned extended maximum-likelihood t to the invariant masses of the two reconstructed binations is used. Two kinematic variables are employed to discriminate the signal from the background: the invariant mass of the higher-mass the invariant mass of the lower-mass candidate (M (2)). This choice of variables helps to resolve the ambiguity of having a dimuon pair in which an (2S) candidate appears. There is no visible signal for (3S), which is not considered further in this study. Figure 1 shows the distribution of M (1) versus M (2) after all selection criteria are applied. Five categories candidate (M (1)) and of events are considered to represent the sample of events: 1. events containing a genuine (1S) (1S) pair (labeled signal), 2. events containing a genuine (2S) (1S) pair (labeled 3. events containing a genuine (1S) and two unassociated muons that contribute to the M (2) distribution (labeled 4. events containing a genuine (2S) and two unassociated muons that contribute to the M (2) distribution (labeled 5. events containing four unassociated muons (labeled combinatorial). 50 7 x 6 eV 5 M 4 (50 3 / 2 tse 1 The contributions from other categories (combinatorial{ (1S) and combinatorial{ (2S)), where two unassociated muons form the higher-mass candidate, are found to be consistent with zero. There is no indication of (2S) (2S) events. Each opposite-sign dimuon invariant mass distribution contains the contributions from candidates and a nonresonant background. The signal is modeled as a sum of two Crystal Ball functions [36] with a common mean, labeled DCB, to capture the variation in dimuon resolution as a function of y . The DCB parameters are extracted from the signal SPS simulated sample and xed in the t to the data. The combinatorial background components are modeled with rst-order Chebyshev polynomials (Poly). The distributions of the complete combinatorial background are found to be compatible with those of like-sign dimuon combinations. The yields of the ve event categories and the two slope parameters for the combinatorial background are the free parameters in the t to data. The likelihood function `k for an event k (ignoring the normalisation term for simplicity) is given as: `k = Nsignal [ DCB (1S)(M (1)) DCB (1S)(M (2)) ] + N (2S) (1S) [ DCB (2S)(M (1)) DCB (1S)(M (2)) ] + N (1S) combinatorial [ DCB (1S)(M (1)) Poly(M (2)) ] + N (2S) combinatorial [ DCB (2S)(M (1)) Poly(M (2)) ] + Ncombinatorial [ Poly(M (1)) Poly(M (2)) ]: The yields Ni for the ve categories are determined using the RooFit package [37] by mini ln L, where L = Qk `k is the total extended likelihood function. The extracted yields with this procedure are Nsignal = 38 7 and N (2S) (1S) = 13+65. To evaluate the signi cance of the (1S) (1S) signal, the consistency of the data is checked relative to two hypotheses: a background-only hypothesis (the categories containing (2S){combinatorial, and combinatorial), and a signal hypothesis (the categories containing background and signal). The maximum-likelihood values ree tad15 i muon pair (right). The data are shown by the points. The di erent curves show the contributions of the various event categories from the t. turned from the ts to the signal and background-only hypotheses are denoted by LS and L0, respectively. The resulting statistical signi cance of the signal is calculated as signi cance of the (2S){ (1S) peak, evaluated using the same procedure, is 2.6 standard deviations. The invariant mass distributions of the higher- and lower-mass muon pairs in the data, with the result of the 2D t superimposed, are shown in validated by applying it to simulated samples generated using the probability distribution functions (pdf) that describe the data. No bias in the yields is found, and the likelihood value from the t to the data closely agrees with the mean likelihood value obtained from the simulated samples. ciency and acceptance The muon acceptance is de ned by the geometry of the CMS detector and the kinematic requirements of the analysis, which are established based on studies of simulated (1S) (1S) events. The kinematic variable distributions of the (1S) (1S) system change with the underlying production mechanism. Therefore, to minimize the model dependence, the acceptance and e ciency corrections are calculated on an event-by-event basis using the measured meson and muon momenta. This method was utilized in a similar CMS analysis [23], and is intended to minimize the model dependence of the correction factors. The probability of an event passing the muon acceptance requirements is obtained by repeatedly generating the four-momenta of the four decay muons of the measured in the event. The acceptance correction for each selected event is calculated separately by simulating a large sample of such decays. The acceptance correction factor, ai for an event i, is de ned as the number of times all four muons pass the acceptance criteria divided by the total number of trials. The angular distribution of the decay muons with respect to the direction of ight of the parent (1S) meson, in the (1S) meson rest frame, is assumed to be isotropic. Di erent polarization scenarios of (1S) mesons are considered and discussed later. The e ciency correction for the four-muon system is determined with a dataembedding method that repeatedly substitutes the measured muon four-momenta into di erent simulated events, which are then subjected to the complete CMS detector simulation and reconstruction chain. Each event is simulated with the same pileup scenario as in the corresponding data event. The e ciency correction factor i for the ith event in the data is the number of simulated events that pass the o ine reconstruction and trigger requirements, divided by the total number of simulated events. For each data event, 1000 di erent simulated events are generated. The number of e ciency-corrected signal events, all the selection requirements. mass resolution, typically near the kinematic acceptance of the detector, the measured momenta of reconstructed candidates will be distorted from the original sample. To account for this, scaling factors are determined for both the SPS and DPS simulated samples. First, an average e ciency using a data-embedding method, 1, is calculated as the number of events surviving the trigger and reconstruction requirements, divided by the number of e ciency-corrected events Ntrue. Alternatively, an average e ciency using the generator information, 2, is determined as the number of events satisfying the trigger and reconstruction criteria, divided by the number of events generated within the muon and meson acceptance of the detector. Compared to the rst method, the latter e ciency is based on the originally generated muon momenta. Then, the scaling factor is de ned as the ratio 2 / 1. Scaling factors of 98% and 96% are determined for the SPS and DPS models, respectively. The average of these scaling factors is applied to the data-embedding e ciency. Systematic uncertainties Several sources of systematic uncertainty in the cross section measurement are considered and discussed below. To estimate the uncertainty caused by the imperfect modeling of the data, several variations are checked: (i) the parameters for the (1S) resonance shape that are xed for the maximum-likelihood t are varied by their uncertainty, as determined from the simulated samples; (ii) the (1S) resonance shape is alternatively parameterized with a relativistic Breit-Wigner convolved with a Gaussian function; (iii) (1S) mesons are alternatively parameterized using signal parameters obtained from the DPS simulation samples. The largest di erence in the signal yield among these ts of 7.9% is taken as the corresponding Evaluation of the trigger and reconstruction e ciencies for pair production rely on detector simulation. To estimate the systematic uncertainty owing to the detector simulation, the four-muon e ciency is also calculated from the single-muon e ciencies measured in data with a \tag-and-probe" method [39] that utilizes data samples containing a single J= meson decaying into a muon pair. To calculate the four-muon e ciency using the tag-and-probe method, the correlations among the muons is separately derived from the simulation. A total correlation factor, determined from simulation as a function of the pT and rapidity of the four-muon system, is multiplied by the product of the four singlemuon e ciencies, also measured versus and pT. The di erence of the corrected signal yield with the tag-and-probe method and the data-embedding method of 4.9% is taken as the systematic uncertainty from the simulation. The e ciency correction method is evaluated using the full detector simulation and reconstruction event samples generated according to the two production mechanisms: SPS and DPS. The systematic uncertainty from using the e ciency-correction method, a dataembedding e ciency correction method is applied to obtain the per-event e ciency, i. The e ciency-corrected yield is compared to the number of generated events, and the fractional