Measurement of electroweak-induced production of Wγ with two jets in pp collisions at \( \sqrt{s}=8 \) TeV and constraints on anomalous quartic gauge couplings

Journal of High Energy Physics, Jun 2017

A measurement of electroweak-induced production of Wγ and two jets is performed, where the W boson decays leptonically. The data used in the analysis correspond to an integrated luminosity of 19.7 fb−1 collected by the CMS experiment in \( \sqrt{s}=8 \) TeV proton-proton collisions produced at the LHC. Candidate events are selected with exactly one muon or electron, missing transverse momentum, one photon, and two jets with large rapidity separation. An excess over the hypothesis of the standard model without electroweak production of Wγ with two jets is observed with a significance of 2.7 standard deviations. The cross section measured in the fiducial region is 10.8 ± 4.1(stat) ± 3.4(syst) ± 0.3(lumi) fb, which is consistent with the standard model electroweak prediction. The total cross section for Wγ in association with two jets in the same fiducial region is measured to be 23.2 ± 4.3(stat) ± 1.7(syst) ± 0.6(lumi) fb, which is consistent with the standard model prediction from the combination of electroweak and quantum chromodynamics-induced processes. No deviations are observed from the standard model predictions and experimental limits on anomalous quartic gauge couplings f M,0−7 /Λ4, f T,0−2 /Λ4, and f T,5−7 /Λ4 are set at 95% confidence level.

A PDF file should load here. If you do not see its contents the file may be temporarily unavailable at the journal website or you do not have a PDF plug-in installed and enabled in your browser.

Alternatively, you can download the file locally and open with any standalone PDF reader:

https://link.springer.com/content/pdf/10.1007%2FJHEP06%282017%29106.pdf

Measurement of electroweak-induced production of Wγ with two jets in pp collisions at \( \sqrt{s}=8 \) TeV and constraints on anomalous quartic gauge couplings

Accepted: June 8 TeV and p constraints on anomalous quartic gauge couplings A measurement of electroweak-induced production of W Electroweak interaction; Hadron-Hadron scattering (experiments); proton- - W The CMS collaboration and two jets is performed, where the W boson decays leptonically. The data used in the analysis correspond to an integrated luminosity of 19.7 fb 1 collected by the CMS experiment in s = 8 TeV proton-proton collisions produced at the LHC. Candidate events are selected with exactly one muon or electron, missing transverse momentum, one photon, and two jets with large rapidity separation. An excess over the hypothesis of the standard model without electroweak production of W with two jets is observed with a signi cance of 2.7 standard deviations. The cross section measured in the ducial region is 4:1(stat) 3:4(syst) 0:3(lumi) fb, which is consistent with the standard model electroweak prediction. The total cross section for W in association with two jets in the same ducial region is measured to be 23:2 4:3(stat) 1:7(syst) 0:6(lumi) fb, which is consistent with the standard model prediction from the combination of electroweakand quantum chromodynamics-induced processes. No deviations are observed from the standard model predictions and experimental limits on anomalous quartic gauge couplings fM;0 7= 4, fT;0 2= 4, and fT;5 7= 4 are set at 95% con dence level. 2 3 4 5 6 7 8 9 1 Introduction The CMS detector Data and simulated samples Event reconstruction and selection Background estimation Systematic uncertainties EW +2 jets signal and cross section measurements Limits on anomalous quartic gauge couplings Summary A Anomalous quartic gauge coupling parameterization The CMS collaboration of gauge interactions was tested by the measurements of diboson production (e.g., refs. [5{ The CERN LHC allows the measurement of many novel processes predicted by the SM, especially those that involve pure electroweak (EW) interactions with relatively small cross sections compared with QCD-induced production of EW nal states. Typical examples include triple gauge boson production [14] and vector boson scattering (VBS) or vector boson fusion (VBF) processes [15{22]. The VBS processes have some features that can be exploited to better understand the SM in novel phase spaces and to probe new physics or constrain anomalous gauge couplings. For example, phenomenological studies of the EW production of W and Z bosons in association with two jets that exploit the large rapidity gaps between the two jets [23, 24]. Also, the VBF process was studied using the Higgs boson production and decay in refs. [25{28]. Furthermore, the EW production of Z bosons, Z , Z , and same-sign { 1 { d¯ u u u (a) W+ d W+ W+ (b) W+ γ u u W+ γ (c) d u W+ γ bremsstrahlung, (b) bremsstrahlung with triple gauge coupling, and (c) VBS with quartic coupling. exclusive for W predictions. W boson pairs in association with two jets has recently been measured at the LHC [16{ 18, 20, 21, 29]. Moreover, both the ATLAS and the CMS experiments found evidence for to W+W production [15, 19], and the ATLAS experiment found evidence triple boson production [30]. All the results are in good agreement with the SM In this analysis, we search for EW-induced W production in association with two jets [31] (EW W +2 jets) in the W boson leptonic decay channel (W ! ` , ` = e; ). This process is expected to have one of the largest cross sections of all the VBS processes and thus is expected to be one of the rst VBS processes observable at a hadron collider. As shown in gure 1, W production includes several di erent classes of diagrams: bremsstrahlung of one or two vector bosons and the more interesting VBS EW processes such as in gure 1c. The cross sections of EW-induced only and EW+QCD total W processes are measured in a VBS-like ducial region, where the two jets have a large separation in pseudorapidity. The signal structure of the weak boson scattering events makes VBS processes a good probe of quartic gauge boson couplings. Instead of measuring the SM gauge couplings, which are completely xed by the SM SU(2)L U(1)Y gauge symmetry, we keep the SM gauge symmetry while setting limits on a set of higher dimensional anomalous quartic gauge couplings (aQGCs). More details of the aQGC parameterization can be found in appendix A. The production of W +2 jets at the LHC has two major contributions at leading order (LO) in addition to the EW signal process described above: QCD and triple gauge boson WV processes, with V = W or Z decaying into a quark-antiquark pair. Because these processes can have the same set of initial and nal states, these three contributions interfere. One can suppress this interference by choosing an appropriate phase space for the measurements. The WV events reside mainly in the W or Z boson mass window; we require mjj > 200 GeV to eliminate most of this contribution. The EW W +2 jets events favor a larger mjj region than the QCD W +2 jets events do. Calculations using the MadGraph program show the interference decreases with increasing mjj and j (j1; j2)j, and can change from constructive to destructive at 1 TeV in mjj depending on the choice of renormalization and factorization scales. In the analysis we consider the phase space region with mjj > 700 GeV and j (j1; j2)j > 2:4 to suppress the interference. The interference e ect in the ducial region is estimated to be 4.6% of the total W +2 jets cross section. { 2 { HJEP06(217) In addition to the main background from QCD W +2 jets production [32], other backgrounds include (1) jets misidenti ed as photons or electrons, (2) WV events with hadronically decaying V bosons (W=Z ! jj) and a photon from initial- or nal-state radiation, (3) contributions from top quark pairs with a radiated photon, and (4) single top quark events with a radiated photon. The selection criteria are designed to reduce the collective sum of these backgrounds. In the case of nonzero anomalous couplings, the EW contribution can be greatly enhanced, especially in the high-energy tails of some kinematic distributions; therefore, we require the photon and W boson to have large transverse momenta to obtain better sensitivity. The paper is organized as follows: section 2 describes the CMS detector. Section 3 section 9 summarizes the results. 2 The CMS detector The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal diameter and 13 m length, providing a magnetic eld of 3.8 T. Within the solenoid volume are a silicon pixel and strip tracker, a lead tungstate crystal electromagnetic calorimeter (ECAL), and a brass and scintillator hadron calorimeter (HCAL). Muons are reconstructed in gas-ionization detectors embedded in the steel ux-return yoke outside the solenoid. Extensive forward calorimetry complements the coverage provided by the barrel and endcap detectors. The tracking system consists of 1440 silicon pixel and 15 148 silicon strip detector modules and covers the pseudorapidity range j j < 2:5, providing a transverse momentum pT resolution of about 1.5% at 100 GeV. The electromagnetic calorimeter consists of 75 848 lead tungstate crystals, which provide coverage in j j < 1:48 in the barrel region (EB) and 1:48 < j j < 3:00 in the two endcap regions (EE). A preshower detector consisting of two planes of silicon sensors interleaved with three radiation lengths of lead is located in front of the EE. Photons are identi ed as ECAL energy clusters not linked to the extrapolation of any charged particle trajectory to the ECAL. These energy clusters are merged to form superclusters that are ve crystals wide in , centered around the most energetic crystal, and have a variable width in the azimuthal angle . The HCAL consists of a set of sampling calorimeters that utilize alternating layers of brass as absorber and plastic scintillator as active material. It provides coverage for j j < 3:0. Combined with the forward calorimeter modules, the coverage of hadronic jets is extended to j j < 5:0. The energy of charged hadrons is determined from a combination of the track momentum and the corresponding ECAL and HCAL energies, corrected for the combined response function of the calorimeters. The energy of neutral hadrons is obtained from the corresponding corrected ECAL and HCAL energies. The muon system includes barrel drift tubes covering { 3 { the range j j < 1:2, endcap cathode strip chambers (0:9 < j j < 2:5), and resistive-plate chambers (j j < 1:6) [33]. The CMS detector is nearly hermetic, allowing for measurements of the missing transverse momentum vector p~miss, which is de ned as the projection on the plane perpendicular to the beams of the negative vector sum of the momenta of all T reconstructed particles in an event. The rst level of the CMS trigger system, composed of custom hardware processors, uses information from the calorimeters and muon detectors to select the events of interest in a xed time interval of less than 4 s. The high-level trigger processor farm further decreases the event rate from around 100 kHz to less than 1 kHz, before data storage. A more detailed description of the CMS detector, together with a de nition of the coordinate system used and the relevant kinematic variables, can be found in ref. [34]. 