Search for light bosons in decays of the 125 GeV Higgs boson in proton-proton collisions at \( \sqrt{s}=8 \) TeV

Journal of High Energy Physics, Oct 2017

A search is presented for decays beyond the standard model of the 125 GeV Higgs bosons to a pair of light bosons, based on models with extended scalar sectors. Light boson masses between 5 and 62.5 GeV are probed in final states containing four τ leptons, two muons and two b quarks, or two muons and two τ leptons. The results are from data in proton-proton collisions corresponding to an integrated luminosity of 19.7 fb−1, accumulated by the CMS experiment at the LHC at a center-of-mass energy of 8 TeV. No evidence for such exotic decays is found in the data. Upper limits are set on the product of the cross section and branching fraction for several signal processes. The results are also compared to predictions of two-Higgs-doublet models, including those with an additional scalar singlet.

A PDF file should load here. If you do not see its contents the file may be temporarily unavailable at the journal website or you do not have a PDF plug-in installed and enabled in your browser.

Alternatively, you can download the file locally and open with any standalone PDF reader:

https://link.springer.com/content/pdf/10.1007%2FJHEP10%282017%29076.pdf

Search for light bosons in decays of the 125 GeV Higgs boson in proton-proton collisions at \( \sqrt{s}=8 \) TeV

Revised: May Search for light bosons in decays of the 125 GeV Higgs A search is presented for decays beyond the standard model of the 125 GeV Higgs bosons to a pair of light bosons, based on models with extended scalar sectors. Light boson masses between 5 and 62.5 GeV are probed in nal states containing four two muons and two b quarks, or two muons and two data in proton-proton collisions corresponding to an integrated luminosity of 19.7 fb 1, accumulated by the CMS experiment at the LHC at a center-of-mass energy of 8 TeV. No evidence for such exotic decays is found in the data. Upper limits are set on the product of the cross section and branching fraction for several signal processes. The results are also compared to predictions of two-Higgs-doublet models, including those with an additional scalar singlet. Hadron-Hadron scattering (experiments); Higgs physics; Supersymmetry - HJEP10(27)6 8 TeV p The CMS collaboration The CMS detector, event simulation, and reconstruction Systematic uncertainties common to all analyses Systematic uncertainties for the h ! aa ! 4 search Systematic uncertainties for the h ! aa ! 2 2b search Systematic uncertainties for the h ! aa ! 2 2 search 7 Results Results of the search for h ! aa ! 4 decays Results of the search for h ! aa ! 2 2b decays Results of the search for h ! aa ! 2 2 decays 7.4 Interpretation of h ! aa searches in 2HDM+S 1 Introduction 2 3 4 5 6 3.1 3.2 4.1 4.2 5.1 5.2 6.1 6.2 6.3 6.4 7.1 7.2 7.3 8 Summary The CMS collaboration 1 Introduction Studies of the recently discovered spin-0 particle h [1{3], with a mass of 125 GeV and with properties consistent with the standard model (SM) Higgs boson [4], severely constrain SM extensions that incorporate scalar sectors [5{7]. There are many well-motivated models that predict the existence of decays of the Higgs boson to non-SM particles [8]. Without making assumptions about the h(125) couplings to quarks, leptons, and vector { 1 { esting to explore the possibility of decays of the SM-like Higgs particle to lighter scalars or pseudoscalars [8, 13{15]. The SM Higgs boson has an extremely narrow width relative to its mass, because of its nal state is likely to have a larger partial width, and therefore a non-negligible branching fraction, compared to decays to SM particles [8]. Examples of BSM models that provide such additional decay modes include those in which the Higgs boson serves as a portal to hidden-sector particles (e.g. dark matter) that can couple to SM gauge bosons and fermions [16]. Other models have extended scalar sectors, such as those proposed in two-Higgs-doublet models (2HDM) [17{21], in the next-to-minimal supersymmetric model (NMSSM) [22, 23], or in other models in which a singlet Higgs eld is added to the SM doublet sector. The NMSSM is particularly well motivated as it provides a solution to the problem associated with supersymmetry breaking, and can provide a contribution to electroweak baryogenesis [24, 25]. Both 2HDM and NMSSM may contain a light enough pseudoscalar state (a), which can yield a large h ! aa branching fraction. In 2HDM, the mass of the pseudoscalar boson a is a free parameter, but, if ma < mh=2, ne-tuning of the 2HDM potential is required to keep the branching fraction B(h ! aa) consistent with LHC data [26]. In NMSSM, there are two pseudoscalar Higgs bosons, a1 and a2. Constraints from the PecceiQuinn [27, 28] and R [23, 29] symmetries imply that the lighter a1 is likely to have a mass smaller than that of the h boson [25], and, since it is typically a singlet, suppression of B(h ! a1a1) to a level compatible with observations is a natural possibility. The minimal supersymmetric model (MSSM) contains a single pseudoscalar (A), but the structure of the MSSM Higgs potential is such that its mass cannot be below about 95 GeV when the scalar (to be identi ed with h) has mass close to 125 GeV and is SM-like as implied by the LHC data [30]. The phenomenology of decays of the observed SM-like Higgs boson to a pair of lighter Higgs bosons is detailed in refs. [8, 31{38] for 2HDM, in refs. [8, 39{42] in the context of NMSSM or NMSSM-like, and in refs. [8, 43, 44] in the general case of adding a singlet eld to the SM or to a 2HDM prescription. The 2HDM contains two Higgs doublet elds, 1 and 2 , which, after symmetry breaking, lead to ve physical states. One of the free parameters in the 2HDM is tan , the ratio between the vacuum expectation values for the two doublets, expressed as tan = v2=v1. The lightest scalar of the 2HDM is compatible with the SM-like properties of the discovered boson in the limit where the other scalars all have large masses (decoupling limit), and also in the alignment limit [ 45 ], in which the neutral Higgs boson mass eigenstate is approximately aligned with the direction of the vacuum expectation values for the scalar { 2 { su ciently small mass to make h ! aa decays possible. At lowest order, there are four types of 2HDM without avor-changing neutral currents (FCNC), which can be characterized through the coupling of each fermion to the doublet structure, as shown in table 1. The ratios of the Yukawa couplings of the pseudoscalar boson of the 2HDM relative to those of the Higgs boson of the SM are functions of tan and of the type of 2HDM, and are given in table 2. Type-1 and type-2 models are the ones commonly considered, and the latter are required in supersymmetric models. In these two cases, the leptons have the same couplings as the down-type quarks. In type-3 2HDM, all quarks couple to 2 and all leptons couple to 1, with the result that all leptonic or quark couplings of the pseudoscalar a are proportional to tan or cot , so that for large tan the leptonic decays of a dominate. As implied previously, a complex SU(2)L singlet eld S can be added to 2HDM; such models are called 2HDM+S, and include the NMSSM as a special case. If S mixes only weakly with the doublets, one of the CP-even scalars can again have SM-like properties. The addition of the singlet S leads to two additional singlet states, a second CP-odd scalar and a third CP-even scalar, which inherit a mixture of the fermion interactions of the Higgs doublets. After mixing among the spin-0 states, the result is two CP-odd scalars, a1 and a2, and three CP-even scalars, h1, h2, and h3. Of the latter, one can be identi ed with the observed SM-like state, h. The branching fraction of the h boson to a pair of CP-even or CP-odd bosons can be sizeable, leading to a wide variety of possible exotic h decays. In the 2HDM and its extensions, the ratio of the decay widths of a pseudoscalar boson to di erent types of leptons depends only on the masses of these leptons. In particular, for decays into muons and leptons, and a pseudoscalar boson of mass ma, we can write [8, 46]: (a ! (a ! + + ) ) = (2m =ma)2 : { 3 { (1.1) This kind of relation can also be written for electrons and muons. In models where the pseudoscalar boson a decays only to leptons, its branching fraction to leptons is greater than 99% for pseudoscalar boson masses above 5 GeV. This is a good approximation for pseudoscalar masses below twice the bottom quark mass, or for type-3 2HDM, assuming loop-induced decays such as a ! gg are ignored. In type-1 and -2, and their extensions, a similar relation exists between the partial decay widths of the pseudoscalar boson to leptons and to down-type quarks, for example, for muons and b quarks, we can write [8, 46]: (a ! + (a ! bb) ) = 3m2bp1 (2mb=ma)2 (1 + QCD corrections) : (1.2) The factor of three in the denominator re ects the number of b quark colors, and perturbative quantum chromodynamic (QCD) corrections are typically '20% [8]. In models of type-3 or -4, however, the ratio of the partial decay widths depends on tan . Three searches for decays of the 125 GeV Higgs boson to pairs of lighter scalars or pseudoscalars are described in this paper, where, for notational simplicity, the symbol a refers to both the light scalar and light pseudoscalar: h ! aa ! 4 , h ! aa ! 2 2b, h ! aa ! 2 2 . The rst analysis focuses on light boson masses above twice the mass, using dedicated techniques to reconstruct the Lorentz-boosted lepton pairs. The two other analyses focus on masses large enough that the decay products are well separated from each other, and below half of the Higgs boson mass. The production of the Higgs boson is assumed to be SM-like. The results of these searches are interpreted in the 2HDM and 2HDM+S contexts, together with the two other analyses described in greater detail in the references given below: h ! aa ! 4 [47]; h ! aa ! 4 , using a di erent boosted analysis with the same nal state listed above [48]. lepton reconstruction technique than the These analyses are based on proton-proton collision data corresponding to an integrated luminosity of 19.7 fb 1, recorded by the CMS experiment at the LHC at a centerof-mass energy of 8 TeV. The D0 Collaboration at the Fermilab Tevatron published results for h ! aa ! 2 2 and h ! aa ! 4 searches for pseudoscalar masses ma between 3.5 and 19 GeV [49], while ATLAS reported a search for h ! aa ! 2 2 decays with ma between 3.7 and 50 GeV, using special techniques to reconstruct Lorentz-boosted lepton pairs [50]. Additionally, CMS performed searches for direct production of light pseudoscalars with mass between 5.5 and 14 GeV that decay to pairs of muons [51], and with mass between 25 and 80 GeV that decay to pairs of leptons [52]. { 4 { The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal diameter, providing an axial magnetic eld of 3.8 T. Within the solenoid volume are a silicon pixel and strip tracker, a lead tungstate crystal electromagnetic calorimeter (ECAL), and a brass and scintillator hadron calorimeter (HCAL), each composed of a barrel and two endcap sections. Extensive forward calorimetry complements the coverage provided by the barrel and endcap detectors. Muons are detected in gas-ionization chambers embedded in the steel ux-return yoke outside the solenoid. The rst level of the CMS trigger system, composed of specialized hardware processors, uses information from the calorimeters and muon detectors to select the most interesting events in a xed time interval of less than 4 s. The high-level trigger processor farm further decreases the event rate from around 100 kHz to less than 1 kHz, before data storage. A detailed description of the CMS detector, together with a de nition of the coordinate system used and the relevant kinematic variables, can be found in ref. [53]. Samples of simulated events are used to model signal and background processes. Drell-Yan, W+jets, tt, and diboson events are simulated with MadGraph 5.1.3.30 [54] using the matrix element calculation at leading-order (LO) precision in QCD; pythia 6.426 [55] is used for parton showering, hadronization, and most particle decays; and tauola 27.121.5 [56] is used speci cally for lepton decays. Single top quark events produced in association with a W boson are generated using powheg 1.0 r1380 [57{60], interfaced to pythia for parton showering. Signal samples are generated with pythia using its built-in 2HDM and NMSSM generator routines. Background and signal samples use the CTEQ6L [ 61 ] parton distribution functions (PDFs). Minimum-bias collision events generated with pythia are added to all Monte Carlo (MC) samples to reproduce the observed concurrent pp collisions in each bunch crossing (pileup). The average number of pileup interactions in 2012 data was 20. All generated events are passed through the full Geant4 [ 62, 63 ] based simulation of the CMS apparatus and are reconstructed with the same CMS software that is used to reconstruct the data. Event reconstruction relies on a particle- ow (PF) algorithm, which combines information from di erent subdetectors to reconstruct individual particles [64, 65]: neutral and charged hadrons, photons, electrons, and muons. More complex objects are reconstructed by combining the PF candidates. A deterministic annealing algorithm [ 66, 67 ] is used to reconstruct the collision vertices. The vertex with the maximum sum in the squared transverse momenta (p2T) of all associated charged particles is de ned as the primary vertex. The longitudinal and radial distances of the vertex from the center of the detector must be smaller than 24 and 2 cm, respectively. Muons are reconstructed by matching hits in the silicon tracker and in the muon system [68]. Global muon tracks are tted from hits in both detectors. A preselection is applied to the global muon tracks, with requirements on their impact parameters, to suppress non-prompt muons produced from the pp collision or muons from cosmic rays. Electrons are reconstructed from groups of one or more associated clusters of energy deposited in the ECAL. Electrons are identi ed through a multivariate (MVA) method [69] trained to discriminate electrons from quark and gluon jets [70]. { 5 { The muon and electron relative isolation is de ned as: 2 X charged Irel = 4 0 X neutral pT + X pT 1 X 2 charged;PU 13 pTA5 =pT; (2.1) with a radius R = p ( where chargedpT is the sum of the magnitudes of the transverse momenta of charged hadrons, electrons and muons originating from the primary vertex, neutralpT is the corresponding sum for neutral hadrons and for photons, and charged;PUpT is the sum of the transverse momentum of charged hadrons, electrons, and muons originating from other reconstructed vertices. The particles considered in the isolation calculation are inside a cone )2 = 0.4 around the lepton direction, where and are the di erences of pseudorapidity and azimuthal angle in radians between the particles and the lepton direction, respectively. The factor 12 originates from the approximate ratio of the neutral to charged candidates in a jet. In the search for h ! aa ! 