Symbiotic microorganisms in Puto superbus (Leonardi, 1907) (Insecta, Hemiptera, Coccomorpha: Putoidae)

Protoplasma, Jun 2017

The scale insect Puto superbus (Putoidae) lives in mutualistic symbiotic association with bacteria. Molecular phylogenetic analyses have revealed that symbionts of P. superbus belong to the gammaproteobacterial genus Sodalis. In the adult females, symbionts occur both in the bacteriocytes constituting compact bacteriomes and in individual bacteriocytes, which are dispersed among ovarioles. The bacteriocytes also house a few small, rod-shaped Wolbachia bacteria in addition to the numerous large, elongated Sodalis-allied bacteria. The symbiotic microorganisms are transovarially transmitted from generation to generation. In adult females which have choriogenic oocytes in the ovarioles, the bacteriocytes gather around the basal part of the tropharium. Next, the entire bacteriocytes pass through the follicular epithelium surrounding the neck region of the ovariole and enter the space between oocyte and follicular epithelium (perivitelline space). In the perivitelline space, the bacteriocytes assemble extracellularly in the deep depression of the oolemma at the anterior pole of the oocyte, forming a “symbiont ball”.

A PDF file should load here. If you do not see its contents the file may be temporarily unavailable at the journal website or you do not have a PDF plug-in installed and enabled in your browser.

Alternatively, you can download the file locally and open with any standalone PDF reader:

https://link.springer.com/content/pdf/10.1007%2Fs00709-017-1135-7.pdf

Symbiotic microorganisms in Puto superbus (Leonardi, 1907) (Insecta, Hemiptera, Coccomorpha: Putoidae)

Symbiotic microorganisms in Puto superbus (Leonardi, 1907) (Insecta, Hemiptera, Coccomorpha: Putoidae) Teresa Szklarzewicz 0 1 2 3 4 Małgorzata Kalandyk-Kołodziejczyk 0 1 2 3 4 Katarzyna Michalik 0 1 2 3 4 Władysława Jankowska 0 1 2 3 4 Anna Michalik 0 1 2 3 4 0 Katarzyna Michalik 1 Anna Michalik 2 Handling Editor: Douglas Chandler 3 Department of Zoology, Faculty of Biology and Environmental Protection, University of Silesia , Bankowa 9, 40-007 Katowice , Poland 4 Department of Developmental Biology and Morphology of Invertebrates, Institute of Zoology and Biomedical Research, Jagiellonian University , Gronostajowa 9, 30-387 Kraków , Poland The scale insect Puto superbus (Putoidae) lives in mutualistic symbiotic association with bacteria. Molecular phylogenetic analyses have revealed that symbionts of P. superbus belong to the gammaproteobacterial genus Sodalis. In the adult females, symbionts occur both in the bacteriocytes constituting compact bacteriomes and in individual bacteriocytes, which are dispersed among ovarioles. The bacteriocytes also house a few small, rod-shaped Wolbachia bacteria in addition to the numerous large, elongated Sodalis-allied bacteria. The symbiotic microorganisms are transovarially transmitted from generation to generation. In adult females which have choriogenic oocytes in the ovarioles, the bacteriocytes gather around the basal part of the tropharium. Next, the entire bacteriocytes pass through the follicular epithelium surrounding the neck region of the ovariole and enter the space between oocyte and follicular epithelium (perivitelline space). In the perivitelline space, the bacteriocytes assemble extracellularly in the deep depression of the oolemma at the anterior pole of the oocyte, forming a Bsymbiont ball^. Symbiotic microorganisms; Sodalis-like symbionts; Wolbachia; Bacteriocytes; Scale insects Introduction Scale insects (coccoids) constitute the superfamily Coccoidea assigned to the infraorder Coccomorpha, within the suborder Sternorrhyncha of the order Hemiptera (Williams and Hodgson 2014) . This superfamily is composed of about 8000 species. Scale insects are plant sap-feeding insects, which are distributed in all terrestrial zoogeographical regions, except Antarctica. Many species are thought to be serious pests of economic significance (Kondo et al. 2008; Gullan and Martin 2009; Gertsson 2013) . Scale insects are much more diverse in terms of their internal and external morphology, chromosome systems, sperm structure, and types of bacterial symbioses than any of the other sternorrhynchan groups (reviewed in Miller and Kosztarab 1979; Gullan and Kosztarab 1997) . The Coccoidea is more frequently divided into two informal groups, which are sometimes treated as superfamilies: the archaeococcoids (Orthezioidea) and the neococcoids (Coccoidea sensu stricto) (e.g., Koteja 1974, 1996; Danzig 1980; Kosztarab and Kozár 1988) . The evolutionary relationships, higher classification, and the taxonomic placement of many species of coccoids are controversial (Cook et al. 2002; Gullan and Cook 2007) . One of the species of uncertain taxonomic position is Puto superbus (Leonardi 1907) . Puto superbus was described as Macrocerococcus superbus by Leonardi (1907) . The name Macrocerococcus superbus was used by several authors (e.g., Borchsenius 1949; Schmutterer 1952) , although other authors assigned this species to different genera: i.e., Ceroputo Sulc and Phenacoccus Cockerell (García Morales et al. 2016). The name Puto superbus has been widely accepted and is currently most commonly used (e.g., Marotta and Tranfaglia 1985; Kaydan et al. 2015) . For many years, Puto superbus was considered to be a member of the family Pseudococcidae (mealybugs) (e.g., Leonardi 1907; Kosztarab and Kozár 1988) . Beardsley (1969) was the first to place Puto in the separate Putoidae family based on male features. The Putoidae family has been placed among neococcoids (Koteja 1996; Koteja and Azar 2008) or archaeococcoids (Gullan and Cook 2007; Kondo et al. 2008; Gullan and Martin 2009) . The placement of this family within archaeococcoid subgroup was supported by molecular and ultrastructural data (Cook et al. 2002; Gullan and Cook 2007; Michalik et al. 2013) . The Putoidae contains two genera: Palaeoputo Koteja and Azar 2008 which encompasses only one fossil species and Puto Signoret, 1876 with 2 extinct and 45 extant species (García Morales et al. 2016). Scale insects, like other plant sap-feeders, are host to obligate symbiotic microorganisms, which synthesize and provide them the amino acids missing from their diet (reviewed, e.g., in Douglas 1998, 2009; Wilkinson and Ishikawa 2001; Ishikawa 2003; Baumann 2005, 2006) . In insects living in symbiotic association with two or more species of symbiotic microorganisms, Buchner (1965) divided the latter into primary symbionts (named