Biochemical and Bioinformatic Characterization of Type II Metacaspase Protein (TaeMCAII) from Wheat

Plant Molecular Biology Reporter, Dec 2012

The biochemical analysis and homology modeling of a tertiary structure of a cereal type II metacaspase protein from wheat (Triticum aestivum), TaeMCAII, are presented. The biochemical characterization of synthetic oligopeptides and protease inhibitors of Escherichia coli-produced and purified recombinant TaeMCAII revealed that this metacaspase protein, similar to other known plant metacaspases, is an arginine/lysine-specific cysteine protease. Thus, a model of a plant type II metacaspase structure based on newly identified putative metacaspase-like template was proposed. Homology modeling of the TaeMCAII active site tertiary structure showed two cysteine residues, Cys140 and 23, in close proximity to the catalytic histidine, most likely participating in proton exchange during the catalytic process. The autoprocessing that leads to activation of TaeMCAII was highly dependent on Cys140. TaeMCAII required high levels of calcium ions for activity, which could indicate its involvement in stress signaling pathways connected to programmed cell death.

A PDF file should load here. If you do not see its contents the file may be temporarily unavailable at the journal website or you do not have a PDF plug-in installed and enabled in your browser.

Alternatively, you can download the file locally and open with any standalone PDF reader:

https://link.springer.com/content/pdf/10.1007%2Fs11105-012-0450-6.pdf

Biochemical and Bioinformatic Characterization of Type II Metacaspase Protein (TaeMCAII) from Wheat

E. Piszczek 0 1 M. Dudkiewicz 0 1 M. Mielecki 0 1 0 M. Mielecki Department of Protein Biosynthesis Institute of Biochemistry and Biophysics, Polish Academy of Sciences , Pawinskiego 5a, 02106, Warsaw, Poland 1 M. Dudkiewicz Department of Experimental Design and Bioinformatics, Warsaw University of Life Sciences , Nowoursynowska 159, 02776, Warsaw, Poland 2 ) Department of Biochemistry, Warsaw University of Life Sciences , Nowoursynowska 159, 02776, Warsaw, Poland The biochemical analysis and homology modeling of a tertiary structure of a cereal type II metacaspase protein from wheat (Triticum aestivum), TaeMCAII, are presented. The biochemical characterization of synthetic oligopeptides and protease inhibitors of Escherichia coli-produced and purified recombinant TaeMCAII revealed that this metacaspase protein, similar to other known plant metacaspases, is an arginine/lysine-specific cysteine protease. Thus, a model of a plant type II metacaspase structure based on newly identified putative metacaspase-like template was proposed. Homology modeling of the TaeMCAII active site tertiary structure showed two cysteine residues, Cys140 and 23, in close proximity to the catalytic histidine, most likely participating in proton exchange during the catalytic process. The autoprocessing that leads to activation of TaeMCAII was highly dependent on Cys140. TaeMCAII required high levels of calcium ions for activity, which could indicate its involvement in stress signaling pathways connected to programmed cell death. - Programmed cell death (PCD) is a process of elimination of unwanted cells during the ontogenesis of organisms and in response to environmental stresses. It is common to all eukaryotic cells, including animal and plant cells. Plants and animals share many similarities in the morphological features and enzymatic machinery of PCD (Sun et al. 2012; Sanmartin et al. 2005). The initiators and executors of animal PCD are caspases, a family of cysteine-dependent proteases that cleave their substrates at the carboxyl-terminal side of aspartate residues. They are synthesized as inactive proenzymes that comprise an N-terminal prodomain together with one large and one small subunit. The crystal structures of caspases show that the active enzymes are heterotetramers that contain two small and two large subunits. The enzymes have two active sites that are found at opposite ends of the molecules. Both the small and large subunits participate in the formation of active site. Two residues, cysteine and histidine, are present in the active sites and participate in catalysis (Ho and Hawkins 2005; Cohen 1997). The activation of caspases during PCD processes such as apoptosis and autophagy results in the cleavage of important cellular proteins, including poly(ADP-ribose) polymerase and lamins, leading to the demise of the cell (Earnshaw et al. 1999). The existence of distant caspase relatives named caspaselike proteases has been demonstrated previously in plant cells undergoing PCD (Sanmartin et al. 2005). Metacaspases, which are caspase-like enzymes, were discovered in silico in the Arabidopsis genome more than a decade ago, and they are present in protozoa, fungi and plants (Uren et al. 2000). Phylogenetic analysis has revealed that metacaspases are distant homologs and ancestors of animal caspases (Vercammen et al. 2007). These proteases, together with eukaryotic caspases, metazoan paracaspases, legumains, separases and the bacterial clostripains and gingipains, are classified as members of clan CD cysteine proteases (Bonneau et al. 2008). All proteins from this clan share a common structural feature, the presence of the caspasehemoglobinase fold (Bonneau et al. 2008). On the basis of metacaspase structure, they can be subdivided into two groups: type I and type II. Type I metacaspases possess an N-terminal prodomain with a Zn finger motif, which is absent in type II. The distinguishable feature of type II metacaspases is the presence of a linker region between the large and the small subunit (Piszczek and Gutman 2007). Until now, it has been shown for Arabidopsis thaliana and Picea abies type II metacaspases that they are synthesized as inactive zymogens, and that they are activated by autoprocessing, similar to effector caspases from mammals (Vercammen et al. 2004; Bozhkov et al. 2005). In contrast, type I metacaspases from Arabidopsis do not autoprocess, and most likely similar to initiator mammalian caspases, they require oligomerization for activity (Vercammen et al. 2004). Metacaspases and animal caspases contain a conserved catalytic His/Cys dyad in their active site, with the Cys residue acting as a nucleophile for substrate peptide bond hydrolysis (Piszczek and Gutman 2007). The striking difference between all discovered metacaspases and caspases is the formers preference for Arg or Lys residues in their substrates (Vercammen et al. 2004; Bozhkov et al. 2005). Metacaspase activities can be modified by post-tr (...truncated)


This is a preview of a remote PDF: https://link.springer.com/content/pdf/10.1007%2Fs11105-012-0450-6.pdf

E. Piszczek, M. Dudkiewicz, M. Mielecki. Biochemical and Bioinformatic Characterization of Type II Metacaspase Protein (TaeMCAII) from Wheat, Plant Molecular Biology Reporter, 2012, pp. 1338-1347, Volume 30, Issue 6, DOI: 10.1007/s11105-012-0450-6