di erence between the two is used to estimate the uncertainty in the correction method. This procedure is repeated for both simulated samples separately. The systematic uncertainty is then taken to be the larger of the di erences in the two samples and is found Signal SPS and DPS simulated samples are used to estimate the uncertainty in the event-by-event acceptance correction method. A sample of Ngen simulated events are subjected to the acceptance criteria. The event-based acceptance correction is then applied to the events passing the full selection to arrive at a corrected yield, Ng0en. The uncertainty is taken as the relative deviation of Ng0en from Ngen. The larger deviation of 2.8% between the SPS and DPS samples is taken as a systematic uncertainty. The luminosity delivered to CMS is measured based on cluster counting from the pixel detector. The overall systematic uncertainty in the integrated luminosity is estimated to Table 1 provides a summary of the individual systematic uncertainties. The total systematic uncertainty in the (1S) (1S) cross section measurement of 10.7% is calculated as the sum in quadrature of the individual components. In this analysis, are assumed to decay isotropically. To check the sensitivity of the ducial cross section measurement on the (1S) meson decay angular distribution, studies are performed for several extreme polarization scenarios. With de ned as the angle between the (1S) meson rest frame and the direction of the (1S) in the lab frame, the angular distribution is parameterized as 1 + is the polar anisotropic (1S) (1S) yield for di erent polarization assumptions with respect to that for 1 = 2 = 0. parameter [41]. The extreme cases = 0 or = +1 ( 1) corresponds to an isotropic (1S) meson decay or 100% longitudinal (transverse) polarization. The polar anisotropic (1S) candidate, labeled as 2, are varied simultaneously, and table 2 shows a summary of this study. Compared to an isotropic (1S) meson decay, the corrected yield is 38% lower for 1 = 2 = 1 and 36% higher for 1 = 2 = +1. This variation is not included in the total systematic uncertainty, but is quoted separately. The ducial cross section of (1S) pair production, d, is measured for events in which (1S) mesons have jy j < 2:0. It is derived from the measured (1S) pair yield, Nsignal, using the expression: d = where ! is the average correction factor that accounts for the ine ciencies stemming from reconstruction, identi cation, and trigger requirements, as well as the fraction of events lost because of the muon acceptance criteria, L is the integrated luminosity, and B( (1S) ! ) = (2.48 0.05)% is the world-average branching fraction of the The factor ! is the inverse product of per-event e ciencies, i, and acceptances, ai, averaged over the events that pass selection cuts. For the calculation of the total cross section, values of L = 20:7 fb 1 , Nsignal = 38 assumption that both (1S) mesons decay isotropically, the total cross section for pair production is measured to be d = 68:8 the uncertainties are statistical, systematic, and related to the 2:8 (B) pb, where 7, and ! = 23:06 are used. Under the In quarkonium pair production, the measurement of the e ective cross section depends on the fraction of DPS, which is usually estimated either as a residual to the SPS prediction or as the result of a t to the rapidity or azimuthal angle di erence between quarkonia pairs. To estimate e using the ducial (1S) pair production cross section d, the following formula is used [7]: e = where ( ) is the cross section for single- (1S) production [43] extrapolated to the ducial region (jy j < 2:0) and fDPS is the fraction of the DPS contribution. To estimate the e ective cross section, we use ( ) = 7:5 6:6 mb. The cross section for (1S) pair production, assuming SPS with feed states, is 48 pb [8]. This result, combined with our measurement, gives fDPS ' 30%, and with this estimation, e is calculated to be 2:2 mb. These two estimates of e are consistent with the range of values from the heavy-quarkonium measurements (2{8 mb) [21, 22], but are smaller than that from multijet studies (12{20 mb) [17{20]. nal states are dominantly produced from gluon-gluon interactions, while the jet-related channels that correspond to higher values of e are produced by quarkantiquark and quark-gluon parton interactions. The trend in the measured e ective cross section might indicate that the average transverse distance between gluons in the proton is smaller than between quarks, or between quarks and gluons. in proton-proton collisions at p luminosity of 20.7 fb 1 The rst observation of (1S) pair production has been performed with the CMS detector s = 8 TeV from a sample corresponding to an integrated . A signal yield of 38 (1S) (1S) events is measured with a signi cance exceeding ve standard deviations. Using the measured muon kinematic properties in the data, an event-based acceptance and e ciency-correction method is applied, minimizing the model dependence of the cross section measurement. The (1S) pair production measured within the singled = 68:8 2:8 (B) pb, where the muons is assumed to be isotropic. Assuming instead that the (1S) mesons are produced with di erent polarizations leads to variations in the measured cross section in the range 38% to +36%. An e ective cross section is also estimated using our result that is in agreement with the values from heavy-quarkonium measurements, but is smaller than that from multijet studies. We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative sta s at CERN and at other CMS institutes for their contributions to the success of the CMS e ort. In addition, we gratefully acknowledge the computing centers and personnel of the Worldwide LHC Computing Grid for delivering so e ectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: the Austrian Federal Ministry of Science, Research and Economy and the Austrian Science Fund; the Belgian Fonds de la Recherche Scienti que, and Fonds voor Wetenschappelijk Onderzoek; the Brazilian Funding Agencies (CNPq, CAPES, FAPERJ, and FAPESP); the Bulgarian Ministry of Education and Science; CERN; the Chinese Academy of Sciences, Ministry of Science and Technology, and National Natural Science Foundation of China; the Colombian Funding Agency (COLCIENCIAS); the Croatian Ministry of Science, Education and Sport, and the Croatian Science Foundation; the Research Promotion Foundation, Cyprus; the Secretariat for Higher Education, Science, Technology and Innovation, Ecuador; the Ministry of Education and Research, Estonian Research Council via IUT23-4 and IUT236 and European Regional Development Fund, Estonia; the Academy of Finland, Finnish Ministry of Education and Culture, and Helsinki Institute of Physics; the Institut National de Physique Nucleaire et de Physique des Particules / CNRS, and Commissariat a l'Energie Atomique et aux Energies Alternatives / CEA, France; the Bundesministerium fur Bildung und Forschung, Deutsche Forschungsgemeinschaft, and Helmholtz-Gemeinschaft Deutscher Forschungszentren, Germany; the General Secretariat for Research and Technology, Greece; the National Scienti c Research Foundation, and National Innovation O ce, Hungary; the Department of Atomic Energy and the Department of Science and Technology, India; the Institute for Studies in Theoretical Physics and Mathematics, Iran; the Science Foundation, Ireland; the Istituto Nazionale di Fisica Nucleare, Italy; the Ministry of Science, ICT and Future Planning, and National Research Foundation (NRF), Republic of Korea; the Lithuanian Academy of Sciences; the Ministry of Education, and University of Malaya (Malaysia); the Mexican Funding Agencies (BUAP, CINVESTAV, CONACYT, LNS, SEP, and UASLP-FAI); the Ministry of Business, Innovation and Employment, New Zealand; the Pakistan Atomic Energy Commission; the Ministry of Science and Higher Education and the National Science Centre, Poland; the Fundac~ao para a Ci^encia e a Tecnologia, Portugal; JINR, Dubna; the Ministry of Education and Science of the Russian Federation, the Federal Agency of Atomic Energy of the Russian Federation, Russian Academy of Sciences, and the Russian Foundation for Basic Research; the Ministry of Education, Science and Technological Development of Serbia; the Secretar a de Estado de Investigacion, Desarrollo e Innovacion and Programa Consolider-Ingenio 2010, Spain; the Swiss Funding Agencies (ETH Board, ETH Zurich, PSI, SNF, UniZH, Canton Zurich, and SER); the Ministry of Science and Technology, Taipei; the Thailand Center of Excellence in Physics, the Institute for the Promotion of Teaching Science and Technology of Thailand, Special Task Force for Activating Research and the National Science and Technology Development Agency of Thailand; the Scienti c and Technical Research Council of Turkey, and Turkish Atomic Energy Authority; the National Academy of Sciences of Ukraine, and State Fund for Fundamental Researches, Ukraine; the Science and Technology Facilities Council, UK; the US Department of Energy, and the US National Science