Measurements of properties of the Higgs boson decaying into the four-lepton final state in pp collisions at \( \sqrt{s}=13 \) TeV

Journal of High Energy Physics, Nov 2017

Properties of the Higgs boson are measured in the H → ZZ → 4ℓ (ℓ = e, μ) decay channel. A data sample of proton-proton collisions at \( \sqrt{s}=13 \) TeV, collected with the CMS detector at the LHC and corresponding to an integrated luminosity of 35.9 fb−1 is used. The signal strength modifier μ, defined as the ratio of the observed Higgs boson rate in the H → ZZ → 4ℓ decay channel to the standard model expectation, is measured to be μ = 1.05 − 0.17 + 0.19 at m H = 125.09 GeV, the combined ATLAS and CMS measurement of the Higgs boson mass. The signal strength modifiers for the individual Higgs boson production modes are also measured. The cross section in the fiducial phase space defined by the requirements on lepton kinematics and event topology is measured to be 2. 92 − 0.44 + 0.48 (stat) − 0.24 + 0.28 (syst)fb, which is compatible with the standard model prediction of 2.76 ± 0.14 fb. Differential cross sections are reported as a function of the transverse momentum of the Higgs boson, the number of associated jets, and the transverse momentum of the leading associated jet. The Higgs boson mass is measured to be m H = 125.26 ± 0.21 GeV and the width is constrained using the on-shell invariant mass distribution to be ΓH < 1.10 GeV, at 95% confidence level.

A PDF file should load here. If you do not see its contents the file may be temporarily unavailable at the journal website or you do not have a PDF plug-in installed and enabled in your browser.

Alternatively, you can download the file locally and open with any standalone PDF reader:

https://link.springer.com/content/pdf/10.1007%2FJHEP11%282017%29047.pdf

Measurements of properties of the Higgs boson decaying into the four-lepton final state in pp collisions at \( \sqrt{s}=13 \) TeV

Received: June 13 TeV Measurements of properties of the Higgs boson decaying into the four-lepton nal state in pp 0 s = 13 TeV , collected with Properties of the Higgs boson are measured in the H ! ZZ ! 4` (` = e; ) the CMS detector at the LHC and corresponding to an integrated luminosity of 35.9 fb 1 is used. The signal strength modi er , de ned as the ratio of the observed Higgs boson rate in the H ! ZZ ! 4` decay channel to the standard model expectation, is measured to be 1:05+00::1197 at mH = 125:09 GeV, the combined ATLAS and CMS measurement of the Higgs Hadron-Hadron scattering (experiments); Higgs physics - The CMS collaboration boson mass. The signal strength modi ers for the individual Higgs boson production modes are also measured. The cross section in the ducial phase space de ned by the requirements on lepton kinematics and event topology is measured to be 2:92 +00::4484(stat) +00::2284(syst) fb, which is compatible with the standard model prediction of 2:76 0:14 fb. Di erential cross sections are reported as a function of the transverse momentum of the Higgs boson, the number of associated jets, and the transverse momentum of the leading associated jet. The Higgs boson mass is measured to be mH = 125:26 0:21 GeV and the width is constrained using the on-shell invariant mass distribution to be H < 1:10 GeV, at 95% con dence level. 5 Kinematic discriminants and event-by-event mass uncertainty 1 Introduction 2 The CMS detector 3 Data and simulated samples 4 Event reconstruction and selection 6 Event categorization 7 Background estimation 7.1 7.2 Irreducible backgrounds Reducible backgrounds 7.2.1 7.2.2 7.2.3 Method using OS leptons Method using SS leptons Prediction and uncertainties 8 Signal modeling 9 Systematic uncertainties 10 Results 10.1 Signal strength modi ers 10.2 Cross section measurements 10.3 Higgs boson mass measurement 11 Summary The CMS collaboration 1 Introduction 10.4 Measurement of the Higgs boson width using on-shell production In 2012, the ATLAS and CMS Collaborations reported the observation of a new particle with a mass of approximately 125 GeV and properties consistent with that of the standard model (SM) Higgs boson [1{3]. Further studies by the two experiments [4{6], using the entire LHC Run 1 data set at center-of-mass energies of 7 and 8 TeV indicate agreement within their uncertainties between the measured properties of the new boson and those { 1 { clude the determination of the mass and spin-parity of the boson [14{18], its width [19{21], the ducial cross sections [22, 23], and the tensor structure of its interaction with a pair of neutral gauge bosons [16, 18, 20]. In this paper measurements of properties of the Higgs boson decaying into the fourlepton nal state in proton-proton (pp) collisions at p s = 13 TeV are presented. Events are classi ed into categories optimized with respect to those used in ref. [14] to provide increased sensitivity to subleading production modes of the Higgs boson such as vector boson fusion (VBF) and associated production with a vector boson (WH, ZH) or top quark pair (ttH). The signal strength modi er, de ned as the ratio of the measured Higgs boson rate in the H ! ZZ ! 4` decay channel to the SM expectation, is measured. The signal strength modi ers for the individual Higgs boson production modes are constrained. In addition, cross section measurements and dedicated measurements of the mass and width of the Higgs boson are performed. This paper is structured as follows: the apparatus and the data samples are described in section 2 and section 3. Section 4 summarizes the event reconstruction and selection. Kinematic discriminants and event categorization are discussed in section 5 and section 6. The background estimation and the signal modelling are reported in section 7 and section 8. We then discuss the systematic uncertainties in section 9. Finally, section 10 presents event yields, kinematic distributions, and measured properties. 2 The CMS detector A detailed description of the CMS detector, together with a de nition of the coordinate system used and the relevant kinematic variables, can be found in ref. [24]. The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal diameter, providing a magnetic eld of 3.8 T. Within the solenoid volume are a silicon pixel and strip tracker, a lead tungstate crystal electromagnetic calorimeter (ECAL), and a brass and scintillator hadron calorimeter (HCAL), each composed of a barrel and two endcap sections. Forward calorimeters extend the pseudorapidity ( ) coverage provided by the barrel and endcap detectors. Muons are detected in gas-ionization chambers embedded in the steel ux-return yoke outside the solenoid. The silicon tracker measures charged particles within the pseudorapidity range j j < 2:5. It consists of 1440 silicon pixel and 15 148 silicon strip detector modules. For nonisolated particles with transverse momentum pT between 1 and 10 GeV and j j < 1:4, the track resolutions are typically 1.5% in pT and 25{90 (45{150) m in the transverse (longitudinal) impact parameter [25]. { 2 { The electromagnetic calorimeter consists of 75 848 lead tungstate crystals, which provide coverage in pseudorapidity j j < 1:479 in the barrel region (EB) and 1:479 < j j < 3:0 in the two endcap regions (EE). A preshower detector consisting of two planes of silicon sensors interleaved with a total of 3X0 of lead is located in front of the EE. The electron momentum is estimated by combining the energy measurement in the ECAL with the momentum measurement in the tracker. The momentum resolution for electrons with pT 45 GeV from Z ! ee decays ranges from 1.7% for electrons in the barrel region that do not shower in the tracker volume to 4.5% for electrons in the endcaps that do shower in the tracker volume [26]. Muons are measured in the pseudorapidity range j j < 2:4, with detection planes made using three technologies: drift tubes, cathode strip chambers, and resistive plate chambers. Matching muons to tracks measured in the silicon tracker results in a relative transverse momentum resolution for muons with 20 < pT < 100 GeV of 1.3{2.0% in the barrel (j j < 0:9) and better than 6% in the endcaps (j j > 0:9). The pT resolution in the barrel is better than 10% for muons with pT up to 1 TeV [27]. The rst level (L1) of the CMS trigger system [28], composed of custom hardware processors, uses information from the calorimeters and muon detectors to select the most interesting events in a xed time interval of less than 4 s. The high-level trigger (HLT) processor farm further decreases the event rate from around 100 kHz to less than 1 kHz, before data storage. 