also P-symbionts or obligate symbionts) and accessory symbionts (also known as S-symbionts, facultative symbionts, and secondary symbionts). Since obligate symbionts are the descendants of a free-living microorganism that infected the ancestor of the insect taxon, they occur in all the individuals of each species of this group of insects (e.g., bacterium Buchnera aphidicola in aphids). As these microorganisms are responsible for the synthesis of amino acids missing in their diet, they are necessary for the proper growth and reproduction of the host insect (Moran and Dale 2006; Moran et al. 2008) . On the other hand, the occurrence of S-symbionts in insects is a result of more recent multiple independent infections by different microorganisms (Moran and Dale 2006; Moran and Telang 1998) . As a consequence, the S-symbionts living even in close relatives may belong to different taxa. The results of experiments on a model aphid, Acyrthosiphon pisum, indicate that in contrast to P-symbionts, S-symbionts may play different roles, e.g., protecting the host insect against parasitic hymenopterans or fungal pathogens or increase heat tolerance (Montllor et al. 2002; Oliver et al. 2003; Scarborough et al. 2005) . In most insects, obligate symbionts are harbored in specialized cells of a mesodermal origin, termed bacteriocytes (the older term being Bmycetocytes^), and are always vertically (maternally) transmitted from one generation to the next. S-symbionts may occur both intracellularly (e.g., in bacteriocytes, in cells of midgut epithelium) and extracellularly (e.g., in hemolymph), and may be transferred both vertically and horizontally (i.e., between individuals of the same population). It should be added that Takiya et al. (2006) on account of occurrence in Hemiptera: Auchenorrhyncha of several types of symbionts involved in the synthesis of amino acids to host insects distinguished the third type of symbionts and termed them ‘co-primary’ symbionts. The results of earlier histological studies and more recent ultrastructural and molecular analyses have shown that scale insects, in comparison with other hemipterans, are characterized by diverse symbiotic systems in terms of localization of symbionts in the host insect body, their systematic affinity, and mode of inheritance from the mother to offspring. Scale insects may harbor only one species of symbiotic microorganism (e.g., Acanthococcus aceris and Gossyparia spuria (both Eriococcidae) (Michalik et al. 2016) , members of the mealybug subfamily Phenacoccinae (Gruwell et al. 2010; Koga et al. 2013) , most armored scale insects, Diaspididae) (Gruwell et al. 2012; Sabree et al. 2013) ) or two species (e.g., Icerya purchasi, Palaeococcus fuscipennis, Drosicha corpulenta, Llaveia axin axin (all Monophlebidae) (Szklarzewicz et al. 2006, 2013; Niżnik and Szklarzewicz 2007; Matsuura et al. 2009; Rosas-Pérez et al. 2014) ), members of mealybug subfamily Pseudococcinae (von Dohlen et al. 2001; Thao et al. 2002; Kono et al. 2008; McCutcheon and von Dohlen 2011; Gatehouse et al. 2011; Husnik et al. 2013; Koga et al. 2013; Szabo et al. 2016) , many armored scale insects) (Provencher et al. 2005) ). In scale insects, the symbionts may be localized in bacteriocytes (in most scale insects) (e.g., Walczuch 1932; Buchner 1955, 1965; Tremblay 1990; von Dohlen et al. 2001; Szklarzewicz et al. 2006, 2013; Niżnik and Szklarzewicz 2007; Matsuura et al. 2009; Ramirez-Puebla et al. 2010; Gruwell et al. 2012) or may be dispersed in the cells of the fat body (in eriococcids Acanthococcus aceris and Gossyparia spuria) (Michalik et al. 2016) . In the case of the presence of two or more types of symbionts, they are usually harbored in separate cells, e.g., in Palaeococcus fuscipennis and Icerya purchasi, one of the symbiont occupies the giant bacteriocytes, whereas the second one is localized in small epithelial cells surrounding each bacteriocyte (Szklarzewicz et al. 2006; Niżnik and Szklarzewicz 2007) . A unique style of coexistence of two symbionts has been found in pseudocoocinae mealybugs, in which one type of symbiotic bacteria (gammaproteobacteria—closely related to the bacterium Sod alis) occurs inside th e cells of other ba cteria (betaproteobacteria Tremblaya) (von Dohlen et al. 2001; Thao et al. 2002; Kono et al. 2008; McCutcheon and von Dohlen 2011; Gatehouse et al. 2011; Husnik et al. 2013; Koga et al. 2013; Szabo et al. 2016) . Results of recent molecular studies have demonstrated that both these bacteria, like the Bco-primary symbionts^ in Hemiptera: Auchenorrhyncha, are engaged in the synthesis of amino acids to the host insect (McCutcheon and von Dohlen 2011; Husnik and McCutcheon 2016) . The symbiotic systems of the members of the Putoidae family are not well known. Buchner (1955) , using paraffin technique, described the distribution of symbionts and mode of their transmission between generations in Puto antennatus and Puto superbus (formerly treated as Macrocerococcus superbus, see BIntroduction^ for further details). Gruwell et al. (2014) identified the symbiotic bacteria harbored in five species of Putoidae from the Western Hemisphere: Puto barberi, Puto echinocacti, Puto yuccae, Puto albicans, and Puto sp. as gammaproteobacteria. Since the symbionts of Puto barberi appeared to be more phylogenetically distant from those in the remaining four species, the analysis of symbiotic microorganisms in the species Puto superbus from the Eastern Hemisphere may bring valuable arguments to the discussion concerning co-phylogeny of Puto superbus and its symbionts, as well as the phylogeny of the Putoidae family. Material and methods Insects The adult females of Puto superbus (Leonardi 1907) were collected from the grass, Arrhenatherum elatius in Katowice (located in the south of Poland) and near Wolsztyn (in the west of Poland) in the months of June and July in the year 2012. Specimens destined for molecular analyses were collected in Katowice in June and July in the year 2014. Light and transmission electron microscopy analyses The dissected ovaries and entire abdomens were fixed in 2.5% glutaraldehyde in 0.1 M phosphate buffer (pH 7.4), rinsed in the buffer with sucrose (5.8 g/100 ml), and postfixed in 1% buffered osmium tetroxidae (pH 7.4). The material was then dehydrated in a graded series of ethanol and acetone and embedded in epoxy resin Epon 812 (Serva, Germany). Semithin sections (1 μm thick) were stained with 1% methylene blue in 1% borax and examined and photographed with a Nikon Eclipse 80i light microscope. Ultrathin sections (90 nm thick) were