Foundation. Individuals have received support from the Marie-Curie program and the European Research Council and EPLANET (European Union); the Leventis Foundation; the A. P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Sci ce; the Fonds pour la Formation a la Recherche dans l'Industrie et dans l'Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the Ministry of Education, Youth and Sports (MEYS) of the Czech Republic; the Council of Science and Industrial Research, India; the HOMING PLUS program of the Foundation for Polish Science, co nanced from European Union, Regional Development Fund, the Mobility Plus program of the Ministry of Science and Higher Education, the National Science Center (Poland), contracts Harmonia 2014/14/M/ST2/00428, Opus 2013/11/B/ST2/04202, 2014/13/B/ST2/02543 and 2014/15/B/ST2/03998, Sonatabis 2012/07/E/ST2/01406; the Thalis and Aristeia programs co nanced by EU-ESF and the Greek NSRF; the National Priorities Research Program by Qatar National Research Fund; the Programa Clar n-COFUND del Principado de Asturias; the Rachadapisek Sompot Fund for Postdoctoral Fellowship, Chulalongkorn University and the Chulalongkorn Academic into Its 2nd Century Project Advancement Project (Thailand); and the Welch Foundation, contract C-1845. This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited. [1] A. Andronic et al., Heavy- avour and quarkonium production in the LHC era: from proton-proton to heavy-ion collisions, Eur. Phys. J. C 76 (2016) 107 [arXiv:1506.03981] parton model, North-Holland, Amsterdam The Netherlands (1985). and production of heavy quarkonium, Phys. Rev. D 51 (1995) 1125 [Erratum ibid. D 55 (1997) 5853] [hep-ph/9407339] [INSPIRE]. Collider, JHEP 01 (2011) 070 [arXiv:1007.3095] [INSPIRE]. [5] E.L. Berger, C.B. Jackson and G. Shaughnessy, Characteristics and Estimates of Double Parton Scattering at the Large Hadron Collider, Phys. Rev. D 81 (2010) 014014 [arXiv:0911.5348] [INSPIRE]. QCD, JHEP 03 (2012) 089 [Erratum ibid. 1603 (2016) 001] [arXiv:1111.0910] [INSPIRE]. correlations in the production of J= pairs in proton-proton collisions, Phys. Rev. D 87 (2013) 034035 [arXiv:1210.1806] [INSPIRE]. Phys. Rev. D 87 (2013) 054023 [arXiv:1210.5754] [INSPIRE]. [9] NA3 collaboration, J. Badier et al., Evidence for 150 GeV/c and 280 GeV/c, Phys. Lett. B 114 (1982) 457 [INSPIRE]. Rev. Lett. 36 (1976) 1263 [INSPIRE]. [11] C.E. Carlson and R. Suaya, Hadronic Production of J= Mesons, Phys. Rev. D 14 (1976) parton scattering in hadronic collisions, Phys. Lett. B 705 (2011) 116 [arXiv:1105.6276] [14] G. Calucci and D. Treleani, Proton structure in transverse space and the e ective cross-section, Phys. Rev. D 60 (1999) 054023 [hep-ph/9902479] [INSPIRE]. Nucl. Phys. Proc. Suppl. 71 (1999) 392 [hep-ph/9711225] [INSPIRE]. production of electroweak bosons and heavy mesons at LHCb and the prospects to observe double parton interactions, Phys. Rev. D 93 (2016) 094013 [arXiv:1604.03025] [INSPIRE]. [17] CMS collaboration, Study of double parton scattering using W + 2-jet events in s = 7 TeV, JHEP 03 (2014) 032 [arXiv:1312.5729] [INSPIRE]. [18] ATLAS collaboration, Measurement of hard double-parton interactions in W (! l ) + 2 jet s = 7 TeV with the ATLAS detector, New J. Phys. 15 (2013) 033038 dijet events in pp collisions at ps = 1:96 TeV, Phys. Rev. D 93 (2016) 052008 [19] D0 collaboration, V.M. Abazov et al., Study of double parton interactions in diphoton + proton-proton collisions at p [arXiv:1301.6872] [INSPIRE]. [arXiv:1512.05291] [INSPIRE]. [arXiv:1402.1550] [INSPIRE]. + b=cjet + 2 jet events in pp collisions at p s = 1:96 TeV, Phys. Rev. D 89 (2014) 072006 the Tevatron, Phys. Rev. D 90 (2014) 111101 [arXiv:1406.2380] [INSPIRE]. mesons, Phys. Rev. Lett. 116 (2016) 082002 [arXiv:1511.02428] [INSPIRE]. s = 7 TeV, JHEP 09 (2014) 094 [arXiv:1406.0484] [INSPIRE]. [23] CMS collaboration, Measurement of prompt J= pair production in pp collisions at parton scatterings and large [arXiv:1410.8822] [INSPIRE]. s5 contributions, Phys. Lett. B 751 (2015) 479 [25] CMS collaboration, Description and performance of track and primary-vertex reconstruction with the CMS tracker, 2014 JINST 9 P10009 [arXiv:1405.6569] [INSPIRE]. [26] CMS collaboration, The CMS Experiment at the CERN LHC, 2008 JINST 3 S08004 [27] H. Jung et al., The CCFM Monte Carlo generator CASCADE version 2.2.03, Eur. Phys. J. C 70 (2010) 1237 [arXiv:1008.0152] [INSPIRE]. Phys. Commun. 178 (2008) 852 [arXiv:0710.3820] [INSPIRE]. [29] F. Hautmann and H. Jung, Transverse momentum dependent gluon density from DIS precision data, Nucl. Phys. B 883 (2014) 1 [arXiv:1312.7875] [INSPIRE]. Instrum. Meth. A 506 (2003) 250 [INSPIRE]. Meth. A 262 (1987) 444 [INSPIRE]. Perturbative QCD, Nucl. Phys. B 336 (1990) 18 [INSPIRE]. [32] G. Marchesini, QCD coherence in the structure function and associated distributions at small x, Nucl. Phys. B 445 (1995) 49 [hep-ph/9412327] [INSPIRE]. [34] R. Fruhwirth, Application of Kalman ltering to track and vertex tting, Nucl. Instrum. [35] K. Proko ev and T. Speer, A kinematic t and a decay chain reconstruction library, in Proceedings of Computing in high energy physics and nuclear physics conference , Interlaken [36] M.J. Oreglia, A study of the reactions 0 ! , Ph.D. Thesis, Stanford University, Stanford U.S.A. (1980), SLAC Report SLAC-R-236. (2003) MOLT007 [physics/0306116] [INSPIRE]. hypotheses, Annals Math. Statist. 9 (1938) 60. [38] S.S. Wilks, The large-sample distribution of the likelihood ratio for testing composite s = 7 TeV, 2012 JINST 7 P10002 [arXiv:1206.4071] [INSPIRE]. [39] CMS collaboration, Performance of CMS muon reconstruction in pp collision events at [43] CMS collaboration, Measurement of the (1S); (2S) and (3S) cross sections in pp Update, CMS-PAS-LUM-13-001 (2013). Chin. Phys. C 40 (2016) 100001. Yerevan Physics Institute, Yerevan, Armenia V. Khachatryan, A.M. Sirunyan, A. Tumasyan Institut fur Hochenergiephysik, Wien, Austria W. Adam, E. Asilar, T. Bergauer, J. Brandstetter, E. Brondolin, M. Dragicevic, J. Ero, M. Flechl, M. Friedl, R. Fruhwirth1, V.M. Ghete, C. Hartl, N. Hormann, J. Hrubec, M. Jeitler1, A. Konig, I. Kratschmer, D. Liko, T. Matsushita, I. Mikulec, D. Rabady, N. Rad, B. Rahbaran, H. Rohringer, J. Schieck1, J. Strauss, W. Waltenberger, C.-E. Wulz1 Institute for Nuclear Problems, Minsk, Belarus O. Dvornikov, V. Makarenko, V. Zykunov National Centre for Particle and High Energy Physics, Minsk, Belarus V. Mossolov, N. Shumeiko, J. Suarez Gonzalez Universiteit Antwerpen, Antwerpen, Belgium S. Alderweireldt, E.A. De Wolf, X. Janssen, J. Lauwers, M. Van De Klundert, H. Van Haevermaet, P. Van Mechelen, N. Van Remortel, A. Van Spilbeeck Vrije Universiteit Brussel, Brussel, Belgium S. Abu Zeid, F. Blekman, J. D'Hondt, N. Daci, I. De Bruyn, K. Deroover, S. Lowette, S. Moortgat, L. Moreels, A. Olbrechts, Q. Python, S. Tavernier, W. Van Doninck, P. Van Mulders, I. Van Parijs Universite Libre de Bruxelles, Bruxelles, Belgium H. Brun, B. Clerbaux, G. De Lentdecker, H. Delannoy, G. Fasanella, L. Favart, R. Goldouzian, A. Grebenyuk, G. Karapostoli, T. Lenzi, A. Leonard, J. Luetic, T. Maerschalk, A. Marinov, A. Randle-conde, T. Seva, C. Vander Velde, P. Vanlaer, R. Yonamine, F. Zenoni, F. Zhang2 Ghent University, Ghent, Belgium A. Cimmino, T. Cornelis, D. Dobur, A. Fagot, G. Garcia, M. Gul, I. Khvastunov, D. Poyraz, S. Salva, R. Schofbeck, A. Sharma, M. Tytgat, W. Van Driessche, E. Yazgan, N. Zaganidis Universite Catholique de Louvain, Louvain-la-Neuve, Belgium H. Bakhshiansohi, C. Belu 3, O. Bondu, S. Brochet, G. Bruno, A. Caudron, S. De Visscher, C. Delaere, M. Delcourt, B. Francois, A. Giammanco, A. Jafari, P. Jez, M. Komm, V. Lemaitre, A. Magitteri, A. Mertens, M. Musich, C. Nuttens, K. Piotrzkowski, L. Quertenmont, M. Selvaggi, M. Vidal Marono, S. Wertz Universite de Mons, Mons, Belgium Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil W.L. Alda Junior, F.L. Alves, G.A. Alves, L. Brito, C. Hensel, A. Moraes, M.E. Pol, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil E. Belchior Batista Das Chagas, W. Carvalho, J. Chinellato4, A. Custodio, E.M. Da Costa, G.G. Da Silveira5, D. De Jesus Damiao, C. De Oliveira Martins, S. Fonseca De Souza, L.M. Huertas Guativa, H. Malbouisson, D. Matos Figueiredo, C. Mora Herrera, L. Mundim, H. Nogima, W.L. Prado Da Silva, A. Santoro, A. Sznajder, E.J. Tonelli Manganote4, Universidade Estadual Paulista a, Universidade Federal do ABC b, S~ao Paulo, S. Ahujaa, C.A. Bernardesb, S. Dograa, T.R. Fernandez Perez Tomeia, E.M. Gregoresb, P.G. Mercadanteb, C.S. Moona, S.F. Novaesa, Sandra S. Padulaa, D. Romero Abadb, Institute for Nuclear Research and Nuclear Energy, So a, Bulgaria A. Aleksandrov, R. Hadjiiska, P. Iaydjiev, M. Rodozov, S. Stoykova, G. Sultanov, M. VuUniversity of So a, So a, Bulgaria A. Dimitrov, I. Glushkov, L. Litov, B. Pavlov, P. Petkov Beihang University, Beijing, China H. Zhang, J. Zhao Institute of High Energy Physics, Beijing, China M. Ahmad, J.G. Bian, G.M. Chen, H.S. Chen, M. Chen, Y. Chen7, T. Cheng, C.H. Jiang, D. Leggat, Z. Liu, F. Romeo, S.M. Shaheen, A. Spiezia, J. Tao, C. Wang, Z. Wang, State