4 , the isolation criteria are extended to veto the presence of reconstructed leptons within the R = 0.4 cone, as detailed in section 3. Jets are reconstructed by clustering charged and neutral particles using an anti-kT algorithm [71] with a distance parameter of 0.5. The reconstructed jet energy is corrected for e ects from the detector response as a function of the jet pT and . Furthermore, contamination from pileup, underlying events, and electronic noise is subtracted on a statistical basis [72]. An eta-dependent tuning of the jet energy resolution in the simulation is performed to match the resolution observed in data [72]. The combined secondary vertex (CSV) algorithm is used to identify jets that are likely to originate from a b quark ("b jets"). The algorithm exploits the track-based lifetime information together with the secondary vertices associated with the jet to provide a likelihood ratio discriminator for the b jet identi cation [73]. A set of pT-dependent correction factors are applied to simulated events to account for di erences in the b tagging e ciency between data and simulation [73]. Tau leptons that decay into a jet of hadrons and a neutrino, denoted h, are identied with a hadron-plus-strips (HPS) algorithm, which matches tracks and ECAL energy deposits to reconstruct candidates in one of the one-prong, one-prong + 0(s), and three-prong decay modes [74]. Reconstructed h candidates are seeded from anti-kT jets with a distance parameter of 0.5. For each jet, candidates are constructed from the jet constituents according to criteria that include consistency with the vertex of the hard interaction and consistency with the 0 mass hypothesis. Two methods for rejecting quark and gluon jets are employed, depending on the analysis. The rst is a straightforward selection based on the isolation variable, while the second uses a multivariate analysis (MVA) discriminator that takes into account variables related to the isolation, to the transverse impact parameter of the leading track of the h candidate, and to the distance between the production point and the decay vertex in the case of three-prong decay modes [74]. MVA-based discriminators are implemented to reduce the rates at which electrons or muons are misidenti ed as h candidates. Muons or electrons from leptonic decays of leptons are indistinguishable from prompt leptonic decay products of W and Z bosons and are reconstructed as described earlier. { 6 { The missing transverse energy, ETmiss, is de ned as the magnitude of p~ miss, which T is the negative sum of p~T of all PF candidates. The jet energy calibration introduces corrections to the ETmiss measurement. The ETmiss signi cance variable, which estimates the compatibility of the reconstructed ETmiss with zero, is calculated via a likelihood function on an event-by-event basis [75]. As part of the quality requirements, events in which an abnormally high level of noise is detected in the HCAL barrel or endcap detectors are rejected [76]. 3 nal states arising from h ! aa ! 4 decay, where the Higgs boson is produced via gluon fusion (ggh), in association with a W or Z boson (Wh or Zh), or via vector boson fusion (VBF). Light boson masses are probed in the range 5 15 GeV, where the branching fraction of the light boson to leptons is expected to be large in certain 2HDM models. To illustrate the performance of the analysis, a mass of 9 GeV is chosen as a benchmark model throughout this section; it represents a type-2 2HDM variant in which the pseudoscalar branching fraction to leptons is dominant. The large Lorentz boost of the a boson at such light masses causes its decay products to overlap. To maximize the sensitivity to overlapping leptons, a special boosted pair reconstruction technique is employed, based on the speci c nal state in which one lepton decays to a muon. This analysis is performed in two search regions based on the transverse mass (mT) formed from Wh production mode and other modes (primarily ggh) without signi cant ETmiss. a high-pT muon and the pmiss. These two regions are designed to distinguish between the T 3.1 Event selection Events considered in this search are selected with a single muon trigger that requires the presence of an isolated muon with pT > 24 GeV and j j < 2:1. This analysis speci cally targets the event topology with one isolated high pT muon, and at least one boosted pair in which one lepton decays to a muon and neutrinos ( ). No assumption is made on the decay of the second lepton in the boosted pair. Because of the features of this topology, it is convenient to de ne the \trigger muon" candidate, trg, referring to the isolated high pT muon triggering the event, and the \ X object", aiming to reconstruct the decay products of the boosted pair. This topology is characteristic of two classes of signal events: 1. The Higgs boson is produced through gluon fusion or vector boson fusion and decays as h ! a(! X)a(! X). When the from the decay of one a has both a high pT and is well separated from the X arising from the same decay, it will satisfy the trigger muon criteria. The other pair is reconstructed as a that then decays to isolated muons. The Higgs boson decay considered here is h ! a(! X)a(! X X). The muon from the W or Z decay is required to pass the trigger { 7 { reconstructed in the trigger system. It is also required to have pT > 25 GeV, j j < 2.1, be well reconstructed in both the muon detectors and the silicon tracker, have a highquality track t, and be consistent with originating from the primary pp interaction in the event. In addition, it must be isolated from other photons, hadrons, and leptons in the detector. Isolation from photons and hadrons is enforced by requiring that the muon relative isolation, as de ned in eq. (2.1), is less than 0.12. To be isolated from other leptons, the trigger muon is required to have no identi ed electrons (pT > 7 GeV, j j < 2:5), muons (pT > 5 GeV, j j < 2:4, passing criteria below), or leptons (pT > 10 GeV, j j < 2:3, passing modi ed HPS criteria, as described below) reconstructed within R = 0.4 of the trigger muon direction. The requirement of isolation from nearby leptons, in addition to the isolation requirement of eq. (2.1), ensures that a trigger muon originating from a lepton decay, where the lepton originates from a pseudoscalar decay, is well isolated from the other lepton in the pseudoscalar decay pair. In this way, the high level trigger and \trigger muon" identi cation criteria are e cient for low-pT decay muons expected to pass the trigger in the ggh and VBF production modes, provided that leptons from the pseudoscalar decay are well separated or one of the leptons has pT low enough not to a ect the isolation of the other lepton. The isolation requirements are also e cient for high-pT isolated muons from W boson decays expected in the Wh associated production mode. The muon from the lepton decaying via the muon channel ( ) is required to have pT > 5 GeV and j j < 2.4, be well reconstructed in the silicon tracker, have a high-quality track t, be consistent with originating from the primary vertex in the event, and be separated by at least R = 0.5 from the trigger muon. Because no isolation requirement is placed on the candidate, it can be identi ed with high e ciency in the presence of a nearby lepton. Overall, the trigger and quality criteria are similar, but the criteria are optimized for low-pT non-isolated muons, while the trigger muon criteria are optimized for high-pT isolated muons. Since the nal state in this analysis includes a pair of boosted leptons from pseudoscalar decay, the HPS algorithm is modi ed to maintain high e ciency for overlapping leptons. All jet constituents are checked for the presence of candidates as de ned above. Only jets that have at least one muon candidate passing the criteria among their constituents are used to seed the HPS reconstruction. Within these selected jets, the muon is excluded from the set of jet constituents before running the HPS reconstruction algorithm. The HPS reconstruction then proceeds as described in section 2, and the resulting lepton is required to have pT > 20 GeV and j j < 2.3. The combination of the and isolated HPS candidates resulting from this selection form the X object as it is designed to reconstruct boosted a ! X decays. The HPS candidate is referred to as X because no anti-electron or anti-muon discriminators are applied to it; although { 8 { leptons decaying to electrons and muons can thus pass the HPS selection, the vast majority ('97%) of selected candidates in simulated h ! aa samples are hadronically decaying leptons. The modi ed HPS lepton reconstruction and isolation requirements have a similar e ciency for h ! aa decays as the standard HPS and isolation requirements have for Z ! decays. This analysis requires at least one X object, which reconstructs a single a ! decay, per event. The X object consists of a muon, one or three other charged particle tracks, and zero or more neutral hadrons, and could therefore arise from misidentifying the decay products of a bottom quark jet. To further distinguish X objects from background, the seed jet of the HPS reconstructed X (excluding any identi ed candidate) is required not to be identi ed as a b jet. Signal and background estimation ! The main background contributions to this search arise from Drell-Yan dimuon pairs produced in association with jets, (W ) + jets, tt with muons in the nal state, and QCD multijet events. In order to reduce the Drell-Yan background, the trigger muon and X candidates are required to have the same sign (SS) of electric charge. To minimize backgrounds with jets misidenti ed as candidates, the and X objects are required to have opposite sign. The signal region is de ned by events passing all the requirements described above, as well as m +X 4 GeV, where m +X is the invariant mass calculated from the four-vectors of the two components of the X object. The choice of 4 GeV reduces the expected background contribution by about 95%, while keeping approximately 75% of the expected events in the case of the ggh benchmark 9 GeV pseudoscalar mass sample. Signal acceptance is calculated from the simulated samples for masses between 5 and 15 GeV. The expected signal acceptance is corrected using pT- and j j-dependent scale factors to account for known di erences in the b veto e ciency between data and simulation [73]. Events are classi ed into two analysis bins depending on the value of the transverse mass between the trigger muon momentum and the p~ miss, de ned as T q mT = 2pTtrg Emiss[1 T cos ( trg; p~ miss)]; T (3.1) where T p~ miss vector. The contribution of signal events for the di erent production modes in the ( trg; p~ miss) is the azimuthal angle between the trigger muon position vector and T low-mT and high-mT bins for a representative pseudoscalar mass of 9 GeV, and assuming B(h ! aa) B2(a ! + ) = 0:1, is given in table 3. For mT 50 GeV, ggh fusion production accounts for about 85% of the expected signal, VBF accounts for another 10%, and associated production accounts for the rest. For mT > 50 GeV, ggh and Wh productions each account for about 40% of the expected signal and Zh and VBF productions account for the rest. Dividing selected events in two mT categories increases the sensitivity to models (for example ref. [77]) where the ggh production rate would be modi ed with respect to the SM expectation because of di erent Yukawa couplings of the fermions appearing in the loop, whereas the Wh and Zh production rates would be similar as in the SM in the case of the alignment limit of 2HDM. { 9 { ggh Wh Zh VBF mass of 9 GeV, in both mT bins, assuming SM cross sections and B(h ! aa) B2(a ! in the context of the h ! aa ! 