3 Data and simulated samples The analysis uses a data sample of proton-proton collisions collected at p CMS detector in 2012 that corresponds to an integrated luminosity of 19:7 s = 8 TeV by the (MC). The EW W(! ` ) +2 jets process and the tt background process are generated using MadGraph 5.1.3.22 [36]. Samples with aQGCs are obtained using the multiweight method with the MadGraph 5.2.1.1 generator [37]. The MC samples for QCD W(! ` )=Z(! ``) +0,1,2,3 jets are also generated with the MadGraph 5.2.1.1 generator, using the MLM matching method [37{40] with a matrix element/parton shower (ME-PS) matching scale of 10 GeV [41]. For all samples generated with MadGraph, the CTEQ6L1 parton distribution function (PDF) set [42] is used, and the renormalization p M W2=Z + (pTW=Z)2 + (pT)2 + P(pjT)2. The single top and factorization scales are set to quark production processes are generated with the powheg (v1.0, r1380) [43, 44] generator, using the CTEQ6M PDF set [42, 45]. The diboson samples (WW, WZ, ZZ), with one of the bosons decaying leptonically and the other decaying hadronically, are generated with pythia 6.422 [46] and the CTEQ6L1 PDF set. The nal-state leptons considered are e; ; and , where the lepton decay is handled with tauola [47]. The pythia 6.426 [46] program is used to simulate parton showers and hadronization, with the parameters of the underlying event set to the Z2* tune [48, 49]. For all MC samples, a Geant4-based simulation [50] of the CMS detector is used and the hard-interaction collision is overlaid with a number of simulated minimum-bias collisions. The resulting events are weighted to reproduce the data distribution of the number of inelastic collisions per bunch crossing (pileup). These simulated events are reconstructed and analyzed using the same algorithms as for data. The di erences in lepton and photon reconstruction and identi cation (ID) e ciencies observed between data and simulated events are subsequently corrected with scale factors [51, 52]. To improve the precision of the predicted cross section for the signal model, the NLO QCD correction is included with the EW signal process through an NLO/LO cross section K factor of 1.02, determined by using vbfnlo [31, 32, 53{55]. For QCD W +2 jets production, the K factor is 0.93 and is only applied for the measurement of the EW+QCD cross section, xing the ratio between EW and QCD components. { 4 { An EW-induced W +2 jets event is expected to have exactly one lepton (muon or electron), a photon, two jets with large rapidity separation, and large jp~Tmissj. A complete reconstruction of the individual particles emerging from each collision event is obtained via a particle- ow (PF) technique, which uses the information from all CMS subdetectors to identify and reconstruct individual particles [56, 57]. The particles are classi ed into mutually exclusive categories: charged hadrons, neutral hadrons, photons, muons, and electrons. The events are selected by using single-lepton triggers with pT thresholds of 24 GeV for muons and 27 GeV for electrons. The overall trigger e ciency is 90% (94%) for the electron (muon) data, with a small dependence on pT and . Charged-particle tracks are required to originate from the event primary vertex, de ned as the reconstructed vertex within 24 cm (2 cm) of the center of the detector in the direction along (perpendicular to) the beam axis that has the highest value of p2T summed over the associated charged-particle tracks. The events are also required to have either one muon or one electron; events with additional charged leptons are excluded. The muon candidates are reconstructed with information from both the silicon tracker and from the muon detector by means of a global t [33]. They are required to satisfy a requirement on the PF-based relative isolation, which is de ned as the ratio of the pT sum of all other PF candidates reconstructed in )2 + ( )2 = 0:3 (0:4) around the candidate electron (muon) to the pT of the candidate, and is corrected for contributions from pileup [51]. The selection e ciency is approximately 96%. Muons with pT > 25 GeV and j j < 2:1 are included in the analysis. The electron candidates are reconstructed by associating a charged particle track originating from the event primary vertex with superclusters of energy depositions in ECAL [51]. They must also satisfy the PF-based relative isolation be smaller than 0.15. The ID and isolation selection e ciency is approximately 80%. The electron candidates are further required to satisfy pT > 30 GeV and j j < 2:5, excluding the transition region between the ECAL barrel and endcaps, 1:44 < j j < 1:57, because the reconstruction of electrons in this region has lower e ciency. To suppress the Z ! e+e background in the electron channel, where one electron is misidenti ed as a photon, a Z boson mass veto of jme MZj > 10 GeV is applied. A well-identi ed and isolated photon is also required for the event selection [52]. Photons are reconstructed from superclusters and are required to satisfy a number of criteria aimed at rejecting misidenti ed jets. They have to have a small ratio of hadronic energy in the HCAL that is matched in ( ; ) to the electromagnetic energy in the ECAL; small shower shape variable , which quanti es the lateral extension of the shower along the direction [51]; small PF-based charged and neutral photon isolations including pileup corrections [56]; and an electron-track veto to reduce electron misidenti cation. With these requirements the photon ID and isolation e ciency is about 70%. The resulting photon candidates are further required to satisfy p T > 22 GeV and must be in the barrel region with j scj < 1:44, where sc refers to the supercluster , corresponding to a ducial region in the ECAL barrel excluding the outer barrel ECAL rings of crystals. { 5 { Single-lepton (e; ) trigger Lepton, photon ID and isolation Second lepton veto Photon pT > 22 GeV, j j < 1:44 W boson transverse mass > 30 GeV jp~Tmissj > 35 GeV Muon (electron) pT > 25 (30) GeV, j j < 2:1 (2:4) j j1;p~Tmissj > 0:4, j j2;p~Tmissj > 0:4 rad jMe MZj > 10 GeV (electron channel) pjT1 > 40 GeV, pjT2 > 30 GeV Jets are reconstructed from PF particles [56, 57] using the anti-kT clustering algorithm [58] with a distance parameter of 0.5. Only charged particles with tracks originating from the primary vertex are considered for clustering. Jets from pileup are identi ed and removed with a pileup jet identi cation algorithm [59], based on both vertex information and jet shape information. Jets are required to satisfy a set of loose ID criteria designed to eliminate jets originating from noisy channels in the calorimeter [60]. Pileup collisions and the underlying event can contribute to the energy of the reconstructed jets. A correction based on the projected area of a jet on the front face of the calorimeter is used to subtract the extra energy deposited in the jet coming from pileup [ 61, 62 ]. Furthermore, the energy response in and pT is corrected, and the energy resolution is smeared for simulated samples to give the same response as observed [63]. An event is selected if it has at least two jets, with the leading jet pT > 40 GeV, second-leading jet pT > 30 GeV, and each jet within j j < 4:7. These two jets are denoted as \tag jets". To suppress the WV background, mjj is required to be at least 200 GeV. In addition, the event should have jp~Tmissj > 35 GeV. The reconstructed transverse mass of the leptonically decaying W boson, de ned as MT = where `;p~Tmiss is the azimuthal angle between the lepton momentum and the p~miss, is T required to exceed 30 GeV [64]. We reconstruct the leptonic W boson decay by solving for the longitudinal component of the neutrino momentum and using the mass of the W boson as a constraint. In the case of complex solutions in this reconstruction, we choose the real part of the solution, and if there are two real solutions, we choose the solution that gives a neutrino momentum vector that is closer to the longitudinal component of the p 2p`Tjp~Tmissj[1 cos( `;p~Tmiss )], corresponding charged lepton momentum. Mismeasurement of jet energies can generate jp~Tmissj. To eliminate events in which this mismeasurement may generate an apparent large jp~Tmissj, the azimuthal separation between each of the tag jets and the p~Tmiss is required to be larger than 0.4 rad. Additionally, to suppress the top quark backgrounds, we require that the tag jets fail a b tagging requirement of the combined secondary vertex algorithm [65] with a misidenti cation rate of 1%. Separation between pairs of objects in the event is required: Rjj , Rj , Rj`, and R` > 0:5. All the requirements described above ensure the quality of the identi ed nal states and comprise the baseline selections for the analysis. Table 1 summarizes these criteria. { 6 { To optimize the measurement of the EW-induced W +2 jets signal and improve the EW signal signi cance, we further consider selections on the following variables to suppress backgrounds: the Zeppenfeld variable [23], jyW (yj1 + yj2)=2j, calculated using the rapidities (y) of the W system and the two jets; the azimuthal separation between the system, which combines the four momenta of the W boson and the photon, and the dijet system j W ;jj j; the dijet invariant mass mjj ; and the pseudorapidity separation between the tag jets j (j1; j2)j. These additional requirements are chosen as follows: jyW (yj1 + yj2)=2j < 0:6; j j mjj > 700 GeV; W ;jj j > 2:6 rad; simulation and is normalized to the number of events in data in the region 200 < mjj < 400 GeV. The data/simulation normalization factors 0:77 0:05 (muon channel) and 0:77 0:06 (electron channel) are consistent with the K factor of 0:93 0:27 obtained with vbfnlo. For the combined measurement of the EW+QCD cross section, the contribution of QCD W +jets is taken directly from simulation (scaled by the K factor) since this contribution is then no longer a background. The background from misidenti ed photons arises mainly from W+jets events where one jet satis es the photon ID criteria. The estimation is based on events similar to the ones selected with the baseline selection described in section 4, except that the photon must fail the tight photon ID and satisfy a looser ID requirement. This selection ensures that the photon arises from a jet, but still has kinematic properties similar to a genuine photon originating from the primary vertex. The selected events are then normalized to the number of events satisfying the tight photon ID and weighted with the probability of a jet to be misidenti ed as a photon. The misidenti cation probability is calculated as a function of photon pT in a manner similar to that described in ref. [66]. The method uses the shapes of the and PF charged isolation distributions, which di er for genuine and misidenti ed photons. The fraction of the total background in the signal region contributed by this source decreases with pT, from a maximum of 33% (pT 22 GeV) to 6% (pT > 135 GeV). The +jets events contribute to the background when the jet is misidenti ed as a muon or electron. The contribution is found to be negligible in the muon channel, but can be signi cant in the electron channel, especially in the low-mjj region. A control data sample is selected, in a similar way to that discussed in the previous paragraph, from the PF relative isolation sideband with a very loose electron ID requirement. Events in this control sample are then normalized to the events with signal selection and weighted with the misidenti cation probability for a jet to satisfy the electron selections. This probability is determined from a three-component t to the jp~Tmissj distribution considering the +jets { 7 { HJEP06(217) misidenti ed events, QCD W +jets events, and misidenti ed photon events, as explained in more detail in ref. [64]. The +jets background contribution in electron channel is estimated to be 7% of the total yield for the baseline selections and negligible in the EW signal region. Other background contributions are small and are estimated from simulation. The contributions from top quark pair and single top quark production, each in association with a photon, are suppressed with the b quark veto and represents only 3.4% of the total event yield in the EW signal region. The Z(! ``) (+jets) events can contribute if one of the decayed leptons is undetected, resulting in jp~Tmissj. The predicted cross sections of the Z and WV processes decrease with increasing mjj and contribute about 2% of the total SM prediction in the EW signal region. Figure 2 shows three mjj distributions in orthogonal, but signal-like, regions obtained by inverting each of three signal selection criteria: j W ;jj j < 2:6 rad. Each of these regions is enriched in QCD production of +jets events and, to a lesser degree, background having a jet misidenti ed as a photon. They con rm our modeling of those backgrounds. 