Key Laboratory of Nuclear Physics and Technology, Peking University, Y. Ban, G. Chen, Q. Li, S. Liu, Y. Mao, S.J. Qian, D. Wang, Z. Xu Universidad de Los Andes, Bogota, Colombia C. Avila, A. Cabrera, L.F. Chaparro Sierra, C. Florez, J.P. Gomez, C.F. Gonzalez Hernandez, J.D. Ruiz Alvarez, J.C. Sanabria University of Split, Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, Split, Croatia N. Godinovic, D. Lelas, I. Puljak, P.M. Ribeiro Cipriano, T. Sculac University of Split, Faculty of Science, Split, Croatia Z. Antunovic, M. Kovac Institute Rudjer Boskovic, Zagreb, Croatia V. Brigljevic, D. Ferencek, K. Kadija, S. Micanovic, L. Sudic, T. Susa University of Cyprus, Nicosia, Cyprus A. Attikis, G. Mavromanolakis, J. Mousa, C. Nicolaou, F. Ptochos, P.A. Razis, H. Rykaczewski, D. Tsiakkouri Charles University, Prague, Czech Republic M. Finger8, M. Finger Jr.8 Universidad San Francisco de Quito, Quito, Ecuador Academy of Scienti c Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt A. Ellithi Kamel9, M.A. Mahmoud10;11, A. Radi11;12 National Institute of Chemical Physics and Biophysics, Tallinn, Estonia B. Calpas, M. Kadastik, M. Murumaa, L. Perrini, M. Raidal, A. Tiko, C. Veelken Department of Physics, University of Helsinki, Helsinki, Finland P. Eerola, J. Pekkanen, M. Voutilainen Helsinki Institute of Physics, Helsinki, Finland J. Harkonen, T. Jarvinen, V. Karimaki, R. Kinnunen, T. Lampen, K. Lassila-Perini, S. Lehti, T. Linden, P. Luukka, J. Tuominiemi, E. Tuovinen, L. Wendland Lappeenranta University of Technology, Lappeenranta, Finland J. Talvitie, T. Tuuva IRFU, CEA, Universite Paris-Saclay, Gif-sur-Yvette, France M. Besancon, F. Couderc, M. Dejardin, D. Denegri, B. Fabbro, J.L. Faure, C. Favaro, F. Ferri, S. Ganjour, S. Ghosh, A. Givernaud, P. Gras, G. Hamel de Monchenault, P. Jarry, I. Kucher, E. Locci, M. Machet, J. Malcles, J. Rander, A. Rosowsky, M. Titov, A. Zghiche Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, Institut Pluridisciplinaire Hubert Curien, Universite de Strasbourg, Universite de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France J.-L. Agram13, J. Andrea, A. Aubin, D. Bloch, J.-M. Brom, M. Buttignol, E.C. Chabert, N. Chanon, C. Collard, E. Conte13, X. Coubez, J.-C. Fontaine13, D. Gele, U. Goerlach, A.-C. Le Bihan, K. Skovpen, P. Van Hove Centre de Calcul de l'Institut National de Physique Nucleaire et de Physique des Particules, CNRS/IN2P3, Villeurbanne, France Universite de Lyon, Universite Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucleaire de Lyon, Villeurbanne, France S. Beauceron, C. Bernet, G. Boudoul, E. Bouvier, C.A. Carrillo Montoya, R. Chierici, D. Contardo, B. Courbon, P. Depasse, H. El Mamouni, J. Fan, J. Fay, S. Gascon, A.L. Pequegnot, S. Perries, A. Popov14, D. Sabes, V. Sordini, M. Vander Donckt, P. Verdier, A. Khvedelidze8 Georgian Technical University, Tbilisi, Georgia Tbilisi State University, Tbilisi, Georgia RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany C. Autermann, S. Beranek, L. Feld, A. Heister, M.K. Kiesel, K. Klein, M. Lipinski, A. Ostapchuk, M. Preuten, F. Raupach, S. Schael, C. Schomakers, J. Schulz, T. Verlage, H. Weber, V. Zhukov14 RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany A. Albert, M. Brodski, E. Dietz-Laursonn, D. Duchardt, M. Endres, M. Erdmann, S. Erdweg, T. Esch, R. Fischer, A. Guth, M. Hamer, T. Hebbeker, C. Heidemann, K. Hoepfner, S. Knutzen, M. Merschmeyer, A. Meyer, P. Millet, S. Mukherjee, M. Olschewski, K. Padeken, T. Pook, M. Radziej, H. Reithler, M. Rieger, F. Scheuch, L. Sonnenschein, RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany V. Cherepanov, G. Flugge, F. Hoehle, B. Kargoll, T. Kress, A. Kunsken, J. Lingemann, T. Muller, A. Nehrkorn, A. Nowack, I.M. Nugent, C. Pistone, O. Pooth, A. Stahl15 Deutsches Elektronen-Synchrotron, Hamburg, Germany M. Aldaya Martin, T. Arndt, C. Asawatangtrakuldee, K. Beernaert, O. Behnke, U. Behrens, A.A. Bin Anuar, K. Borras16, A. Campbell, P. Connor, C. Contreras-Campana, F. Costanza, C. Diez Pardos, G. Dolinska, G. Eckerlin, D. Eckstein, T. Eichhorn, E. Eren, E. Gallo17, J. Garay Garcia, A. Geiser, A. Gizhko, J.M. Grados Luyando, P. Gunnellini, A. Harb, J. Hauk, M. Hempel18, H. Jung, A. Kalogeropoulos, O. Karacheban18, M. Kase mann, J. Keaveney, C. Kleinwort, I. Korol, D. Krucker, W. Lange, A. Lelek, J. Leonard, K. Lipka, A. Lobanov, W. Lohmann18, R. Mankel, I.-A. Melzer-Pellmann, A.B. Meyer, G. Mittag, J. Mnich, A. Mussgiller, E. Ntomari, D. Pitzl, R. Placakyte, A. Raspereza, B. Roland, M.O . Sahin, P. Saxena, T. Schoerner-Sadenius, C. Seitz, S. Spannagel, N. Stefaniuk, G.P. Van Onsem, R. Walsh, C. Wissing University of Hamburg, Hamburg, Germany V. Blobel, M. Centis Vignali, A.R. Draeger, T. Dreyer, E. Garutti, D. Gonzalez, J. Haller, M. Ho mann, A. Junkes, R. Klanner, R. Kogler, N. Kovalchuk, T. Lapsien, T. Lenz, I. Marchesini, D. Marconi, M. Meyer, M. Niedziela, D. Nowatschin, F. Pantaleo15, T. Pei er, A. Perieanu, J. Poehlsen, C. Sander, C. Scharf, P. Schleper, A. Schmidt, S. Schumann, J. Schwandt, H. Stadie, G. Steinbruck, F.M. Stober, M. Stover, H. Tholen, D. Troendle, E. Usai, L. Vanelderen, A. Vanhoefer, B. Vormwald Institut fur Experimentelle Kernphysik, Karlsruhe, Germany M. Akbiyik, C. Barth, S. Baur, C. Baus, J. Berger, E. Butz, R. Caspart, T. Chwalek, I. Topsis-Giotis Institute of Nuclear and Particle Physics (INPP), NCSR Demokritos, Aghia G. Anagnostou, G. Daskalakis, T. Geralis, V.A. Giakoumopoulou, A. Kyriakis, D. Loukas, National and Kapodistrian University of Athens, Athens, Greece S. Kesisoglou, A. Panagiotou, N. Saoulidou, E. Tziaferi University of Ioannina, Ioannina, Greece I. Evangelou, G. Flouris, C. Foudas, P. Kokkas, N. Loukas, N. Manthos, I. Papadopoulos, MTA-ELTE Lendulet CMS Particle and Nuclear Physics Group, Eotvos Lorand University, Budapest, Hungary Wigner Research Centre for Physics, Budapest, Hungary G. Bencze, C. Hajdu, P. Hidas, D. Horvath19, F. Sikler, V. Veszpremi, G. Vesztergombi20, Institute of Nuclear Research ATOMKI, Debrecen, Hungary N. Beni, S. Czellar, J. Karancsi21, A. Makovec, J. Molnar, Z. Szillasi University of Debrecen, Debrecen, Hungary M. Bartok20, P. Raics, Z.L. Trocsanyi, B. Ujvari National Institute of Science Education and Research, Bhubaneswar, India S. Bahinipati, S. Choudhury22, P. Mal, K. Mandal, A. Nayak23, D.K. Sahoo, N. Sahoo, Panjab University, Chandigarh, India S. Bansal, S.B. Beri, V. Bhatnagar, R. Chawla, U.Bhawandeep, A.K. Kalsi, A. Kaur, M. Kaur, R. Kumar, P. Kumari, A. Mehta, M. Mittal, J.B. Singh, G. Walia University of Delhi, Delhi, India Ashok Kumar, A. Bhardwaj, B.C. Choudhary, R.B. Garg, S. Keshri, S. Malhotra, M. Naimuddin, N. Nishu, K. Ranjan, R. Sharma, V. Sharma Saha Institute of Nuclear Physics, Kolkata, India R. Bhattacharya, S. Bhattacharya, K. Chatterjee, S. Dey, S. Dutt, S. Dutta, S. Ghosh, N. Majumdar, A. Modak, K. Mondal, S. Mukhopadhyay, S. Nandan, A. Purohit, A. Roy, D. Roy, S. Roy Chowdhury, S. Sarkar, M. Sharan, S. Thakur Indian Institute of Technology Madras, Madras, India Bhabha Atomic Research Centre, Mumbai, India R. Chudasama, D. Dutta, V. Jha, V. Kumar, A.K. Mohanty15, P.K. Netrakanti, L.M. Pant, P. Shukla, A. Topkar Tata Institute of Fundamental Research-A, Mumbai, India T. Aziz, S. Dugad, G. Kole, B. Mahakud, S. Mitra, G.B. Mohanty, B. Parida, N. Sur, Tata Institute of Fundamental Research-B, Mumbai, India S. Banerjee, S. Bhowmik24, R.K. Dewanjee, S. Ganguly, M. Guchait, Sa. Jain, S. Kumar, M. Maity24, G. Majumder, K. Mazumdar, T. Sarkar24, N. Wickramage25 Indian Institute of Science Education and Research (IISER), Pune, India S. Chauhan, S. Dube, V. Hegde, A. Kapoor, K. Kothekar, S. Pandey, A. Rane, S. Sharma Institute for Research in Fundamental Sciences (IPM), Tehran, Iran H. Behnamian, S. Chenarani26, E. Eskandari Tadavani, S.M. Etesami26, A. Fahim27, M. Khakzad, M. Mohammadi Najafabadi, M. Naseri, S. Paktinat Mehdiabadi28, F. Rezaei Hosseinabadi, B. Safarzadeh29, M. Zeinali University College Dublin, Dublin, Ireland M. Felcini, M. Grunewald INFN Sezione di Bari a, Universita di Bari b, Politecnico di Bari c, Bari, Italy M. Abbresciaa;b, C. Calabriaa;b, C. Caputoa;b, A. Colaleoa, D. Creanzaa;c, L. Cristellaa;b, N. De Filippisa;c, M. De Palmaa;b, L. Fiorea, G. Iasellia;c, G. Maggia;c, M. Maggia, G. Minielloa;b, S. Mya;b, S. Nuzzoa;b, A. Pompilia;b, G. Pugliesea;c, R. Radognaa;b, A. Ranieria, G. Selvaggia;b, L. Silvestrisa;15, R. Vendittia;b, P. Verwilligena INFN Sezione di Bologna a, Universita di Bologna b, Bologna, Italy G. Abbiendia, C. Battilana, D. Bonacorsia;b, S. Braibant-Giacomellia;b, L. Brigliadoria;b, R. Campaninia;b, P. Capiluppia;b, A. Castroa;b, F.R. Cavalloa, S.S. Chhibraa;b, G. Codispotia;b, M. Cu ania;b, G.M. Dallavallea, F. Fabbria, A. Fanfania;b, D. Fasanellaa;b, P. Giacomellia, C. Grandia, L. Guiduccia;b, S. Marcellinia, G. Masettia, A. Montanaria, F.L. Navarriaa;b, A. Perrottaa, A.M. Rossia;b, T. Rovellia;b, G.P. Sirolia;b, N. Tosia;b;15 INFN Sezione di Catania a, Universita di Catania b, Catania, Italy