4 search. Expected background yields as well as observed numbers of events are also quoted. Only the statistical uncertainty is given for signal yields. mT) signal region, denoted Nblokwg-mT (high-mT)(m +X There are several mechanisms that result in X misidenti cation, for example jets with semileptonic decays, jets with double semileptonic decays, or resonances in b or lightavor jet fragmentation. It is impractical to simulate all backgrounds to the required statistical precision. Therefore, the number of background events in the low-mT (high4 GeV), is estimated independently from three event samples. In each background estimation sample, the isolation energy around the X candidate is required to be between 1 and 5 GeV, as opposed to the signal sample requirement of isolation energy less than 1 GeV. The three samples are: 1. Observed events passing all other signal selections; 2. Simulated Drell-Yan, W+jets, tt, and diboson events passing all other signal selections; isolation. 3. Observed events passing all other signal selections, but with inverted trg relative The background estimate from each sample is normalized to match the observed data yield in the signal-free region with m +X < 2 GeV. The nal background prediction in the low-mT (high-mT) bin is taken as the arithmetic mean of the estimates from the three background estimation samples with mT 50 GeV(mT > 50 GeV). The positive (negative) systematic uncertainty is taken as the di erence between the largest (smallest) of the three plus (minus) its statistical uncertainty and the average. In the low-mT bin, the background yield is estimated to be 5:4 estimated to be 6:1 1:6 (stat)+33::76 (syst) events. The uncertainty on the background yield 1:0 (stat)+44::26 (syst) events, while in the high-mT bin it is is dominated by the limited statistical precision in the control samples, owing to the rare nal state being probed. This uncertainty is the dominant source of systematic error in the interpretation of the results of this search in terms of an upper limit on the branching fraction of the Higgs boson to light pseudoscalar states. The relaxed X isolation requirement common to each sample implies that these background estimation samples should be enriched in events with jets. Simulated samples of 10-10 b b / / CMS Low mT Data Misid. jet bkg. Bkg. syst. unc. ggh ma = 9 GeV Wh ma = 9 GeV VBF ma = 9 GeV Zh ma = 9 GeV CMS High mT Data Misid. jet bkg. Bkg. syst. unc. ggh ma = 9 GeV Wh ma = 9 GeV VBF ma = 9 GeV Zh ma = 9 GeV Counting experiment signal window mμ+X ≥ 4 GeV Counting experiment signal window mμ+X ≥ 4 GeV 10-10 2 4 6 8 mμ+X (GeV) 10 2 4 6 8 mμ+X (GeV) 10 markers) and the misidenti ed jet background estimate (solid histogram) in the low-mT (left) and high-mT (right) bins. Predicted signal distributions (dotted lines) for each of the four Higgs boson production mechanisms are also shown; the distributions are normalized to an integrated luminosity of the data sample of 19.7 fb 1, assuming SM Higgs boson production cross sections and B(h ! aa) B2(a ! + m +X 4 GeV, which correspond to the numbers reported in table 3. ) = 0:1. The last bin on the right contains all the events with W+jets and tt events, in which the X candidate arises from misidenti ed jets, have been used to check that events with nonisolated X candidates have the same kinematic properties as those of the signal sample. simulations of the four signal production models for both mT bins. Seven and fourteen events are observed in the low- and high-mT bins, respectively. 4 Search for h ! aa ! 2 2b decays The search for a new scalar in h ! aa ! 2 2b decays is restricted to masses between 25 and 62.5 GeV. The upper bound is imposed by the kinematic constraint of mh = 125 GeV, while there is a sensitivity loss for this search below the lower bound due to overlap between the two b jets or the two muons arising from an increased boost of the pseudoscalars [78]. A slightly wider pseudoscalar mass range is however used for the selection, the optimization aiming at maximum expected signal signi cance, and the eventual background modeling. In particular, the wider mass range ensures a good description of the background distribution over the entire search region, including regions near the boundaries. Events with an invariant mass m outside the range 20-70 GeV are discarded. 4.1 Event selection In the search for h ! aa ! 2 2b decays, events are triggered based on the presence of two muons with pT > 17 GeV and pT > 8 GeV. For the o ine selection, the leading muon pT threshold is increased to 24 GeV, while the subleading muon pT must exceed 9 GeV. The two muon candidates are required to have opposite electric charges and to be isolated. If Backgrounds Total +jets (m`` > 10 GeV) 210 35 tt (``) 22 1 Other 3 1 235 35 252 ma = 30 GeV ma = 40 GeV ma = 50 GeV 10 3, with the latter obtained in the context of more than one muon is found for a given sign, the one with the highest pT is selected. At least two jets with pT > 15 GeV and j j < 2:4 are required to satisfy b-tag requirements that allow only O(1%) of the light quark jets to survive, for an e ciency of '65% for genuine b jets. The ETmiss signi cance of the event has to be less than 6. Events outside the jm bb 125 GeVj < 25 GeV window are discarded. 4.2 Signal and background estimation As presented in table 4, the expected background yield estimated from simulation over the whole mass range considered is 235 35 events, dominated by Drell-Yan events in the dilepton nal state, followed by tt in dilepton decays, tt (``). This should be compared with 252 events observed in data. To evaluate the signal yield, only the gluon fusion Higgs boson production mechanism with the next-to-leading-order (NLO) cross section of ggh ' 19:3 pb [79] is considered. Other SM Higgs production modes are found to contribute less than 5% to the signal yield and are neglected. Assuming a branching fraction of 10% for h ! aa together with tan 2B(a ! bb)B(a ! = 2 in the context of type-3 2HDM+S, one can obtain + ) = 1:7 10 3 for ma = 30 GeV, where no strong dependence on ma is expected for B(a ! ff), with f being a muon or a b quark [8]. In this scenario, about one signal event is expected to survive the event selection discussed earlier. The signal yield is extracted using a t to the reconstructed m distribution in data. The signal shape is modeled with a weighted sum of Voigt pro le [80] and Crystal Ball [81] functions with a common mass parameter ma, S(m jw; ; ; n; cb; ; ma) w V(m j ; ; ma) + (1 w) CB(m jn; cb; ; ma): (4.1) The Voigt pro le function, V(m j ; ; ma), is a convolution of Lorentz and Gaussian pro les with and being the widths of the respective functions, both centered at ma. The Crystal Ball function, CB(m jn; cb; ; ma), has a Gaussian core centered at ma with a width of cb together with a power-law low-end tail A (B (m ma)= cb) n below a certain threshold . The combination introduced in eq. (4.1) is found to describe well the m distribution in the simulated signal samples. The initial values for the signal model parameters are extracted from a simultaneous t of the model to simulated signal samples with di erent pseudoscalar masses. All parameters in the signal model are found to be independent of ma except and cb, which show a linear dependence. The only oating parameter in these linear models are the slopes, s and s cb for and cb, respectively. The signal model with the three free parameters, ma, s and s cb , is interpolated for mass hypotheses not covered by the simulated samples. The validity of the interpolation is checked within the [25; 62:5] GeV range of the dimuon mass, and towards the boundaries. The background is evaluated through a t to the m distribution in data. The shape for the background is modeled with a set of analytical functions, using the discrete pro ling method [9, 82, 83]. In this approach the choice of the functional form of the background shape is considered as a discrete nuisance parameter. This means that the likelihood function for the signal-plus-background t has the form of L(dataj ; ; b ); where is the measured quantity of signal, are the corresponding nuisance parameters, and b are the di erent background functions considered. Therefore, the uncertainty associated with the choice of the background model is treated in a similar way as other uncertainties associated with continuous nuisance parameters in the t. The space of the background model contains multiple candidate models: di erent parametrizations of polynomials together with 1=Pn(x) functions where Pn(x) polynomials in each category is determined through statistical tests to ensure the su ciency of the number of parameters and to avoid over tting the data [83]. Starting from the lowest degree for every candidate model, the necessity to increase the degree of the polynomial is examined. The model candidate with the higher degree is t to data and a p-value is evaluated according to the number of degrees of freedom and the relative uncertainty of the parameters. Candidates with p-values below 5% are discarded. The input background functions are used in the minimization of the negative logarithm of the likelihood with a penalty term added to account for the number of free parameters in the background model. The pro le likelihood ratio for the penalized likelihood function x + Pin=2 ixi. The degree of can be written as (4.2) (4.3) 2 ln Le(dataj ; ^ ; ^b ) Le(dataj^; ^; ^b) : con dence interval on value of [82]. In this equation the numerator is the maximum penalized likelihood for a given , at the best- t values of nuisance parameters, ^ , and of the background function, ^b . The denominator is the global maximum for Le, achieved at = ^, = ^, and b = ^b. A is obtained with the background function maximizing Le for any The analysis of data yields no signi cant excess of events over the SM background prediction. Figure 2 shows the m distribution in data together with the best t output for a signal-plus-background model at ma = 35 GeV. The relative di erence between the expected limit of the best- t background model and that of the unconditional t is about 40%. 5 /.0 16 tsn 14 e vE 12 10 8 6 4 2 0 Data Signal + background best fit, ma = 35 GeV pro ling of the uncertainties, in the search for h ! aa ! 2 2b events. Five nal states are studied in the h ! aa ! 2 2 channel, depending on whether the leptons decay to electrons ( e), to muons ( ), or to hadrons ( h): + e h , + h , or + h + h . The + + due to the di culty of correctly identifying the reconstructed muons as either direct pseudoscalar or decay products, which results in low sensitivity. Given the 2% dimuon mass resolution for the muons originating promptly from one of the a bosons arising from the h boson decay, an unbinned likelihood t is performed to extract the results, using m as the observable. Pseudoscalar boson masses between 15 and 62.5 GeV are probed; the lower bound corresponds to the minimum mass that ensures a good signal e ciency with selection criteria that do not rely on boosted lepton pairs, and an expected background large enough to be modeled through techniques described below. + e+ e , + e nal state is not considered 5.1 Event selection Events are selected using a double muon trigger relying on the presence of a muon with pT > 17 GeV and another one with pT > 8 GeV. For the o ine selection, the leading muon pT threshold is increased to 18 GeV, while the subleading muon pT must exceed 9 GeV. To reconstruct the dimuon pair from the a ! opposite charge, pT > 5 GeV, and j j < 2:4 are selected. In the + + decay, two isolated muons of e+ e , + e h and + h h nal states, where these are the only muons, their pT thresholds are raised to 18 and 9 GeV to match the trigger requirements. If there are more than two muons in the nal state, the highest-pT muon is required to pass a pT threshold of 18 GeV, and is considered as arising from the prompt decay of the light boson. It is then paired with the next highest-pT muon of opposite charge. The other muons are considered to arise from leptonic decays of the lepton. The second highest-pT muon is required to have pT greater than 9 GeV. Muons are paired correctly in about 90% of the events for all mass in lepton decays. + masses. The pair is reconstructed from a combination of oppositely charged identi ed and isolated muons, electrons, or h, depending on the nal state. The muons are selected with pT > 5 GeV and j j < 2:4, the electrons with pT > 7 GeV and j j < 2:5, and the h candidates with pT > 15 GeV and j j < 2:3. The contribution from h ! ZZ ! + e+e events is suppressed, in the + e+e nal state, by excluding events with visible invariant mass of the four leptons inside a 30 GeV-wide window around 125 GeV, the Higgs boson mass. The signal e ciency of this selection criterion is high since the four lepton invariant e+ e events is signi cantly reduced due to the presence of neutrinos in The four objects are required to be separated from each other by at least R = 0.4. HJEP10(27)6 Events are discarded if they contain at least one jet that satis es a b-tag requirement that allows O(0.1%) of the light quark jets to survive, while the tag e ciency for genuine b jets is about 50%. This reduces the contribution from backgrounds with top quarks. To prevent a single event from contributing to di erent nal states, events containing other identi ed and isolated electrons or muons in addition to the four selected objects are rejected; less than 1% of signal events are rejected because of this veto. Two selection criteria with a high signal e ciency are designed to reduce the contribution of the backgrounds to the signal region: the invariant mass of the system is required to lie close to the Higgs boson mass (jm 125 GeVj < 25 GeV), and the normalized di erence between the masses of the di- and dimuon systems is required to be small (jm m j=m < 0.8). The mass, m , used to de ne both variables, is fully reconstructed with a maximum likelihood algorithm taking as input the four-momenta of the visible particles, as well as the ETmiss and its resolution [84]. This method gives a resolution of about 20% and 10%, for the mass m and four-lepton mass m , respectively. Finally, only events with a reconstructed dimuon mass between 14 and 66 GeV are considered in the study. 