6 Systematic uncertainties The background rate of QCD W +jets production is measured in the low-mjj control region and extrapolated to the signal region. The rate uncertainty includes the statistical uncertainty as well as the uncertainties due to the misidenti cation probability of jets as photons or leptons. This uncertainty is 6.2% (7.1%) for the muon (electron) channel. In addition, when extrapolating from the control region to the signal region, the shape dependence on theoretical parameters a ects the normalization of the QCD W +jets distribution at high mjj . This extrapolation uncertainty is calculated by using di erent MC samples with matching and renormalization/factorization scales varied up and down by a factor of two. Contributions of all the shapes are normalized in the control region and the largest absolute di erence from the nominal one in the signal region is considered as the uncertainty, this is about 20% for mjj The uncertainty on the misidenti cation probability of jets as electrons is estimated by considering both the jp~Tmiss j t uncertainty and shape uncertainty and is estimated to be 40%. There are three contributions to the uncertainties in the misidenti ed photon background: the statistical uncertainty, the variation in the choice of the charged isolation sideband, and the shape in the sample of events with objects misidenti ed as photons. The combined uncertainty, calculated in p T bins, increases from 13% at pT 25 GeV to 54% for pT The uncertainty in the measured value of the integrated luminosity is 2.6% [35]. Jet energy scale and resolution uncertainties contribute via selection thresholds for the jet pT and mjj . We consider the uncertainties in di erent intervals of mjj , giving a combined uncertainty varying from 12 to 31% with increasing mjj in the signal region. A small di erence in jp~Tmissj resolution [67] between data and simulation a ects the signal selection e ciency by less than 1%. The uncertainties due to the lepton trigger e ciency and { 8 { Data signal selection criteria: j ) and jets misidenti ed as electrons (Jets ! e) are estimated from data as described in the text. The diboson contribution includes WV(+ ) and Z (+jets) processes. The top quark contribution includes both the tt and single top quark processes. The signal contribution is shown on top of the backgrounds. The last bin includes the over ow events. The shaded area represents the total uncertainty in the simulation, including statistical and systematic e ects. reconstruction and the selection e ciencies are estimated to be 1% and 2%, respectively. Photon reconstruction e ciency and energy scale uncertainties contribute to the signal selection e ciency at the 1% level. The uncertainty from the b jet veto procedure is 2% in the data/simulation e ciency correction factor [65]. This uncertainty has an e ect of 8% on the tt background, 23% on the single top quark background, and a negligible e ect on the signal. The theoretical uncertainty in the tt and Z +jets production cross section is 20% [14]. The theoretical uncertainty is evaluated with vbfnlo by varying the renormalization and factorization scales, each by factors of 1/2 and 2 with the requirement that the two scales remain equal. The envelope of all the variations is taken as the uncertainty. The { 9 { Data signal region lies above 700 GeV, indicated by the horizontal thick arrows. Backgrounds from jets misidenti ed as photons (Jets ! ) and jets misidenti ed as electrons (Jets ! e) are estimated from data as described in the text. The diboson contribution includes WV(+ ) and Z (+jets) processes. The top quark contribution includes both the tt and single top quark processes. The signal contribution is shown on top of the backgrounds. The last bin includes the over ow events. The shaded area represents the total uncertainty in the simulation, including statistical and systematic e ects. uncertainty related to the PDF is calculated using the CTEQ6.1 [68] PDF uncertainty sets, following the prescription of ref. [68]. For EW W +2 jets and possible aQGC signal yield, this uncertainty is found to be 20% with scale variations and 2.8% with PDF sets. For QCD W +2 jets, this is 29% with scale variations and 4.2% with PDF sets. The theoretical uncertainties due to scale and PDF choices a ect the expected mjj shape and introduce an uncertainty in the cross section measured by tting the mjj distribution. In addition, they a ect the signal and the selection acceptance and e ciency. Extrapolation from the selected region to the ducial cross section region, de ned in section 7, introduces an uncertainty of 1% in the measured ducial cross section. 7 +2 jets signal and cross section measurements A search for the SM EW W +2 jets signal is performed based on the binned mjj distribution, as shown in gure 3, for both the muon and electron channels, using only the two rightmost bins corresponding to mjj > 700 GeV. The EW- and QCD-induced W production is modeled at LO, neglecting interference, with NLO QCD corrections to the cross section applied through their K factors. We search for an enhancement in the rate of W +2 jets production due to EW-induced production, treating non-W and QCD-induced W +2 jets production as background. The expected signal and background yields after the selections are shown in table 2. The measured yield of data events is well described by the theoretical predictions, which include the EW contribution. A CLs based method [69{71] is used to estimate the upper limit on the EW signal strength sig, which is de ned as the ratio of the measured to Muon channel Electron channel Process EW-induced W +2 jets QCD-induced W +jets W+jets, 1 jet ! MC tt MC single top quark MC WV , V! two jets MC Z +jets Total prediction Data 5:8 11:2 3:1 1:2 0:5 0:3 0:2 22:1 24 3:2 1:8 0:7 0:6 0:5 0:2 0:2 3:8 3:8 10:3 2:2 0:4 0:6 0:3 0:3 17:9 20 3:2 1:2 0:5 0:2 0:4 0:2 0:2 3:5 The total prediction represents the sum of all the individual contributions. The W+jets background, with one jet misidenti ed as an electron, is negligible in the signal region. the expected signal yield. Combining four mjj bins from the two decay channels gives an upper limit of 4.3 times the SM EW prediction at a 95% con dence level (CL), compared to an expected limit of 2.0 from the background-only hypothesis. The measured signal strength can be translated into the ducial cross section d using the generated cross sections of the simulated samples gen and an acceptance acc for the total cross section from the ducial region to the signal region: d = gen sig acc. The ducial cross section is reported in a region de ned as follows: pjT1 > 30 GeV, j pjT2 > 30 GeV, j j1j < 4:7; j2j < 4:7; mjj > 700 GeV, j (j; j)j > 2:4; p `T > 20 GeV, j `j < 2:4; p T > 20 GeV, j j < 1:4442; jp~Tmissj > 20 GeV; Rjj ; R`j ; R j ; R` > 0:4. This phase space corresponds to the acceptance of the CMS detector, with a minimal number of additional selections on mjj and j (j; j)j to ensure that the VBS contribution is large. It does not include requirements on the Zeppenfeld variable and the j W ;jj j variable, which are applied at the reconstruction level. The acceptance corrections for these selections are 0:289 0:001 for the EW cross section and 0:174 0:002 for the QCD one, where we include both PDF and scale uncertainties. The measured cross sections and signal strengths are summarized in table 3, and the measured results are in good agreement with the theoretical predictions. The EW Items Signal strength ^sig EW measurement Observed (expected) signi cance 2.7 (1.5) standard deviations Theoretical cross section (fb) 6:1 1:2 (scale) 0:2 (PDF) EW+QCD measurement signal strength is measured to be ^sig = 1:78+00::9796. Considering both the EW and QCD contributions as a signal, the signal strength is measured to be 0:99+00::2119. The EW fraction is found to be 27.1% in the search region and 25.8% in the ducial region. The signi cances for both cases are also determined: for the EW signal, the observed (expected) signi cance is found to be 2.7 (1.5) standard deviations; for the EW+QCD signal, it is found to be 7.7 (7.5) standard deviations. The measured cross section in the Limits on anomalous quartic gauge couplings Following ref. [72], we parameterize the aQGCs in a formalism that maintains SU(2)L U(1)Y gauge symmetry and leads to 14 possible dimension-eight operators that contribute to the signal. The LM;5 operator is found to be non-Hermitian and needs to be replaced by a summation of the original and its Hermitian conjugate (see appendix A for the de nition). The presence of aQGCs should lead to an enhancement of the EW W +2 jets cross section, T which should become more pronounced at the high-energy tails of some distributions. As shown in gure 4, the pTW distribution is sensitive to the aQGCs and therefore is used to set limits. We choose a pW distribution binned over the range 50{250 GeV, with the over ow contribution included in the last bin. The shape of the distribution at high pTW is used to extract aQGC limits. These limits are not sensitive to small variations in the number of bins or range used for the pTW distribution. The events are selected with the baseline selections from section 4, with the following additional requirements: jyW (yj1 + yj2)=2j < 1:2, j (j1; j2)j > 2:4, and p T > 200 GeV. A tight p T selection is applied to reach higher expected signi cance for the possible aQGC signal in the EW W +2 jets process. The stringent selections above lead to increased statistical uncertainties in the estimations of the backgrounds. The second largest uncertainty comes from the scale variations in the predicted aQGC signal. Other uncertainties include the signal PDF choice, integrated luminosity, trigger e ciency, and lepton and photon e ciencies. The search is performed for each aQGC parameter separately, while setting all other parameters to their SM values. Each signal sample, representing a di erent aQGC prediction, is generated at LO using the reweight method in MadGraph [37]. For each aQGC case, we compute the aQGC/SM event yield ratios for all pTW bins from this sample and use these ratios to rescale the SM signal shape to the enhanced aQGC shape. Then we 6 . 8 2 / s t n e v E 6 5 4 3 2 1 0 CMS and muon channels. The last pTW bin has been extended to include the over ow contribution. The dash-dotted line depicts a representative signal distribution with anomalous coupling parameter fM;0= 4 = 44 TeV 4 and the dashed line shows the same distribution corresponding to the SM case. The bands represent the statistical and systematic uncertainties in signal and background predictions summed in quadrature. The data are shown with statistical uncertainties only. consider the following test statistic: t = 2 ln L( ; ^ ) ; L( ^; ^) ^ (8.1) where the likelihood function is constructed in two lepton channels and then combined for the calculation. The term represents the aQGC point being tested, and the nuisance parameters. The ^^ nuisance parameters correspond to the maximum of the likelihood at the point , while ^ and ^ correspond to the global maximum of the likelihood. This test statistic is assumed to follow a 2 distribution [73, 74]. One can therefore extract the limits directly by using the delta log-likelihood function NLL = t =2 [75]. Table 4 lists 95% CL exclusion limits for all parameters. Because of the nonrenormalizable nature of higher-dimensional operators, any nonzero aQGC parameter violates unitarity at high energies. An e ective theory is therefore only valid at low energies, and we need to check that the energy scale we probe is less than a new physics scale and does not violate unitarity. Sometimes a form factor is introduced to unitarize the high-energy contribution within that energy range; however, the form factor complicates the limit-setting procedure and makes it di cult to compare results among experiments. We use vbfnlo without any form factors to calculate the unitarity bound corresponding to the maximum aQGC enhancements, which would conserve unitarity within the range of energies probed at the 8 TeV LHC [53, 76]. We nd that unitarity Observed limits ( TeV 4 ) Expected limits ( TeV 4 ) is violated in many cases. We compare our results, in a consistent way, with existing limits on aQGC parameters in gure 5, where the aQGC convention used in vbfnlo has been transformed to the one that is used in our analysis. Existing competitive limits include the results from WV production [14], same-sign WW production [17], exclusive ! WW production at the ATLAS and the CMS experiments [15, 19, 77], and W production at the ATLAS experiment [30]. The limits on the a0W = 2 and aCW = 2 couplings in these references are transformed to ours by using eq. (2) in ref. [14], with the constraint of fM;0= 4 = 2fM;2= 4 and fM;1= 4 = 2fM;3= 4. All of the aQGC limits shown are calculated without a form factor. 