3 Data and simulated samples This analysis makes use of pp collision data recorded by the CMS detector in 2016, corresponding to an integrated luminosity of 35:9 fb 1. Collision events are selected by high-level trigger algorithms that require the presence of leptons passing loose identi cation and isolation requirements. The main triggers of this analysis select either a pair of electrons or muons, or an electron and a muon. The minimal transverse momentum with respect to the beam axis of the leading electron (muon) is 23 (17) GeV, while that of the subleading lepton is 12 (8) GeV. To maximize the signal acceptance, triggers requiring three leptons with lower pT thresholds and no isolation requirement are also used, as are isolated singleelectron and single-muon triggers with the thresholds of 27 GeV and 22 GeV, respectively. The overall trigger e ciency for simulated signal events that pass the full selection chain of this analysis (described in section 4) is larger than 99%. The trigger e ciency is measured in data with a method based on the \tag-and-probe" technique [29] using a sample of 4` events collected by the single-lepton triggers. Leptons passing the single-lepton triggers are used as tags and the other three leptons are used as probes. The e ciency in data is found to be in agreement with the expectation from simulation. The Monte Carlo (MC) simulation samples for the signals and the relevant background processes are used to estimate backgrounds, optimize the event selection, and evaluate the acceptance and systematic uncertainties. The SM Higgs boson signals are generated at next-to-leading order (NLO) in perturbative quantum chromodynamics (pQCD) with the powheg 2.0 [30{32] generator for the ve main production modes: gluon fusion (gg ! H), { 3 { vector boson fusion (qq ! qqH), and associated production (WH, ZH, and ttH). For WH and ZH the minlo hvj [33] extension of powheg 2.0 is used. The cross sections for the various signal processes are taken from ref. [34], and in particular the cross section for the dominant gluon fusion production mode is taken from ref. [35]. The default set of parton distribution functions (PDFs) used in all simulations is NNPDF30 nlo as 0118 [36]. The decay of the Higgs boson to four leptons is modeled with jhugen 7.0.2 [37, 38]. In the case of ZH and ttH, the Higgs boson is also allowed to decay as H ! ZZ ! 2`2X where X stands for either a quark or a neutrino, thus accounting for four-lepton events where two leptons originate from the decay of the associated Z boson or top quarks. In all of the simulated samples, vector bosons are allowed to decay to -leptons such that this contribution is included in all estimations. To generate a more accurate signal model, the pT spectrum of the Higgs boson was tuned in the powheg simulation of the dominant gluon fusion production mode to better match predictions from full phase space calculations implemented in the hres 2.3 generator [39, 40]. The SM ZZ background contribution from quark-antiquark annihilation is generated at NLO pQCD with powheg 2.0, while the gg ! ZZ process is generated at leading order (LO) with mcfm [41]. All signal and background generators are interfaced with pythia 8.212 [42] tune CUETP8M1 [43] to simulate multiple parton interactions, the underlying event, and the fragmentation and hadronization e ects. The generated events are processed through a detailed simulation of the CMS detector based on Geant4 [44, 45] and are reconstructed with the same algorithms that are used for data. The simulated events include overlapping pp interactions (pileup) and have been reweighted so that the distribution of the number of interactions per LHC bunch crossing in simulation matches that observed in data. 4 Event reconstruction and selection Event reconstruction is based on the particle- ow (PF) algorithm [46], which exploits information from all the CMS subdetectors to identify and reconstruct individual particles in the event. The PF candidates are classi ed as charged hadrons, neutral hadrons, photons, electrons, or muons, and they are then used to build higher-level observables such as jets and lepton isolation quantities. Electrons with peT > 7 GeV are reconstructed within the geometrical acceptance de ned by a pseudorapidity j ej < 2:5. Electrons are identi ed using a multivariate discriminant that includes observables sensitive to the presence of bremsstrahlung along the electron trajectory, the geometrical and momentum-energy matching between the electron trajectory and the associated energy cluster in the ECAL, the shape of the electromagnetic shower in the ECAL, and variables that discriminate against electrons originating from photon conversions such as the number of expected but missing pixel hits and the conversion vertex t probability. Muons within the geometrical acceptance j j < 2:4 and pT > 5 GeV are reconstructed by combining information from the silicon tracker and the muon system [27]. The matching { 4 { between the inner and outer tracks proceeds either outside-in, starting from a track in the muon system, or inside-out, starting from a track in the silicon tracker. In the latter case, tracks that match track segments in only one or two planes of the muon system are also considered in the analysis to collect very low-pT muons that may not have su cient energy to penetrate the entire muon system. The muons are selected among the reconstructed muon track candidates by applying minimal requirements on the track in both the muon system and inner tracker system, and taking into account compatibility with small energy deposits in the calorimeters. To suppress muons originating from in- ight decays of hadrons and electrons from photon conversions, we require each lepton track to have the ratio of the impact parameter in three dimensions, computed with respect to the chosen primary vertex position, and its uncertainty to be less than 4. The primary vertex is de ned as the reconstructed vertex with the largest value of summed physics-object p2 , where the physics objects are the objects T returned by a jet nding algorithm [47, 48] applied to all charged tracks associated with the vertex, plus the corresponding associated missing transverse energy, ETmiss, de ned as the magnitude of the vector sum of the transverse momenta of all reconstructed PF candidates (charged or neutral) in the event. To discriminate between prompt leptons from Z boson decay and those arising from electroweak decays of hadrons within jets, an isolation requirement for leptons of I` < 0:35 is imposed, where the relative isolation is de ned as I ` T X pcharged + max h0; X pneutral + X p T T pPTU(`) i =p`T: (4.1) The isolation sums involved are all restricted to a volume bounded by a cone of angular radius R = 0:3 around the lepton direction at the primary vertex, where the angular distance between two particles i and j is R(i; j) = p ( i j )2 + ( i j )2. The P pcharged T subtracted, using two di erent techniques. For muons, we de ne pPTU( ) is the scalar sum of the transverse momenta of charged hadrons originating from the chosen primary vertex of the event. The P pneutral and P pT are the scalar sums of the transverse T momenta for neutral hadrons and photons, respectively. Since the isolation variable is particularly sensitive to energy deposits from pileup interactions, a pPTU(`) contribution is 0:5 P pPU;i, i T where i runs over the momenta of the charged hadron PF candidates not originating from the primary vertex, and the factor of 0.5 corrects for the di erent fraction of charged and neutral particles in the cone. For electrons, the FastJet technique [48{50] is used, in which pPTU(e) Ae , where the e ective area Ae is the geometric area of the isolation cone scaled by a factor that accounts for the residual dependence of the average pileup deposition on the of the electron, and is the median of the pT density distribution of neutral particles within the area of any jet in the event. An algorithm is used to recover the nal-state radiation (FSR) from leptons. Photons reconstructed by the PF algorithm within j j < 2:4 are considered as FSR candidates if they pass p T > 2 GeV and I < 1:8, where the photon relative isolation I is de ned as for the leptons in eq. (4.1). Associating every such photon to the closest selected lepton in the event, we discard photons that do not satisfy R( ; `)=(pT)2 < 0:012 GeV 2 and { 5 { R( ; `) < 0:5. We nally retain the lowest- R( ; `)=(pT)2 photon candidate of every lepton, if any. Photons thus identi ed are excluded from any isolation computation. The momentum scale and resolution for electrons and muons are calibrated in bins of p`T and ` using the decay products of known dilepton resonances. The electron momentum scale is corrected with a Z ! e+e sample by matching the peak of the reconstructed dielectron mass spectrum in data to the one in simulation. A pseudorandom Gaussian smearing is applied to electron energies in simulation to make the Z ! e+e lution match the one in data [51]. Muon momenta are calibrated using a Kalman lter mass resoapproach [52], using J= meson and Z boson decays. A \tag-and-probe" technique based on inclusive samples of Z boson events in data and simulation is used to measure the e ciency of the reconstruction and selection for prompt electrons and muons in several bins of p`T and `. The di erence in the e ciencies measured in simulation and data, which on average is 1% (4%) per muon (electron), is used to rescale the selection e ciency in the simulated