contrasted with lead citrate and uranyl acetate and examined and photographed under a Jeol JEM 2100 electron microscope at 80 kV. DNA isolation, PCR, cloning, and sequencing Total genomic DNA was isolated from adult females of P. superbus using a Sherlock AX DNA extraction kit (A&A Biotechnology), according to the manufacturer’s protocol. The DNA extracted was used for the molecular identification of symbionts colonizing the P. superbus tissue in the following experiments: (1) PCR reaction with universal, eubacterial primers: 10F (AGTTTGATCATGGCTCAGATTG) and 1507R (TACCTTGTTACGACTTCACCCCAG) ( Sandström et al. 2001 ). The 16S rDNA of bacterial symbionts was amplified in 35 cycles and the following conditions: an initial denaturation step at 94 °C for 3 min, followed by 33 cycles at 94 °C for 30 s, 55 °C for 40 s, 70 °C for 1 min 40 s, and a final extension step of 5 min at 72 °C. Te PCR product was visualized on 1.5% agarose gel stained with M i d o r i Gr e e n ( N i p p o n ) a n d p u r i f i e d u s i n g a GeneMATRIX PCR/DNA Clean-Up Purification Kit (Eurx); (2) Molecular cloning: the purified PCR product was cloned into pJET 1.2/blunt plasmid vector using a Clone JET PCR Cloning Kit (Thermo Scientific). The ligated mixtures were transformed into competent Escherichia coli TOP10F cells, which were prepared using an E. coli Transformer Kit (A&A Biotechnology). After 16 h, the occurrence of the bacterial 16S rDNA was confirmed by a diagnostic PCR reaction with the following primers: pJET For–GCCTGAACACCATATCCATCC and pJET Rev–GCAGCTGAGAATATTGTAGGAGAT. (3) Restrictive analysis: PCR products of 30 colonies were subjected to restriction analysis using an MspI restrictive enzyme. The plasmids from the selected colonies were i so la t ed u s in g a P l as m i d Mi n i AX k i t ( A & A Biotechnology) and sequenced. The nucleotide sequences obtained were deposited into the GenBank database under the accession numbers KY558891-KY558893. Phylogenetic analysis The phylogenetic analysis was performed based on sequences of 16S rDNA of P. superbus symbiont and selected gammaproteobacterial symbionts of hemipterans. The sequences homologous to the sequence obtained were found in the GenBank database using CLC MainWorkbench 7 software. The sequences were then edited using BioEdit Sequence Alignment Editor 5.0.9 (Hall 1999) , and following this, the sequence alignments were generated using ClustalX 1.8 (Thompson et al. 1997) . The base compositions of all the genes analyzed, as well as the genetic distances between the symbionts of scale insects belonging to the genus Puto, were estimated using MEGA 7 software (Kumar et al. 2016) . The phylogenetic analysis was conducted using MrBayes 3.2.2 and MEGA 7 (Maximum likelihood) softwares (Ronquist and Huelsenbeck 2003) . In the Bayesian analysis, four incrementally Metropolis coupling MCMC chains (3 heated and 1 cold) were run for ten million generations. The results of the Bayesian analysis were visualized using FigTree 1.4.0 software (Rambaut 2009) . Results Molecular identification of symbionts of Puto superbus The phylogenetic placement of symbionts occurring in the body of examined scale insect Puto superbus was determined based on their 16S rDNA sequences. Thirty positive colonies of bacteria E. coli obtained by molecular cloning were subjected to restrictive analysis with the MspI restrictive enzyme, and as a result, four different restrictive patterns were obtained. One of them, designated as no. 1, was clearly dominant whereas the other patterns (designated as no. 2, 3 and 4) were scarce. The selected clones (three of each type) were sequenced and the sequences obtained were compared with the data deposited in the GenBank using BLAST. The result of BLAST searches has indicated that the sequences of dominant restrictive patterns show 94–95% similarity to the bacteria belonging to the genus Sodalis (S. glossinidius and S. praecoptirus, respectively), whereas the sequences of pattern no. 2, 3, and 4 were identified as Wolbachia bacteria. All sequences represented by pattern no. 1 were identical; therefore, only one of them was used for the phylogenetic analysis. The 16S rDNA sequences of Wolbachia symbionts were slightly different from one another (with a 99% similarity). Since Wolbachia bacteria are widespread within different and unrelated insect groups, the sequence of 16SrDNA of Wolbachia was not used for phylogenetic analysis. The total length of sequences subjected to the phylogenetic analysis was 1322 bp, and the base composition was as follows: 21.7% T, 22.8% C, 26.3% A, and 29.1% G. The phylogenetic tree constructed using Bayesian analysis indicated that, based on 16S rDNA relationships, the obligate symbiont of P. superbus belongs to the Gammaproteobacteria within the Proteobacteria phylum and may be designated as a Sodalislike symbiont (Fig. 1). Symbionts of scale insects belonging to Puto species (i.e., Puto barberi, Puto albicans, Puto sp., and examined Puto superbus), however, are placed in distinct lineages and are phylogenetically distant (Fig. 1). Sequence divergences between Sodalis-like symbionts of examined P. superbus and other scale insects belonging to genus Puto range from 2.7% (between P. superbus and P. barberi) to 14.7% (between P. superbus and P. albicans) (Table 1). Ultrastructure, distribution, and transovarial transmission of symbiotic microorganisms In adult females, elongated organs termed bacteriomes occur in the immediate vicinity of the ovaries (Fig. 2a). The bacteriomes are composed of numerous giant cells termed bacteriocytes and are surrounded by a thin layer of sheath cells (Fig. 2a). Ultrastructural observation did not reveal bacteria in the sheath cells. The bacteriocyte cytoplasm is filled with numerous elongated bacteria, and rare small rod-shaped bacteria, large nucleus, and ribosomes (Fig. 2a, b). The larger bacteria measure about 1.2–1.7 μm in diameter, whereas the smaller ones measure about 0.14–0.26 μm. The comparison of ultrastructural observations (i.e., shape and size of bacteria), along with the results of molecular analyses, has shown that larger bacteria represent Sodalis-allied symbionts, whereas these smaller ones correspond to the bacterium Wolbachia pipientis, which is widely distributed among invertebrates. It was observed that numerous separate bacteriocytes (i.e., not integrated into the bacteriome) are also scattered among ovarioles constituting the ovaries (Fig. 2c) (for further details concerning organization of ovary in P. superbus, see Michalik et al. 2013) . Bacteriocytes