9 Summary A search for EW-induced W +2 jets production and aQGCs has been presented based on events containing a W boson that decays to a lepton and a neutrino, a hard photon, integrated luminosity of 19.7 fb 1 collected in proton-proton collisions at p and two jets with large pseudorapidity separation. The data analyzed correspond to an s = 8 TeV with the CMS detector at the LHC. An excess is observed above the expectation from QCDinduced W +2 jets and other backgrounds, with an observed (expected) signi cance of 2.7 (1.5) standard deviations. The corresponding cross section within the VBS-like ducial region is measured to be 10:8 with the SM prediction of EW-induced signal. In the same ducial region, the total cross HJEP06(217) fM,0 /Λ4 fM,1 /Λ4 fM,2 /Λ4 fM,3 /Λ4 fM,4 /Λ4 fM,5 /Λ4 fM,6 /Λ4 fM,7 /Λ4 fT,0 /Λ4 fT,1 /Λ4 fT,2 /Λ4 fT,5 /Λ4 fT,6 /Λ4 fT,7 /Λ4 CMS ATLAS 0 0 −500 500 aQGC Limits @95% CL (TeV-4) 1500 study W , together with results from the production of WV [14], same-sign WW [17], exclusive ! WW in ATLAS and CMS [15, 19, 77], and W in ATLAS [30]. The limits from the CMS experiment are represented by thicker lines. The limits that are translated from another formalism are represented with dashed lines; details are found in ref. [14]. Limits aQGC Limits @95% CL (TeV-4) 100 section for W +2 jets is measured to be 23:2 is consistent with the SM EW+QCD prediction. Exclusion limits for aQGC parameters fM;0 7= 4, fT;0 2= 4, and fT;5 7= 4 are set at 95% CL. Competitive limits are obtained for several parameters and rst limits are set on the fM;4= 4 and fT;5 7= 4 parameters. Acknowledgments We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative sta s at CERN and at other CMS institutes for their contributions to the success of the CMS e ort. In addition, we gratefully acknowledge the computing centers and personnel of the Worldwide LHC Computing Grid for delivering so e ectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMWF and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES and CSF (Croatia); RPF (Cyprus); MoER, SF0690030s09, and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NIH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF and WCU (Republic of Korea); LAS (Lithuania); MOE and UM (Malaysia); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS, and RFBR (Russia); MESTD (Serbia); SEIDI and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); ThEPCenter, IPST, STAR, and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU (Ukraine); STFC (United Kingdom); and DOE and NSF (U.S.A.). Individuals have received support from the Marie-Curie program and the European Research Council and EPLANET (European Union); the Leventis Foundation; the A. P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy O ce; the Fonds pour la Formation a la Recherche dans l'Industrie et dans l'Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWTBelgium); the Ministry of Education, Youth and Sports (MEYS) of Czech Republic; the Council of Science and Industrial Research, India; the Compagnia di San Paolo (Torino); the HOMING PLUS programme of Foundation for Polish Science, co nanced by EU, Regional Development Fund; and the Thalis and Aristeia programmes co nanced by EU-ESF and the Greek NSRF. A Anomalous quartic gauge coupling parameterization Gauge boson self-interactions are xed by the gauge symmetries of the SM. To investigate possible deviations from the SM, we parameterize the aQGCs in a formalism that maintains the SU(2)L U(1)Y gauge symmetry. As a natural extension to the SM, the lowest order pure anomalous quartic couplings arise from dimension-eight operators. This analysis adopts the following e ective Lagrangian containing such aQGCs [72]: LaQGC = 4 fM;0 Tr [W + + + + fM;2 [B fM;4 h(D fM;5 fM;6 h(D 4 4 4 4 + fT4;0 T r[W + fT4;2 T r[W + fT4;6 T r[W W tensors of the U(1)Y and SU(2)L gauge symmetries, and W associated operators characterize the e ect of new physics on the scattering of transversely polarized vector bosons, and fM = 4 includes mixed transverse and longitudinal scatterings; however, pure longitudinal scattering e ects do not occur in the W nal state due to the presence of the photon. The listed operators include all contributions to the WW and WWZ vertices. In this paper, we set c = 1 to describe energy, momentum, and mass in P j W j j =2. The fT = 4 units of GeV. Any nonzero value in aQGCs will lead to tree-level unitarity violation at su ciently high energy and could be unitarized with a suitable form factor; however the unitarization depends on the detailed structure of new physics, which is not known a priori. Following ref. [14], the choice is made to set limits without using a form factor. Open Access. This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited. [1] ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE]. p s = 7 and 8 TeV, JHEP 06 (2013) 081 [arXiv:1303.4571] [INSPIRE]. [2] CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE]. [3] CMS collaboration, Observation of a new boson with mass near 125 GeV in pp collisions at collisions at p events in pp collisions at p [4] ATLAS and CMS collaborations, Combined measurement of the Higgs boson mass in pp (2015) 191803 [arXiv:1503.07589] [INSPIRE]. s = 7 and 8 TeV with the ATLAS and CMS experiments, Phys. Rev. Lett. 114 on anomalous triple gauge couplings in four-lepton nal states at p [5] CMS collaboration, Measurement of the pp ! ZZ production cross section and constraints s = 8 TeV, Phys. Lett. B 740 (2015) 250 [arXiv:1406.0113] [INSPIRE]. [6] CMS collaboration, Measurement of W +W and ZZ production cross sections in pp s = 8 TeV, Phys. Lett. B 721 (2013) 190 [arXiv:1301.4698] [INSPIRE]. [7] CMS collaboration, Measurement of the sum of W W and W Z production with W + dijet with the ATLAS detector and limits on anomalous W W Z and W W couplings, Phys. Rev. D 87 (2013) 112001 [arXiv:1210.2979] [INSPIRE]. [9] CMS collaboration, Measurements of the Z Z production cross sections in the 2l2 channel in proton{proton collisions at p s = 7 and 8 TeV and combined constraints on triple gauge couplings, Eur. Phys. J. C 75 (2015) 511 [arXiv:1503.05467] [INSPIRE]. [10] CMS collaboration, Measurement of the W+W cross section in pp collisions at ps = 8 TeV and limits on anomalous gauge couplings, Eur. Phys. J. C 76 (2016) 401 [arXiv:1507.03268] [INSPIRE]. [11] ATLAS collaboration, Measurement of W Z production in proton-proton collisions at ps = 7 TeV with the ATLAS detector, Eur. Phys. J. C 72 (2012) 2173 [arXiv:1208.1390] (2014) 092005 [arXiv:1308.6832] [INSPIRE]. [12] CMS collaboration, Measurement of the W and Z inclusive cross sections in pp collisions s = 7 TeV and limits on anomalous triple gauge boson couplings, Phys. Rev. D 89 [13] ATLAS collaboration, Measurements of W and Z production in pp collisions at ps = 7 TeV with the ATLAS detector at the LHC, Phys. Rev. D 87 (2013) 112003 [arXiv:1302.1283] [INSPIRE]. [14] CMS collaboration, Search for W W and W Z production and constraints on anomalous quartic gauge couplings in pp collisions at ps = 8 TeV, Phys. Rev. D 90 (2014) 032008 [arXiv:1404.4619] [INSPIRE]. [15] ATLAS collaboration, Measurement of exclusive exclusive Higgs boson production in pp collisions at p Phys. Rev. D 94 (2016) 032011 [arXiv:1607.03745] [INSPIRE]. [16] ATLAS collaboration, Evidence for electroweak production of W W jj in pp collisions at p [arXiv:1405.6241] [INSPIRE]. s = 8 TeV with the ATLAS detector, Phys. Rev. Lett. 113 (2014) 141803 [17] CMS collaboration, Study of vector boson scattering and search for new physics in events with two same-sign leptons and two jets, Phys. Rev. Lett. 114 (2015) 051801 [arXiv:1410.6315] [INSPIRE]. Z boson in proton-proton collisions at p jets in proton-proton collisions at p [18] CMS collaboration, Measurement of the hadronic activity in events with a Z and two jets s = 7 TeV, JHEP 10 (2013) 062 [arXiv:1305.7389] [INSPIRE]. and extraction of the cross section for the electroweak production of a Z with two jets in pp [19] CMS collaboration, Evidence for exclusive production and constraints on anomalous quartic gauge couplings in pp collisions at ps = 7 and 8 TeV, JHEP 08 (2016) [20] ATLAS collaboration, Measurement of the electroweak production of dijets in association at p with a Z-boson and distributions sensitive to vector boson fusion in proton-proton collisions s = 8 TeV using the ATLAS detector, JHEP 04 (2014) 031 [arXiv:1401.7610] [21] CMS collaboration, Measurement of electroweak production of two jets in association with a s = 8 TeV, Eur. Phys. J. C 75 (2015) 66 [22] CMS collaboration, Measurement of electroweak production of a W boson and two forward s = 8 TeV, JHEP 11 (2016) 147 [arXiv:1607.06975] [23] D.L. Rainwater, R. Szalapski and D. Zeppenfeld, Probing color singlet exchange in Z + two jet events at the CERN LHC, Phys. Rev. D 54 (1996) 6680 [hep-ph/9605444] [INSPIRE]. [24] V.A. Khoze, M.G. Ryskin, W.J. Stirling and P.H. Williams, A Z monitor to calibrate Higgs production via vector boson fusion with rapidity gaps at the LHC, Eur. Phys. J. C 26 (2003) 429 [hep-ph/0207365] [INSPIRE]. [25] D.L. Rainwater, D. Zeppenfeld and K. Hagiwara, Searching for H ! + in weak boson fusion at the CERN LHC, Phys. Rev. D 59 (1998) 014037 [hep-ph/9808468] [INSPIRE]. [26] T. Plehn, D.L. Rainwater and D. Zeppenfeld, A Method for identifying H ! ! e 6 pT in weak boson fusion with dual forward jet tagging at the CERN LHC, Phys. Rev. D 60 (1999) 113004 [Erratum ibid. D 61 (2000) 099901] [hep-ph/9906218] [INSPIRE]. [28] N. Kauer, T. Plehn, D.L. Rainwater and D. Zeppenfeld, H ! W +W as the discovery mode for a light Higgs boson, Phys. Lett. B 503 (2001) 113 [hep-ph/0012351] [INSPIRE]. [29] ATLAS collaboration, Measurements of Z and Z production in pp collisions at ps = 8 TeV with the ATLAS detector, Phys. Rev. D 93 (2016) 112002 [arXiv:1604.05232] limits on anomalous quartic gauge couplings with the ATLAS detector, Phys. Rev. Lett. 115 (2015) 031802 [arXiv:1503.03243] [INSPIRE]. [31] F. Campanario, N. Kaiser and D. Zeppenfeld, W production in vector boson fusion at NLO in QCD, Phys. Rev. D 89 (2014) 014009 [arXiv:1309.7259] [INSPIRE]. [32] F. Campanario, M. Kerner, L.D. Ninh and D. Zeppenfeld, Next-to-leading order QCD corrections to W production in association with two jets, Eur. Phys. J. C 74 (2014) 2882 [arXiv:1402.0505] [INSPIRE]. p [34] CMS collaboration, The CMS experiment at the CERN LHC, 2008 JINST 3 S08004 [35] CMS collaboration, CMS luminosity based on pixel cluster counting | Summer 2013 update, CMS-PAS-LUM-13-001 (2013). JHEP 06 (2011) 128 [arXiv:1106.0522] [INSPIRE]. HJEP06(217) di erential cross sections and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE]. JHEP 11 (2001) 063 [hep-ph/0109231] [INSPIRE]. and the LHC: Workshop on the implications of HERA for LHC physics, March 24{27, CERN, Switzerland (2006), hep-ph/0602031 [INSPIRE]. generation of parton distributions with uncertainties from global QCD analysis, JHEP 07 (2002) 012 [hep-ph/0201195] [INSPIRE]. [43] S. Alioli, P. Nason, C. Oleari and E. Re, NLO single-top production matched with shower in POWHEG: s- and t-channel contributions, JHEP 09 (2009) 111 [Erratum ibid. 02 (2010) 011] [arXiv:0907.4076] [INSPIRE]. [44] E. Re, Single-top Wt-channel production matched with parton showers using the POWHEG method, Eur. Phys. J. C 71 (2011) 1547 [arXiv:1009.2450] [INSPIRE]. [45] P.M. Nadolsky et al., Implications of CTEQ global analysis for collider observables, Phys. [46] T. Sjostrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 physics and manual, JHEP 05 Rev. D 78 (2008) 013004 [arXiv:0802.0007] [INSPIRE]. (2006) 026 [hep-ph/0603175] [INSPIRE]. decays of polarized leptons, CERN-TH-5856-90 (1990). TeV and comparison with p p [47] S. Jadach, J.H. Kuhn and Z. Was, TAUOLA : a library of Monte Carlo programs to simulate [48] CMS collaboration, Measurement of the underlying event activity at the LHC with p s = 7 s = 0:9 TeV, JHEP 09 (2011) 109 [arXiv:1107.0330] [INSPIRE]. [49] CMS collaboration, Study of the underlying event at forward rapidity in pp collisions at s = 0:9, 2:76 and 7 TeV, JHEP 04 (2013) 072 [arXiv:1302.2394] [INSPIRE]. [50] GEANT4 collaboration, S. Agostinelli et al., GEANT4 | a simulation toolkit, Nucl. Instrum. Meth. A 506 (2003) 250 [INSPIRE]. detector in proton-proton collisions at p detector in proton-proton collisions at p s = 8 TeV, 2015 JINST 10 P06005 s = 8 TeV, 2015 JINST 10 P08010 [51] CMS collaboration, Performance of electron reconstruction and selection with the CMS [52] CMS collaboration, Performance of photon reconstruction and identi cation with the CMS [53] J. Baglio et al., Release note | VBFNLO 2.7.0, arXiv:1404.3940 [INSPIRE]. [54] K. Arnold et al., VBFNLO: a parton level Monte Carlo for processes with electroweak bosons | Manual for version 2.5.0, arXiv:1107.4038 [INSPIRE]. [55] K. Arnold et al., VBFNLO: a parton level Monte Carlo for processes with electroweak bosons, HJEP06(217) Comput. Phys. Commun. 180 (2009) 1661 [arXiv:0811.4559] [INSPIRE]. [56] CMS collaboration, Particle- ow event reconstruction in CMS and performance for jets, taus and MET, CMS-PAS-PFT-09-001 (2009). [57] CMS collaboration, Commissioning of the particle- ow event reconstruction with the rst LHC collisions recorded in the CMS detector, CMS-PAS-PFT-10-001 (2010). 063 [arXiv:0802.1189] [INSPIRE]. [60] CMS collaboration, Identi cation and ltering of uncharacteristic noise in the CMS hadron calorimeter, 2010 JINST 5 T03014 [arXiv:0911.4881] [INSPIRE]. [arXiv:0707.1378] [INSPIRE]. [arXiv:0802.1188] [INSPIRE]. [62] M. Cacciari, G.P. Salam and G. Soyez, The catchment area of jets, JHEP 04 (2008) 005 [63] CMS collaboration, Determination of jet energy calibration and transverse momentum resolution in CMS, 2011 JINST 6 P11002 [arXiv:1107.4277] [INSPIRE]. collisions at p s = 7 TeV, JHEP 10 (2011) 132 [arXiv:1107.4789] [INSPIRE]. [64] CMS collaboration, Measurement of the inclusive W and Z production cross sections in pp [65] CMS collaboration, Identi cation of b-quark jets with the CMS experiment, 2013 JINST 8 P04013 [arXiv:1211.4462] [INSPIRE]. [66] CMS collaboration, Measurement of W and Z production in pp collisions at ps = 7 TeV, Phys. Lett. B 701 (2011) 535 [arXiv:1105.2758] [INSPIRE]. [67] CMS collaboration, Missing transverse energy performance of the CMS detector, 2011 [68] D. Stump et al., Inclusive jet production, parton distributions and the search for new physics, JINST 6 P09001 [arXiv:1106.5048] [INSPIRE]. JHEP 10 (2003) 046 [hep-ph/0303013] [INSPIRE]. 