5.2 Signal and background estimation Two types of backgrounds contribute to the signal region: irreducible ZZ production, and reducible processes with at least one jet being misidenti ed as one of the nal-state leptons, mainly composed of Z+jets and WZ+jets events. The ZZ ! 4` contribution, where ` denotes any charged lepton, is estimated from MC simulations, and the process is scaled to the NLO cross section [85]. The normalization and m distribution of the reducible processes are determined separately, using control samples in data. To estimate the normalization, the rates for jets to be misidenti ed as h, electrons, or muons are measured in dedicated signal-free control regions, de ned similarly to the signal region except that the candidates (electrons, muons, or h) pass relaxed identi cation and isolation conditions and have SS charge. All misidenti cation rates are measured as a function of the pT of the jet closest to the candidate, and are tted using a decreasing exponential in addition to a constant term. Events with candidates passing the relaxed identi cation and isolation conditions, but not the signal region criteria, are scaled with weights that depend on the misidenti cation rates, to obtain an estimate of the yield of the reducible background in the signal region. The m distribution of reducible backgrounds is taken from a signal-free region in data, where both candidates have SS charge and pass relaxed identi cation and isolation criteria. The dimuon mass distribution in signal events in nal states with two muons is parameterized with a Voigt pro le. In nal states with three muons, the Gaussian component of the pro le is found to be negligible, and the signal distributions are parameterized with Breit-Wigner pro les. A t is performed for every nal state and every generated a. To interpolate the signal distributions to any a boson in the studied mass range, the parameters of the t functions are parameterized as a function of ma by tting with a third-degree polynomial the parameters of the Voigt or Breit-Wigner pro les obtained from the individual ts. A similar technique is used to interpolate the signal normalization to intermediate mass points; the parameterization leads to yield uncertainties for the signal between 5 and 8% depending on the nal state. A closure test that consists of removing a signal sample corresponding to a given mass point from the parameterization of the Voigt and Lorentz t parameters as a function of the mass, then comparing the parameterization interpolation to the direct t to this sample, has demonstrated the validity of this technique. The ZZ irreducible background and reducible backgrounds are parameterized with Bernstein polynomials with ve and three degrees of freedom respectively. The degrees of the polynomials are chosen to be the lowest that allow for a good agreement between the t functions and the predicted backgrounds, according to f-tests. Uncertainties in the t parameters of the Bernstein polynomials for reducible processes are taken into account in the statistical interpretation of results. They dominate over uncertainties associated with the choice of the tting functions, which are neglected. Uncertainties in the ZZ background distribution are neglected given the low expected yield for this process relative to the reducible background contribution. The parameterized dimuon mass distributions and the observed events after the complete selections are shown in gure 3 for the combination of the ve nal states. In this gure, the signal sample is normalized based on the Higgs boson cross section, h, predicted in the SM. A branching fraction of 10% is assumed for h ! aa. The a boson is assumed to decay only to leptons (B(a ! + + ) + B(a ! e+e ) = 1), using eq. (1.1). Combining all nal states, 19 events are observed while 20:7 2:2 are expected in the absence of signal. The expected signal yield, assuming the normalization described above, ranges from 3.1 to 8.2 events over the probed mass range, as detailed in table 5. 6 Systematic uncertainties The statistical interpretation of the analyses takes into account several sources of systematic uncertainties, included in the likelihood function as nuisance parameters following lognormal distributions in the case of yield uncertainties. Uncertainties related to the modeling of backgrounds estimated from data have already been discussed for the three independent analyses in sections 3, 4, and 5, and will only be partially described here. Other systematic uncertainties are detailed in the following subsections, and summarized in table 6. Combination ) eV 102 CMS G 5 . 6 ( / n e v E ts 10 1 10-1 20 30 40 Signal model ZZ component Bkg. uncertainty Background and signal (ma = 35 GeV) models, scaled to their expected yields, for the combination of all nal states ( + e+ e , + , + e h , + h , and + h + h ) in the search for h ! aa ! 2 2 decays. The two components of the background model, ZZ and reducible processes, are drawn. The signal sample is scaled with h as predicted in the SM, assuming B(h ! aa) = 10%, and considering decays of the pseudoscalar a boson to leptons only (B(a ! + + ) + B(a ! e+e ) = 1) using eq. (1.1). The results are shown after a simultaneous maximum likelihood t in all ve channels that takes into account the systematic uncertainties described in section 6. 50 e 60 are scaled with the production cross section for the SM h boson, assuming B(h ! aa) = 10% and considering decays of the pseudoscalar a boson to leptons only. Background yields are obtained after a maximum likelihood t to observed data, taking into account the systematic uncertainties detailed in section 6. 6.1 Systematic uncertainties common to all analyses include the uncertainties in the trigger e ciency (between 0.2 and 4.2% depending on the analysis and on the process), the lepton identi cation and isolation e ciencies (6% for every h [74], between 0.5 and 1.5% for muons, 2% for electrons), all evaluated with tag-and-probe methods [86] in Drell-Yan data and simulated samples. The uncertainties associated with the data-to-simulation correction factor for the b tagging e ciencies and misidenti cation rates are also propagated as systematic uncertainties to the nal results [73]. Uncertainties in the knowledge of the parton distribution functions [87, 88] are taken into account as yield uncertainties, and do not a ect the shape of signal mass distributions. The uncertainty in the integrated luminosity amounts to 2.6%. Systematic uncertainties for the h ! aa ! 4 search The leading systematic uncertainty in the h ! aa ! 4 analysis comes from imperfect knowledge of the background composition in the signal region; it amounts to up to 90% of the background yield, as discussed in section 3. Other sources of systematic uncertainty speci c to this search a ect the expected signal yield only. When added in quadrature to the background uncertainty, signal yield uncertainties account for at most 6 (10)% of the total uncertainty for mT (>) 50 GeV. These minor uncertainties include an additional uncertainty of up to 10% related to the muon isolation if the trigger muon comes from a boosted X topology, as in the ggh, Zh, and VBF production modes, rather than an isolated W leptonic decay, as in the Wh mode. The signal yield is further a ected by an asymmetric uncertainty in the charge misidenti cation probability of 1% and +2%. Up to 9.3% uncertainty in the signal yield is considered to account for uncertainties in the mT computation because of uncertainties in the ETmiss measurements. The b veto on the seed jet of the X object introduces a maximum of 9.4% uncertainty in the signal yield. Finally, it should be noted that the full MC simulation and event reconstruction were only performed for the ggh and Wh samples with ma = 5, 7, 9, 11, 13, and 15 GeV, and for the VBF and Zh samples with ma = 9 GeV. The yields for the VBF (Zh) samples with ma = 5, 7, 11, 13, and 15 GeV were extrapolated from the ggh(Wh) simulated samples at the corresponding pseudoscalar mass, which have similar nal state kinematics. An uncertainty between 19% and 25%, depending on the production mode and mT bin, is assigned to cover imperfect knowledge of the acceptance for the signals that were not simulated. 6.3 Systematic uncertainties for the h ! aa ! 2 2b search For the h ! aa ! 2 2b analysis, the energy of jets is varied within a set of uncertainties depending on the jet pT and . This amounts to a 7% variation of the expected signal yield. The jet smearing corrections are altered within their uncertainties [72] to account for the uncertainty arising from the jet energy resolution, which has an e ect on the process yield of about 1%. Furthermore, the uncertainty in the amount of pileup interactions per event is estimated by varying the total inelastic pp cross section [89] by 5%. All sources of uncertainties including those associated with the muon energy scale and reconstruction and identi cation e ciencies are found to have a negligible e ect on the signal modeling. The signal shape parameters are therefore left oating within their statistical uncertainties in the t. The systematic uncertainty related to the discrete pro ling method is small compared to the statistical uncertainty. Systematic uncertainties for the h ! aa ! 2 2 search The e ect of the h energy scale in the h ! aa ! 2 2 analysis is propagated to the mass distributions, and leads to uncertainties in the yields of the signal and of the irreducible background between 0 and 10%, depending on the nal state. The muon energy scale uncertainty, amounting to 0.2%, is found to shift the mean of the signal distributions by up to 0.2%; this is taken into account as a parametric uncertainty in the mean of the signal distributions. Statistical uncertainties in the parameterization of the signal are accounted for through the uncertainties on the t parameters describing the signal shape. The uncertainty in the normalization of the reducible background is obtained by varying the t functions of the misidenti cation rates within their uncertainties. Uncertainties in background yields lie between 25 and 50%; uncertainties related to a given misidenti cation rate are correlated between corresponding nal states. The number of events in the MC simulation of the ZZ background passing the full signal selection is small, and a statistical uncertainty ranging between 1 and 15% depending on the nal state is considered to take this e ect into account. This uncertainty is uncorrelated across all nal states. 7 7.1 Results Results of the search for h ! aa ! 4 decays The number of events observed in the signal window is compatible with the SM background prediction for the h ! aa ! 4 analysis. Results are interpreted as upper limits on the production of h ! aa relative to the SM Higgs boson production, scaled by B(h ! aa) B2(a ! B(h ! aa ! 4 ). SM production cross sections are taken for ggh, Wh, Zh, and VBF processes [90]. Upper limits are calculated using the modi ed CLs technique [91{94], in which the test statistic is a pro le likelihood ratio. The asymptotic approximation is used to extract the results. In gures 4, 5, and 6, the green (yellow) band labeled \ 1(2) Expected" denotes the expected 68 (95)% C.L. band around the median upper limit if no data consistent with the signal expectation were to be observed. The expected limits and the observed limit for the combination of the low- and high-mT bin as a function of ma are shown in gure 4. The sharp decrease in sensitivity between 5 and 7 GeV results from the 4 GeV m +X signal requirement, which is less e cient for lower mass pseudoscalars. 7.2 Results of the search for h ! aa ! 2 2b decays The analysis of the mass spectrum for the h ! aa ! 2 2b search does not show any signi cant excess of events over the SM background prediction either, as seen in gure 2. Upper limits on the production of h ! aa relative to the SM Higgs boson ggh production (2014) 042 [arXiv:1309.5615] [INSPIRE]. [arXiv:1507.00933] [INSPIRE]. [47] CMS collaboration, A search for pair production of new light bosons decaying into muons, Phys. Lett. B 752 (2016) 146 [arXiv:1506.00424] [INSPIRE]. [48] CMS collaboration, Search for a very light NMSSM Higgs boson produced in decays of the leptons in pp collisions at p s = 8 TeV, JHEP 01 125 GeV scalar boson and decaying into (2016) 079 [arXiv:1510.06534] [INSPIRE]. h ! aa ! , (2009) 061801 [arXiv:0905.3381] [INSPIRE]. [49] D0 collaboration, V.M. Abazov et al., Search for NMSSM Higgs bosons in the channels using pp collisions at ps = 1:96 TeV, Phys. Rev. Lett. 103 [50] ATLAS collaboration, Search for Higgs bosons decaying to aa in the nal state in pp s = 8 TeV with the ATLAS experiment, Phys. Rev. D 92 (2015) 052002 HJEP10(27)6 collisions at p [arXiv:1505.01609] [INSPIRE]. in pp collisions at p with a bb pair in pp collisions at p [arXiv:1511.03610] [INSPIRE]. [51] CMS collaboration, Search for a light pseudoscalar Higgs boson in the dimuon decay channel s = 7 TeV, Phys. Rev. Lett. 109 (2012) 121801 [arXiv:1206.6326] [52] CMS collaboration, Search for a low-mass pseudoscalar Higgs boson produced in association s = 8 TeV, Phys. Lett. B 758 (2016) 296 [53] CMS collaboration, The CMS experiment at the CERN LHC, 2008 JINST 3 S08004 [54] J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer and T. Stelzer, MadGraph 5: going beyond, JHEP 06 (2011) 128 [arXiv:1106.0522] [INSPIRE]. (2006) 026 [hep-ph/0603175] [INSPIRE]. [55] T. Sjostrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 physics and manual, JHEP 05 [56] Z. Was, TAUOLA the library for lepton decay and KKMC/KORALB/KORALZ/. . . status report, Nucl. Phys. Proc. Suppl. 