accompanying ovarioles are less voluminous and are much more tightly packed with symbiotic bacteria (Fig. 2c) than bacteriocytes constituting the bacteriome. It was observed that the bacteriocytes accompanying the ovarioles undergo intense divisions (Fig. 2c). In females containing oocytes in the ovarioles in the stage of choriogenesis, the bacteriocytes begin to surround the neck region of ovarioles (i.e., the region between the tropharium and vitellarium) (Fig. 3a, b). At the time the bacteriocytes gather around the neck of the ovariole, the tropharium and the developing oocyte located in the vitellarium are connected by means of broad nutritive cord (Fig. 3a). The lateral and posterior aspects of the oocyte are surrounded by egg envelopes (Fig. 3a). The only region of the oocyte not covered with egg envelopes is the nutritive cord at which the tropharium joins the anterior pole of the oocyte (Fig. 3a). Next, the whole and intact bacteriocytes begin to invade the anterior region of the vitellarium (Fig. 3c). The bacteriocytes traverse the follicular epithelium migrating through the spaces between neighboring follicular cells (Fig. 3c–e). After passing through the follicular epithelium, the bacteriocytes gradually assemble in the perivitelline space (space between the oocyte and follicular epithelium) (Fig. 3f, g). Simultaneously, the tropharium and nutritive cord degenerate and the oocyte become surrounded by complete egg envelopes. In full-grown oocytes, the bacteriocytes become embedded in the deep invagination of oolemma in the form of a Bsymbiont ball^ (Fig. 3h). Discussion As stated in the BIntroduction,^ scale insects, unlike other hemipterans living in obligate symbiotic associations with microorganisms, are host to different species of symbionts. The results of the recent molecular analyses of symbionts hosted by different scale insect species (e.g., von Dohlen et al. 2001; Thao et al. 2002; Gruwell et al. 2007, 2010, 2014; Kono et al. 2008; Matsuura et al. 2009; Ramirez-Puebla et al. 2010; Gatehouse et al. 2011; Dhami et al. 2012; Rosenblueth et al. 2012; Koga et al. 2013; Rosas-Pérez et al. 2014; Michalik et al. 2016; Szabo et al. 2016) strongly support hypothesis of Koteja (1985) based on Buchner’s (1965) histological observations that such diverse symbioses are the result of the independent acquisition of free-living bacteria through the ancestors of extant coccoids. According to Koteja (1985) , ancestral scale insects lived in forest litter, where they are permanently in contact with free-living bacteria. During further evolution, the diverged groups of scale insects changing the feeding behavior from saprophagic into plant sap-sucking have acquired bacteria which then co-evolved with them as their symbionts. Molecular phylogenetic analyses have shown that the primary symbiont associated with Puto superbus is related to the gammaproteobacterium Sodalis, which is widely distributed among insects. The results of numerous recent papers have revealed that Sodalis-allied bacteria may fulfill the function of the primary symbiont (e.g., in the slender pigeon louse Columbicola columbae, louse fly Craterina melbae, weevil Puto superbus Puto albicans Puto barberi Puto sp. Puto yuccae 1 Sitophilus oryzae), secondary symbiont (e.g., in the tsetse fly Glossina, several species of psyllids, e.g., Anomoneura mori, Trioza magnoliae, Cacopsylla myrthi, in several species of aphids from the Lachninae family, e.g., Cinara glabra, Eulachnus pallidnus , Eulachnus rileyi , Eulachnus mediterraneus, Nippolachnus piri, stinkbugs, e.g., Cantao ocellatus, Eucoryssus grandis, Antestiopsis thunbergi) or may co-reside with other microorganisms as co-primary symbiont (e.g., in the leafhopper Cicadella viridis, in several species of spittlebugs, e.g., Aphrophora quadrinotata, Philaenus soumarius, Lepyronia coleoptrata, in pseudococcinae mealybugs) (Heddi et al. 1998; Dale and Maudlin 1999; Thao et al. 2000, 2002; Fukatsu et al. 2007; Nováková and Hypša 2007; Kono et al. 2008; Burke et al. 2009; Gruwell et al. 2010, 2014; Kaiwa et al. 2010, 2011; Gatehouse et al. 2011; Husnik et al. 2013; Husnik and McCutcheon 2016; Koga et al. 2013; Koga and Moran 2014; Matsuura et al. 2014; Michalik et al. 2014; Hosokawa et al. 2015; Manzano-Marin et al. 2017) . Sodalislike symbionts may be localized both intracellularly (e.g., in the cells of milk glands in the tsetse fly, in bacteriocytes in the leafhopper Cicadella viridis, psyllids and slender pigeon louse Columbicola columbae, inside the cells of other bacterium in mealybugs from the subfamily Pseudococcinae) as well as extracellularly (e.g., in the lumen of milk glands in the tsetse fly, in the gut appendages in stinkbugs). The situation in Cicadella viridis is of special interest because in this species, in contrast to the pseudococcinae mealybugs (in which Sodalis-like bacteria never occur individually—see BIntroduction^), the Sodalis-allied symbionts both occur in their own bacteriocytes and they also co-inhabit bacteriocytes with the betaproteobacterium Sulcia muelleri (Michalik et al. Fig. 2 Distribution of symbiotic microorganisms in the body of P. superbus. a Fragment of the bacteriome (cross section). White arrows indicate large elongated Sodalis-allied symbionts. Bacteriocyte (bc), bacteriocyte nucleus (bn), bacteriome epithelium (be), follicular epithelium (fc), oocyte (oc). Methylene blue, scale bar = 20 μm. b Fragment of the bacteriocyte. Note large elongated Sodalis-like bacteria 2014). The results of molecular phylogenetic analyses of Sodalis-like symbionts in members of the Putoidae family (Gruwell et al. 2014; this study—Fig. 1 and Table 1) have shown that these bacteria are phylogenetically distant. This fact supports the suppositions mentioned above and indicates that even in close relatives such as members of the same small family Putoidae, the Sodalis bacteria have been independently acquired several times. The histological observations made by Walczuch (1932) and Buchner (1965), as well as results of more recent studies (von Dohlen et al. 2001; Szklarzewicz et al. 2006, 2013; Niżnik and Szklarzewicz 2007; Michalik et al. 2016) , have shown that scale insects, in comparison with other insect taxa, exhibit an enormous diversity of the modes of symbiont inheritance. The symbiotic microorganisms associated with scale insects may infect the larval ovaries containing undifferentiated germ cells termed cystocytes (e.g., secondary symbiont in Icerya purchasi (Monophlebidae), primary symbiont in Puto albicans (Putoidae)) or the ovaries of