2011, ATL-PHYS-PUB-2011-011 (2011). [69] ATLAS collaboration, Procedure for the LHC Higgs boson search combination in summer [70] A.L. Read, Presentation of search results: the CLs technique, J. Phys. C 28 (2002) 2693 [71] T. Junk, Con dence level computation for combining searches with small statistics, Nucl. Instrum. Meth. A 434 (1999) 435 [hep-ex/9902006] [INSPIRE]. and jje mu at O( e6m) and O( e4m s2) for the study of the quartic electroweak gauge boson vertex at CERN LHC, Phys. Rev. D 74 (2006) 073005 [hep-ph/0606118] [INSPIRE]. [73] A. Wald, Tests of statistical hypotheses concerning several parameters when the number of [74] S.S. Wilks, The large-sample distribution of the likelihood ratio for testing composite [75] CMS collaboration, Precise determination of the mass of the Higgs boson and tests of compatibility of its couplings with the standard model predictions using proton collisions at 7 and 8 TeV, Eur. Phys. J. C 75 (2015) 212 [arXiv:1412.8662] [INSPIRE]. [76] G.J. Gounaris, J. Layssac and F.M. Renard, Unitarity constraints for transverse gauge bosons at LEP and supercolliders, Phys. Lett. B 332 (1994) 146 [hep-ph/9311370] [INSPIRE]. p s = 7 TeV and constraints on anomalous quartic gauge couplings, JHEP 07 (2013) 116 Yerevan Physics Institute, Yerevan, Armenia V. Khachatryan, A.M. Sirunyan, A. Tumasyan Institut fur Hochenergiephysik, Wien, Austria W. Adam, E. Asilar, T. Bergauer, J. Brandstetter, E. Brondolin, M. Dragicevic, J. Ero, M. Flechl, M. Friedl, R. Fruhwirth1, V.M. Ghete, C. Hartl, N. Hormann, J. Hrubec, M. Jeitler1, A. Konig, I. Kratschmer, D. Liko, T. Matsushita, I. Mikulec, D. Rabady, N. Rad, B. Rahbaran, H. Rohringer, J. Schieck1, J. Strauss, W. Treberer-Treberspurg, W. Waltenberger, C.-E. Wulz1 National Centre for Particle and High Energy Physics, Minsk, Belarus V. Mossolov, N. Shumeiko, J. Suarez Gonzalez Universiteit Antwerpen, Antwerpen, Belgium S. Alderweireldt, E.A. De Wolf, X. Janssen, J. Lauwers, M. Van De Klundert, H. Van Haevermaet, P. Van Mechelen, N. Van Remortel, A. Van Spilbeeck Vrije Universiteit Brussel, Brussel, Belgium S. Abu Zeid, F. Blekman, J. D'Hondt, N. Daci, I. De Bruyn, K. Deroover, N. Heracleous, S. Lowette, S. Moortgat, L. Moreels, A. Olbrechts, Q. Python, S. Tavernier, W. Van Doninck, P. Van Mulders, I. Van Parijs Universite Libre de Bruxelles, Bruxelles, Belgium H. Brun, C. Caillol, B. Clerbaux, G. De Lentdecker, H. Delannoy, G. Fasanella, L. Favart, R. Goldouzian, A. Grebenyuk, G. Karapostoli, T. Lenzi, A. Leonard, J. Luetic, T. Maerschalk, A. Marinov, A. Randle-conde, T. Seva, C. Vander Velde, P. Vanlaer, R. Yonamine, F. Zenoni, F. Zhang2 Ghent University, Ghent, Belgium A. Cimmino, T. Cornelis, D. Dobur, A. Fagot, G. Garcia, M. Gul, D. Poyraz, S. Salva, R. Schofbeck, M. Tytgat, W. Van Driessche, E. Yazgan, N. Zaganidis Universite Catholique de Louvain, Louvain-la-Neuve, Belgium H. Bakhshiansohi, C. Belu 3, O. Bondu, S. Brochet, G. Bruno, A. Caudron, S. De Visscher, C. Delaere, M. Delcourt, B. Francois, A. Giammanco, A. Jafari, P. Jez, M. Komm, V. Lemaitre, A. Magitteri, A. Mertens, M. Musich, C. Nuttens, K. Piotrzkowski, L. Quertenmont, M. Selvaggi, M. Vidal Marono, S. Wertz Universite de Mons, Mons, Belgium N. Beliy Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil W.L. Alda Junior, F.L. Alves, G.A. Alves, L. Brito, C. Hensel, A. Moraes, M.E. Pol, P. Rebello Teles Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil E. Belchior Batista Das Chagas, W. Carvalho, J. Chinellato4, A. Custodio, E.M. Da Costa, G.G. Da Silveira5, D. De Jesus Damiao, C. De Oliveira Martins, S. Fonseca De Souza, L.M. Huertas Guativa, H. Malbouisson, D. Matos Figueiredo, C. Mora Herrera, L. Mundim, H. Nogima, W.L. Prado Da Silva, A. Santoro, A. Sznajder, E.J. Tonelli Manganote4, A. Vilela Pereira Brazil J.C. Ruiz Vargas tova Universidade Estadual Paulista a, Universidade Federal do ABC b, S~ao Paulo, S. Ahujaa, C.A. Bernardesb, S. Dograa, T.R. Fernandez Perez Tomeia, E.M. Gregoresb, P.G. Mercadanteb, C.S. Moona, S.F. Novaesa, Sandra S. Padulaa, D. Romero Abadb, Institute for Nuclear Research and Nuclear Energy, So a, Bulgaria A. Aleksandrov, R. Hadjiiska, P. Iaydjiev, M. Rodozov, S. Stoykova, G. Sultanov, M. VuUniversity of So a, So a, Bulgaria A. Dimitrov, I. Glushkov, L. Litov, B. Pavlov, P. Petkov Beihang University, Beijing, China W. Fang6 H. Zhang, J. Zhao Beijing, China Institute of High Energy Physics, Beijing, China M. Ahmad, J.G. Bian, G.M. Chen, H.S. Chen, M. Chen, Y. Chen7, T. Cheng, C.H. Jiang, D. Leggat, Z. Liu, F. Romeo, S.M. Shaheen, A. Spiezia, J. Tao, C. Wang, Z. Wang, State Key Laboratory of Nuclear Physics and Technology, Peking University, Y. Ban, G. Chen, Q. Li, S. Liu, Y. Mao, S.J. Qian, D. Wang, Z. Xu, D. Yang, Z. Zhang Universidad de Los Andes, Bogota, Colombia C. Avila, A. Cabrera, L.F. Chaparro Sierra, C. Florez, J.P. Gomez, C.F. Gonzalez Hernandez, J.D. Ruiz Alvarez, J.C. Sanabria University of Split, Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, Split, Croatia N. Godinovic, D. Lelas, I. Puljak, P.M. Ribeiro Cipriano, T. Sculac University of Split, Faculty of Science, Split, Croatia Z. Antunovic, M. Kovac Institute Rudjer Boskovic, Zagreb, Croatia V. Brigljevic, D. Ferencek, K. Kadija, S. Micanovic, L. Sudic, T. Susa University of Cyprus, Nicosia, Cyprus A. Attikis, G. Mavromanolakis, J. Mousa, C. Nicolaou, F. Ptochos, P.A. Razis, H. Rykaczewski Charles University, Prague, Czech Republic M. Finger8, M. Finger Jr.8 Universidad San Francisco de Quito, Quito, Ecuador E. Carrera Jarrin Academy of Scienti c Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt A.A. Abdelalim9;10, Y. Mohammed11, E. Salama12;13 National Institute of Chemical Physics and Biophysics, Tallinn, Estonia B. Calpas, M. Kadastik, M. Murumaa, L. Perrini, M. Raidal, A. Tiko, C. Veelken Department of Physics, University of Helsinki, Helsinki, Finland P. Eerola, J. Pekkanen, M. Voutilainen Helsinki Institute of Physics, Helsinki, Finland J. Harkonen, V. Karimaki, R. Kinnunen, T. Lampen, K. Lassila-Perini, S. Lehti, T. Linden, P. Luukka, T. Peltola, J. Tuominiemi, E. Tuovinen, L. Wendland Lappeenranta University of Technology, Lappeenranta, Finland J. Talvitie, T. Tuuva IRFU, CEA, Universite Paris-Saclay, Gif-sur-Yvette, France M. Besancon, F. Couderc, M. Dejardin, D. Denegri, B. Fabbro, J.L. Faure, C. Favaro, F. Ferri, S. Ganjour, S. Ghosh, A. Givernaud, P. Gras, G. Hamel de Monchenault, P. Jarry, I. Kucher, E. Locci, M. Machet, J. Malcles, J. Rander, A. Rosowsky, M. Titov, A. Zghiche Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France A. Abdulsalam, I. Antropov, S. Ba oni, F. Beaudette, P. Busson, L. Cadamuro, E. Chapon, C. Charlot, O. Davignon, R. Granier de Cassagnac, M. Jo, S. Lisniak, P. Mine, M. Nguyen, C. Ochando, G. Ortona, P. Paganini, P. Pigard, S. Regnard, R. Salerno, Y. Sirois, T. Strebler, Y. Yilmaz, A. Zabi Institut Pluridisciplinaire Hubert Curien (IPHC), Universite de Strasbourg, CNRS-IN2P3 J.-L. Agram14, J. Andrea, A. Aubin, D. Bloch, J.-M. Brom, M. Buttignol, E.C. Chabert, N. Chanon, C. Collard, E. Conte14, X. Coubez, J.-C. Fontaine14, D. Gele, U. Goerlach, A.-C. Le Bihan, J.A. Merlin15, K. Skovpen, P. Van Hove Centre de Calcul de l'Institut National de Physique Nucleaire et de Physique des Particules, CNRS/IN2P3, Villeurbanne, France S. Gadrat Universite de Lyon, Universite Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucleaire de Lyon, Villeurbanne, France S. Beauceron, C. Bernet, G. Boudoul, E. Bouvier, C.A. Carrillo Montoya, R. Chierici, D. Contardo, B. Courbon, P. Depasse, H. El Mamouni, J. Fan, J. Fay, S. Gascon, HJEP06(217) A.L. Pequegnot, S. Perries, A. Popov16, D. Sabes, V. Sordini, M. Vander Donckt, P. Verdier, S. Viret A. Khvedelidze8 Georgian Technical University, Tbilisi, Georgia Tbilisi State University, Tbilisi, Georgia Z. Tsamalaidze8 RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany C. Autermann, S. Beranek, L. Feld, A. Heister, M.K. Kiesel, K. Klein, M. Lipinski, A. Ostapchuk, M. Preuten, F. Raupach, S. Schael, C. Schomakers, J.F. Schulte, J. Schulz, T. Verlage, H. Weber, V. Zhukov16 RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany M. Brodski, E. Dietz-Laursonn, D. Duchardt, M. Endres, M. Erdmann, S. Erdweg, T. Esch, R. Fischer, A. Guth, M. Hamer, T. Hebbeker, C. Heidemann, K. Hoepfner, S. Knutzen, M. Merschmeyer, A. Meyer, P. Millet, S. Mukherjee, M. Olschewski, K. Padeken, T. Pook, M. Radziej, H. Reithler, M. Rieger, F. Scheuch, L. Sonnenschein, D. Teyssier, S. Thuer RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany V. Cherepanov, G. Flugge, W. Haj Ahmad, F. Hoehle, B. Kargoll, T. Kress, A. Kunsken, J. Lingemann, T. Muller, A. Nehrkorn, A. Nowack, I.M. Nugent, C. Pistone, O. Pooth, A. Stahl15 Deutsches Elektronen-Synchrotron, Hamburg, Germany M. Aldaya Martin, C. Asawatangtrakuldee, K. Beernaert, O. Behnke, U. Behrens, A.A. Bin Anuar, K. Borras17, A. Campbell, P. Connor, C. Contreras-Campana, F. Costanza, C. Diez Pardos, G. Dolinska, G. Eckerlin, D. Eckstein, E. Eren, E. Gallo18, J. Garay Garcia, A. Geiser, A. Gizhko, J.M. Grados Luyando, P. Gunnellini, A. Harb, J. Hauk, M. Hempel19, H. Jung, A. Kalogeropoulos, O. Karacheban19, M. Kasemann, J. Keaveney, J. Kieseler, C. Kleinwort, I. Korol, D. Krucker, W. Lange, A. Lelek, J. Leonard, K. Lipka, A. Lobanov, W. Lohmann19, R. Mankel, I.-A. Melzer-Pellmann, A.B. Meyer, G. Mittag, J. Mnich, A. Mussgiller, E. Ntomari, D. Pitzl, R. Placakyte, A. Raspereza, B. Roland, M.O . Sahin, P. Saxena, T. Schoerner-Sadenius, C. Seitz, S. Spannagel, N. Stefaniuk, K.D. Trippkewitz, G.P. Van Onsem, R. Walsh, C. Wissing University of Hamburg, Hamburg, Germany V. Blobel, M. Centis Vignali, A.R. Draeger, T. Dreyer, E. Garutti, D. Gonzalez, J. Haller, M. Ho mann, A. Junkes, R. Klanner, R. Kogler, N. Kovalchuk, T. Lapsien, T. Lenz, I. Marchesini, D. Marconi, M. Meyer, M. Niedziela, D. Nowatschin, F. Pantaleo15, T. Pei er, A. Perieanu, J. Poehlsen, C. Sander, C. Scharf, P. Schleper, A. Schmidt, S. Schumann, J. Schwandt, H. Stadie, G. Steinbruck, F.M. Stober, M. Stover, H. Tholen, D. Troendle, E. Usai, L. Vanelderen, A. Vanhoefer, B. Vormwald Institut fur Experimentelle Kernphysik, Karlsruhe, Germany C. Barth, C. Baus, J. Berger, E. Butz, T. Chwalek, F. Colombo, W. De Boer, A. Dierlamm, S. Fink, R. Friese, M. Gi els, A. Gilbert, P. Goldenzweig, D. Haitz, F. Hartmann15, S.M. Heindl, U. Husemann, I. Katkov16, P. Lobelle Pardo, B. Maier, H. Mildner, M.U. Mozer, Th. Muller, M. Plagge, G. Quast, K. Rabbertz, S. Rocker, F. Roscher, M. Schroder, I. Shvetsov, G. Sieber, H.J. Simonis, R. Ulrich, J. Wagner-Kuhr, S. Wayand, M. Weber, T. Weiler, S. Williamson, C. Wohrmann, R. Wolf Institute of Nuclear and Particle Physics (INPP), NCSR Demokritos, Aghia Paraskevi, Greece I. Topsis-Giotis G. Anagnostou, G. Daskalakis, T. Geralis, V.A. Giakoumopoulou, A. Kyriakis, D. Loukas, National and Kapodistrian University of Athens, Athens, Greece A. Agapitos, S. Kesisoglou, A. Panagiotou, N. Saoulidou, E. Tziaferi University of Ioannina, Ioannina, Greece I. Evangelou, G. Flouris, C. Foudas, P. Kokkas, N. Loukas, N. Manthos, I. Papadopoulos, E. Paradas MTA-ELTE Lendulet CMS Particle and Nuclear Physics Group, Eotvos Lorand University, Budapest, Hungary N. Filipovic Wigner Research Centre for Physics, Budapest, Hungary G. Bencze, C. Hajdu, P. Hidas, D. Horvath20, F. Sikler, V. Veszpremi, G. Vesztergombi21, A.J. Zsigmond Institute of Nuclear Research ATOMKI, Debrecen, Hungary N. Beni, S. Czellar, J. Karancsi22, A. Makovec, J. Molnar, Z. Szillasi Institute of Physics, University of Debrecen M. Bartok21, P. Raics, Z.L. Trocsanyi, B. Ujvari National Institute of Science Education and Research, Bhubaneswar, India S. Bahinipati, S. Choudhury23, P. Mal, K. Mandal, A. Nayak24, D.K. Sahoo, N. Sahoo, S.K. Swain Panjab University, Chandigarh, India S. Bansal, S.B. Beri, V. Bhatnagar, R. Chawla, U.Bhawandeep, A.K. Kalsi, A. Kaur, M. Kaur, R. Kumar, A. Mehta, M. Mittal, J.B. Singh, G. Walia University of Delhi, Delhi, India Ashok Kumar, A. Bhardwaj, B.C. Choudhary, R.B. Garg, S. Keshri, S. Malhotra, M. Naimuddin, N. Nishu, K. Ranjan, R. Sharma, V. Sharma Saha Institute of Nuclear Physics, Kolkata, India R. Bhattacharya, S. Bhattacharya, K. Chatterjee, S. Dey, S. Dutt, S. Dutta, S. Ghosh, N. Majumdar, A. Modak, K. Mondal, S. Mukhopadhyay, S. Nandan, A. Purohit, A. Roy, D. Roy, S. Roy