samples. Jets are reconstructed from the PF candidates, clustered by the anti-kT algorithm [47, 48] with a distance parameter of 0.4, and with the constraint that the charged particles are compatible with the primary vertex. The jet momentum is determined as the vector sum of all particle momenta in the jet, and is found in the simulation to reproduce the true momentum at the 5 to 10% level over the whole pT spectrum and detector acceptance. Jet energy scale corrections are derived from the simulation and con rmed with measurements examining the energy balance in dijet, multijet, +jet, and leptonic Z= +jet events [53, 54]. Jet energies in simulation are smeared to match the resolution in data. To be considered in the analysis, jets must satisfy pjet > 30 GeV and j T jetj < 4:7, and be separated from all selected lepton candidates and any selected FSR photon by R(`= ; jet) > 0:4. For event categorization, jets are tagged as b-jets using the Combined Secondary Vertex algorithm [55, 56] which combines information about the impact parameter signi cance, the secondary vertex and the jet kinematics. The variables are combined using a multilayer perceptron approach to compute the b tagging discriminator. Data-to-simulation scale factors for the b tagging e ciency are applied as a function of jet pT, , and avor. The ETmiss is also used for the event categorization. The event selection is designed to extract signal candidates from events containing at least four well-identi ed and isolated leptons, each originating from the primary vertex and possibly accompanied by an FSR photon candidate. In what follows, unless otherwise stated, FSR photons are included in invariant mass computations. First, Z boson candidates are formed with pairs of leptons (e+e , + ) of the same avor and opposite sign (OS) and required to pass 12 < m`+` < 120 GeV. They are then combined into ZZ candidates, wherein we denote as Z1 the Z candidate with an invariant mass closest to the nominal Z boson mass (mZ) [57], and as Z2 the other one. The avors of the leptons involved de ne three mutually exclusive subchannels: 4e, 4 , and 2e2 . To be considered for the analysis, ZZ candidates have to pass a set of kinematic requirements that improve the sensitivity to Higgs boson decays. The Z1 invariant mass must be larger than 40 GeV. All leptons must be separated in angular space by at least R(`i; `j ) > 0:02. At least two leptons are required to have pT > 10 GeV and at least { 6 { one is required to have pT > 20 GeV. For Z1Z2 candidates composed of four same avor leptons, an alternative pairing ZaZb can be formed out of the same four leptons. We discard the Z1Z2 candidate if m(Za) is closer to mZ than m(Z1) and m(Zb) < 12 GeV. This protects against events that contain an on-shell Z and a low-mass dilepton resonance. In events with only four leptons this requirement leads to the event being discarded, while in events with more than four leptons other ZZ candidates are considered. To further suppress events with leptons originating from hadron decays in jet fragmentation or from the decay of low-mass hadronic resonances, all four OS lepton pairs that can be built with the four leptons (irrespective of avor) are required to satisfy m`+`0 > 4 GeV, where selected FSR photons are disregarded in the invariant mass computation. Finally, the four-lepton invariant mass m4` must be larger than 70 GeV. In events where more than one ZZ candidate passes the above selection, the candidate with the highest value of Dbkking (de ned in section 5) is retained, except when two candidates consist of the same four leptons in which case the candidate with the Z1 mass closest to mZ is retained. The additional leptons that do not form the ZZ candidate but pass identi cation, vertex compatibility, and isolation requirements are used in the event categorization, see section 6. 5 Kinematic discriminants and event-by-event mass uncertainty The full kinematic information from each event using either the Higgs boson decay products or associated particles in its production is extracted using matrix element calculations and is used to form several kinematic discriminants. These computations rely on the mela package [37, 38, 58] and use jhugen matrix elements for the signal and mcfm matrix elements for the background. The decay kinematics of the scalar H boson and the production kinematics of gluon fusion in association with one jet (H+1 jet) or two jets (H+2 jets), VBF, ZH, and WH associated production are explored in this analysis. The kinematics of the full event are described by decay observables ~ H!4` or observables describing associated production ~ H+JJ. The de nition of these observables can be found in refs. [37, 38, 58]. The discriminant sensitive to the gg=qq ! 4` kinematics is calculated as [2, 16] Dbkking = "1 + Pbqkqg(~ H!4`jm4`) # 1 Psgigg(~ H!4`jm4`) ; (5.1) where Psgigg is the probability density for an event to be consistent with the signal and Pbqkqg is the corresponding probability density for the dominant qq ! ZZ ! 4` background process, all calculated either with the jhugen or mcfm matrix elements within the mela framework. Four discriminants are used to enhance the purity of event categories as described in section 6. D2 jet is the discriminant sensitive to the VBF signal topology with two associated jets, D1 jet is the discriminant sensitive to the VBF signal topology with one associated jet, and DWH or DZH are the discriminants sensitive to the ZH or WH signal { 7 { topologies with two associated jets from the decay of the Z! qq or the W! qq0: D2 jet = DWH = " " 1 + PHJJ(~ H+JJjm4`) PVBF(~ H+JJjm4`) 1 + PHJJ(~ H+JJjm4`) PWH(~ H+JJjm4`) where PVBF, PHJJ, PHJ, and PVH are probability densities obtained from the jhugen matrix elements for the VBF, H + 2 jets, H + 1 jet, and VH (V = W; Z) processes, respectively. The expression R d JPVBF is the integral of the two-jet VBF matrix element probability density discussed above over the J values of the unobserved jet with the constraint that the total transverse momentum of the H + 2 jets system is zero. By construction, all discriminants de ned in eqs. (5.1) and (5.2) have values bounded between 0 and 1. The uncertainty in the momentum measurement can be predicted for each lepton. For muons, the full covariance matrix is obtained from the muon track t, and the directional uncertainties are negligibly small. For the electrons, the momentum uncertainty is estimated from the combination of the ECAL and tracker measurements, neglecting the uncertainty in the track direction. The uncertainty in the kinematics at the per-lepton level is then propagated to the four-lepton candidate to predict the mass uncertainty (Dmass) on an event-by-event basis. For FSR photons, a parametrization obtained from simulation is used for the uncertainty in the photon pT. The per-lepton momentum uncertainties are corrected in data and simulation using Z boson events. Events are divided into di erent categories based on the predicted dilepton mass resolution. A Breit-Wigner parameterization convolved with a double-sided Crystal Ball function [59] is then t to the dilepton mass distribution in each category to extract the resolution and compare it to the predicted resolution. Corrections to the lepton momentum uncertainty are derived through an iterative procedure in di erent bins of lepton pT and . After the corrections are derived, a closure test of the agreement between the predicted and tted 4` mass resolution is performed in data and in simulation, in bins of the predicted 4` mass resolution, con rming that the calibration brings it close to the tted value. A systematic uncertainty of 20% in the 4` mass resolution is assigned to cover the residual di erences between the predicted and tted resolutions. 6 Event categorization To improve the sensitivity to the various Higgs boson production mechanisms, the selected events are classi ed into mutually exclusive categories. The category de nitions exploit the jet multiplicity, the number of b-tagged jets, the number of additional leptons (de ned as leptons that pass identi cation, vertex compatibility, and isolation requirements, but do not form the ZZ candidate), and requirements on the kinematic discriminants described in section 5. Seven categories are de ned, using the criteria applied in the following order (i.e. an event is considered for the subsequent category only if it does not satisfy the requirements of the previous category): { 8 { The VBF-2jet-tagged category requires exactly four leptons. In addition, there must be either two or three jets of which at most one is b tagged, or four or more jets none of which are b-tagged. Finally, D2 jet > 0:5 is required. The VH-hadronic-tagged category requires exactly four leptons. In addition, there must be two or three jets, or four or more jets none of which are b-tagged. DVH max(DZH; DWH) > 0:5 is required. The VH-leptonic-tagged category requires no more than three jets and no b-tagged jets in the event, and exactly one additional lepton or one additional pair of OS, HJEP1(207)4 same- avor leptons. This category also includes events with no jets and at least one additional lepton. The ttH-tagged category requires at least four jets of which at least one is b tagged, or at least one additional lepton. and ETmiss greater than 100 GeV. The VH-ETmiss-tagged category requires exactly four leptons, no more than one jet The VBF-1jet-tagged category requires exactly four leptons, exactly one jet and D1 jet > 0:5. The Untagged category consists of the remaining selected events. The de nitions of the categories were chosen to achieve high signal purity whilst maintaining high e ciency for each of the main Higgs boson production mechanisms. The order of the categories is chosen to maximize the signal purity target in each category. Figure 1 shows the relative signal purity of the seven event categories for the various Higgs boson production processes. The VBF-1jet-tagged and VH-hadronic-tagged categories are expected to have substantial contamination from gluon fusion, while the purity of the VBF process in the VBF-2jet-tagged category is expected to be about 49%. 