S. Albergoa;b, M. Chiorbolia;b, S. Costaa;b, A. Di Mattiaa, F. Giordanoa;b, R. Potenzaa;b, A. Tricomia;b, C. Tuvea;b INFN Sezione di Firenze a, Universita di Firenze b, Firenze, Italy G. Barbaglia, V. Ciullia;b, C. Civininia, R. D'Alessandroa;b, E. Focardia;b, V. Goria;b, P. Lenzia;b, M. Meschinia, S. Paolettia, G. Sguazzonia, L. Viliania;b;15 INFN Laboratori Nazionali di Frascati, Frascati, Italy L. Benussi, S. Bianco, F. Fabbri, D. Piccolo, F. Primavera15 INFN Sezione di Genova a, Universita di Genova b, Genova, Italy V. Calvellia;b, F. Ferroa, M. Lo Veterea;b, M.R. Mongea;b, E. Robuttia, S. Tosia;b INFN Sezione di Milano-Bicocca a, Universita di Milano-Bicocca b, Milano, INFN Sezione di Napoli a, Universita di Napoli 'Federico II' b, Napoli, Italy, Universita della Basilicata c, Potenza, Italy, Universita G. Marconi d, Roma, S. Buontempoa, N. Cavalloa;c, G. De Nardo, S. Di Guidaa;d;15, M. Espositoa;b, F. Fabozzia;c, F. Fiengaa;b, A.O.M. Iorioa;b, G. Lanzaa, L. Listaa, S. Meolaa;d;15, P. Paoluccia;15, C. Sciaccaa;b, F. Thyssen INFN Sezione di Padova a, Universita di Padova b, Padova, Italy, Universita di Trento c, Trento, Italy P. Azzia;15, N. Bacchettaa, L. Benatoa;b, D. Biselloa;b, A. Bolettia;b, R. Carlina;b, P. Checchiaa, M. Dall'Ossoa;b, P. De Castro Manzanoa, T. Dorigoa, U. Dossellia, F. Gasparinia;b, U. Gasparinia;b, A. Gozzelinoa, S. Lacapraraa, M. Margonia;b, G. Marona;30, A.T. Meneguzzoa;b, M. Michelottoa, J. Pazzinia;b, M. Pegoraroa, N. Pozzobona;b, P. Ronchesea;b, F. Simonettoa;b, M. Zanetti, G. Zumerlea;b INFN Sezione di Pavia a, Universita di Pavia b, Pavia, Italy A. Braghieria, A. Magnania;b, P. Montagnaa;b, S.P. Rattia;b, V. Rea, C. Riccardia;b, P. Salvinia, I. Vaia;b, P. Vituloa;b INFN Sezione di Perugia a, Universita di Perugia b, Perugia, Italy L. Alunni Solestizia;b, G.M. Bileia, D. Ciangottinia;b, L. Fanoa;b, P. Laricciaa;b, R. Leonardia;b, G. Mantovania;b, M. Menichellia, A. Sahaa, A. Santocchiaa;b INFN Sezione di Pisa a, Universita di Pisa b, Scuola Normale Superiore di Pisa c, Pisa, Italy K. Androsova;31, P. Azzurria;15, G. Bagliesia, J. Bernardinia, T. Boccalia, R. Castaldia, M.A. Cioccia;31, R. Dell'Orsoa, S. Donatoa;c, G. Fedi, A. Giassia, M.T. Grippoa;31, F. Ligabuea;c, T. Lomtadzea, L. Martinia;b, A. Messineoa;b, F. Pallaa, A. Rizzia;b, A. SavoyNavarroa;32, P. Spagnoloa, R. Tenchinia, G. Tonellia;b, A. Venturia, P.G. Verdinia INFN Sezione di Roma a, Universita di Roma b, Roma, Italy L. Baronea;b, F. Cavallaria, M. Cipriania;b, D. Del Rea;b;15, M. Diemoza, S. Gellia;b, E. Longoa;b, F. Margarolia;b, P. G. Organtinia;b, R. Paramattia, F. Preiatoa;b, S. Rahatloua;b, C. Rovellia, F. Santanastasioa;b INFN Sezione di Torino a, Universita di Torino b, Torino, Italy, Universita del Piemonte Orientale c, Novara, Italy N. Amapanea;b, R. Arcidiaconoa;c;15, S. Argiroa;b, M. Arneodoa;c, N. Bartosika, R. Bellana;b, C. Biinoa, N. Cartigliaa, M. Costaa;b, G. Cottoa;b, R. Covarellia;b, P. De Remigisa, A. Deganoa;b, N. Demariaa, L. Fincoa;b, B. Kiania;b, C. Mariottia, S. Masellia, E. Migliorea;b, V. Monacoa;b, E. Monteila;b, M.M. Obertinoa;b, L. Pachera;b, N. Pastronea, M. Pelliccionia, G.L. Pinna Angionia;b, F. Raveraa;b, A. Romeroa;b, M. Ruspaa;c, R. Sacchia;b, V. Solaa, A. Solanoa;b, A. Staianoa, P. Traczyka;b INFN Sezione di Trieste a, Universita di Trieste b, Trieste, Italy S. Belfortea, M. Casarsaa, F. Cossuttia, G. Della Riccaa;b, A. Zanettia Kyungpook National University, Daegu, Korea D.H. Kim, G.N. Kim, M.S. Kim, S. Lee, S.W. Lee, Y.D. Oh, S. Sekmen, D.C. Son, A. Lee Chonbuk National University, Jeonju, Korea Chonnam National University, Institute for Universe and Elementary Particles, Hanyang University, Seoul, Korea J.A. Brochero Cifuentes, T.J. Kim Korea University, Seoul, Korea S. Lee, J. Lim, S.K. Park, Y. Roh Seoul National University, Seoul, Korea University of Seoul, Seoul, Korea M. Choi, H. Kim, J.H. Kim, J.S.H. Lee, I.C. Park, G. Ryu, M.S. Ryu Sungkyunkwan University, Suwon, Korea Y. Choi, J. Goh, C. Hwang, J. Lee, I. Yu Vilnius University, Vilnius, Lithuania V. Dudenas, A. Juodagalvis, J. Vaitkus S. Cho, S. Choi, Y. Go, D. Gyun, S. Ha, B. Hong, Y. Jo, Y. Kim, B. Lee, K. Lee, K.S. Lee, J. Almond, J. Kim, H. Lee, S.B. Oh, B.C. Radburn-Smith, S.h. Seo, U.K. Yang, H.D. Yoo, { 22 { National Centre for Particle Physics, Universiti Malaya, Kuala Lumpur, Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico H. Castilla-Valdez, E. De La Cruz-Burelo, I. Heredia-De La Cruz35, A. Hernandez-Almada, R. Lopez-Fernandez, R. Magan~a Villalba, J. Mejia Guisao, A. Sanchez-Hernandez Universidad Iberoamericana, Mexico City, Mexico S. Carrillo Moreno, C. Oropeza Barrera, F. Vazquez Valencia Benemerita Universidad Autonoma de Puebla, Puebla, Mexico S. Carpinteyro, I. Pedraza, H.A. Salazar Ibarguen, C. Uribe Estrada Universidad Autonoma de San Luis Potos , San Luis Potos , Mexico A. Morelos Pineda University of Auckland, Auckland, New Zealand University of Canterbury, Christchurch, New Zealand National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan A. Ahmad, M. Ahmad, Q. Hassan, H.R. Hoorani, W.A. Khan, A. Saddique, M.A. Shah, M. Shoaib, M. Waqas National Centre for Nuclear Research, Swierk, Poland H. Bialkowska, M. Bluj, B. Boimska, T. Frueboes, M. Gorski, M. Kazana, K. Nawrocki, K. Romanowska-Rybinska, M. Szleper, P. Zalewski Institute of Experimental Physics, Faculty of Physics, University of Warsaw, K. Bunkowski, A. Byszuk36, K. Doroba, A. Kalinowski, M. Konecki, J. Krolikowski, M. Misiura, M. Olszewski, M. Walczak Laboratorio de Instrumentac~ao e F sica Experimental de Part culas, Lisboa, Joint Institute for Nuclear Research, Dubna, Russia S. Afanasiev, P. Bunin, M. Gavrilenko, I. Golutvin, I. Gorbunov, A. Kamenev, V. Karjavin, A. Lanev, A. Malakhov, V. Matveev37;38, V. Palichik, V. Perelygin, S. Shmatov, S. Shulha, N. Skatchkov, V. Smirnov, N. Voytishin, A. Zarubin Petersburg Nuclear Physics Institute, Gatchina (St. Petersburg), Russia L. Chtchipounov, V. Golovtsov, Y. Ivanov, V. Kim39, E. Kuznetsova40, V. Murzin, V. Oreshkin, V. Sulimov, A. Vorobyev Institute for Nuclear Research, Moscow, Russia Yu. Andreev, A. Dermenev, S. Gninenko, N. Golubev, A. Karneyeu, M. Kirsanov, N. Krasnikov, A. Pashenkov, D. Tlisov, A. Toropin Institute for Theoretical and Experimental Physics, Moscow, Russia V. Epshteyn, V. Gavrilov, N. Lychkovskaya, V. Popov, I. Pozdnyakov, G. Safronov, A. Spiridonov, M. Toms, E. Vlasov, A. Zhokin Moscow Institute of Physics and Technology A. Bylinkin38 National Research Nuclear University 'Moscow Engineering Physics InstiR. Chistov41, M. Danilov41, V. Rusinov P.N. Lebedev Physical Institute, Moscow, Russia V. Andreev, M. Azarkin38, I. Dremin38, M. Kirakosyan, A. Leonidov38, S.V. Rusakov, Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, A. Baskakov, A. Belyaev, E. Boos, M. Dubinin42, L. Dudko, A. Ershov, A. Gribushin, V. Klyukhin, O. Kodolova, I. Lokhtin, I. Miagkov, S. Obraztsov, S. Petrushanko, V. Savrin, Novosibirsk State University (NSU), Novosibirsk, Russia V. Blinov43, Y.Skovpen43, D. Shtol43 State Research Center of Russian Federation, Institute for High Energy Physics, Protvino, Russia I. Azhgirey, I. Bayshev, S. Bitioukov, D. Elumakhov, V. Kachanov, A. Kalinin, D. Konstantinov, V. Krychkine, V. Petrov, R. Ryutin, A. Sobol, S. Troshin, N. Tyurin, A. Uzunian, University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia P. Adzic44, P. Cirkovic, D. Devetak, M. Dordevic, J. Milosevic, V. Rekovic J. Alcaraz Maestre, M. Barrio Luna, E. Calvo, M. Cerrada, M. Chamizo Llatas, N. Colino, B. De La Cruz, A. Delgado Peris, A. Escalante Del Valle, C. Fernandez Bedoya, J.P. Fernandez Ramos, J. Flix, M.C. Fouz, P. Garcia-Abia, O. Gonzalez Lopez, S. Goy Lopez, J.M. Hernandez, M.I. Josa, E. Navarro De Martino, A. Perez-Calero Yzquierdo, J. Puerta Pelayo, A. Quintario Olmeda, I. Redondo, L. Romero, M.S. Soares Universidad Autonoma de Madrid, Madrid, Spain J.F. de Troconiz, M. Missiroli, D. Moran Universidad de Oviedo, Oviedo, Spain J. Cuevas, J. Fernandez Menendez, I. Gonzalez Caballero, J.R. Gonzalez Fernandez, E. Palencia Cortezon, S. Sanchez Cruz, I. Suarez Andres, J.M. Vizan Garcia Instituto de F sica de Cantabria (IFCA), CSIC-Universidad de Cantabria, Gomez, T. Rodrigo, A. Ruiz-Jimeno, L. Scodellaro, N. Trevisani, I. Vila, R. Vilar CERN, European Organization for Nuclear Research, Geneva, Switzerland D. Abbaneo, E. Au ray, G. Auzinger, M. Bachtis, P. Baillon, A.H. Ball, D. Barney, P. Bloch, A. Bocci, A. Bonato, C. Botta, T. Camporesi, R. Castello, M. Cepeda, G. Cerminara, M. D'Alfonso, D. d'Enterria, A. Dabrowski, V. Daponte, A. David, M. De Gruttola, A. De Roeck, E. Di Marco45, M. Dobson, B. Dorney, T. du Pree, D. Duggan, M. Dunser, N. Dupont, A. Elliott-Peisert, S. Fartoukh, G. Franzoni, J. Fulcher, W. Funk, D. Gigi, K. Gill, M. Girone, F. Glege, D. Gulhan, S. Gundacker, M. Gutho , J. Hammer, P. Harris, J. Hegeman, V. Innocente, P. Janot, J. Kieseler, H. Kirschenmann, V. Knunz, A. Kornmayer15, M.J. Kortelainen, K. Kousouris, M. Krammer1, C. Lange, P. Lecoq, C. Lourenco, M.T. Lucchini, L. Malgeri, M. Mannelli, A. Martelli, F. Meijers, J.A. Merlin, S. Mersi, E. Meschi, P. Milenovic46, F. Moortgat, S. Morovic, M. Mulders, H. Neugebauer, M. Stoye, Y. Takahashi, M. Tosi, D. Treille, A. Triossi, A. Tsirou, V. Veckalns49, G.I. Veres20, N. Wardle, H.K. Wohri, A. Zagozdzinska36, W.D. Zeuner Paul Scherrer Institut, Villigen, Switzerland W. Bertl, K. Deiters, W. Erdmann, R. Horisberger, Q. Ingram, H.C. Kaestli, D. Kotlinski, U. Langenegger, T. Rohe Institute for Particle Physics, ETH Zurich, Zurich, Switzerland F. Bachmair, L. Bani, L. Bianchini, B. Casal, G. Dissertori, M. Dittmar, M. Donega, C. Grab, C. Heidegger, D. Hits, J. Hoss, G. Kasieczka, P. Lecomtey, W. Lustermann, B. Mangano, M. Marionneau, P. Martinez Ruiz del Arbol, M. Masciovecchio, M.T. Meinhard, D. Meister, F. Micheli, P. Musella, F. Nessi-Tedaldi, F. Pandol , J. Pata, F. Pauss, G. Perrin, L. Perrozzi, M. Quittnat, M. Rossini, M. Schonenberger, A. Starodumov50, V.R. Tavolaro, K. Theo latos, R. Wallny Universitat Zurich, Zurich, Switzerland T.K. Aarrestad, C. Amsler51, L. Caminada, M.F. Canelli, A. De Cosa, C. Galloni, A. Hinzmann, T. Hreus, B. Kilminster, J. Ngadiuba, D. Pinna, G. Rauco, P. Robmann, D. Salerno, Y. Yang, A. Zucchetta National Central University, Chung-Li, Taiwan V. Candelise, T.H. Doan, Sh. Jain, R. Khurana, M. Konyushikhin, C.M. Kuo, W. Lin, Y.J. Lu, A. Pozdnyakov, S.S. Yu National Taiwan University (NTU), Taipei, Taiwan Arun Kumar, P. Chang, Y.H. Chang, Y.W. Chang, Y. Chao, K.F. Chen, P.H. Chen, A. Psallidas, J.f. Tsai, Y.M. Tzeng Chulalongkorn University, Faculty of Science, Department of Physics, Bangkok, B. Asavapibhop, G. Singh, N. Srimanobhas, N. Suwonjandee Cukurova University, Adana, Turkey A. Adiguzel, S. Damarseckin, Z.S. Demiroglu, C. Dozen, E. Eskut, S. Girgis, G. Gokbulut, Y. Guler, I. Hos, E.E. Kangal52, O. Kara, A. Kayis Topaksu, U. Kiminsu, M. Oglakci, G. Onengut53, K. Ozdemir54, S. Ozturk55, A. Polatoz, B. Tali56, S. Turkcapar, I.S. Zor bakir, C. Zorbilmez Middle East Technical University, Physics Department, Ankara, Turkey B. Bilin, S. Bilmis, B. Isildak57, G. Karapinar58, M. Yalvac, M. Zeyrek Bogazici University, Istanbul, Turkey E. Gulmez, M. Kaya59, O. Kaya60, E.A. Yetkin61, T. Yetkin62 Istanbul Technical University, Istanbul, Turkey A. Cakir, K. Cankocak, S. Sen63 Institute for Scintillation Materials of National Academy of Science of Ukraine, L. Levchuk, P. Sorokin National Scienti c Center, Kharkov Institute of Physics and Technology, University of Bristol, Bristol, U.K. R. Aggleton, F. Ball, L. Beck, J.J. Brooke, D. Burns, E. Clement, D. Cussans, H. Flacher, J. Goldstein, M. Grimes, G.P. Heath, H.F. Heath, J. Jacob, L. Kreczko, C. Lucas, D.M. Newbold64, S. Paramesvaran, A. Poll, T. Sakuma, S. Seif El Nasr-storey, D. Smith, Rutherford Appleton Laboratory, Didcot, U.K. K.W. Bell, A. Belyaev65, C. Brew, R.M. Brown, L. Calligaris, D. Cieri, D.J.A. Cockerill, J.A. Coughlan, K. Harder, S. Harper, E. Olaiya, D. Petyt, C.H. Shepherd-Themistocleous, A. Thea, I.R. Tomalin, T. Williams M. Baber, R. Bainbridge, O. Buchmuller, A. Bundock, D. Burton, S. Casasso, M. Citron, D. Colling, L. Corpe, P. Dauncey, G. Davies, A. De Wit, M. Della Negra, R. Di Maria, P. Dunne, A. Elwood, D. Futyan, Y. Haddad, G. Hall, G. Iles, T. James, R. Lane, C. Laner, R. Lucas64, L. Lyons, A.-M. Magnan, S. Malik, L. Mastrolorenzo, J. Nash, A. Nikitenko50, J. Pela, B. Penning, M. Pesaresi, D.M. Raymond, A. Richards, A. Rose, C. Seez, S. Summers, A. Tapper, K. Uchida, M. Vazquez Acosta66, T. Virdee15, J. Wright, Brunel University, Uxbridge, U.K. Baylor University, Waco, U.S.A. J.E. Cole, P.R. Hobson, A. Khan, P. Kyberd, D. Leslie, I.D. Reid, P. Symonds, L. TeodorA. Borzou, K. Call, J. Dittmann, K. Hatakeyama, H. Liu, N. Pastika The University of Alabama, Tuscaloosa, U.S.A. O. Charaf, S.I. Cooper, C. Henderson, P. Rumerio, C. West Boston University, Boston, U.S.A. Brown University, Providence, U.S.A. G. Benelli, E. Berry, D. Cutts, A. Garabedian, J. Hakala, U. Heintz, J.M. Hogan, O. Jesus, K.H.M. Kwok, E. Laird, G. Landsberg, Z. Mao, M. Narain, S. Piperov, S. Sagir, E. Spencer, University of California, Davis, Davis, U.S.A. R. Breedon, G. Breto, D. Burns, M. Calderon De La Barca Sanchez, S. Chauhan, M. Chertok, J. Conway, R. Conway, P.T. Cox, R. Erbacher, C. Flores, G. Funk, M. Gardner, W. Ko, R. Lander, C. Mclean, M. Mulhearn, D. Pellett, J. Pilot, S. Shalhout, J. Smith, M. Squires, D. Stolp, M. Tripathi, S. Wilbur, R. Yohay University of California, Los Angeles, U.S.A. C. Bravo, R. Cousins, A. Dasgupta, P. Everaerts, A. Florent, J. Hauser, M. Ignatenko, N. Mccoll, D. Saltzberg, C. Schnaible, E. Takasugi, V. Valuev, M. Weber University of California, Riverside, Riverside, U.S.A. K. Burt, R. Clare, J. Ellison, J.W. Gary, S.M.A. Ghiasi Shirazi, G. Hanson, J. Heilman, P. Jandir, E. Kennedy, F. Lacroix, O.R. Long, M. Olmedo Negrete, M.I. Paneva, A. Shrinivas, W. Si, H. Wei, S. Wimpenny, B. R. Yates University of California, San Diego, La Jolla, U.S.A. J.G. Branson, G.B. Cerati, S. Cittolin, M. Derdzinski, R. Gerosa, A. Holzner, D. Klein, V. Krutelyov, J. Letts, I. Macneill, D. Olivito, S. Padhi, M. Pieri, M. Sani, V. Sharma, S. Simon, M. Tadel, A. Vartak, S. Wasserbaech67, C. Welke, J. Wood, F. Wurthwein, A. Yagil, G. Zevi Della Porta University of California, Santa Barbara - Department of Physics, Santa Bar N. Amin, R. Bhandari, J. Bradmiller-Feld, C. Campagnari, A. Dishaw, V. Dutta, K. Flowers, M. Franco Sevilla, P. Ge ert, C. George, F. Golf, L. Gouskos, J. Gran, R. Heller, J. Incandela, S.D. Mullin, A. Ovcharova, J. Richman, D. Stuart, I. Suarez, J. Yoo California Institute of Technology, Pasadena, U.S.A. D. Anderson, A. Apresyan, J. Bendavid, A. Bornheim, J. Bunn, Y. Chen, J. Duarte, J.M. Lawhorn, A. Mott, H.B. Newman, C. Pena, M. Spiropulu, J.R. Vlimant, S. Xie, Carnegie Mellon University, Pittsburgh, U.S.A. University of Colorado Boulder, Boulder, U.S.A. J.P. Cumalat, W.T. Ford, F. Jensen, A. Johnson, M. Krohn, T. Mulholland, K. Stenson, Cornell University, Ithaca, U.S.A. J. Alexander, J. Chaves, J. Chu, S. Dittmer, K. Mcdermott, N. Mirman, G. Nicolas Kaufman, J.R. Patterson, A. Rinkevicius, A. Ryd, L. Skinnari, L. So , S.M. Tan, Z. Tao, J. Thom, J. Tucker, P. Wittich, M. Zientek Fair eld University, Fair eld, U.S.A. Fermi National Accelerator Laboratory, Batavia, U.S.A. S. Abdullin, M. Albrow, G. Apollinari, S. Banerjee, L.A.T. Bauerdick, A. Beretvas, J. Berryhill, P.C. Bhat, G. Bolla, K. Burkett, J.N. Butler, H.W.K. Cheung, F. Chlebana, S. Cihangiry, M. Cremonesi, V.D. Elvira, I. Fisk, J. Freeman, E. Gottschalk, L. Gray, D. Green, S. Grunendahl, O. Gutsche, D. Hare, R.M. Harris, S. Hasegawa, J. Hirschauer, Z. Hu, B. Jayatilaka, S. Jindariani, M. Johnson, U. Joshi, B. Klima, B. Kreis, S. Lammel, J. Linacre, D. Lincoln, R. Lipton, T. Liu, R. Lopes De Sa, J. Lykken, K. Maeshima, N. Magini, J.M. Marra no, S. Maruyama, D. Mason, P. McBride, P. Merkel, S. Mrenna, S. Nahn, C. Newman-Holmesy, V. O'Dell, K. Pedro, O. Prokofyev, G. Rakness, L. Ristori, E. Sexton-Kennedy, A. Soha, W.J. Spalding, L. Spiegel, S. Stoynev, N. Strobbe, L. Taylor, S. Tkaczyk, N.V. Tran, L. Uplegger, E.W. Vaandering, C. Vernieri, M. Verzocchi, R. Vidal, M. Wang, H.A. Weber, A. Whitbeck University of Florida, Gainesville, U.S.A. D. Acosta, P. Avery, P. Bortignon, D. Bourilkov, A. Brinkerho , A. Carnes, M. Carver, D. Curry, S. Das, R.D. Field, I.K. Furic, J. Konigsberg, A. Korytov, J.F. Low, P. Ma, K. Matchev, H. Mei, G. Mitselmakher, D. Rank, L. Shchutska, D. Sperka, L. Thomas, J. Wang, S. Wang, J. Yelton Florida International University, Miami, U.S.A. S. Linn, P. Markowitz, G. Martinez, J.L. Rodriguez A. Ackert, J.R. Adams, T. Adams, A. Askew, S. Bein, B. Diamond, S. Hagopian, V. Hagopian, K.F. Johnson, A. Khatiwada, H. Prosper, A. Santra Florida Institute of Technology, Melbourne, U.S.A. M.M. Baarmand, V. Bhopatkar, S. Colafranceschi68, M. Hohlmann, D. Noonan, T. Roy, University of Illinois at Chicago (UIC), Chicago, U.S.A. M.R. Adams, L. Apanasevich, D. Berry, R.R. Betts, I. Bucinskaite, R. Cavanaugh, O. Evdokimov, L. Gauthier, C.E. Gerber, D.J. Hofman, K. Jung, P. Kurt, C. O'Brien, I.D. Sandoval Gonzalez, P. Turner, N. Varelas, H. Wang, Z. Wu, M. Zakaria, J. Zhang The University of Iowa, Iowa City, U.S.A. B. Bilki69, W. Clarida, K. Dilsiz, S. Durgut, R.P. Gandrajula, M. Haytmyradov, V. Khristenko, J.