98 (2001) 96 [hep-ph/0011305] [INSPIRE]. [57] S. Alioli, P. Nason, C. Oleari and E. Re, NLO single-top production matched with shower in POWHEG: s- and t-channel contributions, JHEP 09 (2009) 111 [Erratum ibid. 02 (2010) 011] [arXiv:0907.4076] [INSPIRE]. [58] S. Alioli, P. Nason, C. Oleari and E. Re, A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX, JHEP 06 (2010) 043 [arXiv:1002.2581] [INSPIRE]. [59] E. Re, Single-top Wt-channel production matched with parton showers using the POWHEG method, Eur. Phys. J. C 71 (2011) 1547 [arXiv:1009.2450] [INSPIRE]. [60] S. Frixione, P. Nason and C. Oleari, Matching NLO QCD computations with Parton Shower simulations: the POWHEG method, JHEP 11 (2007) 070 [arXiv:0709.2092] [INSPIRE]. Meth. A 506 (2003) 250 [INSPIRE]. (2006) 270. and MET, CMS-PAS-PFT-09-001 (2009). generation of parton distributions with uncertainties from global QCD analysis, JHEP 07 (2002) 012 [hep-ph/0201195] [INSPIRE]. N343 [INSPIRE]. [68] CMS collaboration, Performance of CMS muon reconstruction in pp collision events at s = 7 TeV, 2012 JINST 7 P10002 [arXiv:1206.4071] [INSPIRE]. [69] A. Hocker et al., TMVA - toolkit for multivariate data analysis, PoS(ACAT)040 [70] CMS collaboration, Performance of electron reconstruction and selection with the CMS s = 8 TeV, 2015 JINST 10 P06005 [physics/0703039] [INSPIRE]. detector in proton-proton collisions at p [arXiv:1502.02701] [INSPIRE]. 063 [arXiv:0802.1189] [INSPIRE]. [72] CMS collaboration, Determination of jet energy calibration and transverse momentum resolution in CMS, 2011 JINST 6 P11002 [arXiv:1107.4277] [INSPIRE]. [73] CMS collaboration, Identi cation of b-quark jets with the CMS experiment, 2013 JINST 8 P04013 [arXiv:1211.4462] [INSPIRE]. [74] CMS collaboration, Reconstruction and identi cation of lepton decays to hadrons and at CMS, 2016 JINST 11 P01019 [arXiv:1510.07488] [INSPIRE]. [75] CMS collaboration, Missing transverse energy performance of the CMS detector, 2011 [76] CMS collaboration, A. Apresyan, Performance of MET reconstruction in CMS, J. Phys. Conf. Ser. 587 (2015) 012006 [INSPIRE]. [77] P.M. Ferreira, J.F. Gunion, H.E. Haber and R. Santos, Probing wrong-sign Yukawa couplings at the LHC and a future linear collider, Phys. Rev. D 89 (2014) 115003 [arXiv:1403.4736] [78] D. Curtin, R. Essig and Y.-M. Zhong, Uncovering light scalars with exotic Higgs decays to bb + , JHEP 06 (2015) 025 [arXiv:1412.4779] [INSPIRE]. [79] LHC Higgs Cross section Working Group collaboration, S. Dittmaier et al., Handbook of LHC Higgs Cross sections: 1. Inclusive Observables, arXiv:1101.0593 [INSPIRE]. 2016-09-09. H ! shapes, 2015 JINST 10 P04015 [arXiv:1408.6865] [INSPIRE]. [83] CMS collaboration, Observation of the diphoton decay of the Higgs boson and measurement events by dynamical likelihood techniques, J. Phys. Conf. Ser. 513 (2014) 022035 , Ph.D. Thesis, Stanford University, U.S.A. [85] J.M. Campbell, R.K. Ellis and C. Williams, Vector boson pair production at the LHC, JHEP 07 (2011) 018 [arXiv:1105.0020] [INSPIRE]. [86] CMS collaboration, Measurements of inclusive W and Z cross sections in pp collisions at s = 7 TeV, JHEP 01 (2011) 080 [arXiv:1012.2466] [INSPIRE]. [87] S. Alekhin et al., The PDF4LHC Working Group Interim Report, arXiv:1101.0536 [88] M. Botje et al., The PDF4LHC Working Group interim recommendations, arXiv:1101.0538 [89] CMS collaboration, Measurement of the inelastic proton-proton cross section at ps = 7 TeV, Phys. Lett. B 722 (2013) 5 [arXiv:1210.6718] [INSPIRE]. [90] LHC Higgs Cross section Working Group collaboration, J.R. Andersen et al., Handbook of LHC Higgs Cross sections: 3. Higgs Properties, arXiv:1307.1347 [INSPIRE]. [91] ATLAS and CMS collaborations and The LHC Higgs Combination Group, Procedure for the LHC Higgs boson search combination in Summer 2011, CMS-NOTE-2011-005 (2011). [92] G. Cowan, K. Cranmer, E. Gross and O. Vitells, Asymptotic formulae for likelihood-based tests of new physics, Eur. Phys. J. C 71 (2011) 1554 [Erratum ibid. C 73 (2013) 2501] [arXiv:1007.1727] [INSPIRE]. [93] T. Junk, Con dence level computation for combining searches with small statistics, Nucl. Instrum. Meth. A 434 (1999) 435 [hep-ex/9902006] [INSPIRE]. [94] DELPHI collaboration, A search for heavy stable charged and long-lived squarks and sleptons in e+e collisions at energies from 130 to 183 GeV, CERN-OPEN-2000-005 (1998). [95] E. Gross and O. Vitells, Trial factors or the look elsewhere e ect in high energy physics, Eur. Phys. J. C 70 (2010) 525 [arXiv:1005.1891] [INSPIRE]. Yerevan Physics Institute, Yerevan, Armenia V. Khachatryan, A.M. Sirunyan, A. Tumasyan Institut fur Hochenergiephysik, Wien, Austria W. Adam, E. Asilar, T. Bergauer, J. Brandstetter, E. Brondolin, M. Dragicevic, J. Ero, M. Flechl, M. Friedl, R. Fruhwirth1, V.M. Ghete, C. Hartl, N. Hormann, J. Hrubec, M. Jeitler1, A. Konig, I. Kratschmer, D. Liko, T. Matsushita, I. Mikulec, D. Rabady, N. Rad, B. Rahbaran, H. Rohringer, J. Schieck1, J. Strauss, W. Waltenberger, C.-E. Wulz1 Institute for Nuclear Problems, Minsk, Belarus O. Dvornikov, V. Makarenko, V. Zykunov National Centre for Particle and High Energy Physics, Minsk, Belarus V. Mossolov, N. Shumeiko, J. Suarez Gonzalez Universiteit Antwerpen, Antwerpen, Belgium S. Alderweireldt, E.A. De Wolf, X. Janssen, J. Lauwers, M. Van De Klundert, H. Van Haevermaet, P. Van Mechelen, N. Van Remortel, A. Van Spilbeeck Vrije Universiteit Brussel, Brussel, Belgium S. Abu Zeid, F. Blekman, J. D'Hondt, N. Daci, I. De Bruyn, K. Deroover, S. Lowette, S. Moortgat, L. Moreels, A. Olbrechts, Q. Python, S. Tavernier, W. Van Doninck, P. Van Mulders, I. Van Parijs Universite Libre de Bruxelles, Bruxelles, Belgium H. Brun, B. Clerbaux, G. De Lentdecker, H. Delannoy, G. Fasanella, L. Favart, R. Goldouzian, A. Grebenyuk, G. Karapostoli, T. Lenzi, A. Leonard, J. Luetic, T. Maerschalk, A. Marinov, A. Randle-conde, T. Seva, C. Vander Velde, P. Vanlaer, D. Vannerom, R. Yonamine, F. Zenoni, F. Zhang2 Ghent University, Ghent, Belgium A. Cimmino, T. Cornelis, D. Dobur, A. Fagot, G. Garcia, M. Gul, I. Khvastunov, D. Poyraz, S. Salva, R. Schofbeck, A. Sharma, M. Tytgat, W. Van Driessche, E. Yazgan, N. Zaganidis Universite Catholique de Louvain, Louvain-la-Neuve, Belgium H. Bakhshiansohi, C. Belu 3, O. Bondu, S. Brochet, G. Bruno, A. Caudron, S. De Visscher, C. Delaere, M. Delcourt, B. Francois, A. Giammanco, A. Jafari, P. Jez, M. Komm, G. Krintiras, V. Lemaitre, A. Magitteri, A. Mertens, M. Musich, C. Nuttens, K. Piotrzkowski, L. Quertenmont, M. Selvaggi, M. Vidal Marono, S. Wertz Universite de Mons, Mons, Belgium N. Beliy Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil W.L. Alda Junior, F.L. Alves, G.A. Alves, L. Brito, C. Hensel, A. Moraes, M.E. Pol, P. Rebello Teles Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil E. Belchior Batista Das Chagas, W. Carvalho, J. Chinellato4, A. Custodio, E.M. Da Costa, G.G. Da Silveira5, D. De Jesus Damiao, C. De Oliveira Martins, S. Fonseca De Souza, L.M. Huertas Guativa, H. Malbouisson, D. Matos Figueiredo, C. Mora Herrera, L. Mundim, H. Nogima, W.L. Prado Da Silva, A. Santoro, A. Sznajder, E.J. Tonelli Manganote4, A. Vilela Pereira Brazil J.C. Ruiz Vargas tova Universidade Estadual Paulista a, Universidade Federal do ABC b, S~ao Paulo, S. Ahujaa, C.A. Bernardesb, S. Dograa, T.R. Fernandez Perez Tomeia, E.M. Gregoresb, P.G. Mercadanteb, C.S. Moona, S.F. Novaesa, Sandra S. Padulaa, D. Romero Abadb, Institute for Nuclear Research and Nuclear Energy, So a, Bulgaria A. Aleksandrov, R. Hadjiiska, P. Iaydjiev, M. Rodozov, S. Stoykova, G. Sultanov, M. Vu University of So a, So a, Bulgaria A. Dimitrov, I. Glushkov, L. Litov, B. Pavlov, P. Petkov Beihang University, Beijing, China W. Fang6 Institute of High Energy Physics, Beijing, China M. Ahmad, J.G. Bian, G.M. Chen, H.S. Chen, M. Chen, Y. Chen7, T. Cheng, C.H. Jiang, D. Leggat, Z. Liu, F. Romeo, S.M. Shaheen, A. Spiezia, J. Tao, C. Wang, Z. Wang, H. Zhang, J. Zhao Beijing, China State Key Laboratory of Nuclear Physics and Technology, Peking University, Y. Ban, G. Chen, Q. Li, S. Liu, Y. Mao, S.J. Qian, D. Wang, Z. Xu Universidad de Los Andes, Bogota, Colombia C. Avila, A. Cabrera, L.F. Chaparro Sierra, C. Florez, J.P. Gomez, C.F. Gonzalez Hernandez, J.D. Ruiz Alvarez, J.C. Sanabria University of Split, Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, Split, Croatia N. Godinovic, D. Lelas, I. Puljak, P.M. Ribeiro Cipriano, T. Sculac University of Split, Faculty of Science, Split, Croatia Z. Antunovic, M. Kovac Institute Rudjer Boskovic, Zagreb, Croatia V. Brigljevic, D. Ferencek, K. Kadija, B. Mesic, S. Micanovic, L. Sudic, T. Susa University of Cyprus, Nicosia, Cyprus A. Attikis, G. Mavromanolakis, J. Mousa, C. Nicolaou, F. Ptochos, P.A. Razis, H. Rykaczewski, D. Tsiakkouri Charles University, Prague, Czech Republic M. Finger8, M. Finger Jr.8 Universidad San Francisco de Quito, Quito, Ecuador E. Carrera Jarrin Academy of Scienti c Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt A. Ellithi Kamel9, M.A. Mahmoud10;11, A. Radi11;12 National Institute of Chemical Physics and Biophysics, Tallinn, Estonia M. Kadastik, L. Perrini, M. Raidal, A. Tiko, C. Veelken Department of Physics, University of Helsinki, Helsinki, Finland P. Eerola, J. Pekkanen, M. Voutilainen Helsinki Institute of Physics, Helsinki, Finland J. Harkonen, T. Jarvinen, V. Karimaki, R. Kinnunen, T. Lampen, K. Lassila-Perini, S. Lehti, T. Linden, P. Luukka, J. Tuominiemi, E. Tuovinen, L. Wendland Lappeenranta University of Technology, Lappeenranta, Finland J. Talvitie, T. Tuuva IRFU, CEA, Universite Paris-Saclay, Gif-sur-Yvette, France M. Besancon, F. Couderc, M. Dejardin, D. Denegri, B. Fabbro, J.L. Faure, C. Favaro, F. Ferri, S. Ganjour, S. Ghosh, A. Givernaud, P. Gras, G. Hamel de Monchenault, P. Jarry, I. Kucher, E. Locci, M. Machet, J. Malcles, J. Rander, A. Rosowsky, M. Titov, A. Zghiche Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France A. Abdulsalam, I. Antropov, S. Ba oni, F. Beaudette, P. Busson, L. Cadamuro, E. Chapon, C. Charlot, O. Davignon, R. Granier de Cassagnac, M. Jo, S. Lisniak, P. Mine, M. Nguyen, C. Ochando, G. Ortona, P. Paganini, P. Pigard, S. Regnard, R. Salerno, Y. Sirois, T. Strebler, Y. Yilmaz, A. Zabi Institut Pluridisciplinaire Hubert Curien (IPHC), Universite de Strasbourg, CNRS-IN2P3 J.-L. Agram13, J. Andrea, A. Aubin, D. Bloch, J.-M. Brom, M. Buttignol, E.C. Chabert, N. Chanon, C. Collard, E. Conte13, X. Coubez, J.-C. Fontaine13, D. Gele, U. Goerlach, A.-C. Le Bihan, K. Skovpen, P. Van Hove Centre de Calcul de l'Institut National de Physique Nucleaire et de Physique des Particules, CNRS/IN2P3, Villeurbanne, France S. Gadrat Universite de Lyon, Universite Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucleaire de Lyon, Villeurbanne, France S. Beauceron, C. Bernet, G. Boudoul, E. Bouvier, C.A. Carrillo Montoya, R. Chierici, D. Contardo, B. Courbon, P. Depasse, H. El Mamouni, J. Fan, J. Fay, S. Gascon, M. Gouzevitch, G. Grenier, B. Ille, F. Lagarde, I.B. Laktineh, M. Lethuillier, L. Mirabito, A.L. Pequegnot, S. Perries, A. Popov14, D. Sabes, V. Sordini, M. Vander Donckt, P. Verdier, S. Viret T. Toriashvili15 Z. Tsamalaidze8 H. Weber Georgian Technical University, Tbilisi, Georgia Tbilisi State University, Tbilisi, Georgia RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany C. Autermann, S. Beranek, L. Feld, A. Heister, M.K. Kiesel, K. Klein, M. Lipinski, A. Ostapchuk, M. Preuten, F. Raupach, S. Schael, C. Schomakers, J. Schulz, T. Verlage, RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany A. Albert, M. Brodski, E. Dietz-Laursonn, D. Duchardt, M. Endres, M. Erdmann, S. Erdweg, T. Esch, R. Fischer, A. Guth, M. Hamer, T. Hebbeker, C. Heidemann, K. Hoepfner, S. Knutzen, M. Merschmeyer, A. Meyer, P. Millet, S. Mukherjee, M. Olschewski, K. Padeken, T. Pook, M. Radziej, H. Reithler, M. Rieger, F. Scheuch, L. Sonnenschein, D. Teyssier, S. Thuer RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany V. Cherepanov, G. Flugge, B. Kargoll, T. Kress, A. Kunsken, J. Lingemann, T. Muller, A. Nehrkorn, A. Nowack, C. Pistone, O. Pooth, A. Stahl16 Deutsches Elektronen-Synchrotron, Hamburg, Germany M. Aldaya Martin, T. Arndt, C. Asawatangtrakuldee, K. Beernaert, O. Behnke, U. Behrens, A.A. Bin Anuar, K. Borras17, A. Campbell, P. Connor, C. Contreras-Campana, F. Costanza, C. Diez Pardos, G. Dolinska, G. Eckerlin, D. Eckstein, T. Eichhorn, E. Eren, E. Gallo18, J. Garay Garcia, A. Geiser, A. Gizhko, J.M. Grados Luyando, P. Gunnellini, A. Harb, J. Hauk, M. Hempel19, H. Jung, A. Kalogeropoulos, O. Karacheban19, M. Kasemann, J. Keaveney, C. Kleinwort, I. Korol, D. Krucker, W. Lange, A. Lelek, J. Leonard, K. Lipka, A. Lobanov, W. Lohmann19, R. Mankel, I.