adult females comprising vitellogenic or choriogenic oocytes (e.g., primary symbiont of I c e r y a p u rc h a s i , P a l a e o c o c c u s f u s c i p e n n i s ( b o t h Monophlebidae), Acanthococcus aceris, Gossyparia spuria (both Eriococcidae), and mealybugs (Pseudococcidae), the seco n d a r y s y m b i o n t o f P a l a e o c o c c u s f u s c i p e n n i s (Monophlebidae)). In the case of infection of the older oocytes, the symbionts may infest the anterior pole of the oocyte (e.g., Acanthococcus aceris, Gossyparia spuria, mealybugs) or its posterior pole (e.g., Icerya purchasi, Palaeococcus fuscipennis) (Walczuch 1932; Buchner 1965; von Dohlen et al. 2001; Szklarzewicz et al. 2006, 2010, 2013; Niżnik and Szklarzewicz 2007; Michalik et al. 2016) . It should be stressed that the mode of symbiont transmission relying on the infection of the anterior pole of the oocyte, as in P. superbus, is very rare among insects and has so far been observed in only scale insects. The manner of symbiont transmission observed in P. superbus is (white arrows) and small rod-shaped bacteria Wolbachia pipientis (black arrowheads). TEM, scale bar = 2 μm. c Bacteriocytes accompanying the ovarioles. Note division of the bacteriocyte (encircled with black dotted line). Follicular epithelium (fc), oocyte (oc), tropharium (tr). Methylene blue, scale bar = 20 μm also unique in that the bacteriocytes which are whole and intact enter the ovarioles. So far, a similar phenomenon has been described in the Puto genus (Buchner 1955, 1965) and in whiteflies only (Buchner 1965; Costa et al. 1993; Szklarzewicz and Moskal 2001) . It is worth adding that in cockroaches (Sacchi et al. 1988) and lice (Buchner 1965), the entire bacteriocytes penetrate the ovaries; however, the symbiotic bacteria are finally released from these cells and individually infest the ovarioles. According to Buchner (1965), the bacteriocytes in whiteflies degenerate during embryonic development, whereas in Puto, they enter the embryo. The transmission of symbionts in the Puto genus (P. superbus and P. antennatus) is of special interest in that their bacteriocytes differentiate into two types: (1) bacteriocytes which constitute the bacteriome and degenerate in the adult female (named by Buchner primary bacteriocytes) and (2) bacteriocytes accompanying the ovarioles which migrate to the ovarioles and are incorporated into the embryo during embryonic development (named by Buchner secondary bacteriocytes). Buchner (1955, 1965) observed that the differentiation of the bacteriocytes into two types takes place in the first larval instar. Both Buchner’s observations and our results have revealed that bacteriocytes associated with ovarioles divide intensively. It may be suggested that this phenomenon may result in a decrease of the volume of giant polyploid bacteriocytes. This, in turn, facilitates the migration of the bacteriocytes through the follicular epithelium. Interestingly, the results of the preliminary studies of another member of the Putoidae family, Puto albicans (Szklarzewicz et al. 2010) , indicate that its symbiotic bacteria are transmitted between generations in a completely different manner. Szklarzewicz et al. (2010) observed that, in this species, symbiotic bacteria already occur in cystocytes which build larval ovaries. This fact indicates that the primary symbionts of P. albicans, just as the secondary symbionts of Icerya purchasi (Niżnik and Szklarzewicz 2007) , infect the Fig. 3 Consecutive stages of transovarial transmission of symbionts from one generation to the next. a, b The ovariole surrounded by bacteriocytes (bc) (a longitudial section, b cross section). Egg envelopes (black arrows), bacteriocyte nucleus (bn), follicular epithelium (fc), nutritive cord (nc), oocyte (oc), trophocyte (t), trophic core (tc), trophocyte nucleus (tn), tropharium (tr). Methylene blue, scale bar = 20 μm. c–e Bacteriocytes (bc) migrate through the follicular epithelium (fc) (longitudinal section). Sodalis-like bacteria (black asterisks), bacteriocyte nucleus (bn), follicular cell nucleus (fn), mitochondria (m), oocyte (oc). c, d Methylene blue, scale bar = 20 μm. e TEM, scale bar = 2 μm. f, g Bacteriocytes (bc) after passing through the follicular epithelium gradually gather in the invagination of the oolemma (longitudinal section). Bacteriocyte nucleus (bn), oocyte (oc), oolemma (white arrowheads), Sodalis-like bacteria (black asterisks). Methylene blue, scale bar = 20 μm. h A Bsymbiont ball^ composed of numerous bacteriocytes (bc) (cross section). Bacteriocyte nucleus (bn), oocyte (oc). Methylene blue, scale bar = 20 μm dividing cystocytes. As a consequence, in both P. albicans and I. purchasi, after the differentiation of the cystocytes into oocytes and trophocytes, the symbionts occupy both these cell types. Since the microorganisms are transmitted to the progeny through only the oocytes, the bacteria residing in the tropho cytes then migr ate through th e proce sses of trophocytes, trophic core, and nutritive cord into the developing oocyte. The different modes of symbiont transmission in species of the genus Puto, thus, support the hypothesis of the independent acquisition of symbionts in Putoidae. It should be stressed that results of studies of the symbionts of the genus Puto (Szklarzewicz et al. 2010; Gruwell et al. 2014; this study) , as well as results of previous studies on the organization of their ovaries (for further details, see Michalik et al. 2013), strongly support the current systematic position of these scale insects, i.e., in the separate Putoidae family within the archaeococcoid subgroup. This view is substantiated by the observation that the symbiotic bacterium Tremblaya phenacola in mealybugs from the family Pseudococcidae (subfamily Phenacoccinae), to which P. superbus was formerly classified (see BIntroduction^), belongs to distinct group of bacteria, namely to the class Betaproteobacteria (Gruwell et al. 2010; Koga et al. 2013) . Both ultrastructural and molecular analyses have revealed that apart from the Sodalis bacteria, the Wolbachia bacteria are present in the bacteriocytes of all the specimens of P. superbus. Wolbachia bacterium, which is widely distributed among arthropods and nematodes, is regarded as playing variable roles for host insect. This means that the bacterium may feminize male embryos, kill male embryos, cause cytoplasmic incompatibility in infected males and uninfected females, and may also induce parthenogenesis (for further details, see Werren 1997; Stouthamer et al. 1999; Werren et al. 