-P. Merlo, H. Mermerkaya70, A. Mestvirishvili, A. Moeller, J. Nachtman, H. Ogul, Y. Onel, F. Ozok71, A. Penzo, C. Snyder, E. Tiras, J. Wetzel, K. Yi Johns Hopkins University, Baltimore, U.S.A. I. Anderson, B. Blumenfeld, A. Cocoros, N. Eminizer, D. Fehling, L. Feng, A.V. Gritsan, P. Maksimovic, C. Martin, M. Osherson, J. Roskes, U. Sarica, M. Swartz, M. Xiao, Y. Xin, The University of Kansas, Lawrence, U.S.A. A. Al-bataineh, P. Baringer, A. Bean, S. Boren, J. Bowen, C. Bruner, J. Castle, L. Forthomme, R.P. Kenny III, A. Kropivnitskaya, D. Majumder, W. Mcbrayer, M. Murray, S. Sanders, R. Stringer, J.D. Tapia Takaki, Q. Wang Kansas State University, Manhattan, U.S.A. A. Ivanov, K. Kaadze, S. Khalil, Y. Maravin, A. Mohammadi, L.K. Saini, N. Skhirtladze, Lawrence Livermore National Laboratory, Livermore, U.S.A. F. Rebassoo, D. Wright University of Maryland, College Park, U.S.A. C. Anelli, A. Baden, O. Baron, A. Belloni, B. Calvert, S.C. Eno, C. Ferraioli, J.A. Gomez, N.J. Hadley, S. Jabeen, R.G. Kellogg, T. Kolberg, J. Kunkle, Y. Lu, A.C. Mignerey, F. Ricci-Tam, Y.H. Shin, A. Skuja, M.B. Tonjes, S.C. Tonwar Massachusetts Institute of Technology, Cambridge, U.S.A. D. Abercrombie, B. Allen, A. Apyan, R. Barbieri, A. Baty, R. Bi, K. Bierwagen, S. Brandt, W. Busza, I.A. Cali, Z. Demiragli, L. Di Matteo, G. Gomez Ceballos, M. Goncharov, D. Hsu, Y. Iiyama, G.M. Innocenti, M. Klute, D. Kovalskyi, K. Krajczar, Y.S. Lai, Y.-J. Lee, A. Levin, P.D. Luckey, B. Maier, A.C. Marini, C. Mcginn, C. Mironov, S. Narayanan, X. Niu, C. Paus, C. Roland, G. Roland, J. Salfeld-Nebgen, G.S.F. Stephans, K. Sumorok, K. Tatar, M. Varma, D. Velicanu, J. Veverka, J. Wang, T.W. Wang, B. Wyslouch, M. Yang, V. Zhukova A.C. Benvenuti, R.M. Chatterjee, A. Evans, A. Finkel, A. Gude, P. Hansen, S. Kalafut, S.C. Kao, Y. Kubota, Z. Lesko, J. Mans, S. Nourbakhsh, N. Ruckstuhl, R. Rusack, N. Tambe, J. Turkewitz University of Mississippi, Oxford, U.S.A. J.G. Acosta, S. Oliveros University of Nebraska-Lincoln, Lincoln, U.S.A. E. Avdeeva, R. Bartek, K. Bloom, D.R. Claes, A. Dominguez72, C. Fangmeier, R. Gonzalez Suarez, R. Kamalieddin, I. Kravchenko, A. Malta Rodrigues, F. Meier, J. Monroy, J.E. Siado, G.R. Snow, B. Stieger State University of New York at Bu alo, Bu alo, U.S.A. M. Alyari, J. Dolen, J. George, A. Godshalk, C. Harrington, I. Iashvili, J. Kaisen, A. Kharchilava, A. Kumar, A. Parker, S. Rappoccio, B. Roozbahani Northeastern University, Boston, U.S.A. G. Alverson, E. Barberis, A. Hortiangtham, A. Massironi, D.M. Morse, D. Nash, T. Orimoto, R. Teixeira De Lima, D. Trocino, R.-J. Wang, D. Wood Northwestern University, Evanston, U.S.A. S. Bhattacharya, K.A. Hahn, A. Kubik, A. Kumar, N. Mucia, N. Odell, B. Pollack, M.H. Schmitt, K. Sung, M. Trovato, M. Velasco University of Notre Dame, Notre Dame, U.S.A. N. Dev, M. Hildreth, K. Hurtado Anampa, C. Jessop, D.J. Karmgard, N. Kellams, K. Lannon, N. Marinelli, F. Meng, C. Mueller, Y. Musienko37, M. Planer, A. Reinsvold, R. Ruchti, G. Smith, S. Taroni, M. Wayne, M. Wolf, A. Woodard The Ohio State University, Columbus, U.S.A. J. Alimena, L. Antonelli, J. Brinson, B. Bylsma, L.S. Durkin, S. Flowers, B. Francis, A. Hart, C. Hill, R. Hughes, W. Ji, B. Liu, W. Luo, D. Puigh, B.L. Winer, H.W. Wulsin Princeton University, Princeton, U.S.A. S. Cooperstein, O. Driga, P. Elmer, J. Hardenbrook, P. Hebda, D. Lange, J. Luo, D. Marlow, J. Mc Donald, T. Medvedeva, K. Mei, M. Mooney, J. Olsen, C. Palmer, P. Piroue, D. Stickland, C. Tully, A. Zuranski University of Puerto Rico, Mayaguez, U.S.A. Purdue University, West Lafayette, U.S.A. A. Barker, V.E. Barnes, S. Folgueras, L. Gutay, M.K. Jha, M. Jones, A.W. Jung, D.H. Miller, N. Neumeister, J.F. Schulte, X. Shi, J. Sun, A. Svyatkovskiy, F. Wang, W. Xie, Purdue University Calumet, Hammond, U.S.A. N. Parashar, J. Stupak A. Adair, B. Akgun, Z. Chen, K.M. Ecklund, F.J.M. Geurts, M. Guilbaud, W. Li, B. Michlin, M. Northup, B.P. Padley, R. Redjimi, J. Roberts, J. Rorie, Z. Tu, J. Zabel University of Rochester, Rochester, U.S.A. B. Betchart, A. Bodek, P. de Barbaro, R. Demina, Y.t. Duh, T. Ferbel, M. Galanti, A. Garcia-Bellido, J. Han, O. Hindrichs, A. Khukhunaishvili, K.H. Lo, P. Tan, M. Verzetti Rutgers, The State University of New Jersey, Piscataway, U.S.A. A. Agapitos, J.P. Chou, E. Contreras-Campana, Y. Gershtein, T.A. Gomez Espinosa, E. Halkiadakis, M. Heindl, D. Hidas, E. Hughes, S. Kaplan, R. Kunnawalkam Elayavalli, S. Kyriacou, A. Lath, K. Nash, H. Saka, S. Salur, S. Schnetzer, D. She eld, S. Somalwar, R. Stone, S. Thomas, P. Thomassen, M. Walker University of Tennessee, Knoxville, U.S.A. A.G. Delannoy, M. Foerster, J. Heideman, G. Riley, K. Rose, S. Spanier, K. Thapa Texas A&M University, College Station, U.S.A. O. Bouhali73, A. Celik, M. Dalchenko, M. De Mattia, A. Delgado, S. Dildick, R. Eusebi, J. Gilmore, T. Huang, E. Juska, T. Kamon74, R. Mueller, Y. Pakhotin, R. Patel, A. Perlo , L. Pernie, D. Rathjens, A. Rose, A. Safonov, A. Tatarinov, K.A. Ulmer Texas Tech University, Lubbock, U.S.A. N. Akchurin, C. Cowden, J. Damgov, F. De Guio, C. Dragoiu, P.R. Dudero, J. Faulkner, E. Gurpinar, S. Kunori, K. Lamichhane, S.W. Lee, T. Libeiro, T. Peltola, S. Undleeb, I. Volobouev, Z. Wang Vanderbilt University, Nashville, U.S.A. S. Tuo, J. Velkovska, Q. Xu University of Virginia, Charlottesville, U.S.A. T. Sinthuprasith, X. Sun, Y. Wang, E. Wolfe, F. Xia Wayne State University, Detroit, U.S.A. C. Clarke, R. Harr, P.E. Karchin, J. Sturdy S. Greene, A. Gurrola, R. Janjam, W. Johns, C. Maguire, A. Melo, H. Ni, P. Sheldon, M.W. Arenton, P. Barria, B. Cox, J. Goodell, R. Hirosky, A. Ledovskoy, H. Li, C. Neu, University of Wisconsin - Madison, Madison, WI, U.S.A. D.A. Belknap, C. Caillol, S. Dasu, L. Dodd, S. Duric, B. Gomber, M. Grothe, M. Herndon, A. Herve, P. Klabbers, A. Lanaro, A. Levine, K. Long, R. Loveless, I. Ojalvo, T. Perry, G.A. Pierro, G. Polese, T. Ruggles, A. Savin, N. Smith, W.H. Smith, D. Taylor, N. Woods 1: Also at Vienna University of Technology, Vienna, Austria 2: Also at State Key Laboratory of Nuclear Physics and Technology, Peking University, 3: Also at Institut Pluridisciplinaire Hubert Curien, Universite de Strasbourg, Universite de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France 5: Also at Universidade Federal de Pelotas, Pelotas, Brazil 6: Also at Universite Libre de Bruxelles, Bruxelles, Belgium 7: Also at Deutsches Elektronen-Synchrotron, Hamburg, Germany 8: Also at Joint Institute for Nuclear Research, Dubna, Russia 9: Also at Cairo University, Cairo, Egypt 10: Also at Fayoum University, El-Fayoum, Egypt 11: Now at British University in Egypt, Cairo, Egypt 12: Now at Ain Shams University, Cairo, Egypt 13: Also at Universite de Haute Alsace, Mulhouse, France 14: Also at Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, 15: Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland 16: Also at RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany 17: Also at University of Hamburg, Hamburg, Germany 18: Also at Brandenburg University of Technology, Cottbus, Germany 19: Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary 20: Also at MTA-ELTE Lendulet CMS Particle and Nuclear Physics Group, Eotvos Lorand 21: Also at University of Debrecen, Debrecen, Hungary 22: Also at Indian Institute of Science Education and Research, Bhopal, India 23: Also at Institute of Physics, Bhubaneswar, India 24: Also at University of Visva-Bharati, Santiniketan, India 25: Also at University of Ruhuna, Matara, Sri Lanka 26: Also at Isfahan University of Technology, Isfahan, Iran 27: Also at University of Tehran, Department of Engineering Science, Tehran, Iran 28: Also at Yazd University, Yazd, Iran 29: Also at Plasma Physics Research Center, Science and Research Branch, Islamic Azad 30: Also at Laboratori Nazionali di Legnaro dell'INFN, Legnaro, Italy 31: Also at Universita degli Studi di Siena, Siena, Italy 32: Also at Purdue University, West Lafayette, U.S.A. 33: Also at International Islamic University of Malaysia, Kuala Lumpur, Malaysia 34: Also at Malaysian Nuclear Agency, MOSTI, Kajang, Malaysia 35: Also at Consejo Nacional de Ciencia y Tecnolog a, Mexico city, Mexico 36: Also at Warsaw University of Technology, Institute of Electronic Systems, Warsaw, Poland 37: Also at Institute for Nuclear Research, Moscow, Russia at National Research Nuclear University 'Moscow Engineering Physics Institute' (MEPhI), Moscow, Russia 39: Also at St. Petersburg State Polytechnical University, St. Petersburg, Russia 40: Also at University of Florida, Gainesville, U.S.A. 41: Also at P.N. Lebedev Physical Institute, Moscow, Russia 42: Also at California Institute of Technology, Pasadena, U.S.A. 43: Also at Budker Institute of Nuclear Physics, Novosibirsk, Russia 44: Also at Faculty of Physics, University of Belgrade, Belgrade, Serbia 45: Also at INFN Sezione di Roma; Universita di Roma, Roma, Italy 46: Also at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, 52: Also at Mersin University, Mersin, Turkey 53: Also at Cag University, Mersin, Turkey 54: Also at Piri Reis University, Istanbul, Turkey 55: Also at Gaziosmanpasa University, Tokat, Turkey 56: Also at Adiyaman University, Adiyaman, Turkey 57: Also at Ozyegin University, Istanbul, Turkey 58: Also at Izmir Institute of Technology, Izmir, Turkey 59: Also at Marmara University, Istanbul, Turkey 60: Also at Kafkas University, Kars, Turkey 61: Also at Istanbul Bilgi University, Istanbul, Turkey 62: Also at Yildiz Technical University, Istanbul, Turkey 63: Also at Hacettepe University, Ankara, Turkey 64: Also at Rutherford Appleton Laboratory, Didcot, U.K. 65: Also at School of Physics and Astronomy, University of Southampton, Southampton, U.K. 66: Also at Instituto de Astrof sica de Canarias, La Laguna, Spain 67: Also at Utah Valley University, Orem, U.S.A. 68: Also at Facolta Ingegneria, Universita di Roma, Roma, Italy 69: Also at Argonne National Laboratory, Argonne, U.S.A. 70: Also at Erzincan University, Erzincan, Turkey 71: Also at Mimar Sinan University, Istanbul, Istanbul, Turkey 72: Now at The Catholic University of America, Washington, U.S.A. 73: Also at Texas A&M University at Qatar, Doha, Qatar 74: Also at Kyungpook National University, Daegu, Korea [2] B.L. Io e, V.A. Khoze and L.N. Lipatov, Hard processes, Vol. 1: Phenomenology, quark [3] G.T. Bodwin, E. Braaten and G.P. Lepage, Rigorous QCD analysis of inclusive annihilation [12] J.H. Kuhn, Hadronic Production of P Wave Charmonium States, Phys. Lett. B 89 (1980) [20] D0 collaboration, V.M. Abazov et al., Double parton interactions in [24] J.