-A. Melzer-Pellmann, A.B. Meyer, G. Mittag, J. Mnich, A. Mussgiller, E. Ntomari, D. Pitzl, R. Placakyte, A. Raspereza, B. Roland, M.O . Sahin, P. Saxena, T. Schoerner-Sadenius, C. Seitz, S. Spannagel, N. Stefaniuk, G.P. Van Onsem, R. Walsh, C. Wissing University of Hamburg, Hamburg, Germany V. Blobel, M. Centis Vignali, A.R. Draeger, T. Dreyer, E. Garutti, D. Gonzalez, J. Haller, M. Ho mann, A. Junkes, R. Klanner, R. Kogler, N. Kovalchuk, T. Lapsien, T. Lenz, I. Marchesini, D. Marconi, M. Meyer, M. Niedziela, D. Nowatschin, F. Pantaleo16, T. Pei er, A. Perieanu, J. Poehlsen, C. Sander, C. Scharf, P. Schleper, A. Schmidt, S. Schumann, J. Schwandt, H. Stadie, G. Steinbruck, F.M. Stober, M. Stover, H. Tholen, D. Troendle, E. Usai, L. Vanelderen, A. Vanhoefer, B. Vormwald Institut fur Experimentelle Kernphysik, Karlsruhe, Germany M. Akbiyik, C. Barth, S. Baur, C. Baus, J. Berger, E. Butz, R. Caspart, T. Chwalek, F. Colombo, W. De Boer, A. Dierlamm, S. Fink, B. Freund, R. Friese, M. Gi els, A. Gilbert, P. Goldenzweig, D. Haitz, F. Hartmann16, S.M. Heindl, U. Husemann, I. Katkov14, S. Kudella, H. Mildner, M.U. Mozer, Th. Muller, M. Plagge, G. Quast, K. Rabbertz, S. Rocker, F. Roscher, M. Schroder, I. Shvetsov, G. Sieber, H.J. Simonis, R. Ulrich, S. Wayand, M. Weber, T. Weiler, S. Williamson, C. Wohrmann, R. Wolf Institute of Nuclear and Particle Physics (INPP), NCSR Demokritos, Aghia Paraskevi, Greece I. Topsis-Giotis G. Anagnostou, G. Daskalakis, T. Geralis, V.A. Giakoumopoulou, A. Kyriakis, D. Loukas, National and Kapodistrian University of Athens, Athens, Greece S. Kesisoglou, A. Panagiotou, N. Saoulidou, E. Tziaferi University of Ioannina, Ioannina, Greece I. Evangelou, G. Flouris, C. Foudas, P. Kokkas, N. Loukas, N. Manthos, I. Papadopoulos, E. Paradas mond MTA-ELTE Lendulet CMS Particle and Nuclear Physics Group, Eotvos Lorand University, Budapest, Hungary N. Filipovic Wigner Research Centre for Physics, Budapest, Hungary G. Bencze, C. Hajdu, D. Horvath20, F. Sikler, V. Veszpremi, G. Vesztergombi21, A.J. ZsigInstitute of Nuclear Research ATOMKI, Debrecen, Hungary N. Beni, S. Czellar, J. Karancsi22, A. Makovec, J. Molnar, Z. Szillasi Institute of Physics, University of Debrecen M. Bartok21, P. Raics, Z.L. Trocsanyi, B. Ujvari National Institute of Science Education and Research, Bhubaneswar, India S. Bahinipati, S. Choudhury23, P. Mal, K. Mandal, A. Nayak24, D.K. Sahoo, N. Sahoo, S.K. Swain Panjab University, Chandigarh, India S. Bansal, S.B. Beri, V. Bhatnagar, R. Chawla, U.Bhawandeep, A.K. Kalsi, A. Kaur, M. Kaur, R. Kumar, P. Kumari, A. Mehta, M. Mittal, J.B. Singh, G. Walia University of Delhi, Delhi, India Ashok Kumar, A. Bhardwaj, B.C. Choudhary, R.B. Garg, S. Keshri, S. Malhotra, M. Naimuddin, N. Nishu, K. Ranjan, R. Sharma, V. Sharma Saha Institute of Nuclear Physics, Kolkata, India R. Bhattacharya, S. Bhattacharya, K. Chatterjee, S. Dey, S. Dutt, S. Dutta, S. Ghosh, N. Majumdar, A. Modak, K. Mondal, S. Mukhopadhyay, S. Nandan, A. Purohit, A. Roy, D. Roy, S. Roy Chowdhury, S. Sarkar, M. Sharan, S. Thakur Indian Institute of Technology Madras, Madras, India P.K. Behera Bhabha Atomic Research Centre, Mumbai, India R. Chudasama, D. Dutta, V. Jha, V. Kumar, A.K. Mohanty16, P.K. Netrakanti, L.M. Pant, HJEP10(27)6 P. Shukla, A. Topkar Tata Institute of Fundamental Research-A, Mumbai, India T. Aziz, S. Dugad, G. Kole, B. Mahakud, S. Mitra, G.B. Mohanty, B. Parida, N. Sur, B. Sutar Tata Institute of Fundamental Research-B, Mumbai, India S. Banerjee, S. Bhowmik25, R.K. Dewanjee, S. Ganguly, M. Guchait, Sa. Jain, S. Kumar, M. Maity25, G. Majumder, K. Mazumdar, T. Sarkar25, N. Wickramage26 Indian Institute of Science Education and Research (IISER), Pune, India S. Chauhan, S. Dube, V. Hegde, A. Kapoor, K. Kothekar, S. Pandey, A. Rane, S. Sharma Institute for Research in Fundamental Sciences (IPM), Tehran, Iran S. Chenarani27, E. Eskandari Tadavani, S.M. Etesami27, A. Fahim28, M. Khakzad, M. Mohammadi Najafabadi, M. Naseri, S. Paktinat Mehdiabadi29, F. Rezaei Hosseinabadi, B. Safarzadeh30, M. Zeinali University College Dublin, Dublin, Ireland M. Felcini, M. Grunewald INFN Sezione di Bari a, Universita di Bari b, Politecnico di Bari c, Bari, Italy M. Abbresciaa;b, C. Calabriaa;b, C. Caputoa;b, A. Colaleoa, D. Creanzaa;c, L. Cristellaa;b, N. De Filippisa;c, M. De Palmaa;b, L. Fiorea, G. Iasellia;c, G. Maggia;c, M. Maggia, G. Minielloa;b, S. Mya;b, S. Nuzzoa;b, A. Pompilia;b, G. Pugliesea;c, R. Radognaa;b, A. Ranieria, G. Selvaggia;b, L. Silvestrisa;16, R. Vendittia;b, P. Verwilligena INFN Sezione di Bologna a, Universita di Bologna b, Bologna, Italy G. Abbiendia, C. Battilana, D. Bonacorsia;b, S. Braibant-Giacomellia;b, L. Brigliadoria;b, R. Campaninia;b, P. Capiluppia;b, A. Castroa;b, F.R. Cavalloa, S.S. Chhibraa;b, G. Codispotia;b, M. Cu ania;b, G.M. Dallavallea, F. Fabbria, A. Fanfania;b, D. Fasanellaa;b, P. Giacomellia, C. Grandia, L. Guiduccia;b, S. Marcellinia, G. Masettia, A. Montanaria, F.L. Navarriaa;b, A. Perrottaa, A.M. Rossia;b, T. Rovellia;b, G.P. Sirolia;b, N. Tosia;b;16 INFN Sezione di Catania a, Universita di Catania b, Catania, Italy S. Albergoa;b, S. Costaa;b, A. Di Mattiaa, F. Giordanoa;b, R. Potenzaa;b, A. Tricomia;b, C. Tuvea;b INFN Sezione di Firenze a, Universita di Firenze b, Firenze, Italy G. Barbaglia, V. Ciullia;b, C. Civininia, R. D'Alessandroa;b, E. Focardia;b, P. Lenzia;b, M. Meschinia, S. Paolettia, G. Sguazzonia, L. Viliania;b;16 INFN Laboratori Nazionali di Frascati, Frascati, Italy L. Benussi, S. Bianco, F. Fabbri, D. Piccolo, F. Primavera16 INFN Sezione di Genova a, Universita di Genova b, Genova, Italy V. Calvellia;b, F. Ferroa, M. Lo Veterea;b, M.R. Mongea;b, E. Robuttia, S. Tosia;b INFN Sezione di Milano-Bicocca a, Universita di Milano-Bicocca b, Milano, HJEP10(27)6 Italy Italy L. Brianza16, M.E. Dinardoa;b, S. Fiorendia;b;16, S. Gennaia, A. Ghezzia;b, P. Govonia;b, M. Malberti, S. Malvezzia, R.A. Manzonia;b;16, D. Menascea, L. Moronia, M. Paganonia;b, D. Pedrinia, S. Pigazzini, S. Ragazzia;b, T. Tabarelli de Fatisa;b INFN Sezione di Napoli a, Universita di Napoli `Federico II' b, Napoli, Italy, Universita della Basilicata c, Potenza, Italy, Universita G. Marconi d, Roma, S. Buontempoa, N. Cavalloa;c, G. De Nardo, S. Di Guidaa;d;16, M. Espositoa;b, F. Fabozzia;c, F. Fiengaa;b, A.O.M. Iorioa;b, G. Lanzaa, L. Listaa, S. Meolaa;d;16, P. Paoluccia;16, C. Sciaccaa;b, F. Thyssen INFN Sezione di Padova a, Universita di Padova b, Padova, Italy, Universita di Trento c, Trento, Italy P. Azzia;16, N. Bacchettaa, L. Benatoa;b, D. Biselloa;b, A. Bolettia;b, R. Carlina;b, A. Carvalho Antunes De Oliveiraa;b, P. Checchiaa, M. Dall'Ossoa;b, P. De Castro Manzanoa, T. Dorigoa, U. Dossellia, F. Gasparinia;b, U. Gasparinia;b, A. Gozzelinoa, S. Lacapraraa, M. Margonia;b, A.T. Meneguzzoa;b, J. Pazzinia;b, N. Pozzobona;b, P. Ronchesea;b, F. Simonettoa;b, E. Torassaa, M. Zanetti, P. Zottoa;b, G. Zumerlea;b INFN Sezione di Pavia a, Universita di Pavia b, Pavia, Italy A. Braghieria, A. Magnania;b, P. Montagnaa;b, S.P. Rattia;b, V. Rea, C. Riccardia;b, P. Salvinia, I. Vaia;b, P. Vituloa;b INFN Sezione di Perugia a, Universita di Perugia b, Perugia, Italy L. Alunni Solestizia;b, G.M. Bileia, D. Ciangottinia;b, L. Fanoa;b, P. Laricciaa;b, R. Leonardia;b, G. Mantovania;b, M. Menichellia, A. Sahaa, A. Santocchiaa;b INFN Sezione di Pisa a, Universita di Pisa b, Scuola Normale Superiore di Pisa c, Pisa, Italy K. Androsova;31, P. Azzurria;16, G. Bagliesia, J. Bernardinia, T. Boccalia, R. Castaldia, M.A. Cioccia;31, R. Dell'Orsoa, S. Donatoa;c, G. Fedi, A. Giassia, M.T. Grippoa;31, F. Ligabuea;c, T. Lomtadzea, L. Martinia;b, A. Messineoa;b, F. Pallaa, A. Rizzia;b, A. SavoyNavarroa;32, P. Spagnoloa, R. Tenchinia, G. Tonellia;b, A. Venturia, P.G. Verdinia INFN Sezione di Roma a, Universita di Roma b, Roma, Italy L. Baronea;b, F. Cavallaria, M. Cipriania;b, D. Del Rea;b;16, M. Diemoza, S. Gellia;b, E. Longoa;b, F. Margarolia;b, Meridiania, G. Organtinia;b, R. Paramattia, F. Preiatoa;b, S. Rahatloua;b, C. Rovellia, F. Santanastasioa;b INFN Sezione di Torino a, Universita di Torino b, Torino, Italy, Universita del Piemonte Orientale c, Novara, Italy N. Amapanea;b, R. Arcidiaconoa;c;16, S. Argiroa;b, M. Arneodoa;c, N. Bartosika, R. Bellana;b, C. Biinoa, N. Cartigliaa, F. Cennaa;b, M. Costaa;b, R. Covarellia;b, A. Deganoa;b, N. Demariaa, L. Fincoa;b, B. Kiania;b, C. Mariottia, S. Masellia, E. Migliorea;b, V. Monacoa;b, E. Monteila;b, M. Montenoa, M.M. Obertinoa;b, L. Pachera;b, N. Pastronea, M. Pelliccionia, G.L. Pinna Angionia;b, F. Raveraa;b, A. Romeroa;b, M. Ruspaa;c, R. Sacchia;b, K. Shchelinaa;b, V. Solaa, A. Solanoa;b, A. Staianoa, P. Traczyka;b INFN Sezione di Trieste a, Universita di Trieste b, Trieste, Italy S. Belfortea, M. Casarsaa, F. Cossuttia, G. Della Riccaa;b, A. Zanettia Kyungpook National University, Daegu, Korea D.H. Kim, G.N. Kim, M.S. Kim, S. Lee, S.W. Lee, Y.D. Oh, S. Sekmen, D.C. Son, Chonbuk National University, Jeonju, Korea Chonnam National University, Institute for Universe and Elementary Particles, Hanyang University, Seoul, Korea J.A. Brochero Cifuentes, T.J. Kim Korea University, Seoul, Korea S. Lee, J. Lim, S.K. Park, Y. Roh Seoul National University, Seoul, Korea G.B. Yu University of Seoul, Seoul, Korea M. Choi, H. Kim, J.H. Kim, J.S.H. Lee, I.C. Park, G. Ryu, M.S. Ryu Sungkyunkwan University, Suwon, Korea Y. Choi, J. Goh, C. Hwang, J. Lee, I. Yu Vilnius University, Vilnius, Lithuania V. Dudenas, A. Juodagalvis, J. Vaitkus S. Cho, S. Choi, Y. Go, D. Gyun, S. Ha, B. Hong, Y. Jo, Y. Kim, B. Lee, K. Lee, K.S. Lee, J. Almond, J. Kim, H. Lee, S.B. Oh, B.C. Radburn-Smith, S.h. Seo, U.K. Yang, H.D. Yoo, National Centre for Particle Physics, Universiti Malaya, Kuala Lumpur, Malaysia I. Ahmed, Z.A. Ibrahim, J.R. Komaragiri, M.A.B. Md Ali33, F. Mohamad Idris34, W.A.T. Wan Abdullah, M.N. Yusli, Z. Zolkapli Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico H. Castilla-Valdez, E. De La Cruz-Burelo, I. Heredia-De La Cruz35, A. Hernandez-Almada, R. Lopez-Fernandez, R. Magan~a Villalba, J. Mejia Guisao, A. Sanchez-Hernandez Universidad Iberoamericana, Mexico City, Mexico S. Carrillo Moreno, C. Oropeza Barrera, F. Vazquez Valencia Benemerita Universidad Autonoma de Puebla, Puebla, Mexico S. Carpinteyro, I. Pedraza, H.A. Salazar Ibarguen, C. Uribe Estrada Universidad Autonoma de San Luis Potos , San Luis Potos , Mexico A. Morelos Pineda D. Krofcheck P.H. Butler University of Auckland, Auckland, New Zealand University of Canterbury, Christchurch, New Zealand National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan A. Ahmad, M. Ahmad, Q. Hassan, H.R. Hoorani, W.A. Khan, A. Saddique, M.A. Shah, M. Shoaib, M. Waqas National Centre for Nuclear Research, Swierk, Poland H. Bialkowska, M. Bluj, B. Boimska, T. Frueboes, M. Gorski, M. Kazana, K. Nawrocki, K. Romanowska-Rybinska, M. Szleper, P. Zalewski Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland K. Bunkowski, A. Byszuk36, K. Doroba, A. Kalinowski, M. Konecki, J. Krolikowski, M. Misiura, M. Olszewski, M. Walczak Laboratorio de Instrumentac~ao e F sica Experimental de Part culas, Lisboa, Portugal P. Bargassa, C. Beir~ao Da Cruz E Silva, B. Calpas, A. Di Francesco, P. Faccioli, P.G. Ferreira Parracho, M. Gallinaro, J. Hollar, N. Leonardo, L. Lloret Iglesias, M.V. Nemallapudi, J. Rodrigues Antunes, J. Seixas, O. Toldaiev, D. Vadruccio, J. Varela, P. Vischia Joint Institute for Nuclear Research, Dubna, Russia S. Afanasiev, P. Bunin, M. Gavrilenko, I. Golutvin, I. Gorbunov, V. Karjavin, A. Lanev, A. Malakhov, V. Matveev37;38, V. Palichik, V. Perelygin, M. Savina, S. Shmatov, S. Shulha, N. Skatchkov, V. Smirnov, N. Voytishin, A. Zarubin Petersburg Nuclear Physics Institute, Gatchina (St. Petersburg), Russia L. Chtchipounov, V. Golovtsov, Y. Ivanov, V. Kim39, E. Kuznetsova40, V. Murzin, V. Oreshkin, V. Sulimov, A. Vorobyev Institute for Nuclear Research, Moscow, Russia Yu. Andreev, A. Dermenev, S. Gninenko, N. Golubev, A. Karneyeu, M. Kirsanov, N. Krasnikov, A. Pashenkov, D. Tlisov, A. Toropin Institute for Theoretical and Experimental Physics, Moscow, Russia V. Epshteyn, V. Gavrilov, N. Lychkovskaya, V. Popov, I. Pozdnyakov, G. Safronov, A. Spiridonov, M. Toms, E. Vlasov, A. Zhokin HJEP10(27)6 Moscow Institute of Physics and Technology, Moscow, Russia A. Bylinkin38 National Research Nuclear University `Moscow Engineering Physics Institute' (MEPhI), Moscow, Russia R. Chistov41, M. Danilov41, S. Polikarpov P.N. Lebedev Physical Institute, Moscow, Russia V. Andreev, M. Azarkin38, I. Dremin38, M. Kirakosyan, A. Leonidov38, A. Terkulov Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia S. Petrushanko, V. Savrin A. Baskakov, A. Belyaev, E. Boos, V. Bunichev, M. Dubinin42, L. Dudko, A. Ershov, A. Gribushin, V. Klyukhin, O. Kodolova, I. Lokhtin, I. Miagkov, S. Obraztsov, Novosibirsk State University (NSU), Novosibirsk, Russia V. Blinov43, Y.Skovpen43, D. Shtol43 State Research Center of Russian Federation, Institute for High Energy Physics, Protvino, Russia I. Azhgirey, I. Bayshev, S. Bitioukov, D. Elumakhov, V. Kachanov, A. Kalinin, D. Konstantinov, V. Krychkine, V. Petrov, R. Ryutin, A. Sobol, S. Troshin, N. Tyurin, A. Uzunian, A. Volkov University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia P. Adzic44, P. Cirkovic, D. Devetak, M. Dordevic, J. Milosevic, V. Rekovic Centro de Investigaciones Energeticas Medioambientales y Tecnologicas (CIEMAT), Madrid, Spain J. Alcaraz Maestre, M. Barrio Luna, E. Calvo, M. Cerrada, M. Chamizo Llatas, N. Colino, B. De La Cruz, A. Delgado Peris, A. Escalante Del Valle, C. Fernandez Bedoya, J.P. Fernandez Ramos, J. Flix, M.C. Fouz, P. Garcia-Abia, O. Gonzalez Lopez, S. Goy Lopez, J.M. Hernandez, M.I. Josa, E. Navarro De Martino, A. Perez-Calero Yzquierdo, J. Puerta Pelayo, A. Quintario Olmeda, I. Redondo, L. Romero, M.S. Soares Universidad Autonoma de Madrid, Madrid, Spain J.F. de Troconiz, M. Missiroli, D. Moran Universidad de Oviedo, Oviedo, Spain J. Cuevas, J. Fernandez Menendez, I. Gonzalez Caballero, J.R. Gonzalez Fernandez, E. Palencia Cortezon, S. Sanchez Cruz, I. Suarez Andres, J.M. Vizan Garcia Instituto de F sica de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain I.J. Cabrillo, A. Calderon, J.R. Castin~eiras De Saa, E. Curras, M. Fernandez, J. GarciaFerrero, G. Gomez, A. Lopez Virto, J. Marco, C. Martinez