Chowdhury, S. Sarkar, M. Sharan, S. Thakur Indian Institute of Technology Madras, Madras, India P.K. Behera Bhabha Atomic Research Centre, Mumbai, India R. Chudasama, D. Dutta, V. Jha, V. Kumar, A.K. Mohanty15, P.K. Netrakanti, L.M. Pant, HJEP06(217) P. Shukla, A. Topkar B. Sutar Tata Institute of Fundamental Research-A, Mumbai, India T. Aziz, S. Dugad, G. Kole, B. Mahakud, S. Mitra, G.B. Mohanty, B. Parida, N. Sur, Tata Institute of Fundamental Research-B, Mumbai, India S. Banerjee, S. Bhowmik25, R.K. Dewanjee, S. Ganguly, M. Guchait, Sa. Jain, S. Kumar, M. Maity25, G. Majumder, K. Mazumdar, T. Sarkar25, N. Wickramage26 Indian Institute of Science Education and Research (IISER), Pune, India S. Chauhan, S. Dube, V. Hegde, A. Kapoor, K. Kothekar, A. Rane, S. Sharma Institute for Research in Fundamental Sciences (IPM), Tehran, Iran H. Behnamian, S. Chenarani27, E. Eskandari Tadavani, S.M. Etesami27, A. Fahim28, M. Khakzad, M. Mohammadi Najafabadi, M. Naseri, S. Paktinat Mehdiabadi, F. Rezaei Hosseinabadi, B. Safarzadeh29, M. Zeinali University College Dublin, Dublin, Ireland M. Felcini, M. Grunewald INFN Sezione di Bari a, Universita di Bari b, Politecnico di Bari c, Bari, Italy M. Abbresciaa;b, C. Calabriaa;b, C. Caputoa;b, A. Colaleoa, D. Creanzaa;c, L. Cristellaa;b, N. De Filippisa;c, M. De Palmaa;b, L. Fiorea, G. Iasellia;c, G. Maggia;c, M. Maggia, G. Minielloa;b, S. Mya;b, S. Nuzzoa;b, A. Pompilia;b, G. Pugliesea;c, R. Radognaa;b, A. Ranieria, G. Selvaggia;b, L. Silvestrisa;15, R. Vendittia;b, P. Verwilligena INFN Sezione di Bologna a, Universita di Bologna b, Bologna, Italy G. Abbiendia, C. Battilana, D. Bonacorsia;b, S. Braibant-Giacomellia;b, L. Brigliadoria;b, R. Campaninia;b, P. Capiluppia;b, A. Castroa;b, F.R. Cavalloa, S.S. Chhibraa;b, G. Codispotia;b, M. Cu ania;b, G.M. Dallavallea, F. Fabbria, A. Fanfania;b, D. Fasanellaa;b, P. Giacomellia, C. Grandia, L. Guiduccia;b, S. Marcellinia, G. Masettia, A. Montanaria, F.L. Navarriaa;b, A. Perrottaa, A.M. Rossia;b, T. Rovellia;b, G.P. Sirolia;b, N. Tosia;b;15 INFN Sezione di Catania a, Universita di Catania b, Catania, Italy S. Albergoa;b, M. Chiorbolia;b, S. Costaa;b, A. Di Mattiaa, F. Giordanoa;b, R. Potenzaa;b, A. Tricomia;b, C. Tuvea;b INFN Sezione di Firenze a, Universita di Firenze b, Firenze, Italy G. Barbaglia, V. Ciullia;b, C. Civininia, R. D'Alessandroa;b, E. Focardia;b, V. Goria;b, P. Lenzia;b, M. Meschinia, S. Paolettia, G. Sguazzonia, L. Viliania;b;15 INFN Laboratori Nazionali di Frascati, Frascati, Italy L. Benussi, S. Bianco, F. Fabbri, D. Piccolo, F. Primavera15 INFN Sezione di Genova a, Universita di Genova b, Genova, Italy V. Calvellia;b, F. Ferroa, M. Lo Veterea;b, M.R. Mongea;b, E. Robuttia, S. Tosia;b INFN Sezione di Milano-Bicocca a, Universita di Milano-Bicocca b, Milano, HJEP06(217) Italy Italy L. Brianza15, M.E. Dinardoa;b, S. Fiorendia;b, S. Gennaia, A. Ghezzia;b, P. Govonia;b, M. Malberti, S. Malvezzia, R.A. Manzonia;b;15, B. Marzocchia;b, D. Menascea, L. Moronia, M. Paganonia;b, D. Pedrinia, S. Pigazzini, S. Ragazzia;b, T. Tabarelli de Fatisa;b INFN Sezione di Napoli a, Universita di Napoli 'Federico II' b, Napoli, Italy, Universita della Basilicata c, Potenza, Italy, Universita G. Marconi d, Roma, S. Buontempoa, N. Cavalloa;c, G. De Nardo, S. Di Guidaa;d;15, M. Espositoa;b, F. Fabozzia;c, A.O.M. Iorioa;b, G. Lanzaa, L. Listaa, S. Meolaa;d;15, P. Paoluccia;15, C. Sciaccaa;b, F. Thyssen Trento c, Trento, Italy INFN Sezione di Padova a, Universita di Padova b, Padova, Italy, Universita di P. Azzia;15, N. Bacchettaa, L. Benatoa;b, D. Biselloa;b, A. Bolettia;b, R. Carlina;b, A. Carvalho Antunes De Oliveiraa;b, P. Checchiaa, M. Dall'Ossoa;b, P. De Castro Manzanoa, T. Dorigoa, U. Dossellia, F. Gasparinia;b, U. Gasparinia;b, A. Gozzelinoa, S. Lacapraraa, M. Margonia;b, A.T. Meneguzzoa;b, J. Pazzinia;b;15, N. Pozzobona;b, P. Ronchesea;b, F. Simonettoa;b, E. Torassaa, M. Zanetti, P. Zottoa;b, A. Zucchettaa;b, G. Zumerlea;b INFN Sezione di Pavia a, Universita di Pavia b, Pavia, Italy A. Braghieria, A. Magnania;b, P. Montagnaa;b, S.P. Rattia;b, V. Rea, C. Riccardia;b, P. Salvinia, I. Vaia;b, P. Vituloa;b INFN Sezione di Perugia a, Universita di Perugia b, Perugia, Italy L. Alunni Solestizia;b, G.M. Bileia, D. Ciangottinia;b, L. Fanoa;b, P. Laricciaa;b, R. Leonardia;b, G. Mantovania;b, M. Menichellia, A. Sahaa, A. Santocchiaa;b INFN Sezione di Pisa a, Universita di Pisa b, Scuola Normale Superiore di Pisa c, Pisa, Italy K. Androsova;30, P. Azzurria;15, G. Bagliesia, J. Bernardinia, T. Boccalia, R. Castaldia, M.A. Cioccia;30, R. Dell'Orsoa, S. Donatoa;c, G. Fedi, A. Giassia, M.T. Grippoa;30, F. Ligabuea;c, T. Lomtadzea, L. Martinia;b, A. Messineoa;b, F. Pallaa, A. Rizzia;b, A. SavoyNavarroa;31, P. Spagnoloa, R. Tenchinia, G. Tonellia;b, A. Venturia, P.G. Verdinia INFN Sezione di Roma a, Universita di Roma b, Roma, Italy L. Baronea;b, F. Cavallaria, M. Cipriania;b, G. D'imperioa;b;15, D. Del Rea;b;15, M. Diemoza, S. Gellia;b, C. Jordaa, E. Longoa;b, F. Margarolia;b, P. Meridiania, G. Organtinia;b, R. Paramattia, F. Preiatoa;b, S. Rahatloua;b, C. Rovellia, F. Santanastasioa;b INFN Sezione di Torino a, Universita di Torino b, Torino, Italy, Universita del Piemonte Orientale c, Novara, Italy N. Amapanea;b, R. Arcidiaconoa;c;15, S. Argiroa;b, M. Arneodoa;c, N. Bartosika, R. Bellana;b, C. Biinoa, N. Cartigliaa, F. Cennaa;b, M. Costaa;b, R. Covarellia;b, A. Deganoa;b, N. Demariaa, L. Fincoa;b, B. Kiania;b, C. Mariottia, S. Masellia, E. Migliorea;b, V. Monacoa;b, E. Monteila;b, M.M. Obertinoa;b, L. Pachera;b, N. Pastronea, M. Pelliccionia, G.L. Pinna Angionia;b, F. Raveraa;b, A. Romeroa;b, M. Ruspaa;c, R. Sacchia;b, K. Shchelinaa;b, V. Solaa, A. Solanoa;b, A. Staianoa, P. Traczyka;b INFN Sezione di Trieste a, Universita di Trieste b, Trieste, Italy S. Belfortea, M. Casarsaa, F. Cossuttia, G. Della Riccaa;b, C. La Licataa;b, A. Schizzia;b, Kyungpook National University, Daegu, Korea D.H. Kim, G.N. Kim, M.S. Kim, S. Lee, S.W. Lee, Y.D. Oh, S. Sekmen, D.C. Son, A. Zanettia Y.C. Yang A. Lee Chonbuk National University, Jeonju, Korea Hanyang University, Seoul, Korea J.A. Brochero Cifuentes, T.J. Kim Korea University, Seoul, Korea S. Cho, S. Choi, Y. Go, D. Gyun, S. Ha, B. Hong, Y. Jo, Y. Kim, B. Lee, K. Lee, K.S. Lee, S. Lee, J. Lim, S.K. Park, Y. Roh Seoul National University, Seoul, Korea G.B. Yu University of Seoul, Seoul, Korea J. Almond, J. Kim, H. Lee, S.B. Oh, B.C. Radburn-Smith, S.h. Seo, U.K. Yang, H.D. Yoo, M. Choi, H. Kim, H. Kim, J.H. Kim, J.S.H. Lee, I.C. Park, G. Ryu, M.S. Ryu Sungkyunkwan University, Suwon, Korea Y. Choi, J. Goh, C. Hwang, J. Lee, I. Yu Vilnius University, Vilnius, Lithuania V. Dudenas, A. Juodagalvis, J. Vaitkus National Centre for Particle Physics, Universiti Malaya, Kuala Lumpur, Malaysia I. Ahmed, Z.A. Ibrahim, J.R. Komaragiri, M.A.B. Md Ali32, F. Mohamad Idris33, W.A.T. Wan Abdullah, M.N. Yusli, Z. Zolkapli HJEP06(217) H. Castilla-Valdez, E. De La Cruz-Burelo, I. Heredia-De La Cruz34, A. Hernandez-Almada, R. Lopez-Fernandez, R. Magan~a Villalba, J. Mejia Guisao, A. Sanchez-Hernandez Universidad Iberoamericana, Mexico City, Mexico S. Carrillo Moreno, C. Oropeza Barrera, F. Vazquez Valencia Benemerita Universidad Autonoma de Puebla, Puebla, Mexico S. Carpinteyro, I. Pedraza, H.A. Salazar Ibarguen, C. Uribe Estrada Universidad Autonoma de San Luis Potos , San Luis Potos , Mexico HJEP06(217) A. Morelos Pineda University of Auckland, Auckland, New Zealand D. Krofcheck P.H. Butler M. Waqas University of Canterbury, Christchurch, New Zealand National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan A. Ahmad, M. Ahmad, Q. Hassan, H.R. Hoorani, W.A. Khan, M.A. Shah, M. Shoaib, National Centre for Nuclear Research, Swierk, Poland H. Bialkowska, M. Bluj, B. Boimska, T. Frueboes, M. Gorski, M. Kazana, K. Nawrocki, K. Romanowska-Rybinska, M. Szleper, P. Zalewski Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland K. Bunkowski, A. Byszuk35, K. Doroba, A. Kalinowski, M. Konecki, J. Krolikowski, M. Misiura, M. Olszewski, M. Walczak Laboratorio de Instrumentac~ao e F sica Experimental de Part culas, Lisboa, Portugal P. Bargassa, C. Beir~ao Da Cruz E Silva, A. Di Francesco, P. Faccioli, P.G. Ferreira Parracho, M. Gallinaro, J. Hollar, N. Leonardo, L. Lloret Iglesias, M.V. Nemallapudi, J. Rodrigues Antunes, J. Seixas, O. Toldaiev, D. Vadruccio, J. Varela, P. Vischia Joint Institute for Nuclear Research, Dubna, Russia P. Bunin, I. Golutvin, I. Gorbunov, V. Karjavin, V. Korenkov, A. Lanev, A. Malakhov, V. Matveev36;37, V.V. Mitsyn, P. Moisenz, V. Palichik, V. Perelygin, S. Shmatov, S. Shulha, N. Skatchkov, V. Smirnov, E. Tikhonenko, N. Voytishin, A. Zarubin Petersburg Nuclear Physics Institute, Gatchina (St. Petersburg), Russia L. Chtchipounov, V. Golovtsov, Y. Ivanov, V. Kim38, E. Kuznetsova39, V. Murzin, V. Oreshkin, V. Sulimov, A. Vorobyev Institute for Nuclear Research, Moscow, Russia Yu. Andreev, A. Dermenev, S. Gninenko, N. Golubev, A. Karneyeu, M. Kirsanov, N. Krasnikov, A. Pashenkov, D. Tlisov, A. Toropin Institute for Theoretical and Experimental Physics, Moscow, Russia V. Epshteyn, V. Gavrilov, N. Lychkovskaya, V. Popov, I. Pozdnyakov, G. Safronov, A. Spiridonov, M. Toms, E. Vlasov, A. Zhokin Moscow Institute of Physics and Technology, Moscow, Russia A. Bylinkin37 National Research Nuclear University 'Moscow Engineering Physics Institute' (MEPhI), Moscow, Russia M. Chadeeva40, E. Popova, E. Tarkovskii P.N. Lebedev Physical Institute, Moscow, Russia V. Andreev, M. Azarkin37, I. Dremin37, M. Kirakosyan, A. Leonidov37, S.V. Rusakov, A. Terkulov Moscow, Russia A. Snigirev Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, A. Baskakov, A. Belyaev, E. Boos, M. Dubinin41, L. Dudko, A. Ershov, A. Gribushin, V. Klyukhin, O. Kodolova, I. Lokhtin, I. Miagkov, S. Obraztsov, S. Petrushanko, V. Savrin, Novosibirsk State University (NSU), Novosibirsk, Russia V. Blinov42, Y.Skovpen42 State Research Center of Russian Federation, Institute for High Energy Physics, Protvino, Russia I. Azhgirey, I. Bayshev, S. Bitioukov, D. Elumakhov, V. Kachanov, A. Kalinin, D. Konstantinov, V. Krychkine, V. Petrov, R. Ryutin, A. Sobol, S. Troshin, N. Tyurin, A. Uzunian, A. Volkov University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia P. Adzic43, P. Cirkovic, D. Devetak, M. Dordevic, J. Milosevic, V. Rekovic Centro de Investigaciones Energeticas Medioambientales y Tecnologicas (CIEMAT), Madrid, Spain J. Alcaraz Maestre, M. Barrio Luna, E. Calvo, M. Cerrada, M. Chamizo Llatas, N. Colino, B. De La Cruz, A. Delgado Peris, A. Escalante Del Valle, C. Fernandez Bedoya, J.P. Fernandez Ramos, J. Flix, M.C. Fouz, P. Garcia-Abia, O. Gonzalez Lopez, S. Goy Lopez, J.M. Hernandez, M.I. Josa, E. Navarro De Martino, A. Perez-Calero Yzquierdo, J. Puerta Pelayo, A. Quintario Olmeda, I. Redondo, L. Romero, M.S. Soares Universidad Autonoma de Madrid, Madrid, Spain J.F. de Troconiz, M. Missiroli, D. Moran Universidad de Oviedo, Oviedo, Spain J. Cuevas, J. Fernandez Menendez, I. Gonzalez Caballero, J.R. Gonzalez Fernandez, E. Palencia Cortezon, S. Sanchez Cruz, I. Suarez Andres, J.M. Vizan Garcia Instituto de F sica de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain Cortabitarte I.J. Cabrillo, A. Calderon, J.R. Castin~eiras De Saa, E. Curras, M. Fernandez, J. GarciaFerrero, G. Gomez, A. Lopez Virto, J. Marco, C. Martinez Rivero, F. Matorras, J. Piedra Gomez, T. Rodrigo, A. Ruiz-Jimeno, L. Scodellaro, N. Trevisani, I. Vila, R. Vilar CERN, European Organization for Nuclear Research, Geneva, Switzerland D. Abbaneo, E. Au ray, G. Auzinger, M. Bachtis, P. Baillon, A.H. Ball, D. Barney, P. Bloch, A. Bocci, A. Bonato, C. Botta, T. Camporesi, R. Castello, M. Cepeda, G. Cerminara, M. D'Alfonso, D. d'Enterria, A. Dabrowski, V. Daponte, A. David, M. De Gruttola, F. De Guio, A. De Roeck, E. Di Marco44, M. Dobson, B. Dorney, T. du Pree, D. Duggan, M. Dunser, N. Dupont, A. Elliott-Peisert, S. Fartoukh, G. Franzoni, J. Fulcher, W. Funk, D. Gigi, K. Gill, M. Girone, F. Glege, D. Gulhan, S. Gundacker, M. Gutho , J. Hammer, P. Harris, J. Hegeman, V. Innocente, P. Janot, H. Kirschenmann, V. Knunz, A. Kornmayer15, M.J. Kortelainen, K. Kousouris, M. Krammer1, P. Lecoq, C. Lourenco, M.T. Lucchini, L. Malgeri, M. Mannelli, A. Martelli, F. Meijers, S. Mersi, E. Meschi, F. Moortgat, S. Morovic, M. Mulders, H. Neugebauer, S. Orfanelli, L. Orsini, L. Pape, E. Perez, M. Peruzzi, A. Petrilli, G. Petrucciani, A. Pfei er, M. Pierini, A. Racz, T. Reis, G. Rolandi45, M. Rovere, M. Ruan, H. Sakulin, J.B. Sauvan, C. Schafer, C. Schwick, M. Seidel, A. Sharma, P. Silva, M. Simon, P. Sphicas46, J. Steggemann, M. Stoye, Y. Takahashi, M. Tosi, D. Treille, A. Triossi, A. Tsirou, V. Veckalns47, G.I. Veres21, N. Wardle, A. Zagozdzinska35, W.D. Zeuner Paul Scherrer Institut, Villigen, Switzerland W. Bertl, K. Deiters, W. Erdmann, R. Horisberger, Q. Ingram, H.C. Kaestli, D. Kotlinski, U. Langenegger, T. Rohe Institute for Particle Physics, ETH Zurich, Zurich, Switzerland F. Bachmair, L. Bani, L. Bianchini, B. Casal, G. Dissertori, M. Dittmar, M. Donega, P. Eller, C. Grab, C. Heidegger, D. Hits, J. Hoss, G. Kasieczka, P. Lecomtey, W. Lustermann, B. Mangano, M. Marionneau, P. Martinez Ruiz del Arbol, M. Masciovecchio, M.T. Meinhard, D. Meister, F. Micheli, P. Musella, F. Nessi-Tedaldi, F. Pandol , J. Pata, F. Pauss, G. Perrin, L. Perrozzi, M. Quittnat, M. Rossini, M. Schonenberger, A. Starodumov48, V.R. Tavolaro, K. Theo latos, R. Wallny Universitat Zurich, Zurich, Switzerland T.K. Aarrestad, C. Amsler49, L. Caminada, M.F. Canelli, A. De Cosa, C. Galloni, A. Hinzmann, T. Hreus, B. Kilminster, C. Lange, J. Ngadiuba, D. Pinna, G. Rauco, P. Robmann, D. Salerno, Y. Yang National Central University, Chung-Li, Taiwan V. Candelise, T.H. Doan, Sh. Jain, R. Khurana, M. Konyushikhin, C.M. Kuo, W. Lin, Y.J. Lu, A. Pozdnyakov, S.S. Yu National Taiwan University (NTU), Taipei, Taiwan Arun Kumar, P. Chang, Y.H. Chang, Y.W. Chang, Y. Chao, K.F. Chen, P.H. Chen, C. Dietz, F. Fiori, W.