2008) . The function of the bacterium in P. superbus remains unclear; however, both previous studies on ovaries (Michalik et al. 2013) as present studies on symbionts did not reveal the negative influence of these bacteria on the reproduction of the host insect. As we have analyzed only two populations of P. superbus, it still remains unknown whether this bacterium is present in specimens from other locations. In contrast to other insects, such as heteropterans (Kikuchi and Fukatsu 2003) and aphids (Augustinos et al. 2011) , the prevalence of Wolbachia infections in scale insects has not been extensively examined to date. So far, apart from P. superbus, the bacterium Wolbachia has been found in a few species of coccoids representing three families: Coelostomidia wairoensis (Coelostomidiidae), Icerya purchasi and Drosicha pinicola (both Monophlebidae), and Kerria lacca (Kerridae) (Duron et al. 2008; Matsuura et al. 2009; Vashishtha et al. 2011; Dhami et al. 2012) . Taking into account the fact that about 16% of insect species are infected by Wolbachia (Werren 1997), it seems reasonable to expect that in the near future, this bacterium will be detected in other species of scale insects. Acknowledgements We are greatly indebted to Dr. Olga Woźnicka for her skilled technical assistance. Ultrastructural observations have been carried out using the Jeol 2100 transmission electron microscope in the Laboratory of Microscopy, Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University. Compliance with ethical standards Funding This work was supported by the Iuventus Plus V research grant IP2015050374 from the Ministry of Science and Higher Education to Anna Michalik Ethical approval All applicable international, national, and institutional guidelines for the animal use were followed. Conflict of interest The authors declare that they have no conflicts of interest. Open Access This article is distributed under the terms of the Creative C o m m o n s A t t r i b u t i o n 4 . 0 I n t e r n a t i o n a l L i c e n s e ( h t t p : / / creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. Augustinos AA , Santos-Garcia D , Dionyssopoulou E , Moreira M , Papanagiotou A , Scarvelakis M , Doudoumis V , Ramos S , Aguiar AF , Borges PAV , Khadem M , Latorre A , Tsiamis G , Bourtzis K ( 2011 ) Detection and characterization of Wolbachia infections in natural populations of aphids: is the hidden diversity fully unraveled ? PLoS One 6 : e28695 Baumann P ( 2005 ) Biology of bacteriocyte-associated endosymbionts of plant sup-sucking insects . Annu Rev Microbiol 59 : 155 - 189 Baumann P ( 2006 ) Diversity of prokaryote-insect associations within the Sternorrhyncha (psyllids, whiteflies, aphids, mealybugs) . In: Bourtzis K , Miller TA (eds) Insect Symbiosis , vol. 2 . CRC Press, Boca Raton, pp 1 - 24 Beardsley JW ( 1969 ) A new fossil scale insect (Homoptera: Coccoidea) from Canadian amber . Psyche 76 : 270 - 279 Borchsenius NS ( 1949 ) Insects Homoptera . Suborders mealybugs and scales (Coccoidea) . Family mealybugs (Pseudococcidae) . Vol. VII. Fauna SSSR. Zool Inst Akad Nauk SSSR, NS 38 : 1 - 382 Buchner P ( 1955 ) Endosymbiosestudien an Schildläusen. III. Macrocerococcus und Puto zwei primitive Pseudococcinen . Z Morph Őkol Tiere 43 : 523 - 577 B u c h n e r P ( 1 9 6 5 ) E n d o s y m b i o s i s o f A n i m a l s w i t h P l a n t Microorganisms . Interscience Publishers, New York Burke GR , Normark BB , Favret C , Moran NA ( 2009 ) Evolution and diversity of facultative symbionts from the aphid subfamily Lachninae . Appl Environ Microbiol 75 : 5328 - 5335 Cook LG , Gullan PJ , Trueman HE ( 2002 ) A preliminary phylogeny of the scale insects (Hemiptera: Sternorrhyncha: Coccoidea) based on nuclear small-subunit ribosomal DNA . Mol Phylogenet Evol 25 : 43 - 52 Costa HS , Westcot DM , Ullman DE Johnson MW ( 1993 ) Ultrastructure of the endosymbionts of the whitefly, Bemisia tabaci and Trialeurodes vaporariorum . Protoplasma 176 : 106 - 115 Dale C , Maudlin I ( 1999 ) Sodalis gen . Nov. and Sodalis glossinidius sp. nov., a microaerophilic secondary endosymbiont of the tsetse fly Glossina morsitans morsitans . Int J Syst Bacteriol 49 : 267 - 275 Danzig EM ( 1980 ) Coccoids of the Far East USSR (Homoptera, Coccinea) with Phylogenetic Analysis of Scale Insects Fauna of the World . Nauka, Leningrad Dhami MK , Turner AP , Deines P , Beggs JR , Taylor MW ( 2012 ) Ultrastructural and molecular characterization of a bacterial symbiosis in the ecologically important scale insect family Coelostomidiidae . FEMS Microbiol Ecol 81 : 537 - 546 Douglas AE ( 1998 ) Nutritional interactions in insect - microbial symbioses: aphids and their symbiotic bacteria Buchnera . Annu Rev Entomol 43 : 17 - 37 Douglas AE ( 2009 ) The microbial dimension in insect nutritional ecology . Funct Ecol 23 : 38 - 47 Duron O , Bouchon B , Boutin S , Bellamy L , Zhou L , Engelstädter J , Hurst GD ( 2008 ) The diversity of reproductive parasites among arthropods: Wolbachia do not walk alone . BMC Biol 6 : 27 . doi: 10 .1186/ 1741 -7007-6-27 Fukatsu T , Koga R , Smith WA , Tanaka K , Nikoh N , Sasaki-Fukatsu K , Yoshizawa K , Dale C , Clayton DH ( 2007 ) Bacterial endosymbiont of the slender pigeon louse, Columbicola columbae, allied to endosymbionts of grain weevils and tsetse flies . Appl Environ Microbiol 73 : 6660 - 6668 García Morales M , Denno BD , Miller DR , Miller GL , Ben-Dov Y , Hardy NB ( 2016 ) ScaleNet: a literature-based model of scale insect biology and systematics . Database. doi: 10 .1093/database/bav118 Gatehouse LN , Sutherland P , Forgie SA , Kaji R , Christeller JT ( 2011 ) Molecular and histological characterization of primary (Betaproteobacteria) and secondary (Gammaproteobacteria) endosymbionts of three mealybug species . Appl Environ Microbiol 78 : 1187 - 1197 Gertsson C-A ( 2013 ) A zoogeographical analysis of the scale insect (Hemiptera, Coccoidea) fauna of Fennoscandia and Denmark . Nor J Entomol 60 : 81 - 89 Gruwell ME , Morse GE , Normark BB ( 2007 ) Phylogenetic congruence of armored scale insects (Hemiptera: Diaspididae) and their primary endosymbionts from the phylum Bacteroidetes . Mol Phylogenet Evol 44 : 267 - 280 Gruwell ME , Hardy NB , Gullan PJ , Dittmar K ( 2010 ) Evolutionary relationships among primary endosymbionts of the mealybug subfamily Phenacoccinae (Hemiptera: Coccoidea: Pseudococcidae) . Appl Environ Microbiol 76 : 7521 - 7525 Gruwell ME , Flarhety M , Dittmar K ( 2012 ) Distribution of the primary endosymbiont (Candidatus Uzinura diaspidicola) within host insects from the scale insect family