Rivero, F. Matorras, J. Piedra Gomez, T. Rodrigo, A. Ruiz-Jimeno, L. Scodellaro, N. Trevisani, I. Vila, R. Vilar Cortabitarte CERN, European Organization for Nuclear Research, Geneva, Switzerland D. Abbaneo, E. Au ray, G. Auzinger, M. Bachtis, P. Baillon, A.H. Ball, D. Barney, P. Bloch, A. Bocci, A. Bonato, C. Botta, T. Camporesi, R. Castello, M. Cepeda, G. Cerminara, M. D'Alfonso, D. d'Enterria, A. Dabrowski, V. Daponte, A. David, M. De Gruttola, A. De Roeck, E. Di Marco45, M. Dobson, B. Dorney, T. du Pree, D. Duggan, M. Dunser, N. Dupont, A. Elliott-Peisert, S. Fartoukh, G. Franzoni, J. Fulcher, W. Funk, D. Gigi, K. Gill, M. Girone, F. Glege, D. Gulhan, S. Gundacker, M. Gutho , J. Hammer, P. Harris, J. Hegeman, V. Innocente, P. Janot, J. Kieseler, H. Kirschenmann, V. Knunz, A. Kornmayer16, M.J. Kortelainen, K. Kousouris, M. Krammer1, C. Lange, P. Lecoq, C. Lourenco, M.T. Lucchini, L. Malgeri, M. Mannelli, A. Martelli, F. Meijers, J.A. Merlin, S. Mersi, E. Meschi, P. Milenovic46, F. Moortgat, S. Morovic, M. Mulders, H. Neugebauer, S. Orfanelli, L. Orsini, L. Pape, E. Perez, M. Peruzzi, A. Petrilli, G. Petrucciani, A. Pfei er, M. Pierini, A. Racz, T. Reis, G. Rolandi47, M. Rovere, M. Ruan, H. Sakulin, J.B. Sauvan, C. Schafer, C. Schwick, M. Seidel, A. Sharma, P. Silva, P. Sphicas48, J. Steggemann, M. Stoye, Y. Takahashi, M. Tosi, D. Treille, A. Triossi, A. Tsirou, V. Veckalns49, G.I. Veres21, M. Verweij, N. Wardle, A. Zagozdzinska36, W.D. Zeuner Paul Scherrer Institut, Villigen, Switzerland W. Bertl, K. Deiters, W. Erdmann, R. Horisberger, Q. Ingram, H.C. Kaestli, D. Kotlinski, U. Langenegger, T. Rohe Institute for Particle Physics, ETH Zurich, Zurich, Switzerland F. Bachmair, L. Bani, L. Bianchini, B. Casal, G. Dissertori, M. Dittmar, M. Donega, C. Grab, C. Heidegger, D. Hits, J. Hoss, G. Kasieczka, P. Lecomtey, W. Lustermann, B. Mangano, M. Marionneau, P. Martinez Ruiz del Arbol, M. Masciovecchio, M.T. Meinhard, D. Meister, F. Micheli, P. Musella, F. Nessi-Tedaldi, F. Pandol , J. Pata, F. Pauss, G. Perrin, L. Perrozzi, M. Quittnat, M. Rossini, M. Schonenberger, A. Starodumov50, V.R. Tavolaro, K. Theo latos, R. Wallny Universitat Zurich, Zurich, Switzerland T.K. Aarrestad, C. Amsler51, L. Caminada, M.F. Canelli, A. De Cosa, C. Galloni, A. Hinzmann, T. Hreus, B. Kilminster, J. Ngadiuba, D. Pinna, G. Rauco, P. Robmann, D. Salerno, Y. Yang, A. Zucchetta National Central University, Chung-Li, Taiwan V. Candelise, T.H. Doan, Sh. Jain, R. Khurana, M. Konyushikhin, C.M. Kuo, W. Lin, Y.J. Lu, A. Pozdnyakov, S.S. Yu National Taiwan University (NTU), Taipei, Taiwan Arun Kumar, P. Chang, Y.H. Chang, Y.W. Chang, Y. Chao, K.F. Chen, P.H. Chen, C. Dietz, F. Fiori, W.-S. Hou, Y. Hsiung, Y.F. Liu, R.-S. Lu, M. Min~ano Moya, E. Paganis, A. Psallidas, J.f. Tsai, Y.M. Tzeng Chulalongkorn University, Faculty of Science, Department of Physics, Bangkok, B. Asavapibhop, G. Singh, N. Srimanobhas, N. Suwonjandee Cukurova University - Physics Department, Science and Art Faculty A. Adiguzel, S. Cerci52, S. Damarseckin, Z.S. Demiroglu, C. Dozen, I. Dumanoglu, S. Girgis, G. Gokbulut, Y. Guler, I. Hos53, E.E. Kangal54, O. Kara, A. Kayis Topaksu, U. Kiminsu, M. Oglakci, G. Onengut55, K. Ozdemir56, D. Sunar Cerci52, H. Topakli57, S. Turkcapar, I.S. Zorbakir, C. Zorbilmez Middle East Technical University, Physics Department, Ankara, Turkey B. Bilin, S. Bilmis, B. Isildak58, G. Karapinar59, M. Yalvac, M. Zeyrek Bogazici University, Istanbul, Turkey E. Gulmez, M. Kaya60, O. Kaya61, E.A. Yetkin62, T. Yetkin63 Istanbul Technical University, Istanbul, Turkey A. Cakir, K. Cankocak, S. Sen64 Institute for Scintillation Materials of National Academy of Science of Ukraine, Kharkov, Ukraine B. Grynyov Kharkov, Ukraine L. Levchuk, P. Sorokin National Scienti c Center, Kharkov Institute of Physics and Technology, University of Bristol, Bristol, United Kingdom R. Aggleton, F. Ball, L. Beck, J.J. Brooke, D. Burns, E. Clement, D. Cussans, H. Flacher, J. Goldstein, M. Grimes, G.P. Heath, H.F. Heath, J. Jacob, L. Kreczko, C. Lucas, D.M. Newbold65, S. Paramesvaran, A. Poll, T. Sakuma, S. Seif El Nasr-storey, D. Smith, V.J. Smith Rutherford Appleton Laboratory, Didcot, United Kingdom K.W. Bell, A. Belyaev66, C. Brew, R.M. Brown, L. Calligaris, D. Cieri, D.J.A. Cockerill, J.A. Coughlan, K. Harder, S. Harper, E. Olaiya, D. Petyt, C.H. Shepherd-Themistocleous, A. Thea, I.R. Tomalin, T. Williams Imperial College, London, United Kingdom M. Baber, R. Bainbridge, O. Buchmuller, A. Bundock, D. Burton, S. Casasso, M. Citron, D. Colling, L. Corpe, P. Dauncey, G. Davies, A. De Wit, M. Della Negra, R. Di Maria, P. Dunne, A. Elwood, D. Futyan, Y. Haddad, G. Hall, G. Iles, T. James, R. Lane, C. Laner, R. Lucas65, L. Lyons, A.-M. Magnan, S. Malik, L. Mastrolorenzo, J. Nash, A. Nikitenko50, J. Pela, B. Penning, M. Pesaresi, D.M. Raymond, A. Richards, A. Rose, C. Seez, S. Summers, A. Tapper, K. Uchida, M. Vazquez Acosta67, T. Virdee16, J. Wright, S.C. Zenz Brunel University, Uxbridge, United Kingdom J.E. Cole, P.R. Hobson, A. Khan, P. Kyberd, D. Leslie, I.D. Reid, P. Symonds, L. TeodorBaylor University, Waco, U.S.A. A. Borzou, K. Call, J. Dittmann, K. Hatakeyama, H. Liu, N. Pastika The University of Alabama, Tuscaloosa, U.S.A. S.I. Cooper, C. Henderson, P. Rumerio, C. West Boston University, Boston, U.S.A. D. Arcaro, A. Avetisyan, T. Bose, D. Gastler, D. Rankin, C. Richardson, J. Rohlf, L. Sulak, D. Zou R. Syarif Brown University, Providence, U.S.A. G. Benelli, E. Berry, D. Cutts, A. Garabedian, J. Hakala, U. Heintz, J.M. Hogan, O. Jesus, K.H.M. Kwok, E. Laird, G. Landsberg, Z. Mao, M. Narain, S. Piperov, S. Sagir, E. Spencer, University of California, Davis, Davis, U.S.A. R. Breedon, G. Breto, D. Burns, M. Calderon De La Barca Sanchez, S. Chauhan, M. Chertok, J. Conway, R. Conway, P.T. Cox, R. Erbacher, C. Flores, G. Funk, M. Gardner, J. Gunion, W. Ko, R. Lander, C. Mclean, M. Mulhearn, D. Pellett, J. Pilot, S. Shalhout, J. Smith, M. Squires, D. Stolp, M. Tripathi University of California, Los Angeles, U.S.A. C. Bravo, R. Cousins, A. Dasgupta, P. Everaerts, A. Florent, J. Hauser, M. Ignatenko, N. Mccoll, D. Saltzberg, C. Schnaible, E. Takasugi, V. Valuev, M. Weber University of California, Riverside, Riverside, U.S.A. K. Burt, R. Clare, J. Ellison, J.W. Gary, S.M.A. Ghiasi Shirazi, G. Hanson, J. Heilman, P. Jandir, E. Kennedy, F. Lacroix, O.R. Long, M. Olmedo Negrete, M.I. Paneva, A. Shrinivas, W. Si, H. Wei, S. Wimpenny, B. R. Yates University of California, San Diego, La Jolla, U.S.A. J.G. Branson, G.B. Cerati, S. Cittolin, M. Derdzinski, R. Gerosa, A. Holzner, D. Klein, V. Krutelyov, J. Letts, I. Macneill, D. Olivito, S. Padhi, M. Pieri, M. Sani, V. Sharma, S. Simon, M. Tadel, A. Vartak, S. Wasserbaech68, C. Welke, J. Wood, F. Wurthwein, A. Yagil, G. Zevi Della Porta University of California, Santa Barbara - Department of Physics, Santa Barbara, U.S.A. N. Amin, R. Bhandari, J. Bradmiller-Feld, C. Campagnari, A. Dishaw, V. Dutta, M. Franco Sevilla, C. George, F. Golf, L. Gouskos, J. Gran, R. Heller, J. Incandela, S.D. Mullin, A. Ovcharova, H. Qu, J. Richman, D. Stuart, I. Suarez, J. Yoo California Institute of Technology, Pasadena, U.S.A. D. Anderson, A. Apresyan, J. Bendavid, A. Bornheim, J. Bunn, Y. Chen, J. Duarte, J.M. Lawhorn, A. Mott, H.B. Newman, C. Pena, M. Spiropulu, J.R. Vlimant, S. Xie, R.Y. Zhu M. Weinberg S.R. Wagner Carnegie Mellon University, Pittsburgh, U.S.A. M.B. Andrews, V. Azzolini, T. Ferguson, M. Paulini, J. Russ, M. Sun, H. Vogel, I. Vorobiev, University of Colorado Boulder, Boulder, U.S.A. J.P. Cumalat, W.T. Ford, F. Jensen, A. Johnson, M. Krohn, T. Mulholland, K. Stenson, Cornell University, Ithaca, U.S.A. J. Alexander, J. Chaves, J. Chu, S. Dittmer, K. Mcdermott, N. Mirman, G. Nicolas Kaufman, J.R. Patterson, A. Rinkevicius, A. Ryd, L. Skinnari, L. So , S.M. Tan, Z. Tao, J. Thom, J. Tucker, P. Wittich, M. Zientek Fair eld University, Fair eld, U.S.A. D. Winn Fermi National Accelerator Laboratory, Batavia, U.S.A. S. Abdullin, M. Albrow, G. Apollinari, S. Banerjee, L.A.T. Bauerdick, A. Beretvas, J. Berryhill, P.C. Bhat, G. Bolla, K. Burkett, J.N. Butler, H.W.K. Cheung, F. Chlebana, S. Cihangiry, M. Cremonesi, V.D. Elvira, I. Fisk, J. Freeman, E. Gottschalk, L. Gray, D. Green, S. Grunendahl, O. Gutsche, D. Hare, R.M. Harris, S. Hasegawa, J. Hirschauer, Z. Hu, B. Jayatilaka, S. Jindariani, M. Johnson, U. Joshi, B. Klima, B. Kreis, S. Lammel, J. Linacre, D. Lincoln, R. Lipton, T. Liu, R. Lopes De Sa, J. Lykken, K. Maeshima, N. Magini, J.M. Marra no, S. Maruyama, D. Mason, P. McBride, P. Merkel, S. Mrenna, S. Nahn, V. O'Dell, K. Pedro, O. Prokofyev, G. Rakness, L. Ristori, E. Sexton-Kennedy, A. Soha, W.J. Spalding, L. Spiegel, S. Stoynev, N. Strobbe, L. Taylor, S. Tkaczyk, N.V. Tran, L. Uplegger, E.W. Vaandering, C. Vernieri, M. Verzocchi, R. Vidal, M. Wang, H.A. Weber, A. Whitbeck, Y. Wu University of Florida, Gainesville, U.S.A. D. Acosta, P. Avery, P. Bortignon, D. Bourilkov, A. Brinkerho , A. Carnes, M. Carver, D. Curry, S. Das, R.D. Field, I.K. Furic, J. Konigsberg, A. Korytov, J.F. Low, P. Ma, K. Matchev, H. Mei, G. Mitselmakher, D. Rank, L. Shchutska, D. Sperka, L. Thomas, J. Wang, S. Wang, J. Yelton Florida International University, Miami, U.S.A. S. Linn, P. Markowitz, G. Martinez, J.L. Rodriguez Florida State University, Tallahassee, U.S.A. A. Ackert, J.R. Adams, T. Adams, A. Askew, S. Bein, B. Diamond, S. Hagopian, V. Hagopian, K.F. Johnson, H. Prosper, A. Santra, R. Yohay Florida Institute of Technology, Melbourne, U.S.A. M.M. Baarmand, V. Bhopatkar, S. Colafranceschi, M. Hohlmann, D. Noonan, T. Roy, F. Yumiceva University of Illinois at Chicago (UIC), Chicago, U.S.A. M.R. Adams, L. Apanasevich, D. Berry, R.R. Betts, I. Bucinskaite, R. Cavanaugh, O. Evdokimov, L. Gauthier, C.E. Gerber, D.J. Hofman, K. Jung, P. Kurt, C. O'Brien, I.D. Sandoval Gonzalez, P. Turner, N. Varelas, H. Wang, Z. Wu, M. Zakaria, J. Zhang The University of Iowa, Iowa City, U.S.A. B. Bilki69, W. Clarida, K. Dilsiz, S. Durgut, R.P. Gandrajula, M. Haytmyradov, V. Khristenko, J.-P. Merlo, H. Mermerkaya70, A. Mestvirishvili, A. Moeller, J. Nachtman, H. Ogul, Y. Onel, F. Ozok71, A. Penzo, C. Snyder, E. Tiras, J. Wetzel, K. Yi Johns Hopkins University, Baltimore, U.S.A. I. Anderson, B. Blumenfeld, A. Cocoros, N. Eminizer, D. Fehling, L. Feng, A.V. Gritsan, P. Maksimovic, C. Martin, M. Osherson, J. Roskes, U. Sarica, M. Swartz, M. Xiao, Y. Xin, C. You The University of Kansas, Lawrence, U.S.A. A. Al-bataineh, P. Baringer, A. Bean, S. Boren, J. Bowen, C. Bruner, J. Castle, L. Forthomme, R.P. Kenny III, S. Khalil, A. Kropivnitskaya, D. Majumder, W. Mcbrayer, M. Murray, S. Sanders, R. Stringer, J.D. Tapia Takaki, Q. Wang Kansas State University, Manhattan, U.S.A. A. Ivanov, K. Kaadze, Y. Maravin, A. Mohammadi, L.K. Saini, N. Skhirtladze, S. Toda Lawrence Livermore National Laboratory, Livermore, U.S.A. F. Rebassoo, D. Wright University of Maryland, College Park, U.S.A. C. Anelli, A. Baden, O. Baron, A. Belloni, B. Calvert, S.C. Eno, C. Ferraioli, J.A. Gomez, N.J. Hadley, S. Jabeen, R.G. Kellogg, T. Kolberg, J. Kunkle, Y. Lu, A.C. Mignerey, F. Ricci-Tam, Y.H. Shin, A. Skuja, M.B. Tonjes, S.C. Tonwar Massachusetts Institute of Technology, Cambridge, U.S.A. D. Abercrombie, B. Allen, A. Apyan, R. Barbieri, A. Baty, R. Bi, K. Bierwagen, S. Brandt, W. Busza, I.A. Cali, Z. Demiragli, L. Di Matteo, G. Gomez Ceballos, M. Goncharov, D. Hsu, Y. Iiyama, G.M. Innocenti, M. Klute, D. Kovalskyi, K. Krajczar, Y.S. Lai, Y.-J. Lee, A. Levin, P.D. Luckey, B. Maier, A.C. Marini, C. Mcginn, C. Mironov, S. Narayanan, X. Niu, C. Paus, C. Roland, G. Roland, J. Salfeld-Nebgen, G.S.F. Stephans, K. Sumorok, K. Tatar, M. Varma, D. Velicanu, J. Veverka, J. Wang, T.W. Wang, B. Wyslouch, M. Yang, V. Zhukova A.C. Benvenuti, R.M. Chatterjee, A. Evans, A. Finkel, A. Gude, P. Hansen, S. Kalafut, S.C. Kao, Y. Kubota, Z. Lesko, J. Mans, S. Nourbakhsh, N. Ruckstuhl, R. Rusack, N. Tambe, J. Turkewitz University of Mississippi, Oxford, U.S.A. J.G. Acosta, S. Oliveros University of Nebraska-Lincoln, Lincoln, U.S.A. E. Avdeeva, R. Bartek72, K. Bloom, D.R. Claes, A. Dominguez72, C. Fangmeier, R. Gonzalez Suarez, R. Kamalieddin, I. Kravchenko, A. Malta Rodrigues, F. Meier, J. Monroy, J.E. Siado, G.R. Snow, B. Stieger State University of New York at Bu alo, Bu alo, U.S.A. M. Alyari, J. Dolen, J. George, A. Godshalk, C. Harrington, I. Iashvili, J. Kaisen, A. Kharchilava, A. Kumar, A. Parker, S. Rappoccio, B. Roozbahani Northeastern University, Boston, U.S.A. G. Alverson, E. Barberis, A. Hortiangtham, A. Massironi, D.M. Morse, D. Nash, T. Orimoto, R. Teixeira De Lima, D. Trocino, R.