7 7.1 Background estimation Irreducible backgrounds The irreducible backgrounds to the Higgs boson signal in the 4` channel, which come from the production of ZZ via qq annihilation or gluon fusion, are estimated using simulation. The fully di erential cross section for the qq ! ZZ process has been computed at nextto-next-to-leading order (NNLO) [60], and the NNLO/NLO K-factor as a function of mZZ has been applied to the powheg sample. This K-factor varies from 1.0 to 1.2 and is 1.1 at mZZ = 125 GeV. Additional NLO electroweak corrections, which depend on the initial state quark avor and kinematics, are also applied in the region mZZ > 2mZ where the corrections have been computed [61]. The uncertainty due to missing electroweak corrections in the region mZZ < 2mZ is expected to be small compared to the uncertainties in the pQCD calculation. { 9 { Untagged 40.77 expected events VBF-1jet tagged VBF-2jet tagged tagged tagged VH-ETmiss tagged VH-hadronic 2.08 expected events VH-leptonic 0.38 expected events 9.69 expected events 4.24 expected events 0.11 expected events ttH tagged 0.51 expected events ggH VBF WH, W→X WH, W→lν ZH, Z→X ZH, Z→2l ttH, tt→0l+X ttH, tt→1l+X ttH, tt→2l+X mechanisms of the Higgs boson in the 118 < m4` < 130 GeV mass window are shown. The WH, ZH, and ttH processes are split according to the decay of the associated particles, where X denotes anything other than an electron or a muon. Numbers indicate the total expected signal event yields in each category. The production of ZZ via gluon fusion contributes at NNLO in pQCD. It has been shown [62] that the soft-collinear approximation is able to describe the background cross section and the interference term at NNLO. Further calculations also show that at NLO the K-factor for the signal and background [63] and at NNLO the K-factor for the signal and interference terms [64] are very similar. Therefore, the same K-factor used for the signal is also used for the background [65]. The NNLO K-factor for the signal is obtained as a function of mZZ using the hnnlo v2 program [40, 66, 67] by calculating the NNLO and LO gg ! H ! 2`2`0 cross sections at the small H boson decay width of 4.1 MeV and taking their ratios. The NNLO/LO K-factor for gg ! ZZ varies from 2.0 to 2.6 and is 2.27 at mZZ = 125 GeV; a systematic uncertainty of 10% in its determination when applied to the background process is used in the analysis. 7.2 Reducible backgrounds Additional backgrounds to the Higgs boson signal in the 4` channel arise from processes in which heavy avor jets produce secondary leptons, and also from processes in which decays of heavy avor hadrons, in- ight decays of light mesons within jets, or (for electrons) the decay of charged hadrons overlapping with 0 decays, are misidenti ed as prompt leptons. We denote these reducible backgrounds as \Z+X" since the dominant process producing them is Z+jets, while subdominant processes in order of importance are tt+jets, Z + jets, WZ + jets, and WW + jets. In the case of Z + jets, the photon may convert to an e+e pair with one of the decay products not being reconstructed, giving rise to a signature with three prompt leptons. The contribution from the reducible background is estimated using two independent methods having dedicated control regions in data. HJEP1(207)4 The control regions are de ned by a dilepton pair satisfying all the requirements of a Z1 candidate and two additional leptons, OS or same-sign (SS), satisfying certain relaxed identi cation requirements when compared to those used in the analysis. These four leptons are then required to pass the ZZ candidate selection. The event yield in the signal region is obtained by weighting the control region events by the lepton misidenti cation probability (or misidenti cation rate) f , de ned as the fraction of nonsignal leptons that are identi ed by the analysis selection criteria. The lepton misidenti cation rates fe and f are determined from data, separately for the SS and OS methods, using a control region de ned by a Z1 candidate and exactly one additional lepton passing the relaxed selection. The Z1 candidate consists of a pair of leptons, each of which passes the selection requirements used in the analysis. For the OS method, the mass of the Z1 candidate is required to satisfy jm(Z1) mZj < 7 GeV to reduce the contribution of (asymmetric) photon conversions, which is estimated separately. In the SS method, the contribution from photon conversions is estimated by determining an average misidenti cation rate. Furthermore the ETmiss is required to be less than 25 GeV to suppress contamination from WZ and tt processes. The fraction of these events in which the additional lepton passes the selection requirements used in the analysis gives the lepton misidenti cation rate f . The lepton misidenti cation rates is measured as a function of p`T and j `j and is assumed to be independent of the presence of any additional leptons. 7.2.1 Method using OS leptons The control region for the OS method consists of events with a Z1 candidate and two additional OS leptons of the same- avor. The expected yield in the signal region is obtained from two categories of events. The rst category is composed of events with two leptons that pass (P) the tight lepton identi cation requirements and two leptons that pass the loose identi cation but fail (F) the tight identi cation, and is denoted as the 2P2F region. Backgrounds, which intrinsically have only two prompt leptons, such as Z + jets and tt, are estimated with this control region. To obtain the expected yield in the signal region, each event i in the 2P2F region is weighted by a factor [f3i=(1 f3i)][f4i=(1 f4i)], where f3i and f4i are the misidenti cation rates for the third and fourth lepton, respectively. The second category consists of events where exactly one of the two additional leptons passes the analysis selection, and is referred to as the 3P1F region. Backgrounds with three prompt leptons, such as WZ + jets and Z + jets with the photon converting to e+e , are estimated using this region. To obtain the expected yield in the signal region, each event j in the 3P1F region is weighted by a factor f4j =(1 f4j ), where f4j is the misidenti cation rate for the lepton that does not pass the analysis selection. The contribution from ZZ events to the 3P1F region (N3ZPZ1F), which arises from events where a prompt lepton fails the identi cation requirements, is estimated from simulation and scaled with a factor wZZ appropriate to the integrated luminosity of the analyzed data set. The contamination of 2P2F-type processes in the 3P1F region is estimated as Pif[f3i=(1 f3i)] + [f4i=(1 f4i)]g and contributes an amount equal to Pif2[f3i=(1 f4i)]g to the expected yield in the signal region. This amount is subtracted from the total background estimate to avoid double counting. The total reducible background estimate in the signal region coming from the two categories 2P2F and 3P1F without double counting, NSreRducible, can be written as: NSreRducible = N3P1F X j 1 f j 4 f j 4 wZZ N3ZPZ1F X j 1 f j 4 f j 4 N2P2F X i f i 3 1 where N3P1F and N2P2F are the number of events in the 3P1F and 2P2F regions, The control region for the SS method, referred to as the 2P2LSS region, consists of events with a Z1 candidate and two additional SS leptons of same- avor. These two additional leptons are required to pass the loose selection requirements for leptons. The contribution of photon conversions to the electron misidenti cation probability f is estimated. Its linear dependence on the fraction of loose electrons in the sample with tracks having one missing hit in the pixel detector, rmiss, is used to derive a corrected misidenti cation rate f~. The dependence is determined by measuring f in samples with di erent values of rmiss formed by varying the requirements on jm`1`2 mZj and jm`1`2eloose mZj. Here `1 and `2 are the leptons which form the Z1 candidate and eloose is the additional electron passing the loose selection. The expected number of reducible background events in the signal region can then be written as: NSreRducible = rOS/SS N2P2LSS X i f~3i f~4i ; (7.2) where the ratio rOS/SS between the number of events in the 2P2LOS and 2P2LSS control regions is obtained from simulation. The 2P2LOS region is de ned analogously to the 2P2LSS region but with an OS requirement for the additional pair of loose leptons. 