-S. Hou, Y. Hsiung, Y.F. Liu, R.-S. Lu, M. Min~ano Moya, E. Paganis, A. Psallidas, J.f. Tsai, Y.M. Tzeng Chulalongkorn University, Faculty of Science, Department of Physics, Bangkok, Thailand B. Asavapibhop, G. Singh, N. Srimanobhas, N. Suwonjandee Cukurova University - Physics Department, Science and Art Faculty M.N. Bakirci50, S. Damarseckin, Z.S. Demiroglu, C. Dozen, E. Eskut, S. Girgis, G. Gokbulut, Y. Guler, E. Gurpinar, I. Hos, E.E. Kangal51, O. Kara, U. Kiminsu, M. Oglakci, G. Onengut52, K. Ozdemir53, S. Ozturk50, A. Polatoz, D. Sunar Cerci54, S. Turkcapar, I.S. Zorbakir, C. Zorbilmez Middle East Technical University, Physics Department, Ankara, Turkey B. Bilin, S. Bilmis, B. Isildak55, G. Karapinar56, M. Yalvac, M. Zeyrek Bogazici University, Istanbul, Turkey E. Gulmez, M. Kaya57, O. Kaya58, E.A. Yetkin59, T. Yetkin60 Istanbul Technical University, Istanbul, Turkey A. Cakir, K. Cankocak, S. Sen61 Institute for Scintillation Materials of National Academy of Science of Ukraine, Kharkov, Ukraine B. Grynyov Kharkov, Ukraine L. Levchuk, P. Sorokin National Scienti c Center, Kharkov Institute of Physics and Technology, University of Bristol, Bristol, United Kingdom R. Aggleton, F. Ball, L. Beck, J.J. Brooke, D. Burns, E. Clement, D. Cussans, H. Flacher, J. Goldstein, M. Grimes, G.P. Heath, H.F. Heath, J. Jacob, L. Kreczko, C. Lucas, D.M. Newbold62, S. Paramesvaran, A. Poll, T. Sakuma, S. Seif El Nasr-storey, D. Smith, V.J. Smith Rutherford Appleton Laboratory, Didcot, United Kingdom D. Barducci, K.W. Bell, A. Belyaev63, C. Brew, R.M. Brown, L. Calligaris, D. Cieri, D.J.A. Cockerill, J.A. Coughlan, K. Harder, S. Harper, E. Olaiya, D. Petyt, C.H. ShepherdThemistocleous, A. Thea, I.R. Tomalin, T. Williams Imperial College, London, United Kingdom M. Baber, R. Bainbridge, O. Buchmuller, A. Bundock, D. Burton, S. Casasso, M. Citron, D. Colling, L. Corpe, P. Dauncey, G. Davies, A. De Wit, M. Della Negra, R. Di Maria, P. Dunne, A. Elwood, D. Futyan, Y. Haddad, G. Hall, G. Iles, T. James, R. Lane, C. Laner, R. Lucas62, L. Lyons, A.-M. Magnan, S. Malik, L. Mastrolorenzo, J. Nash, HJEP06(217) C. Seez, S. Summers, A. Tapper, K. Uchida, M. Vazquez Acosta64, T. Virdee15, J. Wright, S.C. Zenz Brunel University, Uxbridge, United Kingdom J.E. Cole, P.R. Hobson, A. Khan, P. Kyberd, D. Leslie, I.D. Reid, P. Symonds, L. Teodorescu, M. Turner Baylor University, Waco, U.S.A. A. Borzou, K. Call, J. Dittmann, K. Hatakeyama, H. Liu, N. Pastika The University of Alabama, Tuscaloosa, U.S.A. O. Charaf, S.I. Cooper, C. Henderson, P. Rumerio Boston University, Boston, U.S.A. D. Arcaro, A. Avetisyan, T. Bose, D. Gastler, D. Rankin, C. Richardson, J. Rohlf, L. Sulak, D. Zou Brown University, Providence, U.S.A. G. Benelli, E. Berry, D. Cutts, A. Garabedian, J. Hakala, U. Heintz, J.M. Hogan, O. Jesus, E. Laird, G. Landsberg, Z. Mao, M. Narain, S. Piperov, S. Sagir, E. Spencer, R. Syarif University of California, Davis, Davis, U.S.A. R. Breedon, G. Breto, D. Burns, M. Calderon De La Barca Sanchez, S. Chauhan, M. Chertok, J. Conway, R. Conway, P.T. Cox, R. Erbacher, C. Flores, G. Funk, M. Gardner, W. Ko, R. Lander, C. Mclean, M. Mulhearn, D. Pellett, J. Pilot, F. Ricci-Tam, S. Shalhout, J. Smith, M. Squires, D. Stolp, M. Tripathi, S. Wilbur, R. Yohay University of California, Los Angeles, U.S.A. R. Cousins, P. Everaerts, A. Florent, J. Hauser, M. Ignatenko, D. Saltzberg, E. Takasugi, V. Valuev, M. Weber University of California, Riverside, Riverside, U.S.A. K. Burt, R. Clare, J. Ellison, J.W. Gary, G. Hanson, J. Heilman, P. Jandir, E. Kennedy, F. Lacroix, O.R. Long, M. Olmedo Negrete, M.I. Paneva, A. Shrinivas, H. Wei, S. Wimpenny, B. R. Yates University of California, San Diego, La Jolla, U.S.A. J.G. Branson, G.B. Cerati, S. Cittolin, M. Derdzinski, R. Gerosa, A. Holzner, D. Klein, V. Krutelyov, J. Letts, I. Macneill, D. Olivito, S. Padhi, M. Pieri, M. Sani, V. Sharma, S. Simon, M. Tadel, A. Vartak, S. Wasserbaech65, C. Welke, J. Wood, F. Wurthwein, A. Yagil, G. Zevi Della Porta University of California, Santa Barbara - Department of Physics, Santa Barbara, U.S.A. C. West, J. Yoo R. Bhandari, J. Bradmiller-Feld, C. Campagnari, A. Dishaw, V. Dutta, K. Flowers, M. Franco Sevilla, P. Ge ert, C. George, F. Golf, L. Gouskos, J. Gran, R. Heller, J. Incandela, N. Mccoll, S.D. Mullin, A. Ovcharova, J. Richman, D. Stuart, I. Suarez, D. Anderson, A. Apresyan, J. Bendavid, A. Bornheim, J. Bunn, Y. Chen, J. Duarte, J.M. Lawhorn, A. Mott, H.B. Newman, C. Pena, M. Spiropulu, J.R. Vlimant, S. Xie, R.Y. Zhu Carnegie Mellon University, Pittsburgh, U.S.A. M.B. Andrews, V. Azzolini, T. Ferguson, M. Paulini, J. Russ, M. Sun, H. Vogel, I. Vorobiev University of Colorado Boulder, Boulder, U.S.A. J.P. Cumalat, W.T. Ford, F. Jensen, A. Johnson, M. Krohn, T. Mulholland, K. Stenson, Cornell University, Ithaca, U.S.A. J. Thom, J. Tucker, P. Wittich, M. Zientek Fair eld University, Fair eld, U.S.A. D. Winn J. Alexander, J. Chaves, J. Chu, S. Dittmer, K. Mcdermott, N. Mirman, G. Nicolas Kaufman, J.R. Patterson, A. Rinkevicius, A. Ryd, L. Skinnari, L. So , S.M. Tan, Z. Tao, Fermi National Accelerator Laboratory, Batavia, U.S.A. S. Abdullin, M. Albrow, G. Apollinari, S. Banerjee, L.A.T. Bauerdick, A. Beretvas, J. Berryhill, P.C. Bhat, G. Bolla, K. Burkett, J.N. Butler, H.W.K. Cheung, F. Chlebana, S. Cihangiry, M. Cremonesi, V.D. Elvira, I. Fisk, J. Freeman, E. Gottschalk, L. Gray, D. Green, S. Grunendahl, O. Gutsche, D. Hare, R.M. Harris, S. Hasegawa, J. Hirschauer, Z. Hu, B. Jayatilaka, S. Jindariani, M. Johnson, U. Joshi, B. Klima, B. Kreis, S. Lammel, J. Linacre, D. Lincoln, R. Lipton, T. Liu, R. Lopes De Sa, J. Lykken, K. Maeshima, N. Magini, J.M. Marra no, S. Maruyama, D. Mason, P. McBride, P. Merkel, S. Mrenna, S. Nahn, C. Newman-Holmesy, V. O'Dell, K. Pedro, O. Prokofyev, G. Rakness, L. Ristori, E. Sexton-Kennedy, A. Soha, W.J. Spalding, L. Spiegel, S. Stoynev, N. Strobbe, L. Taylor, S. Tkaczyk, N.V. Tran, L. Uplegger, E.W. Vaandering, C. Vernieri, M. Verzocchi, R. Vidal, M. Wang, H.A. Weber, A. Whitbeck University of Florida, Gainesville, U.S.A. D. Acosta, P. Avery, P. Bortignon, D. Bourilkov, A. Brinkerho , A. Carnes, M. Carver, D. Curry, S. Das, R.D. Field, I.K. Furic, J. Konigsberg, A. Korytov, P. Ma, K. Matchev, H. Mei, P. Milenovic66, G. Mitselmakher, D. Rank, L. Shchutska, D. Sperka, L. Thomas, J. Wang, S. Wang, J. Yelton Florida International University, Miami, U.S.A. S. Linn, P. Markowitz, G. Martinez, J.L. Rodriguez Florida State University, Tallahassee, U.S.A. A. Ackert, J.R. Adams, T. Adams, A. Askew, S. Bein, B. Diamond, S. Hagopian, V. Hagopian, K.F. Johnson, A. Khatiwada, H. Prosper, A. Santra, M. Weinberg Florida Institute of Technology, Melbourne, U.S.A. M.M. Baarmand, V. Bhopatkar, S. Colafranceschi67, M. Hohlmann, D. Noonan, T. Roy, F. Yumiceva University of Illinois at Chicago (UIC), Chicago, U.S.A. M.R. Adams, L. Apanasevich, D. Berry, R.R. Betts, I. Bucinskaite, R. Cavanaugh, O. Evdokimov, L. Gauthier, C.E. Gerber, D.J. Hofman, P. Kurt, C. O'Brien, I.D. Sandoval Gonzalez, P. Turner, N. Varelas, H. Wang, Z. Wu, M. Zakaria, J. Zhang The University of Iowa, Iowa City, U.S.A. B. Bilki68, W. Clarida, K. Dilsiz, S. Durgut, R.P. Gandrajula, M. Haytmyradov, V. Khristenko, J.-P. Merlo, H. Mermerkaya69, A. Mestvirishvili, A. Moeller, J. Nachtman, H. Ogul, Y. Onel, F. Ozok70, A. Penzo, C. Snyder, E. Tiras, J. Wetzel, K. Yi Johns Hopkins University, Baltimore, U.S.A. I. Anderson, B. Blumenfeld, A. Cocoros, N. Eminizer, D. Fehling, L. Feng, A.V. Gritsan, P. Maksimovic, M. Osherson, J. Roskes, U. Sarica, M. Swartz, M. Xiao, Y. Xin, C. You The University of Kansas, Lawrence, U.S.A. A. Al-bataineh, P. Baringer, A. Bean, S. Boren, J. Bowen, C. Bruner, J. Castle, L. Forthomme, R.P. Kenny III, A. Kropivnitskaya, D. Majumder, W. Mcbrayer, M. Murray, S. Sanders, R. Stringer, J.D. Tapia Takaki, Q. Wang Kansas State University, Manhattan, U.S.A. A. Ivanov, K. Kaadze, S. Khalil, M. Makouski, Y. Maravin, A. Mohammadi, L.K. Saini, N. Skhirtladze, S. Toda F. Rebassoo, D. Wright Lawrence Livermore National Laboratory, Livermore, U.S.A. University of Maryland, College Park, U.S.A. C. Anelli, A. Baden, O. Baron, A. Belloni, B. Calvert, S.C. Eno, C. Ferraioli, J.A. Gomez, N.J. Hadley, S. Jabeen, R.G. Kellogg, T. Kolberg, J. Kunkle, Y. Lu, A.C. Mignerey, Y.H. Shin, A. Skuja, M.B. Tonjes, S.C. Tonwar Massachusetts Institute of Technology, Cambridge, U.S.A. D. Abercrombie, B. Allen, A. Apyan, R. Barbieri, A. Baty, R. Bi, K. Bierwagen, S. Brandt, W. Busza, I.A. Cali, Z. Demiragli, L. Di Matteo, G. Gomez Ceballos, M. Goncharov, D. Hsu, Y. Iiyama, G.M. Innocenti, M. Klute, D. Kovalskyi, K. Krajczar, Y.S. Lai, Y.-J. Lee, A. Levin, P.D. Luckey, A.C. Marini, C. Mcginn, C. Mironov, S. Narayanan, X. Niu, C. Paus, C. Roland, G. Roland, J. Salfeld-Nebgen, G.S.F. Stephans, K. Sumorok, K. Tatar, M. Varma, D. Velicanu, J. Veverka, J. Wang, T.W. Wang, B. Wyslouch, M. Yang, V. Zhukova University of Minnesota, Minneapolis, U.S.A. A.C. Benvenuti, R.M. Chatterjee, A. Evans, A. Finkel, A. Gude, P. Hansen, S. Kalafut, S.C. Kao, Y. Kubota, Z. Lesko, J. Mans, S. Nourbakhsh, N. Ruckstuhl, R. Rusack, N. Tambe, J. Turkewitz J.G. Acosta, S. Oliveros University of Nebraska-Lincoln, Lincoln, U.S.A. E. Avdeeva, R. Bartek, K. Bloom, D.R. Claes, A. Dominguez, C. Fangmeier, R. Gonzalez Suarez, R. Kamalieddin, I. Kravchenko, A. Malta Rodrigues, F. Meier, J. Monroy, J.E. Siado, G.R. Snow, B. Stieger State University of New York at Bu alo, Bu alo, U.S.A. M. Alyari, J. Dolen, J. George, A. Godshalk, C. Harrington, I. Iashvili, J. Kaisen, A. Kharchilava, A. Kumar, A. Parker, S. Rappoccio, B. Roozbahani Northeastern University, Boston, U.S.A. G. Alverson, E. Barberis, D. Baumgartel, A. Hortiangtham, B. Knapp, A. Massironi, D.M. Morse, D. Nash, T. Orimoto, R. Teixeira De Lima, D. Trocino, R.