Diaspididae . Insects 3 : 262 - 269 Gruwell ME , Duda Z , MacCready J ( 2014 ) Investigation of endosymbiotic bacteria associated with scale insects of the family Putoidae (Hemiptera: Coccoidea) . Acta Zool Bulg 6 : 29 - 34 Gullan PJ , Cook LG ( 2007 ) Phylogeny and higher classification of the scale insects (Hemiptera: Sternorrhyncha: Coccoidea) . Zootaxa 1668 : 413 - 425 Gullan PJ , Kosztarab M ( 1997 ) Adaptations in scale insects . Annu Rev Entomol 42 : 23 - 50 Gullan PJ , Martin JH ( 2009 ) Sternorrhyncha (jumping plant-lice, whiteflies, aphids, and scale insects) . In: Resh VH , Cardé RT (eds) Encyclopedia of Insects. Elsevier, San Diego, pp 957 - 967 Hall TA ( 1999 ) BIOEDIT: an user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucleic Acids Symp Ser 41 : 95 - 98 Heddi A , Charles H , Khatchadourian C , Bonnot G , Nardon P ( 1998 ) Molecular characterization of the principal symbiotic bacteria of the weevil Sitophilus oryzae: a peculiar G+C content of an endocytobiotic DNA . J Mol Evol 47 : 52 - 61 Hosokawa T , Kaiwa N , Matsuura YU , Kikuchi Y , Fukatsu T ( 2015 ) Infection prevalence of Sodalis symbionts among stinkbugs . Zool Letters : 1 - 5 . doi: 10 .1186/s40851-014-0009-5 Husnik F , McCutcheon JP ( 2016 ) Repeated replacement of an intrabacterial symbiont in the tripartite nested mealybug symbiosis . PNAS 113 : E5416 - E5424 Husnik FN , Nikoh R , Koga R , Ross L , Duncan RP , Fujie M , Tanaka M , Satoh N , Bachtrog D , Wilson ACC , von Dohlen CD , Fukatsu T , McCutcheon JP ( 2013 ) Horizontal gene transfer from diverse bacteria to an insect genome enables a tripartite nested mealybug symbiosis . Cell 153 : 1567 - 1578 Ishikawa H ( 2003 ) Insect symbiosis: an introduction . In: Bourtzis K , Miller TA (eds) Insect Symbiosis , vol 3 . CRC Press, Boca Raton, pp 1 - 21 Kaiwa N , Hosokawa T , Kikuchi Y , Nikoh N , Meng XY , Kimura N , Ito M , Fukatsu T ( 2010 ) Primary gut symbiont and secondary, Sodalisallied symbiont of the scutellerid stinkbug Cantao ocellatus . Appl Environ Microbiol 76 : 3486 - 3494 Kaiwa N , Hosokawa T , Kikuchi Y , Nikoh N , Meng XY , Kimura N , Ito M , Fukatsu T ( 2011 ) Bacterial symbionts of the giant jewel stinkbug Eucoryssus grandis (Hemiptera: Scutelleridae) . Zool Sci 28 : 169 - 174 Kaydan MB , Kozar F , Hodgson C ( 2015 ) A review of the phylogeny of P a l a e a r c t i c m e a l y b u g s ( H e m i p t e r a : C o c c o m o r p h a : Pseudococcidae) . Arthr Syst Phylogeny 73 : 175 - 195 Kikuchi Y , Fukatsu T ( 2003 ) Diversity of Wolbachia endosymbionts in heteropteran bugs . Appl Environ Microbiol 69 : 6082 - 6090 Koga R , Moran NA ( 2014 ) Swapping symbionts in spittlebugs: evolutionary replacement of a reduced genome symbiont . ISME J 8 : 1237 - 1246 Koga R , Nikoh N , Matsuura Y , Meng XY , Fukatsu T ( 2013 ) Mealybugs with distinct endosymbiotic systems living on the same host plant . FEMS Microbiol Ecol 83 : 93 - 100 Kondo T , Gullan PJ , Williams DJ ( 2008 ) Coccidology . The study of scale insects (Hemiptera: Sternorrhyncha: Coccoidea) . Rev Corp Ciencia Tecn Agrop 9 : 55 - 61 Kono M , Koga R , Shimada M , Fukatsu T ( 2008 ) Infection dynamics of coexisting β and γ-proteobacteria in the nested endosymbiotic system of mealybugs . Appl Environ Microbiol 74 : 4175 - 4184 Kosztarab M , Kozár F ( 1988 ) Scale Insects of Central Europe . Akademiai Kiado , Budapest Koteja J ( 1974 ) Comparative studies on the labium in the Coccinea (Homoptera) . Sci Papers Agr Univ Kraków 89 : 1 - 162 Koteja J ( 1985 ) Essay on the prehistory of the scale insects (Homoptera, Coccinea) . Ann Zool 38 : 461 - 503 Koteja J ( 1996 ) Scale insects (Homoptera: Coccinea) a day after . In: Schaefer CW ( ed) Studies on hemipteran phylogeny . Entomol Soc Am , Lanham, MD, pp 65 - 88 Koteja J , Azar D ( 2008 ) Scale insects from lower cretaceous amber of Lebanon (Hemiptera: Sternorrhyncha: Coccinea) . Alavesia 2 : 133 - 167 Kumar S , Stecher G , Tamura K ( 2016 ) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets . Mol Biol Evol 33 : 1870 - 1874 Leonardi G ( 1907 ) Contribuzione alla conoscenza delle cocciniglie Italiane . Boll Lab Zool Gen Agraria R Scuola Superior Agricolt 1 : 135 - 169 Manzano-Marin A , Szabo G , Simon J-C , Horn M , Latorre A ( 2017 ) Happens in the best of subfamilies: establishment and repeated replacements of co-obligate secondary endosymbionts within Lachninae aphids . Environ Microbiol 19 : 393 - 408 Marotta S , Tranfaglia A ( 1985 ) Ridescrizione di Macrocerococcus superbus Leonardi e considerazioni sulla sua posizione generica, con note su Puto Signoret . Boll Lab Entomol Agraria 'Filippo Silvestri' Portici 42 : 212 - 219 Matsuura Y , Koga R , Nikoh N , Meng XY , Hanada S , Fukatsu T ( 2009 ) Huge symbiotic organs in giant scale insects of the genus Drosicha (Coccoidea: Monophlebidae) harbor flavobacterial and enterobacterial endosymbionts . Zool Sci 26 : 448 - 456 Matsuura Y , Hosokawa T , Serracin M , Tulgetske GM , Miller TA , Fukatsu T ( 2014 ) Bacterial symbionts of a devastating coffee plant pest, the stinkbug Antestiopsis thunbergii (Hemiptera: Pentatomidae) . Appl Environ Microbiol 80 : 3769 - 3775 McCutcheon JP , von Dohlen CD ( 2011 ) An interdependent metabolic patchwork in the nested symbiosis of mealybugs . Curr Biol 21 : 1366 - 1372 Michalik A , Kalandyk-Kolodziejczyk M , Simon E , Kobialka M , Szklarzewicz T ( 2013 ) Ovaries of Puto superbus and Ceroputo pilosellae (Hemiptera: Coccoidea): morphology, ultrastructure, phylogenetic and taxonomic implications . Eur J Entomol 110 : 527 - 534 Michalik A , Jankowska W , Kot M , Gołas A , Szklarzewicz T ( 2014 ) Symbiosis in the green leafhopper, Cicadella viridis (Hemiptera, Cicadellidae) . Association in statu nascendi? Arthr Struct Dev 43 : 579 - 587 Michalik K , Szklarzewicz T , Kalandyk-Kołodziejczyk M , Jankowska W , Michalik A ( 2016 ) Bacteria belonging to the genus Burkholderia are obligatory symbionts of the eriococcids Acanthococcus aceris Signoret, 1875 and Gossyparia spuria (Modeer, 1778) (Insecta , Hemiptera, Coccoidea). Arthr Struct Dev 45 : 265 - 272 Miller DR , Kosztarab M ( 1979 ) Recent advances in the study of scale insects . Annu Rev Entomol 24 : 1 - 27 Montllor CB , Maxmen A , Purcell AH ( 2002 ) Facultative bacterial endosymbionts benefit pea aphids Acyrthosiphon pisum under heat stress . Ecol Entomol 27 : 189 - 195 Moran NA , Dale C ( 2006 ) Molecular interactions between bacterial symbionts and their hosts . Cell 126 : 453 - 465 Moran NA , Telang A ( 1998 ) Bacteriocyte-associated symbionts of insects: a variety of insect groups harbor ancient