7.2.3 Prediction and uncertainties The predicted yield in the signal region of the reducible background from the two methods are in agreement within their statistical uncertainties, and since they are mutually independent, the results of the two methods are combined. The nal estimate is obtained by weighting the individual mean values of both methods according to their corresponding variances. The shape of the m4` distribution for the reducible background is obtained by combining the prediction from the OS and SS methods and tting the distributions with empirical functional forms built from Landau [68] and exponential distributions. The dominant systematic uncertainty in the reducible background estimation arises from the limited number of events in the control regions as well as in the region where the misidenti cation rate is applied. Additional sources of systematic uncertainty, estimated using simulated samples, come from the fact that the composition of the regions used to compute the misidenti cation rates typically di ers from that of control regions where they are applied. The subdominant systematic uncertainty in the m4` shape is determined by taking the envelope of di erences among the shapes from the OS and SS methods in the three di erent nal states. The combined systematic uncertainty is estimated to be about 40%. 8 Signal modeling The signal shape of a narrow resonance around mH 125 GeV is parametrized using a double-sided Crystal Ball function. The signal shape is parametrized as a function of mH by performing a simultaneous t of several mass points for gg ! H production around 125 GeV. Each parameter of the double-sided Crystal Ball function is given a linear dependence on mH for a total of 12 free parameters. Of these parameters, 10 are left free in the simultaneous ts. The parameters that control the prominence of the tails in the two Crystal Ball functions are forced to have a unique value at all mH values, to remove large correlations and because they are constant within the uncertainty. This parameterization, derived separately for each 4` nal state, is found to provide a good description of the resonant part of the signal for all production modes and event categories. An additional non-resonant contribution from WH, ZH, and ttH production arises when one of the leptons from the Higgs boson decay is lost or is not selected. This contribution is modeled by a Landau distribution which is added to the total probability density function for those production modes. For the measurement of the width the signal shape for a broad resonance around mH 125 GeV is parameterized in the following way. First, the gluon fusion or electroweak (VBF and VH) signal production is treated jointly with the corresponding background and their interference as: Pi(m4`; mH; H ) = i Psiig(m4`; mH; H) + Pbikg(m4`) + p iPint(m4`; mH; H); (8.1) where i is the signal strength in the production type i, gluon fusion or electroweak, and the small ttH contribution is treated jointly with gluon fusion. The general parameterization of the probability density function in eq. (8.1) is based on the framework of mcfm + jhugen + hnnlo within mela. The ideal parameterization is based on the matrix element calculation with the H boson propagator removed from the cross section scans as a function of m4`. The propagator is included analytically with mH and H as unconstrained parameters of the model. Detector e ects are included via the multiplicative e ciency function E (m4`) and convolution for the mass resolution R(m4`jmtruth), both extracted from the full simulation 4` in the same way as for the narrow resonance discussed above. The resulting distribution is P reco(m4`) = E (mt4r`uth) P(mt4r`uth; mH; H) R(m4`jmt4r`uth): (8.2) 9 Systematic uncertainties The experimental uncertainties common to all measurements include the uncertainty in the integrated luminosity measurement (2.5%) [69] and the uncertainty in the lepton identi ca0.004 /)m0.003 Z Z k k m m ( ( Z, |η| 0.0-0.9 Z, |η| 0.9-1.4 Z, |η| 1.4-2.4 (mpMeCak) normalized by the nominal Z boson mass (mZ), as a function of the pT and j j of one of Di erence between the Z ! `` mass peak positions in data (mdpaeatak) and simulation the leptons regardless of the second for electrons (left) and muons (right). tion and reconstruction e ciency (ranging from 2.5 to 9% on the overall event yield for the 4 and 4e channels), which a ect both signal and background. Experimental uncertainties in the reducible background estimation, described in section 7.2, vary between 36% (4 ) and 43% (4e). The uncertainty in the lepton energy scale, which is the dominant source of systematic uncertainty in the Higgs boson mass measurement, is determined by considering the Z ! `` mass distributions in data and simulation. Events are separated into categories based on the pT and of one of the two leptons, selected randomly, and integrating over the other. A Breit-Wigner parameterization convolved with a double-sided Crystal Ball function is then t to the dilepton mass distributions. The o sets in the measured peak position with respect to the nominal Z boson mass in data and simulation are extracted, and the results are shown in gure 2. In the case of electrons, since the same data set is used to derive and validate the momentum scale corrections, the size of the corrections is taken into account for the nal value of the uncertainty. The 4` mass scale uncertainty is determined to be 0.04%, 0.3%, and 0.1% for the 4 , 4e, and 2e2 channels, respectively. The uncertainty in the 4` mass resolution coming from the uncertainty in the per-lepton energy resolution is 20%, as described in section 5. Theoretical uncertainties that a ect both the signal and background estimation include uncertainties from the renormalization and the factorization scales and the choice of the PDF set. The uncertainty from the renormalization and factorization scale is determined by varying these scales between 0.5 and 2 times their nominal value while keeping their ratio between 0.5 and 2. The uncertainty from the PDF set is determined following the PDF4LHC recommendations [70]. An additional uncertainty of 10% in the K factor used for the gg ! ZZ prediction is applied as described in section 7.1. A systematic uncertainty of 2% [34] in the H ! 4` branching fraction only a ects the signal yield. The theoretical uncertainties in the background yield are included for all measurements, while the theoretical uncertainties in the overall signal yield are not included in the measurement uncertainties when cross sections, rather than signal strength modi ers, are extracted. tsn 80 e Data H(125) 40 30 20 10 0 Data (left) and the low-mass range (right). Points with error bars represent the data and stacked histograms represent expected signal and background distributions. The SM Higgs boson signal with mH = 125 GeV, denoted as H(125), and the ZZ backgrounds are normalized to the SM expectation, whilst the Z+X background is normalized to the estimation from data. The order in perturbation theory used for the normalization of the irreducible backgrounds is described in section 7.1. No events are observed with m4` > 1 TeV. In the case of the measurements which use event categorization, experimental and theoretical uncertainties that account for possible migration of signal and background events between categories are included. The main sources of uncertainty in the event categorization include the renormalization and factorization scales, PDF set, and the modeling of the fragmentation, hadronization, and the underlying event. These uncertainties amount to 4{20% for the signal and 3{20% for the background, depending on the category, and are largest for the prediction of the gg ! H yield in the VBF-2jet-tagged category. Additional uncertainties come from the imprecise knowledge of the jet energy scale (from 2% for the gg ! H yield in the untagged category to 15% for the gg ! H yield in the VBF-2jet-tagged category) and b tagging e ciency and mistag rate (up to 6% in the ttH-tagged category). 