-P. Lansberg and H.-S. Shao, J= -pair production at large momenta: Indications for double [28] T. Sjostrand, S. Mrenna and P.Z. Skands, A Brief Introduction to PYTHIA 8.1, Comput. [37] W. Verkerke and D.P. Kirkby, The RooFit toolkit for data modeling, eConf C 0303241 [40] CMS collaboration, CMS Luminosity Based on Pixel Cluster Counting { Summer 2013 [41] CMS collaboration, Measurement of the Y (1S); Y (2S) and Y (3S) polarizations in pp [42] Particle Data Group collaboration, C. Patrignani et al., Review of Particle Physics, Brazil France A. Abdulsalam, I. Antropov, S. Ba oni, F. Beaudette, P. Busson, L. Cadamuro, E. Chapon, C. Charlot, O. Davignon, R. Granier de Cassagnac, M. Jo, S. Lisniak, P. Mine, M. Nguyen, C. Ochando, G. Ortona, P. Paganini, P. Pigard, S. Regnard, R. Salerno, Y. Sirois, T. Strebler, Y. Yilmaz, A. Zabi F. Colombo, W. De Boer, A. Dierlamm, S. Fink, B. Freund, R. Friese, M. Gi els, A. Gilbert, P. Goldenzweig, D. Haitz, F. Hartmann15, S.M. Heindl, U. Husemann, I. Katkov14, S. Kudella, P. Lobelle Pardo, H. Mildner, M.U. Mozer, Th. Muller, M. Plagge, G. Quast, K. Rabbertz, S. Rocker, F. Roscher, M. Schroder, I. Shvetsov, G. Sieber, H.J. Simonis, R. Ulrich, J. Wagner-Kuhr, S. Wayand, M. Weber, T. Weiler, S. Williamson, C. Wohrmann, Italy Italy L. Brianzaa;b;15, M.E. Dinardoa;b, S. Fiorendia;b;15, S. Gennaia, A. Ghezzia;b, P. Govonia;b, M. Malbertia;b, S. Malvezzia, R.A. Manzonia;b, D. Menascea, L. Moronia, M. Paganonia;b, D. Pedrinia, S. Pigazzinia;b, S. Ragazzia;b, T. Tabarelli de Fatisa;b Malaysia I. Ahmed, Z.A. Ibrahim, J.R. Komaragiri, M.A.B. Md Ali33, F. Mohamad Idris34, W.A.T. Wan Abdullah, M.N. Yusli, Z. Zolkapli Portugal P. Bargassa, C. Beir~ao Da Cruz E Silva, A. Di Francesco, P. Faccioli, P.G. Ferreira Parracho, M. Gallinaro, J. Hollar, N. Leonardo, L. Lloret Iglesias, M.V. Nemallapudi, J. Rodrigues Antunes, J. Seixas, O. Toldaiev, D. Vadruccio, J. Varela, P. Vischia Cortabitarte I.J. Cabrillo, A. Calderon, J.R. Castin~eiras De Saa, E. Curras, M. Fernandez, J. GarciaFerrero, G. Gomez, A. Lopez Virto, J. Marco, C. Martinez Rivero, F. Matorras, J. Piedra S. Orfanelli, L. Orsini, L. Pape, E. Perez, M. Peruzzi, A. Petrilli, G. Petrucciani, A. Pfei er, M. Pierini, A. Racz, T. Reis, G. Rolandi47, M. Rovere, M. Ruan, H. Sakulin, J.B. Sauvan, C. Schafer, C. Schwick, M. Seidel, A. Sharma, P. Silva, P. Sphicas48, J. Steggemann, C. Dietz, F. Fiori, W.-S. Hou, Y. Hsiung, Y.F. Liu, R.-S. Lu, M. Min~ano Moya, E. Paganis, Thailand D. Arcaro, A. Avetisyan, T. Bose, D. Gastler, D. Rankin, C. Richardson, J. Rohlf, L. Sulak, M.B. Andrews, V. Azzolini, T. Ferguson, M. Paulini, J. Russ, M. Sun, H. Vogel, I. Vorobiev, 47: Also at Scuola Normale e Sezione dell'INFN, Pisa, Italy 48: Also at National and Kapodistrian University of Athens, Athens, Greece 49: Also at Riga Technical University, Riga, Latvia 50: Also at Institute for Theoretical and Experimental Physics, Moscow, Russia 51: Also at Albert Einstein Center for Fundamental Physics, Bern, Switzerland


This is a preview of a remote PDF: https://link.springer.com/content/pdf/10.1007%2FJHEP05%282017%29013.pdf

V. Khachatryan, A. M. Sirunyan, A. Tumasyan, W. Adam, E. Asilar, T. Bergauer, J. Brandstetter, E. Brondolin, M. Dragicevic, J. Erö, M. Flechl, M. Friedl, R. Frühwirth, V. M. Ghete, C. Hartl, N. Hörmann, J. Hrubec, M. Jeitler, A. König, I. Krätschmer, D. Liko, T. Matsushita, I. Mikulec, D. Rabady, N. Rad, B. Rahbaran, H. Rohringer, J. Schieck, J. Strauss, W. Waltenberger, C.-E. Wulz, O. Dvornikov, V. Makarenko, V. Zykunov, V. Mossolov, N. Shumeiko, J. Suarez Gonzalez, S. Alderweireldt, E. A. De Wolf, X. Janssen, J. Lauwers, M. Van De Klundert, H. Van Haevermaet, P. Van Mechelen, N. Van Remortel, A. Van Spilbeeck, S. Abu Zeid, F. Blekman, J. D’Hondt, N. Daci, I. De Bruyn, K. Deroover, S. Lowette, S. Moortgat, L. Moreels, A. Olbrechts, Q. Python, S. Tavernier, W. Van Doninck, P. Van Mulders, I. Van Parijs, H. Brun, B. Clerbaux, G. De Lentdecker, H. Delannoy, G. Fasanella, L. Favart, R. Goldouzian, A. Grebenyuk, G. Karapostoli, T. Lenzi, A. Léonard, J. Luetic, T. Maerschalk, A. Marinov, A. Randle-conde, T. Seva, C. Vander Velde, P. Vanlaer, R. Yonamine, F. Zenoni, F. Zhang, A. Cimmino, T. Cornelis, D. Dobur, A. Fagot, G. Garcia, M. Gul, I. Khvastunov, D. Poyraz, S. Salva, R. Schöfbeck, A. Sharma, M. Tytgat, W. Van Driessche, E. Yazgan, N. Zaganidis, H. Bakhshiansohi, C. Beluffi, O. Bondu, S. Brochet, G. Bruno, A. Caudron, S. De Visscher, C. Delaere, M. Delcourt, B. Francois, A. Giammanco, A. Jafari, P. Jez, M. Komm, V. Lemaitre, A. Magitteri, A. Mertens, M. Musich, C. Nuttens, K. Piotrzkowski, L. Quertenmont, M. Selvaggi, M. Vidal Marono, S. Wertz, N. Beliy, W. L. Aldá Júnior, F. L. Alves, G. A. Alves, L. Brito, C. Hensel, A. Moraes, M. E. Pol, P. Rebello Teles, E. Belchior Batista Das Chagas, W. Carvalho, J. Chinellato, A. Custódio, E. M. Da Costa, G. G. Da Silveira, D. De Jesus Damiao, C. De Oliveira Martins, S. Fonseca De Souza, L. M. Huertas Guativa, H. Malbouisson, D. Matos Figueiredo, C. Mora Herrera, L. Mundim, H. Nogima, W. L. Prado Da Silva, A. Santoro, A. Sznajder, E. J. Tonelli Manganote, A. Vilela Pereira, S. Ahuja, C. A. Bernardes, S. Dogra, T. R. Fernandez Perez Tomei, E. M. Gregores, P. G. Mercadante, C. S. Moon, S. F. Novaes, Sandra S. Padula, D. Romero Abad, J. C. Ruiz Vargas, A. Aleksandrov, R. Hadjiiska, P. Iaydjiev, M. Rodozov, S. Stoykova, G. Sultanov, M. Vutova, A. Dimitrov, I. Glushkov, L. Litov, B. Pavlov, P. Petkov, W. Fang, M. Ahmad, J. G. Bian, G. M. Chen, H. S. Chen, M. Chen, Y. Chen, T. Cheng, C. H. Jiang, D. Leggat, Z. Liu, F. Romeo, S. M. Shaheen, A. Spiezia, J. Tao, C. Wang, Z. Wang, H. Zhang, J. Zhao, Y. Ban, G. Chen, Q. Li, S. Liu, Y. Mao, S. J. Qian, D. Wang, Z. Xu, C. Avila, A. Cabrera, L. F. Chaparro Sierra, C. Florez, J. P. Gomez, C. F. González Hernández, J. D. Ruiz Alvarez, J. C. Sanabria, N. Godinovic, D. Lelas, I. Puljak, P. M. Ribeiro Cipriano, T. Sculac, Z. Antunovic, M. Kovac, V. Brigljevic, D. Ferencek, K. Kadija, S. Micanovic, L. Sudic, T. Susa, A. Attikis, G. Mavromanolakis, J. Mousa, C. Nicolaou, F. Ptochos, P. A. Razis, H. Rykaczewski, D. Tsiakkouri, M. Finger, M. Finger Jr., E. Carrera Jarrin, A. Ellithi Kamel, M. A. Mahmoud, A. Radi, B. Calpas, M. Kadastik, M. Murumaa, L. Perrini, M. Raidal, A. Tiko, C. Veelken, P. Eerola, J. Pekkanen, M. Voutilainen, J. Härkönen, T. Järvinen, V. Karimäki, R. Kinnunen, T. Lampén, K. Lassila-Perini, S. Lehti, T. Lindén, P. Luukka, J. Tuominiemi, E. Tuovinen, L. Wendland, J. Talvitie, T. Tuuva, M. Besancon, F. Couderc, M. Dejardin, D. Denegri, B. Fabbro, J. L. Faure, C. Favaro, F. Ferri, S. Ganjour, S. Ghosh, A. Givernaud, P. Gras, G. Hamel de Monchenault, P. Jarry, I. Kucher, E. Locci, M. Machet, J. Malcles, J. Rander, A. Rosowsky, M. Titov, A. Zghiche, A. Abdulsalam, I. Antropov, S. Baffioni, F. Beaudette, P. Busson, L. Cadamuro, E. Chapon, C. Charlot, O. Davignon, R. Granier de Cassagnac, M. Jo, S. Lisniak, P. Miné, M. Nguyen, C. Ochando, G. Ortona, P. Paganini, P. Pigard, S. Regnard, R. Salerno, Y. Sirois, T. Strebler, Y. Yilmaz, A. Zabi, J.-L. Agram, J. Andrea, A. Aubin, D. Bloch, J.-M. Brom, M. Buttignol, E. C. Chabert, N. Chanon, C. Collard, E. Conte, X. Coubez, J.-C. Fontaine, D. Gelé, U. Goerlach, A.-C. Le Bihan, K. Skovpen, P. Van Hove, S. Gadrat, S. Beauceron, C. Bernet, G. Boudoul, E. Bouvier, C. A. Carrillo Montoya, R. Chierici, D. Contardo, B. Courbon, P. Depasse, H. El Mamouni, J. Fan, J. Fay, S. Gascon, M. Gouzevitch, G. Grenier, B. Ille, F. Lagarde, I. B. Laktineh, M. Lethuillier, L. Mirabito, A. L. Pequegnot, S. Perries, A. Popov, D. Sabes, V. Sordini, M. Vander Donckt, P. Verdier, S. Viret, A. Khvedelidze, D. Lomidze, C. Autermann, S. Beranek, L. Feld, A. Heister, M. K. Kiesel, K. Klein, M. Lipinski, A. Ostapchuk, M. Preuten, F. Raupach, S. Schael, C. Schomakers, J. Schulz, T. Verlage, H. Weber, V. Zhukov, A. Albert, M. Brodski, E. Dietz-Laursonn, D. Duchardt, M. Endres, M. Erdmann, S. Erdweg, T. Esch, R. Fischer, A. Güth, M. Hamer, T. Hebbeker, C. Heidemann, K. Hoepfner, S. Knutzen, M. Merschmeyer, A. Meyer. Observation of Y(1S) pair production in proton-proton collisions at \( \sqrt{s}=8 \) TeV, Journal of High Energy Physics, 2017, 13, DOI: 10.1007/JHEP05(2017)013