prokaryotic endosymbionts . Bioscience 48 : 295 - 304 Moran NA , McCutcheon JP , Nakabachi A ( 2008 ) Genomics and evolution of heritable bacterial symbionts . Annu Rev Genetics 42 : 165 - 190 Niżnik S , Szklarzewicz T ( 2007 ) Structure and development of hermaphroditic gonad in Icerya purchasi (Insecta, Hemiptera , Coccinea: Monophlebidae). Zool Polon 52 : 71 - 90 Nováková E , Hypša V ( 2007 ) A new Sodalis lineage from bloodsucking fly Craterina melbae (Diptera, Hippoboscoidea) originated independently of the tsetse flies symbiont Sodalis glossinidius . FEMS Microbiol Lett 269 : 131 - 135 Oliver KM , Russel JA , Moran NA , Hunter MS ( 2003 ) Facultative bacterial symbionts in aphids confer resistance to parasitic wasps . PNAS 100 : 1803 - 1807 Provencher LM , Morse GE , Weks AR , Normark BB ( 2005 ) Parthenogenesis in the Aspidiotus nerii Complex (Hemiptera: Diaspididae): a single origin of a worldwide, polyphyletic lineage associated with Cardinium bacteria . Ann Entomol Soc Am 98 : 629 - 635 Rambaut A ( 2009 ) FigTree v1. 4.0: Tree Figure Drawing Tool . Available: http://tree.bio.ed.ac.uk/software/figtree/. Accessed 2014 Jul 2 Ramirez-Puebla ST , Rosenblueth M , Chavez-Moreno CK , de Catanho Pereira Lyra MC , Tecante A , Martinez-Romero A ( 2010 ) Molecular phylogeny of the genus Dactylopius (Hemiptera: Dactylopiidae) and identification of the symbiotic bacteria . Environ Entomol 39 : 1178 - 1183 Ronquist F , Huelsenbeck JP ( 2003 ) MRBAYES 3: Bayesian phylogenetic inference under mixed models . Bioinformatics 19 : 1572 - 1574 Rosas-Pérez T , Rosenblueth M , Rincón-Rosales R , Mora J , MartínezRomero E ( 2014 ) Genome sequence of BCandidatus Walczuchella monophlebidarum^ the flavobacterial endosymbiont of Llaveia axin axin (Hemiptera: Coccoidea: Monophlebidae) . Genome Biol Evol 6 : 714 - 726 Rosenblueth M , Sayavedra L , Sámano-Sánchez H , Roth A , MartínezRomero E ( 2012 ) Evolutionary relationships of flavobacterial and enterobacterial endosymbionts with their scale insect hosts (Hemiptera: Coccoidea) . J Evol Biol 25 : 2357 - 2368 Sabree ZL , Huang CY , Okusu A , Moran NA , Normark BB ( 2013 ) The nutrient supplying capabilities of Uzinura, an endosymbiont of armoured scale insects . Environ Microbiol 15 : 1988 - 1999 Sacchi L , Grigolo A , Mazzini M , Bigliardi E , Baccetti B , Laudani U ( 1988 ) Symbionts in the oocytes of Blattella germanica L. (Dictyoptera: Blattellidae): their mode of transmission . Int J Insect Morphol Embryol 17 : 437 - 446 Sandström JP , Rusell JA , White JP , Moran NA ( 2001 ) Independent origins and horizontal transfer of bacterial symbionts of aphids . Mol Ecol 10 : 217 - 228 Scarborough CL , Ferrari J , Godfray HCJ ( 2005 ) Aphid protected from pathogen by endosymbiont . Science 310 : 1781 Schmutterer H (1952) Die Ökologie der Cocciden (Homoptera, Coccoidea) Frankens . Z Angew Entomol 33 : 369 - 420 Stouthamer R , Breeuwer JAJ , Hurst GDD ( 1999 ) Wolbachia pipientis: microbial manipulator of arthropod reproduction . Annu Rev Microbiol 53 : 71 - 102 Szabo G , Schulz F , Toenshoff ER , Volland J-M , Omri M , Finkel OM , Belkin S , Horn M ( 2016 ) Convergent patterns in the evolution of mealybug symbioses involving different intrabacterial symbionts . ISME J. doi:10 .1038/ismej. 2016 .148 Szklarzewicz T , Moskal A ( 2001 ) Ultrastructure, distribution, and transmission of endosymbionts in the whitefly Aleurochiton aceris Modeer (Insecta, Hemiptera , Aleyrodinea). Protoplasma 218 : 45 - 53 Szklarzewicz T , Kędra K , Niżnik S ( 2006 ) Ultrastructure and transovarial transmission of endosymbiotic microorganisms in Palaeococcus fuscipennis (Burmeister) (Insecta , Hemiptera, Coccinea: Monophlebidae). Folia biol (Kraków) 54 : 69 - 74 Szklarzewicz T , Michalik A , Czaja A , Szydłowska S ( 2010 ) Germ cell cluster formation and ovariole structure in Puto albicans and Crypticerya morrilli (Hemiptera: Coccinea) . Phylogenetic implications . Eur J Entomol 107 : 589 - 595 Szklarzewicz T , Kalandyk-Kolodziejczyk M , Kot M , Michalik A ( 2013 ) Ovary structure and transovarial transmission of endosymbiotic microorganisms in Marchalina hellenica (Insecta, Hemiptera , Coccomorpha: Marchalinidae). Acta Zool (Stockholm) 94 : 184 - 192 Takiya DM , Tran P , Dietrich CH , Moran NA ( 2006 ) Co-cladogenesis spanning three phyla: leafhoppers (Insecta: Hemiptera: Cicadellidae) and their dual bacterial symbionts . Mol Ecol 15 : 4175 - 4191 Thao ML , Clark MA , Baumann L , Brennan EB , Moran NA , Baumann P ( 2000 ) Secondary endosymbionts of psyllids have been acquired multiple times . Curr Microbiol 41 : 300 - 304 Thao ML , Gullan PJ , Baumann P ( 2002 ) Secondary (γ-proteobacteria) endosymbionts infect the primary (β-proteobacteria) endosymbionts of mealybugs multiple times and coevolve with their host . Appl Environ Microbiol 68 : 3190 - 3197 Thompson JD , Gibson TJ , Plewniak F , Jeanmougin F , Higgins DG ( 1997 ) The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools . Nucleic Acids Res 25 : 4876 - 4882 Tremblay E ( 1990 ) Endosymbionts . In: Rosen D (ed) Armored Scale Insects: their Biology , Natural Enemies, and Control , vol. A. Elsevier , Amsterdam, pp 275 - 283 Vashishtha A , Sharama K , Lakhanpaul S ( 2011 ) Co-existence, phylogeny and putative role of Wolbachia and yeast-like symbiont (YLS) in Kerria lacca (Kerr) . Curr Microbiol 63 : 206 - 212 von Dohlen CD , Kohler S , Alsop ST , McManus WR ( 2001 ) Mealybug β- proteobacterial endosymbionts contain γ-proteobacterial symbionts . Nature 412 : 433 - 435 Walczuch A ( 1932 ) Studien an Coccidensymbionten . Z Morphol Ökol Tiere 25 : 623 - 729 Werren JH ( 1997 ) Biology of Wolbachia . Annu Rev Entomol 42 : 587 - 609 Werren JH , Baldo L , Clark SE ( 2008 ) Wolbachia: master manipulators of invertebrate biology . Nat Rev Microbiol 6 : 741 - 751 Wilkinson TL , Ishikawa H ( 2001 ) On the functional significance of symbiotic microorganisms in the Homoptera: a comparative study of Acyrthosiphon pisum and Nilaparvata lugens . Physiol Entomol 26 : 86 - 93 Williams DJ , Hodgson CJ ( 2014 ) The case for using the infraorder Coccomorpha above the superfamily Coccoidea for the scale insects (Hemiptera: Sternorrhyncha) . Zootaxa 3869 : 348 - 350


This is a preview of a remote PDF: https://link.springer.com/content/pdf/10.1007%2Fs00709-017-1135-7.pdf

Teresa Szklarzewicz, Małgorzata Kalandyk-Kołodziejczyk, Katarzyna Michalik, Władysława Jankowska, Anna Michalik. Symbiotic microorganisms in Puto superbus (Leonardi, 1907) (Insecta, Hemiptera, Coccomorpha: Putoidae), Protoplasma, 2017, 1-10, DOI: 10.1007/s00709-017-1135-7