10 Results The reconstructed four-lepton invariant mass distribution is shown in gure 3 for the sum of the 4e, 4 , and 2e2 channels, and compared with the expectations from signal and background processes. The error bars on the data points correspond to the so-called Garwood con dence intervals at 68% con dence level (CL) [71]. The observed distribution agrees with the expectation within the statistical uncertainties over the whole spectrum. In gure 4, the reconstructed four-lepton invariant mass distributions are split by event category, for the low-mass range. The number of candidates observed in data and the expected yields for the backgrounds and the Higgs boson signal after the full event selection are reported in table 1 for m4` > 70 GeV. Table 2 shows the expected and observed yields for each of the seven event categories and their total. untagged category 20CMS e G18 VBF-1jet-tagged category G3.5 4 ts 3 n v E2.5 2 1 Data H(125) Data H(125), VBF for the low-mass range. (Top left) untagged category. (Top right) VBF-1jet-tagged category. (Center left) VBF-2jet-tagged category. (Center right) VH-hadronic-tagged category. (Bottom left) VH-leptonic-tagged category. (Bottom middle) VH-ETmiss-tagged category. (Bottom right) ttH-tagged category. Points with error bars represent the data and stacked histograms represent expected signal and background distributions. The SM Higgs boson signal with mH = 125 GeV, denoted as H(125), and the ZZ backgrounds are normalized to the SM expectation, whilst the Z+X background is normalized to the estimation from data. For the categories other than the untagged category, the SM Higgs boson signal is separated into two components: the production mode that is targeted by the speci c category, and other production modes, where the gluon fusion dominates. The order in perturbation theory used for the normalization of the irreducible backgrounds is described in section 7.1. Channel qq ! ZZ gg ! ZZ Z+X Sum of backgrounds Signal Total expected Observed 4e 193+1290 41:2+66::31 21:1+81:05:4 255+2245 12:0+11::34 267+2256 293 360+2257 69:0+99::50 34+1143 463+3324 487+3335 505 23:6 2:1 30:0 2:6 65:7 5:6 candidate events after the full selection, for each nal state, for m4` > 70 GeV. The signal and ZZ backgrounds are estimated from simulation, while the Z+X event yield is estimated from data. Uncertainties include statistical and systematic sources. VBF-1j VBF-2j VH-hadr. VH-lept. VH-ETmiss Inclusive qq ! ZZ gg ! ZZ Z+X gg ! H VBF WH ZH ttH Sum of backgrounds uncertainties Signal Total expected Observed uncertainties uncertainties candidate events after the full selection, for each event category, for the mass range 118 < m4` < 130 GeV. The yields are given for the di erent production modes. The signal and ZZ backgrounds yields are estimated from simulation, while the Z+X yield is estimated from data. 2e2 471+3336 102+1143 60+2275 633+4446 663+4467 681 e E 20 10 G 420 / ts18 ven16 E14 12 10 8 6 4 2 Data e G ( 12Z00 m 4e 4μ 2e2μ 80 60 40 20 118 < m4l < 130 GeV n e v dimensional distribution of these two variables (right) in the mass region 118 < m4` < 130 GeV. The stacked histograms and the gray scale represent the expected signal and background distributions, and points represent the data. The SM Higgs boson signal with mH = 125 GeV, denoted as H(125), and the ZZ backgrounds are normalized to the SM expectation, whilst the Z+X background is normalized to the estimation from data. The order in perturbation theory used for the normalization of the irreducible backgrounds is described in section 7.1. The reconstructed dilepton invariant masses for the selected Z1 and Z2 candidates are shown in gure 5 for 118 < m4` < 130 GeV, along with their correlation. Figure 6 shows the correlation between the kinematic discriminant Dbkking with the four-lepton invariant mass, the two variables used in the likelihood t to extract the results (see section 10.1). The gray scale represents the expected combined relative density of the ZZ background and the Higgs boson signal. The points show the data and the measured four-lepton mass uncertainties Dmass as horizontal bars. Di erent marker colors and styles are used to denote the nal state and the categorization of the events, respectively. This distribution shows that the two observed events around 125 GeV in the VH-ETmiss-tagged and ttH-tagged categories (empty star and square markers) have low values of Dbkking, implying that these events are more compatible with the background than the signal hypothesis. The distribution of the discriminants used for event categorization and the corresponding working point values are shown in gure 7. 10.1 Signal strength modi ers To extract the signal strength modi er we perform a multi-dimensional t that relies on two variables: the four-lepton invariant mass m4` and the Dbkking discriminant. We de ne the two-dimensional likelihood function as: L2D(m4`; Dbkking) = L(m4`)L(Dbkkingjm4`): (10.1) The mass dimension is unbinned and uses the model described in section 8. The conditional term is implemented by creating a two-dimensional template of m4` vs. Dbkking normalized to 1 for each bin of m4`. Based on the seven event categories and the three nal states (4e, 4 , 2e2 ), the (m4`; Dbkking) unbinned distributions are split into 21 categories. A simultaneous t to all categories is performed to extract the signal strength modi er. The relative fraction of 4e, 4 , and 2e2 signal events is xed to the SM prediction. 1.2 ikn kbg 1 D 4e 4μ 2e2μ untagged VBF-1j tagged VBF-2j tagged VH-hadr. tagged VH-lept. tagged VH-ETmiss tagged ttH tagged n i b / s v E 1 scale represents the expected total number of ZZ background and SM Higgs boson signal events for mH = 125 GeV. The points show the data and the horizontal bars represent Dmass. Di erent marker colors and styles are used to denote nal state and the categorization of the events, respectively. Z+X Z+X 1 CMS .0 9 ts 8 n e vE 7 6 5 4 3 2 1 0 0 / / .1 CMS tsn10 e v 8 6 4 2 Data H(125), VBF Z+X E E /ts16 n ve14 12 10 8 6 4 2 (Left) D2 jet . (Middle) D1 jet . (Right) DVH = max(DWH ,DZH ). Points with error bars represent the data and stacked histograms represent expected signal and background distributions. The SM Higgs boson signal with mH = 125 GeV, denoted as H(125), and the ZZ backgrounds are normalized to the SM expectation, whilst the Z+X background is normalized to the estimation from data. The vertical gray dashed lines denote the working points used in the event categorization. The SM Higgs boson signal is separated into two components: the production mode that is targeted by the speci c discriminant, and other production modes, where the gluon fusion dominates. The order in perturbation theory used for the normalization of the irreducible backgrounds is described in section 7.1. collisions at p [25] CMS collaboration, Description and performance of track and primary-vertex reconstruction with the CMS tracker, 2014 JINST 9 P10009 [arXiv:1405.6569] [INSPIRE]. [26] CMS collaboration, Performance of electron reconstruction and selection with the CMS detector in proton-proton collisions at p s = 8 TeV, 2015 JINST 10 P06005 [27] CMS collaboration, Performance of CMS muon reconstruction in pp collision events at s = 7 TeV, 2012 JINST 7 P10002 [arXiv:1206.4071] [INSPIRE]. [28] CMS collaboration, The CMS trigger system, 2017 JINST 12 P01020 [arXiv:1609.02366] HJEP1(207)4 [29] CMS collaboration, Measurement of the inclusive W and Z production cross sections in pp s = 7 TeV, JHEP 10 (2011) 132 [arXiv:1107.4789] [INSPIRE]. [30] S. Alioli, P. Nason, C. Oleari and E. Re, NLO vector-boson production matched with shower in POWHEG, JHEP 07 (2008) 060 [arXiv:0805.4802] [INSPIRE]. [31] P. Nason, A new method for combining NLO QCD with shower Monte Carlo algorithms, JHEP 11 (2004) 040 [hep-ph/0409146] [INSPIRE]. [32] S. Frixione, P. Nason and C. Oleari, Matching NLO QCD computations with parton shower simulations: the POWHEG method, JHEP 11 (2007) 070 [arXiv:0709.2092] [INSPIRE]. [33] G. Luisoni, P. Nason, C. Oleari and F. Tramontano, HW =HZ + 0 and 1 jet at NLO with the POWHEG BOX interfaced to GoSam and their merging within MiNLO, JHEP 10 (2013) 083 [arXiv:1306.2542] [INSPIRE]. [34] LHC Higgs Cross Section Working Group collaboration, D. de Florian et al., Handbook of LHC Higgs cross sections: 4. Deciphering the nature of the Higgs sector, arXiv:1610.07922 [INSPIRE]. [35] C. Anastasiou et al., High precision determination of the gluon fusion Higgs boson cross-section at the LHC, JHEP 05 (2016) 058 [arXiv:1602.00695] [INSPIRE]. [36] NNPDF collaboration, R.D. Ball et al., Unbiased global determination of parton distributions and their uncertainties at NNLO and at LO, Nucl. Phys. B 855 (2012) 153 [arXiv:1107.2652] [INSPIRE]. [37] Y. Gao et al., Spin determination of single-produced resonances at hadron colliders, Phys. Rev. D 81 (2010) 075022 [arXiv:1001.3396] [INSPIRE]. [38] S. Bolognesi et al., On the spin and parity of a single-produced resonance at the LHC, Phys. Rev. D 86 (2012) 095031 [arXiv:1208.4018] [INSPIRE]. [39] D. de Florian, G. Ferrera, M. Grazzini and D. Tommasini, Higgs boson production at the LHC: transverse momentum resummation e ects in the H ! 2 , H ! W W ! l l and H ! ZZ ! 4` decay modes, JHEP 06 (2012) 132 [arXiv:1203.6321] [INSPIRE]. [40] M. Grazzini and H. Sargsyan, Heavy-quark mass e ects in Higgs boson production at the LHC, JHEP 09 (2013) 129 [arXiv:1306.4581] [INSPIRE]. [41] J.M. Campbell and R.K. Ellis, MCFM for the Tevatron and the LHC, Nucl. Phys. Proc. Suppl. 