-J. Wang, D. Wood Northwestern University, Evanston, U.S.A. S. Bhattacharya, O. Charaf, K.A. Hahn, A. Kubik, A. Kumar, N. Mucia, N. Odell, B. Pollack, M.H. Schmitt, K. Sung, M. Trovato, M. Velasco University of Notre Dame, Notre Dame, U.S.A. N. Dev, M. Hildreth, K. Hurtado Anampa, C. Jessop, D.J. Karmgard, N. Kellams, K. Lannon, N. Marinelli, F. Meng, C. Mueller, Y. Musienko37, M. Planer, A. Reinsvold, R. Ruchti, G. Smith, S. Taroni, M. Wayne, M. Wolf, A. Woodard The Ohio State University, Columbus, U.S.A. J. Alimena, L. Antonelli, B. Bylsma, L.S. Durkin, S. Flowers, B. Francis, A. Hart, C. Hill, R. Hughes, W. Ji, B. Liu, W. Luo, D. Puigh, B.L. Winer, H.W. Wulsin Princeton University, Princeton, U.S.A. S. Cooperstein, O. Driga, P. Elmer, J. Hardenbrook, P. Hebda, D. Lange, J. Luo, D. Marlow, J. Mc Donald, T. Medvedeva, K. Mei, M. Mooney, J. Olsen, C. Palmer, P. Piroue, D. Stickland, A. Svyatkovskiy, C. Tully, A. Zuranski University of Puerto Rico, Mayaguez, U.S.A. S. Malik Purdue University, West Lafayette, U.S.A. A. Barker, V.E. Barnes, S. Folgueras, L. Gutay, M.K. Jha, M. Jones, A.W. Jung, A. Khatiwada, D.H. Miller, N. Neumeister, J.F. Schulte, X. Shi, J. Sun, F. Wang, W. Xie Purdue University Calumet, Hammond, U.S.A. N. Parashar, J. Stupak Rice University, Houston, U.S.A. A. Adair, B. Akgun, Z. Chen, K.M. Ecklund, F.J.M. Geurts, M. Guilbaud, W. Li, B. Michlin, M. Northup, B.P. Padley, R. Redjimi, J. Roberts, J. Rorie, Z. Tu, J. Zabel University of Rochester, Rochester, U.S.A. B. Betchart, A. Bodek, P. de Barbaro, R. Demina, Y.t. Duh, T. Ferbel, M. Galanti, A. Garcia-Bellido, J. Han, O. Hindrichs, A. Khukhunaishvili, K.H. Lo, P. Tan, M. Verzetti Rutgers, The State University of New Jersey, Piscataway, U.S.A. A. Agapitos, J.P. Chou, E. Contreras-Campana, Y. Gershtein, T.A. Gomez Espinosa, E. Halkiadakis, M. Heindl, D. Hidas, E. Hughes, S. Kaplan, R. Kunnawalkam Elayavalli, S. Kyriacou, A. Lath, K. Nash, H. Saka, S. Salur, S. Schnetzer, D. She eld, S. Somalwar, R. Stone, S. Thomas, P. Thomassen, M. Walker University of Tennessee, Knoxville, U.S.A. A.G. Delannoy, M. Foerster, J. Heideman, G. Riley, K. Rose, S. Spanier, K. Thapa Texas A&M University, College Station, U.S.A. O. Bouhali73, A. Celik, M. Dalchenko, M. De Mattia, A. Delgado, S. Dildick, R. Eusebi, J. Gilmore, T. Huang, E. Juska, T. Kamon74, R. Mueller, Y. Pakhotin, R. Patel, A. Perlo , L. Pernie, D. Rathjens, A. Rose, A. Safonov, A. Tatarinov, K.A. Ulmer Texas Tech University, Lubbock, U.S.A. N. Akchurin, C. Cowden, J. Damgov, F. De Guio, C. Dragoiu, P.R. Dudero, J. Faulkner, E. Gurpinar, S. Kunori, K. Lamichhane, S.W. Lee, T. Libeiro, T. Peltola, S. Undleeb, I. Volobouev, Z. Wang Vanderbilt University, Nashville, U.S.A. S. Greene, A. Gurrola, R. Janjam, W. Johns, C. Maguire, A. Melo, H. Ni, P. Sheldon, S. Tuo, J. Velkovska, Q. Xu University of Virginia, Charlottesville, U.S.A. T. Sinthuprasith, X. Sun, Y. Wang, E. Wolfe, F. Xia Wayne State University, Detroit, U.S.A. C. Clarke, R. Harr, P.E. Karchin, J. Sturdy M.W. Arenton, P. Barria, B. Cox, J. Goodell, R. Hirosky, A. Ledovskoy, H. Li, C. Neu, University of Wisconsin - Madison, Madison, WI, U.S.A. D.A. Belknap, J. Buchanan, C. Caillol, S. Dasu, L. Dodd, S. Duric, B. Gomber, M. Grothe, M. Herndon, A. Herve, P. Klabbers, A. Lanaro, A. Levine, K. Long, R. Loveless, I. Ojalvo, T. Perry, G.A. Pierro, G. Polese, T. Ruggles, A. Savin, N. Smith, W.H. Smith, D. Taylor, N. Woods y: Deceased China 1: Also at Vienna University of Technology, Vienna, Austria 2: Also at State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, CNRS/IN2P3, Strasbourg, France 4: Also at Universidade Estadual de Campinas, Campinas, Brazil 5: Also at Universidade Federal de Pelotas, Pelotas, Brazil 6: Also at Universite Libre de Bruxelles, Bruxelles, Belgium 7: Also at Deutsches Elektronen-Synchrotron, Hamburg, Germany 8: Also at Joint Institute for Nuclear Research, Dubna, Russia 9: Now at Cairo University, Cairo, Egypt 10: Also at Fayoum University, El-Fayoum, Egypt 11: Now at British University in Egypt, Cairo, Egypt 12: Now at Ain Shams University, Cairo, Egypt 13: Also at Universite de Haute Alsace, Mulhouse, France Moscow, Russia 14: Also at Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, 15: Also at Tbilisi State University, Tbilisi, Georgia 16: Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland 17: Also at RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany 18: Also at University of Hamburg, Hamburg, Germany 19: Also at Brandenburg University of Technology, Cottbus, Germany 20: Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary 21: Also at MTA-ELTE Lendulet CMS Particle and Nuclear Physics Group, Eotvos Lorand University, Budapest, Hungary 22: Also at Institute of Physics, University of Debrecen, Debrecen, Hungary 23: Also at Indian Institute of Science Education and Research, Bhopal, India 24: Also at Institute of Physics, Bhubaneswar, India 25: Also at University of Visva-Bharati, Santiniketan, India 26: Also at University of Ruhuna, Matara, Sri Lanka 27: Also at Isfahan University of Technology, Isfahan, Iran 28: Also at University of Tehran, Department of Engineering Science, Tehran, Iran 29: Also at Yazd University, Yazd, Iran 30: Also at Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran 31: Also at Universita degli Studi di Siena, Siena, Italy 32: Also at Purdue University, West Lafayette, U.S.A. 33: Also at International Islamic University of Malaysia, Kuala Lumpur, Malaysia 34: Also at Malaysian Nuclear Agency, MOSTI, Kajang, Malaysia 35: Also at Consejo Nacional de Ciencia y Tecnolog a, Mexico city, Mexico 36: Also at Warsaw University of Technology, Institute of Electronic Systems, Warsaw, Poland 37: Also at Institute for Nuclear Research, Moscow, Russia 38: Now at National Research Nuclear University `Moscow 39: Also at St. Petersburg State Polytechnical University, St. Petersburg, Russia 40: Also at University of Florida, Gainesville, U.S.A. 41: Also at P.N. Lebedev Physical Institute, Moscow, Russia 42: Also at California Institute of Technology, Pasadena, U.S.A. 43: Also at Budker Institute of Nuclear Physics, Novosibirsk, Russia 44: Also at Faculty of Physics, University of Belgrade, Belgrade, Serbia 45: Also at INFN Sezione di Roma; Universita di Roma, Roma, Italy 47: Also at Scuola Normale e Sezione dell'INFN, Pisa, Italy 48: Also at National and Kapodistrian University of Athens, Athens, Greece 49: Also at Riga Technical University, Riga, Latvia 50: Also at Institute for Theoretical and Experimental Physics, Moscow, Russia 51: Also at Albert Einstein Center for Fundamental Physics, Bern, Switzerland 52: Also at Adiyaman University, Adiyaman, Turkey 53: Also at Istanbul Aydin University, Istanbul, Turkey 54: Also at Mersin University, Mersin, Turkey 55: Also at Cag University, Mersin, Turkey 56: Also at Piri Reis University, Istanbul, Turkey 57: Also at Gaziosmanpasa University, Tokat, Turkey 58: Also at Ozyegin University, Istanbul, Turkey 59: Also at Izmir Institute of Technology, Izmir, Turkey 60: Also at Marmara University, Istanbul, Turkey 61: Also at Kafkas University, Kars, Turkey 62: Also at Istanbul Bilgi University, Istanbul, Turkey 63: Also at Yildiz Technical University, Istanbul, Turkey 64: Also at Hacettepe University, Ankara, Turkey 65: Also at Rutherford Appleton Laboratory, Didcot, United Kingdom 66: Also at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom 67: Also at Instituto de Astrof sica de Canarias, La Laguna, Spain 68: Also at Utah Valley University, Orem, U.S.A. 69: Also at Argonne National Laboratory, Argonne, U.S.A. 70: Also at Erzincan University, Erzincan, Turkey 71: Also at Mimar Sinan University, Istanbul, Istanbul, Turkey 72: Now at The Catholic University of America, Washington, U.S.A. 73: Also at Texas A&M University at Qatar, Doha, Qatar 74: Also at Kyungpook National University, Daegu, Korea [45] J. Bernon , J.F. Gunion , H.E. Haber , Y. Jiang and S. Kraml , Scrutinizing the alignment limit in two-Higgs-doublet models: mh = 125 GeV, Phys . Rev. D 92 ( 2015 ) 075004 [46] A. Djouadi , The anatomy of electro-weak symmetry breaking. I: the Higgs boson in the standard model , Phys. Rept . 457 ( 2008 ) 1 [hep- ph/0503172] [INSPIRE]. [61] J. Pumplin , D.R. Stump , J. Huston , H.L. Lai , P.M. Nadolsky and W.K. Tung , New [62] GEANT4 collaboration , S. Agostinelli et al., GEANT4: A simulation toolkit , Nucl. Instrum. [63] GEANT4 collaboration, Geant4 developments and applications , IEEE Trans. Nucl. Sci . 53 [64] CMS collaboration, Particle- ow event reconstruction in CMS and performance for jets, taus [65] CMS collaboration, Commissioning of the Particle- ow Event Reconstruction with the rst LHC collisions recorded in the CMS detector, CMS- PAS-PFT- 10- 001 ( 2010 ). [66] K. Rose , Deterministic annealing for clustering, compression, classi cation, regression and related optimisation problems , Proc. IEEE 86 ( 1998 ) 2210 . [67] R. Fru hwirth, W. Waltenberger and P. Vanlaer , Adaptive vertex tting, J. Phys. G 34 ( 2007 ) [71] M. Cacciari , G.P. Salam and G. Soyez, The anti-kt jet clustering algorithm , JHEP 04 ( 2008 ) [82] P.D. Dauncey , M. Kenzie , N. Wardle and G.J. Davies , Handling uncertainties in background of its properties , Eur. Phys. J. C 74 ( 2014 ) 3076 [arXiv: 1407 .0558] [INSPIRE]. [84] L. Bianchini , J. Conway , E.K. Friis and C. Veelken , Reconstruction of the Higgs mass in


This is a preview of a remote PDF: https://link.springer.com/content/pdf/10.1007%2FJHEP10%282017%29076.pdf

V. Khachatryan, A. M. Sirunyan, A. Tumasyan, W. Adam, E. Asilar, T. Bergauer, J. Brandstetter, E. Brondolin, M. Dragicevic, J. Erö, M. Flechl, M. Friedl, R. Frühwirth, V. M. Ghete, C. Hartl, N. Hörmann, J. Hrubec, M. Jeitler, A. König, I. Krätschmer, D. Liko, T. Matsushita, I. Mikulec, D. Rabady, N. Rad, B. Rahbaran, H. Rohringer, J. Schieck, J. Strauss, W. Waltenberger, C.-E. Wulz, O. Dvornikov, V. Makarenko, V. Zykunov, V. Mossolov, N. Shumeiko, J. Suarez Gonzalez, S. Alderweireldt, E. A. De Wolf, X. Janssen, J. Lauwers, M. Van De Klundert, H. Van Haevermaet, P. Van Mechelen, N. Van Remortel, A. Van Spilbeeck, S. Abu Zeid, F. Blekman, J. D’Hondt, N. Daci, I. De Bruyn, K. Deroover, S. Lowette, S. Moortgat, L. Moreels, A. Olbrechts, Q. Python, S. Tavernier, W. Van Doninck, P. Van Mulders, I. Van Parijs, H. Brun, B. Clerbaux, G. De Lentdecker, H. Delannoy, G. Fasanella, L. Favart, R. Goldouzian, A. Grebenyuk, G. Karapostoli, T. Lenzi, A. Léonard, J. Luetic, T. Maerschalk, A. Marinov, A. Randle-conde, T. Seva, C. Vander Velde, P. Vanlaer, D. Vannerom, R. Yonamine, F. Zenoni, F. Zhang, A. Cimmino, T. Cornelis, D. Dobur, A. Fagot, G. Garcia, M. Gul, I. Khvastunov, D. Poyraz, S. Salva, R. Schöfbeck, A. Sharma, M. Tytgat, W. Van Driessche, E. Yazgan, N. Zaganidis, H. Bakhshiansohi, C. Beluffi, O. Bondu, S. Brochet, G. Bruno, A. Caudron, S. De Visscher, C. Delaere, M. Delcourt, B. Francois, A. Giammanco, A. Jafari, P. Jez, M. Komm, G. Krintiras, V. Lemaitre, A. Magitteri, A. Mertens, M. Musich, C. Nuttens, K. Piotrzkowski, L. Quertenmont, M. Selvaggi, M. Vidal Marono, S. Wertz, N. Beliy, W. L. Aldá Júnior, F. L. Alves, G. A. Alves, L. Brito, C. Hensel, A. Moraes, M. E. Pol, P. Rebello Teles, E. Belchior Batista Das Chagas, W. Carvalho, J. Chinellato, A. Custódio, E. M. Da Costa, G. G. Da Silveira, D. De Jesus Damiao, C. De Oliveira Martins, S. Fonseca De Souza, L. M. Huertas Guativa, H. Malbouisson, D. Matos Figueiredo, C. Mora Herrera, L. Mundim, H. Nogima, W. L. Prado Da Silva, A. Santoro, A. Sznajder, E. J. Tonelli Manganote, A. Vilela Pereira, S. Ahuja, C. A. Bernardes, S. Dogra, T. R. Fernandez Perez Tomei, E. M. Gregores, P. G. Mercadante, C. S. Moon, S. F. Novaes, Sandra S. Padula, D. Romero Abad, J. C. Ruiz Vargas, A. Aleksandrov, R. Hadjiiska, P. Iaydjiev, M. Rodozov, S. Stoykova, G. Sultanov, M. Vutova, A. Dimitrov, I. Glushkov, L. Litov, B. Pavlov, P. Petkov, W. Fang, M. Ahmad, J. G. Bian, G. M. Chen, H. S. Chen, M. Chen, Y. Chen, T. Cheng, C. H. Jiang, D. Leggat, Z. Liu, F. Romeo, S. M. Shaheen, A. Spiezia, J. Tao, C. Wang, Z. Wang, H. Zhang, J. Zhao, Y. Ban, G. Chen, Q. Li, S. Liu, Y. Mao, S. J. Qian, D. Wang, Z. Xu, C. Avila, A. Cabrera, L. F. Chaparro Sierra, C. Florez, J. P. Gomez, C. F. González Hernández, J. D. Ruiz Alvarez, J. C. Sanabria, N. Godinovic, D. Lelas, I. Puljak, P. M. Ribeiro Cipriano, T. Sculac, Z. Antunovic, M. Kovac, V. Brigljevic, D. Ferencek, K. Kadija, B. Mesic, S. Micanovic, L. Sudic, T. Susa, A. Attikis, G. Mavromanolakis, J. Mousa, C. Nicolaou, F. Ptochos, P. A. Razis, H. Rykaczewski, D. Tsiakkouri, M. Finger, M. Finger Jr., E. Carrera Jarrin, A. Ellithi Kamel, M. A. Mahmoud, A. Radi, M. Kadastik, L. Perrini, M. Raidal, A. Tiko, C. Veelken, P. Eerola, J. Pekkanen, M. Voutilainen, J. Härkönen, T. Järvinen, V. Karimäki, R. Kinnunen, T. Lampén, K. Lassila-Perini, S. Lehti, T. Lindén, P. Luukka, J. Tuominiemi, E. Tuovinen, L. Wendland, J. Talvitie, T. Tuuva, M. Besancon, F. Couderc, M. Dejardin, D. Denegri, B. Fabbro, J. L. Faure, C. Favaro, F. Ferri, S. Ganjour, S. Ghosh, A. Givernaud, P. Gras, G. Hamel de Monchenault, P. Jarry, I. Kucher, E. Locci, M. Machet, J. Malcles, J. Rander, A. Rosowsky, M. Titov, A. Zghiche, A. Abdulsalam, I. Antropov, S. Baffioni, F. Beaudette, P. Busson, L. Cadamuro, E. Chapon, C. Charlot, O. Davignon, R. Granier de Cassagnac, M. Jo, S. Lisniak, P. Miné, M. Nguyen, C. Ochando, G. Ortona, P. Paganini, P. Pigard, S. Regnard, R. Salerno, Y. Sirois, T. Strebler, Y. Yilmaz, A. Zabi, J.-L. Agram, J. Andrea, A. Aubin, D. Bloch, J.-M. Brom, M. Buttignol, E. C. Chabert, N. Chanon, C. Collard, E. Conte, X. Coubez, J.-C. Fontaine, D. Gelé, U. Goerlach, A.-C. Le Bihan, K. Skovpen, P. Van Hove, S. Gadrat, S. Beauceron, C. Bernet, G. Boudoul, E. Bouvier, C. A. Carrillo Montoya, R. Chierici, D. Contardo, B. Courbon, P. Depasse, H. El Mamouni, J. Fan, J. Fay, S. Gascon, M. Gouzevitch, G. Grenier, B. Ille, F. Lagarde, I. B. Laktineh, M. Lethuillier, L. Mirabito, A. L. Pequegnot, S. Perries, A. Popov, D. Sabes, V. Sordini, M. Vander Donckt, P. Verdier, S. Viret, T. Toriashvili, Z. Tsamalaidze, C. Autermann, S. Beranek, L. Feld, A. Heister, M. K. Kiesel, K. Klein, M. Lipinski, A. Ostapchuk, M. Preuten, F. Raupach, S. Schael, C. Schomakers, J. Schulz, T. Verlage, H. Weber, A. Albert, M. Brodski, E. Dietz-Laursonn, D. Duchardt, M. Endres, M. Erdmann, S. Erdweg, T. Esch, R. Fischer, A. Güth, M. Hamer, T. Hebbeker, C. Heidemann, K. Hoepfner, S. Knutzen, M. Merschmeyer. Search for light bosons in decays of the 125 GeV Higgs boson in proton-proton collisions at \( \sqrt{s}=8 \) TeV, Journal of High Energy Physics, 2017, 76, DOI: 10.1007/JHEP10(2017)076