-J. Wang, D. Wood Northwestern University, Evanston, U.S.A. S. Bhattacharya, K.A. Hahn, A. Kubik, A. Kumar, J.F. Low, N. Mucia, N. Odell, B. Pollack, M.H. Schmitt, K. Sung, M. Trovato, M. Velasco University of Notre Dame, Notre Dame, U.S.A. N. Dev, M. Hildreth, K. Hurtado Anampa, C. Jessop, D.J. Karmgard, N. Kellams, K. Lannon, N. Marinelli, F. Meng, C. Mueller, Y. Musienko36, M. Planer, A. Reinsvold, R. Ruchti, G. Smith, S. Taroni, M. Wayne, M. Wolf, A. Woodard The Ohio State University, Columbus, U.S.A. J. Alimena, L. Antonelli, J. Brinson, B. Bylsma, L.S. Durkin, S. Flowers, B. Francis, A. Hart, C. Hill, R. Hughes, W. Ji, B. Liu, W. Luo, D. Puigh, B.L. Winer, H.W. Wulsin Princeton University, Princeton, U.S.A. S. Cooperstein, O. Driga, P. Elmer, J. Hardenbrook, P. Hebda, D. Lange, J. Luo, D. Marlow, T. Medvedeva, K. Mei, M. Mooney, J. Olsen, C. Palmer, P. Piroue, D. Stickland, C. Tully, A. Zuranski University of Puerto Rico, Mayaguez, U.S.A. S. Malik Purdue University, West Lafayette, U.S.A. A. Barker, V.E. Barnes, S. Folgueras, L. Gutay, M.K. Jha, M. Jones, A.W. Jung, K. Jung, D.H. Miller, N. Neumeister, X. Shi, J. Sun, A. Svyatkovskiy, F. Wang, W. Xie, L. Xu Purdue University Calumet, Hammond, U.S.A. N. Parashar, J. Stupak Rice University, Houston, U.S.A. A. Adair, B. Akgun, Z. Chen, K.M. Ecklund, F.J.M. Geurts, M. Guilbaud, W. Li, B. Michlin, M. Northup, B.P. Padley, R. Redjimi, J. Roberts, J. Rorie, Z. Tu, J. Zabel University of Rochester, Rochester, U.S.A. B. Betchart, A. Bodek, P. de Barbaro, R. Demina, Y.t. Duh, T. Ferbel, M. Galanti, A. Garcia-Bellido, J. Han, O. Hindrichs, A. Khukhunaishvili, K.H. Lo, P. Tan, M. Verzetti Rutgers, The State University of New Jersey, Piscataway, U.S.A. J.P. Chou, E. Contreras-Campana, Y. Gershtein, T.A. Gomez Espinosa, E. Halkiadakis, M. Heindl, D. Hidas, E. Hughes, S. Kaplan, R. Kunnawalkam Elayavalli, S. Kyriacou, A. Lath, K. Nash, H. Saka, S. Salur, S. Schnetzer, D. She eld, S. Somalwar, R. Stone, S. Thomas, P. Thomassen, M. Walker University of Tennessee, Knoxville, U.S.A. M. Foerster, J. Heideman, G. Riley, K. Rose, S. Spanier, K. Thapa Texas A&M University, College Station, U.S.A. O. Bouhali71, A. Celik, M. Dalchenko, M. De Mattia, A. Delgado, S. Dildick, R. Eusebi, J. Gilmore, T. Huang, E. Juska, T. Kamon72, R. Mueller, Y. Pakhotin, R. Patel, A. Perlo , L. Pernie, D. Rathjens, A. Rose, A. Safonov, A. Tatarinov, K.A. Ulmer Texas Tech University, Lubbock, U.S.A. N. Akchurin, C. Cowden, J. Damgov, C. Dragoiu, P.R. Dudero, J. Faulkner, S. Kunori, K. Lamichhane, S.W. Lee, T. Libeiro, S. Undleeb, I. Volobouev, Z. Wang Vanderbilt University, Nashville, U.S.A. A.G. Delannoy, S. Greene, A. Gurrola, R. Janjam, W. Johns, C. Maguire, A. Melo, H. Ni, P. Sheldon, S. Tuo, J. Velkovska, Q. Xu University of Virginia, Charlottesville, U.S.A. T. Sinthuprasith, Y. Wang, E. Wolfe, F. Xia Wayne State University, Detroit, U.S.A. C. Clarke, R. Harr, P.E. Karchin, P. Lamichhane, J. Sturdy M.W. Arenton, P. Barria, B. Cox, J. Goodell, R. Hirosky, A. Ledovskoy, H. Li, C. Neu, University of Wisconsin - Madison, Madison, WI, U.S.A. D.A. Belknap, S. Dasu, L. Dodd, S. Duric, B. Gomber, M. Grothe, M. Herndon, A. Herve, P. Klabbers, A. Lanaro, A. Levine, K. Long, R. Loveless, I. Ojalvo, T. Perry, G.A. Pierro, G. Polese, T. Ruggles, A. Savin, A. Sharma, N. Smith, W.H. Smith, D. Taylor, N. Woods y: Deceased China 1: Also at Vienna University of Technology, Vienna, Austria 2: Also at State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, 3: Also at Institut Pluridisciplinaire Hubert Curien (IPHC), Universite de Strasbourg, CNRS/IN2P3, Strasbourg, France 4: Also at Universidade Estadual de Campinas, Campinas, Brazil 5: Also at Universidade Federal de Pelotas, Pelotas, Brazil 6: Also at Universite Libre de Bruxelles, Bruxelles, Belgium 7: Also at Deutsches Elektronen-Synchrotron, Hamburg, Germany 9: Also at Helwan University, Cairo, Egypt 10: Now at Zewail City of Science and Technology, Zewail, Egypt 11: Now at Fayoum University, El-Fayoum, Egypt 12: Also at British University in Egypt, Cairo, Egypt 13: Now at Ain Shams University, Cairo, Egypt 14: Also at Universite de Haute Alsace, Mulhouse, France Moscow, Russia 15: Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland 16: Also at Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, 17: Also at RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany 18: Also at University of Hamburg, Hamburg, Germany 19: Also at Brandenburg University of Technology, Cottbus, Germany 20: Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary 21: Also at MTA-ELTE Lendulet CMS Particle and Nuclear Physics Group, Eotvos Lorand University, Budapest, Hungary 22: Also at Institute of Physics, University of Debrecen, Debrecen, Hungary 23: Also at Indian Institute of Science Education and Research, Bhopal, India 24: Also at Institute of Physics, Bhubaneswar, India 25: Also at University of Visva-Bharati, Santiniketan, India 26: Also at University of Ruhuna, Matara, Sri Lanka 27: Also at Isfahan University of Technology, Isfahan, Iran 28: Also at University of Tehran, Department of Engineering Science, Tehran, Iran 29: Also at Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran 30: Also at Universita degli Studi di Siena, Siena, Italy 31: Also at Purdue University, West Lafayette, U.S.A. 32: Also at International Islamic University of Malaysia, Kuala Lumpur, Malaysia 33: Also at Malaysian Nuclear Agency, MOSTI, Kajang, Malaysia 34: Also at Consejo Nacional de Ciencia y Tecnolog a, Mexico city, Mexico 35: Also at Warsaw University of Technology, Institute of Electronic Systems, Warsaw, Poland 36: Also at Institute for Nuclear Research, Moscow, Russia 37: Now at National Research Nuclear University 'Moscow 38: Also at St. Petersburg State Polytechnical University, St. Petersburg, Russia 39: Also at University of Florida, Gainesville, U.S.A. 40: Also at P.N. Lebedev Physical Institute, Moscow, Russia 41: Also at California Institute of Technology, Pasadena, U.S.A. 42: Also at Budker Institute of Nuclear Physics, Novosibirsk, Russia 43: Also at Faculty of Physics, University of Belgrade, Belgrade, Serbia 44: Also at INFN Sezione di Roma; Universita di Roma, Roma, Italy 45: Also at Scuola Normale e Sezione dell'INFN, Pisa, Italy 46: Also at National and Kapodistrian University of Athens, Athens, Greece 47: Also at Riga Technical University, Riga, Latvia 48: Also at Institute for Theoretical and Experimental Physics, Moscow, Russia 49: Also at Albert Einstein Center for Fundamental Physics, Bern, Switzerland 50: Also at Gaziosmanpasa University, Tokat, Turkey 51: Also at Mersin University, Mersin, Turkey 53: Also at Piri Reis University, Istanbul, Turkey 54: Also at Adiyaman University, Adiyaman, Turkey 55: Also at Ozyegin University, Istanbul, Turkey 56: Also at Izmir Institute of Technology, Izmir, Turkey 57: Also at Marmara University, Istanbul, Turkey 58: Also at Kafkas University, Kars, Turkey 59: Also at Istanbul Bilgi University, Istanbul, Turkey 60: Also at Yildiz Technical University, Istanbul, Turkey 61: Also at Hacettepe University, Ankara, Turkey 62: Also at Rutherford Appleton Laboratory, Didcot, United Kingdom 63: Also at School of Physics and Astronomy, University of Southampton, Southampton, United 64: Also at Instituto de Astrof sica de Canarias, La Laguna, Spain 65: Also at Utah Valley University, Orem, U.S.A. 66: Also at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, 67: Also at Facolta Ingegneria, Universita di Roma, Roma, Italy 68: Also at Argonne National Laboratory, Argonne, U.S.A. 69: Also at Erzincan University, Erzincan, Turkey 70: Also at Mimar Sinan University, Istanbul, Istanbul, Turkey 71: Also at Texas A&M University at Qatar, Doha, Qatar 72: Also at Kyungpook National University, Daegu, Korea pT at the CERN LHC, Phys. Rev. D 61 ( 2000 ) 093005 [27] D.L. Rainwater and D. Zeppenfeld , Observing H ! W W [36] J. Alwall , M. Herquet , F. Maltoni , O. Mattelaer and T. Stelzer , MadGraph 5: going beyond, [37] J. Alwall et al., The automated computation of tree-level and next-to-leading order [38] S. Catani , F. Krauss , R. Kuhn and B.R. Webber , QCD matrix elements + parton showers , [39] J. Alwall , S. de Visscher and F. Maltoni , QCD radiation in the production of heavy colored particles at the LHC , JHEP 02 ( 2009 ) 017 [arXiv: 0810 .5350] [INSPIRE]. [40] J. Alwall et al., Comparative study of various algorithms for the merging of parton showers and matrix elements in hadronic collisions , Eur. Phys. J. C 53 ( 2008 ) 473 [41] S. Hoeche et al., Matching parton showers and matrix elements , in the proceedings of HERA [42] J. Pumplin , D.R. Stump , J. Huston , H.L. Lai , P.M. Nadolsky and W.K. Tung , New [58] M. Cacciari , G.P. Salam and G. Soyez, The anti-kt jet clustering algorithm , JHEP 04 ( 2008 ) [59] CMS collaboration, Pileup jet identi cation, CMS- PAS-JME- 13- 005 ( 2013 ). [61] M. Cacciari and G.P. Salam , Pileup subtraction using jet areas , Phys. Lett. B 659 ( 2008 ) 119 [72] O.J.P. Eboli , M.C. Gonzalez-Garcia and J.K. Mizukoshi , pp ! jje observations is large , Trans. Amer. Math. Soc . 54 ( 1943 ) 426 . hypotheses, Ann. Math. Statist. 9 ( 1938 ) 60 ,


This is a preview of a remote PDF: https://link.springer.com/content/pdf/10.1007%2FJHEP06%282017%29106.pdf

V. Khachatryan, A. M. Sirunyan, A. Tumasyan, W. Adam, E. Asilar, T. Bergauer, J. Brandstetter, E. Brondolin, M. Dragicevic, J. Erö, M. Flechl, M. Friedl, R. Frühwirth, V. M. Ghete, C. Hartl, N. Hörmann, J. Hrubec, M. Jeitler, A. König, I. Krätschmer, D. Liko, T. Matsushita, I. Mikulec, D. Rabady, N. Rad, B. Rahbaran, H. Rohringer, J. Schieck, J. Strauss, W. Treberer-Treberspurg, W. Waltenberger, C.-E. Wulz, V. Mossolov, N. Shumeiko, J. Suarez Gonzalez, S. Alderweireldt, E. A. De Wolf, X. Janssen, J. Lauwers, M. Van De Klundert, H. Van Haevermaet, P. Van Mechelen, N. Van Remortel, A. Van Spilbeeck, S. Abu Zeid, F. Blekman, J. D’Hondt, N. Daci, I. De Bruyn, K. Deroover, N. Heracleous, S. Lowette, S. Moortgat, L. Moreels, A. Olbrechts, Q. Python, S. Tavernier, W. Van Doninck, P. Van Mulders, I. Van Parijs, H. Brun, C. Caillol, B. Clerbaux, G. De Lentdecker, H. Delannoy, G. Fasanella, L. Favart, R. Goldouzian, A. Grebenyuk, G. Karapostoli, T. Lenzi, A. Léonard, J. Luetic, T. Maerschalk, A. Marinov, A. Randle-conde, T. Seva, C. Vander Velde, P. Vanlaer, R. Yonamine, F. Zenoni, F. Zhang, A. Cimmino, T. Cornelis, D. Dobur, A. Fagot, G. Garcia, M. Gul, D. Poyraz, S. Salva, R. Schöfbeck, M. Tytgat, W. Van Driessche, E. Yazgan, N. Zaganidis, H. Bakhshiansohi, C. Beluffi, O. Bondu, S. Brochet, G. Bruno, A. Caudron, S. De Visscher, C. Delaere, M. Delcourt, B. Francois, A. Giammanco, A. Jafari, P. Jez, M. Komm, V. Lemaitre, A. Magitteri, A. Mertens, M. Musich, C. Nuttens, K. Piotrzkowski, L. Quertenmont, M. Selvaggi, M. Vidal Marono, S. Wertz, N. Beliy, W. L. Aldá Júnior, F. L. Alves, G. A. Alves, L. Brito, C. Hensel, A. Moraes, M. E. Pol, P. Rebello Teles, E. Belchior Batista Das Chagas, W. Carvalho, J. Chinellato, A. Custódio, E. M. Da Costa, G. G. Da Silveira, D. De Jesus Damiao, C. De Oliveira Martins, S. Fonseca De Souza, L. M. Huertas Guativa, H. Malbouisson, D. Matos Figueiredo, C. Mora Herrera, L. Mundim, H. Nogima, W. L. Prado Da Silva, A. Santoro, A. Sznajder, E. J. Tonelli Manganote, A. Vilela Pereira, S. Ahuja, C. A. Bernardes, S. Dogra, T. R. Fernandez Perez Tomei, E. M. Gregores, P. G. Mercadante, C. S. Moon, S. F. Novaes, Sandra S. Padula, D. Romero Abad, J. C. Ruiz Vargas, A. Aleksandrov, R. Hadjiiska, P. Iaydjiev, M. Rodozov, S. Stoykova, G. Sultanov, M. Vutova, A. Dimitrov, I. Glushkov, L. Litov, B. Pavlov, P. Petkov, W. Fang, M. Ahmad, J. G. Bian, G. M. Chen, H. S. Chen, M. Chen, Y. Chen, T. Cheng, C. H. Jiang, D. Leggat, Z. Liu, F. Romeo, S. M. Shaheen, A. Spiezia, J. Tao, C. Wang, Z. Wang, H. Zhang, J. Zhao, Y. Ban, G. Chen, Q. Li, S. Liu, Y. Mao, S. J. Qian, D. Wang, Z. Xu, D. Yang, Z. Zhang, C. Avila, A. Cabrera, L. F. Chaparro Sierra, C. Florez, J. P. Gomez, C. F. González Hernández, J. D. Ruiz Alvarez, J. C. Sanabria, N. Godinovic, D. Lelas, I. Puljak, P. M. Ribeiro Cipriano, T. Sculac, Z. Antunovic, M. Kovac, V. Brigljevic, D. Ferencek, K. Kadija, S. Micanovic, L. Sudic, T. Susa, A. Attikis, G. Mavromanolakis, J. Mousa, C. Nicolaou, F. Ptochos, P. A. Razis, H. Rykaczewski, M. Finger, M. Finger Jr., E. Carrera Jarrin, A. A. Abdelalim, Y. Mohammed, E. Salama, B. Calpas, M. Kadastik, M. Murumaa, L. Perrini, M. Raidal, A. Tiko, C. Veelken, P. Eerola, J. Pekkanen, M. Voutilainen, J. Härkönen, V. Karimäki, R. Kinnunen, T. Lampén, K. Lassila-Perini, S. Lehti, T. Lindén, P. Luukka, T. Peltola, J. Tuominiemi, E. Tuovinen, L. Wendland, J. Talvitie, T. Tuuva, M. Besancon, F. Couderc, M. Dejardin, D. Denegri, B. Fabbro, J. L. Faure, C. Favaro, F. Ferri, S. Ganjour, S. Ghosh, A. Givernaud, P. Gras, G. Hamel de Monchenault, P. Jarry, I. Kucher, E. Locci, M. Machet, J. Malcles, J. Rander, A. Rosowsky, M. Titov, A. Zghiche, A. Abdulsalam, I. Antropov, S. Baffioni, F. Beaudette, P. Busson, L. Cadamuro, E. Chapon, C. Charlot, O. Davignon, R. Granier de Cassagnac, M. Jo, S. Lisniak, P. Miné, M. Nguyen, C. Ochando, G. Ortona, P. Paganini, P. Pigard, S. Regnard, R. Salerno, Y. Sirois, T. Strebler, Y. Yilmaz, A. Zabi, J.-L. Agram, J. Andrea, A. Aubin, D. Bloch, J.-M. Brom, M. Buttignol, E. C. Chabert, N. Chanon, C. Collard, E. Conte, X. Coubez, J.-C. Fontaine, D. Gelé, U. Goerlach, A.-C. Le Bihan, J. A. Merlin, K. Skovpen, P. Van Hove, S. Gadrat, S. Beauceron, C. Bernet, G. Boudoul, E. Bouvier, C. A. Carrillo Montoya, R. Chierici, D. Contardo, B. Courbon, P. Depasse, H. El Mamouni, J. Fan, J. Fay, S. Gascon, M. Gouzevitch, G. Grenier, B. Ille, F. Lagarde, I. B. Laktineh, M. Lethuillier, L. Mirabito, A. L. Pequegnot, S. Perries, A. Popov, D. Sabes, V. Sordini, M. Vander Donckt, P. Verdier, S. Viret, A. Khvedelidze, Z. Tsamalaidze, C. Autermann, S. Beranek, L. Feld, A. Heister, M. K. Kiesel, K. Klein, M. Lipinski, A. Ostapchuk, M. Preuten, F. Raupach, S. Schael, C. Schomakers, J. F. Schulte, J. Schulz, T. Verlage, H. Weber, V. Zhukov, M. Brodski, E. Dietz-Laursonn, D. Duchardt, M. Endres, M. Erdmann, S. Erdweg, T. Esch, R. Fischer, A. Güth, M. Hamer, T. Hebbeker, C. Heidemann, K. Hoepfner, S. Knutzen, M. Merschmeyer. Measurement of electroweak-induced production of Wγ with two jets in pp collisions at \( \sqrt{s}=8 \) TeV and constraints on anomalous quartic gauge couplings, Journal of High Energy Physics, 2017, 106, DOI: 10.1007/JHEP06(2017)106