205-206 (2010) 10 [arXiv:1007.3492] [INSPIRE]. [42] T. Sjostrand et al., An introduction to PYTHIA 8.2, Comput. Phys. Commun. 191 (2015) 159 [arXiv:1410.3012] [INSPIRE]. [43] CMS collaboration, Event generator tunes obtained from underlying event and multiparton [46] CMS collaboration, Particle- ow reconstruction and global event description with the CMS detector, 2017 JINST 12 P10003 [arXiv:1706.04965] [INSPIRE]. HJEP1(207)4 [52] R. Fruhwirth, Application of Kalman ltering to track and vertex tting, Nucl. Instrum. [53] CMS collaboration, Determination of jet energy calibration and transverse momentum resolution in CMS, 2011 JINST 6 P11002 [arXiv:1107.4277] [INSPIRE]. [54] CMS collaboration, Jet energy scale and resolution in the CMS experiment in pp collisions at 8 TeV, 2017 JINST 12 P02014 [arXiv:1607.03663] [INSPIRE]. [55] CMS collaboration, Identi cation of b-quark jets with the CMS experiment, 2013 JINST 8 [51] CMS collaboration, Performance of photon reconstruction and identi cation with the CMS s = 8 TeV, 2015 JINST 10 P08010 063 [arXiv:0802.1189] [INSPIRE]. Meth. A 262 (1987) 444 [INSPIRE]. P04013 [arXiv:1211.4462] [INSPIRE]. CMS-PAS-BTV-15-001 (2015). [hep-ex/0509008] [INSPIRE]. [56] CMS collaboration, Identi cation of b quark jets at the CMS Experiment in the LHC Run 2, [57] SLD Electroweak Group, DELPHI, ALEPH, SLD, SLD Heavy Flavour Group, OPAL, LEP Electroweak Working Group, L3 collaboration, S. Schael et al., Precision electroweak measurements on the Z resonance, Phys. Rept. 427 (2006) 257 [58] I. Anderson et al., Constraining anomalous HVV interactions at proton and lepton colliders, Phys. Rev. D 89 (2014) 035007 [arXiv:1309.4819] [INSPIRE]. [59] M. Oreglia, A study of the reactions 0 ! U.S.A. (1980) [SLAC-R-236]. , Ph.D. thesis, Stanford University, Stanford [60] M. Grazzini, S. Kallweit and D. Rathlev, ZZ production at the LHC: ducial cross sections and distributions in NNLO QCD, Phys. Lett. B 750 (2015) 407 [arXiv:1507.06257] [61] A. Bierweiler, T. Kasprzik and J.H. Kuhn, Vector-boson pair production at the LHC to O( 3) accuracy, JHEP 12 (2013) 071 [arXiv:1305.5402] [INSPIRE]. e ects for gg ! H ! W +W beyond leading order, Phys. Rev. D 88 (2013) 034032 [63] K. Melnikov and M. Dowling, Production of two Z-bosons in gluon fusion in the heavy top HJEP1(207)4 H ! ZZ ! 4l decay channels, JHEP 02 (2008) 043 [arXiv:0801.3232] [INSPIRE]. CMS-PAS-LUM-17-001 (2017). 023001 [arXiv:1510.03865] [INSPIRE]. [69] CMS collaboration, CMS Luminosity Measurements for the 2016 Data Taking Period, 2011-11 (2011). [arXiv:1007.1727] [INSPIRE]. [71] F. Garwood, Fiducial limits for the poisson distribution, Biometrika 28 (1936) 437. [72] ATLAS, CMS collaborations, and LHC Higgs Combination Group, Procedure for the LHC Higgs boson search combination in Summer 2011, ATL-PHYS-PUB/CMS NOTE [73] G. Cowan, K. Cranmer, E. Gross and O. Vitells, Asymptotic formulae for likelihood-based tests of new physics, Eur. Phys. J. C 71 (2011) 1554 [Erratum ibid. C 73 (2013) 2501] [74] G.J. Feldman and R.D. Cousins, A uni ed approach to the classical statistical analysis of small signals, Phys. Rev. D 57 (1998) 3873 [physics/9711021] [INSPIRE]. [75] CMS collaboration, Measurement of di erential cross sections for Higgs boson production in the diphoton decay channel in pp collisions at p [arXiv:1508.07819] [INSPIRE]. s = 8 TeV, Eur. Phys. J. C 76 (2016) 13 [76] K. Hamilton, P. Nason, E. Re and G. Zanderighi, NNLOPS simulation of Higgs boson production, JHEP 10 (2013) 222 [arXiv:1309.0017] [INSPIRE]. Yerevan Physics Institute, Yerevan, Armenia A.M. Sirunyan, A. Tumasyan Institut fur Hochenergiephysik, Wien, Austria W. Adam, F. Ambrogi, E. Asilar, T. Bergauer, J. Brandstetter, E. Brondolin, M. Dragicevic, J. Ero, M. Flechl, M. Friedl, R. Fruhwirth1, V.M. Ghete, J. Grossmann, J. Hrubec, M. Jeitler1, A. Konig, N. Krammer, I. Kratschmer, D. Liko, T. Madlener, I. Mikulec, E. Pree, D. Rabady, N. Rad, H. Rohringer, J. Schieck1, R. Schofbeck, M. Spanring, D. Spitzbart, W. Waltenberger, J. Wittmann, C.-E. Wulz1, M. Zarucki Institute for Nuclear Problems, Minsk, Belarus V. Chekhovsky, V. Mossolov, J. Suarez Gonzalez Universiteit Antwerpen, Antwerpen, Belgium N. Van Remortel Vrije Universiteit Brussel, Brussel, Belgium E.A. De Wolf, D. Di Croce, X. Janssen, J. Lauwers, H. Van Haevermaet, P. Van Mechelen, S. Abu Zeid, F. Blekman, J. D'Hondt, I. De Bruyn, J. De Clercq, K. Deroover, G. Flouris, D. Lontkovskyi, S. Lowette, S. Moortgat, L. Moreels, A. Olbrechts, Q. Python, K. Skovpen, S. Tavernier, W. Van Doninck, P. Van Mulders, I. Van Parijs Universite Libre de Bruxelles, Bruxelles, Belgium H. Brun, B. Clerbaux, G. De Lentdecker, H. Delannoy, G. Fasanella, L. Favart, R. Goldouzian, A. Grebenyuk, G. Karapostoli, T. Lenzi, J. Luetic, T. Maerschalk, A. Marinov, A. Randle-conde, T. Seva, C. Vander Velde, P. Vanlaer, D. Vannerom, R. Yonamine, F. Zenoni, F. Zhang2 Ghent University, Ghent, Belgium A. Cimmino, T. Cornelis, D. Dobur, A. Fagot, M. Gul, I. Khvastunov, D. Poyraz, C. Roskas, S. Salva, M. Tytgat, W. Verbeke, N. Zaganidis Universite Catholique de Louvain, Louvain-la-Neuve, Belgium H. Bakhshiansohi, O. Bondu, S. Brochet, G. Bruno, A. Caudron, S. De Visscher, C. Delaere, M. Delcourt, B. Francois, A. Giammanco, A. Jafari, M. Komm, G. Krintiras, V. Lemaitre, A. Magitteri, A. Mertens, M. Musich, K. Piotrzkowski, L. Quertenmont, M. Vidal Marono, S. Wertz N. Beliy Universite de Mons, Mons, Belgium Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil W.L. Alda Junior, F.L. Alves, G.A. Alves, L. Brito, M. Correa Martins Junior, C. Hensel, A. Moraes, M.E. Pol, P. Rebello Teles Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil E. Belchior Batista Das Chagas, W. Carvalho, J. Chinellato3, A. Custodio, E.M. Da Costa, G.G. Da Silveira4, D. De Jesus Damiao, S. Fonseca De Souza, L.M. Huertas Guativa, H. Malbouisson, M. Melo De Almeida, C. Mora Herrera, L. Mundim, H. Nogima, A. Santoro, A. Sznajder, E.J. Tonelli Manganote3, F. Torres Da Silva De Araujo, A. Vilela Pereira Brazil S. Ahujaa, Sciences Universidade Estadual Paulista a, Universidade Federal do ABC b, S~ao Paulo, C.A. Bernardesa, T.R. Fernandez Perez Tomeia, E.M. Gregoresb, P.G. Mercadanteb, S.F. Novaesa, Sandra S. Padulaa, D. Romero Abadb, J.C. Ruiz Vargasa Institute for Nuclear Research and Nuclear Energy of Bulgaria Academy of A. Aleksandrov, R. Hadjiiska, P. Iaydjiev, M. Misheva, M. Rodozov, M. Shopova, S. Stoykova, G. Sultanov University of So a, So a, Bulgaria A. Dimitrov, I. Glushkov, L. Litov, B. Pavlov, P. Petkov Beihang University, Beijing, China W. Fang5, X. Gao5 Institute of High Energy Physics, Beijing, China M. Ahmad, J.G. Bian, G.M. Chen, H.S. Chen, M. Chen, Y. Chen, C.H. Jiang, D. Leggat, H. Liao, Z. Liu, F. Romeo, S.M. Shaheen, A. Spiezia, J. Tao, C. Wang, Z. Wang, E. Yazgan, H. Zhang, J. Zhao Beijing, China State Key Laboratory of Nuclear Physics and Technology, Peking University, Y. Ban, G. Chen, Q. Li, S. Liu, Y. Mao, S.J. Qian, D. Wang, Z. Xu Universidad de Los Andes, Bogota, Colombia C. Avila, A. Cabrera, L.F. Chaparro Sierra, C. Florez, C.F. Gonzalez Hernandez, J.D. Ruiz Alvarez University of Split, Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, Split, Croatia B. Courbon, N. Godinovic, D. Lelas, I. Puljak, P.M. Ribeiro Cipriano, T. Sculac University of Split, Faculty of Science, Split, Croatia Z. Antunovic, M. Kovac Institute Rudjer Boskovic, Zagreb, Croatia V. Brigljevic, D. Ferencek, K. Kadija, B. Mesic, A. Starodumov6, T. Susa University of Cyprus, Nicosia, Cyprus M.W. Ather, A. Attikis, G. Mavromanolakis, J. Mousa, C. Nicolaou, F. Ptochos, P.A. Razis, H. Rykaczewski Charles University, Prague, Czech Republic M. Finger7, M. Finger Jr.7 Universidad San Francisco de Quito, Quito, Ecuador E. Carrera Jarrin Academy of Scienti c Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt A.A. Abdelalim8;9, R. Aly8, Y. Mohammed10 National Institute of Chemical Physics and Biophysics, Tallinn, Estonia R.K. Dewanjee, M. Kadastik, L. Perrini, M. Raidal, A. Tiko, C. Veelken Department of Physics, University of Helsinki, Helsinki, Finland P. Eerola, J. Pekkanen, M. Voutilainen Helsinki Institute of Physics, Helsinki, Finland J. Harkonen, T. Jarvinen, V. Karimaki, R. Kinnunen, T. Lampen, K. Lassila-Perini, S. Lehti, T. Linden, P. Luukka, E. Tuominen, J. Tuominiemi, E. Tuovinen Lappeenranta University of Technology, Lappeenranta, Finland J. Talvitie, T. Tuuva IRFU, CEA, Universite Paris-Saclay, Gif-sur-Yvette, France M. Besancon, F. Couderc, M. Dejardin, D. Denegri, J.L. Faure, F. Ferri, S. Ganjour, S. Ghosh, A. Givernaud, P. Gras, G. Hamel de Monchenault, P. Jarry, I. Kucher, E. Locci, M. Machet, J. Malcles, G. Negro, J. Rander, A. Rosowsky, M.O . Sahin, M. Titov Laboratoire Leprince-Ringuet, Ecole polytechnique, CNRS/IN2P3, Universite Paris-Saclay, Palaiseau, France A. Abdulsalam, I. Antropov, S. Ba oni, F. Beaudette, P. Busson, L. Cadamuro, C. Charlot, R. Granier de Cassagnac, M. Jo, S. Lisniak, A. Lobanov, J. Martin Blanco, M. Nguyen, C. Ochando, G. Ortona, P. Paganini, P. Pigard, S. Regnard, R. Salerno, J.B. Sauvan, Y. Sirois, A.G. Stahl Leiton, T. Strebler, Y. Yilmaz, A. Zabi, A. Zghiche Universite de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France S. Gadrat J.-L. Agram11, J. Andrea, D. Bloch, J.-M. Brom, M. Buttignol, E.C. Chabert, N. Chanon, C. Collard, E. Conte11, X. Coubez, J.-C. Fontaine11, D. Gele, U. Goerlach, M. Jansova, A.-C. Le Bihan, N. Tonon, P. Van Hove Centre de Calcul de l'Institut National de Physique Nucleaire et de Physique des Particules, CNRS/IN2P3, Villeurbanne, France Universite de Lyon, Universite Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucleaire de Lyon, Villeurbanne, France S. Beauceron, C. Bernet, G. Boudoul, R. Chierici, D. Contardo, P. Depasse, H. El Mamouni, J. Fay, L. Finco, S. Gascon, M. Gouzevitch, G. Grenier, B. Ille, F. Lagarde, I.B. Laktineh, M. Lethuillier, L. Mirabito, A.L. Pequegnot, S. Perries, A. Popov12, V. Sordini, M. Vander Donckt, S. Viret A. Khvedelidze7 Z. Tsamalaidze7 Georgian Technical University, Tbilisi, Georgia Tbilisi State University, Tbilisi, Georgia RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany C. Autermann, S. Beranek, L. Feld, M.K. Kiesel, K. Klein, M. Lipinski, M. Preuten, C. Schomakers, J. Schulz, T. Verlage RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany A. Albert, E. Dietz-Laursonn, D. Duchardt, M. Endres, M. Erdmann, S. Erdweg, T. Esch, R. Fischer, A. Guth, M. Hamer, T. Hebbeker, C. Heidemann, K. Hoepfner, S. Knutzen, M. Merschmeyer, A. Meyer, P. Millet, S. Mukherjee, M. Olschewski, K. Padeken, T. Pook, M. Radziej, H. Reithler, M. Rieger, F. Scheuch, D. Teyssier, S. Thuer RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany G. Flugge, B. Kargoll, T. Kress, A. Kunsken, J. Lingemann, T. Muller, A. Nehrkorn, A. Nowack, C. Pistone, O. Pooth, A. Stahl13 Deutsches Elektronen-Synchrotron, Hamburg, Germany M. Aldaya Martin, T. Arndt, C. Asawatangtrakuldee, K. Beernaert, O. Behnke, U. Behrens, A. Bermudez Mart nez, A.A. Bin Anuar, K. Borras14, V. Botta, A. Campbell, P. Connor, C. Contreras-Campana, F. Costanza, C. Diez Pardos, G. Eckerlin, D. Eckstein, T. Eichhorn, E. Eren, E. Gallo15, J. Garay Garcia, A. Geiser, A. Gizhko, J.M. Grados Luyando, A. Grohsjean, P. Gunnellini, A. Harb, J. Hauk, M. Hempel16, H. Jung, A. Kalogeropoulos, M. Kasemann, J. Keaveney, C. Kleinwort, I. Korol, D. Krucker, W. Lange, A. Lelek, T. Lenz, J. Leonard, K. Lipka, W. Lohmann16, R. Mankel, I.A. Melzer-Pellmann, A.B. Meyer, G. Mittag, J. Mnich, A. Mussgiller, E. Ntomari, D. Pitzl, A. Raspereza, B. Roland, M. Savitskyi, P. Saxena, R. Shevchenko, S. Spannagel, N. Stefaniuk, G.P. Van Onsem, R. Walsh, Y. Wen, K. Wichmann, C. Wissing, O. Zenaiev University of Hamburg, Hamburg, Germany S. Bein, V. Blobel, M. Centis Vignali, T. Dreyer, E. Garutti, D. Gonzalez, J. Haller, A. Hinzmann, M. Ho mann, A. Karavdina, R. Klanner, R. Kogler, N. Kovalchuk, S. Kurz, T. Lapsien, I. Marchesini, D. Marconi, M. Meyer, M. Niedziela, D. Nowatschin, F. Pantaleo13, T. Pei er, A. Perieanu, C. Scharf, P. Schleper, A. Schmidt, S. Schumann, J. Schwandt, J. Sonneveld, H. Stadie, G. Steinbruck, F.M. Stober, M. Stover, H. Tholen, D. Troendle, E. Usai, L. Vanelderen, A. Vanhoefer, B. Vormwald Institut fur Experimentelle Kernphysik, Karlsruhe, Germany M. Akbiyik, C. Barth, S. Baur, E. Butz, R. Caspart, T. Chwalek, F. Colombo, W. De Boer, A. Dierlamm, B. Freund, R. Friese, M. Gi els, A. Gilbert, D. Haitz, F. Hartmann13, S.M. Heindl, U. Husemann, F. Kassel13, S. Kudella, H. Mildner, M.U. Mozer, Th. Muller, M. Plagge, G. Quast, K. Rabbertz, M. Schroder, I. Shvetsov, G. Sieber, H.J. Simonis, R. Ulrich, S. Wayand, M. Weber, T. Weiler, S. Williamson, C. Wohrmann, R. Wolf Institute of Nuclear and Particle Physics (INPP), NCSR Demokritos, Aghia Paraskevi, Greece I. Topsis-Giotis G. Anagnostou, G. Daskalakis, T. Geralis, V.A. Giakoumopoulou, A. Kyriakis, D. Loukas, National and Kapodistrian University of Athens, Athens, Greece G. Karathanasis, S. Kesisoglou, A. Panagiotou, N. Saoulidou University of Ioannina, Ioannina, Greece I. Evangelou, C. Foudas, P. Kokkas, S. Mallios, N. Manthos, I. Papadopoulos, E. Paradas, HJEP1(207)4 J. Strologas, F.A. Triantis MTA-ELTE Lendulet CMS Particle and Nuclear Physics Group, Eotvos Lorand University, Budapest, Hungary M. Csanad, N. Filipovic, G. Pasztor G. Bencze, C. Hajdu, G. Vesztergombi18, A.J. Zsigmond Wigner Research Centre for Physics, Budapest, Hungary Institute of Nuclear Research ATOMKI, Debrecen, Hungary N. Beni, S. Czellar, J. Karancsi19, A. Makovec, J. Molnar, Z. Szillasi Institute of Physics, University of Debrecen, Debrecen, Hungary M. Bartok18, P. Raics, Z.L. Trocsanyi, B. Ujvari Indian Institute of Science (IISc), Bangalore, India S. Choudhury, J.R. Komaragiri D. Horvath17, A. Hunyadi, F. Sikler, V. Veszpremi, National Institute of Science Education and Research, Bhubaneswar, India S. Bahinipati20, S. Bhowmik, P. Mal, K. Mandal, A. Nayak21, D.K. Sahoo20, N. Sahoo, S.K. Swain Panjab University, Chandigarh, India S. Bansal, S.B. Beri, V. Bhatnagar, R. Chawla, N. Dhingra, A.K. Kalsi, A. Kaur, M. Kaur, R. Kumar, P. Kumari, A. Mehta, J.B. Singh, G. Walia University of Delhi, Delhi, India Ashok Kumar, Aashaq Shah, A. Bhardwaj, S. Chauhan, B.C. Choudhary, R.B. Garg, S. Keshri, A. Kumar, S. Malhotra, M. Naimuddin, K. Ranjan, R. Sharma, V. Sharma Saha Institute of Nuclear Physics, HBNI, Kolkata, India R. Bhardwaj, R. Bhattacharya, S. Bhattacharya, U. Bhawandeep, S. Dey, S. Dutt, S. Dutta, S. Ghosh, N. Majumdar, A. Modak, K. Mondal, S. Mukhopadhyay, S. Nandan, A. Purohit, A. Roy, D. Roy, S. Roy Chowdhury, S. Sarkar, M. Sharan, S. Thakur Indian Institute of Technology Madras, Madras, India P.K. Behera Bhabha Atomic Research Centre, Mumbai, India R. Chudasama, D. Dutta, V. Jha, V. Kumar, A.K. Mohanty13, P.K. Netrakanti, L.M. Pant, P. Shukla, A. Topkar Tata Institute of Fundamental Research-A, Mumbai, India T. Aziz, S. Dugad, B. Mahakud, S. Mitra, G.B. Mohanty, N. Sur, B. Sutar Tata Institute of Fundamental Research-B, Mumbai, India S. Banerjee, S. Bhattacharya, S. Chatterjee, P. Das, M. Guchait, Sa. Jain, S. Kumar, M. Maity22, G. Majumder, K. Mazumdar, T. Sarkar22, N. Wickramage23 HJEP1(207)4 Indian Institute of Science Education and Research (IISER), Pune, India S. Chauhan, S. Dube, V. Hegde, A. Kapoor, K. Kothekar, S. Pandey, A. Rane, S. Sharma Institute for Research in Fundamental Sciences (IPM), Tehran, Iran S. Chenarani24, E. Eskandari Tadavani, S.M. Etesami24, M. Khakzad, M. Mohammadi Najafabadi, M. Naseri, S. Paktinat Mehdiabadi25, F. Rezaei Hosseinabadi, B. Safarzadeh26, M. Zeinali University College Dublin, Dublin, Ireland M. Felcini, M. Grunewald INFN Sezione di Bari a, Universita di Bari b, Politecnico di Bari c, Bari, Italy M. Abbresciaa;b, C. Calabriaa;b, C. Caputoa;b, A. Colaleoa, D. Creanzaa;c, L. Cristellaa;b, N. De Filippisa;c, M. De Palmaa;b, F. Erricoa;b, L. Fiorea, G. Iasellia;c, S. Lezkia;b, G. Maggia;c, M. Maggia, G. Minielloa;b, S. Mya;b, S. Nuzzoa;b, A. Pompilia;b, G. Pugliesea;c, R. Radognaa;b, A. Ranieria, G. Selvaggia;b, A. Sharmaa, L. Silvestrisa;13, R. Vendittia, P. Verwilligena INFN Sezione di Bologna a, Universita di Bologna b, Bologna, Italy G. Abbiendia, C. Battilanaa;b, D. Bonacorsia;b, S. Braibant-Giacomellia;b, R. Campaninia;b, P. Capiluppia;b, A. Castroa;b, F.R. Cavalloa, S.S. Chhibraa, G. Codispotia;b, M. Cu ania;b, G.M. Dallavallea, F. Fabbria, A. Fanfania;b, D. Fasanellaa;b, P. Giacomellia, C. Grandia, L. Guiduccia;b, S. Marcellinia, G. Masettia, A. Montanaria, F.L. Navarriaa;b, A. Perrottaa, A.M. Rossia;b, T. Rovellia;b, G.P. Sirolia;b, N. Tosia INFN Sezione di Catania a, Universita di Catania b, Catania, Italy S. Albergoa;b, S. Costaa;b, A. Di Mattiaa, F. Giordanoa;b, R. Potenzaa;b, A. Tricomia;b, C. Tuvea;b L. Viliania;b;13 INFN Sezione di Firenze a, Universita di Firenze b, Firenze, Italy G. Barbaglia, K. Chatterjeea;b, V. Ciullia;b, C. Civininia, R. D'Alessandroa;b, E. Focardia;b, P. Lenzia;b, M. Meschinia, S. Paolettia, L. Russoa;27, G. Sguazzonia, D. Stroma, INFN Laboratori Nazionali di Frascati, Frascati, Italy L. Benussi, S. Bianco, F. Fabbri, D. Piccolo, F. Primavera13 INFN Sezione di Genova a, Universita di Genova b, Genova, Italy V. Calvellia;b, F. Ferroa, E. Robuttia, S. Tosia;b INFN Sezione di Milano-Bicocca a, Universita di Milano-Bicocca b, Milano, Italy L. Brianzaa;b, F. Brivioa;b, V. Cirioloa;b, M.E. Dinardoa;b, S. Fiorendia;b, S. Gennaia, A. Ghezzia;b, P. Govonia;b, M. Malbertia;b, S. Malvezzia, R.A. Manzonia;b, D. Menascea, L. Moronia, M. Paganonia;b, K. Pauwelsa;b, D. Pedrinia, S. Pigazzinia;b;28, S. Ragazzia;b, T. Tabarelli de Fatisa;b INFN Sezione di Napoli a, Universita di Napoli 'Federico II' b, Napoli, Italy, Universita della Basilicata c, Potenza, Italy, Universita G. Marconi d, Roma, F. Thyssena INFN Sezione di Padova a, Universita di Padova b, Padova, Italy, Universita di Trento c, Trento, Italy P. Azzia;13, L. Benatoa;b, D. Biselloa;b, A. Bolettia;b, R. Carlina;b, A. Carvalho Antunes De Oliveiraa;b, P. Checchiaa, M. Dall'Ossoa;b, P. De Castro Manzanoa, T. Dorigoa, U. Dossellia, F. Gasparinia;b, A. Gozzelinoa, S. Lacapraraa, P. Lujan, M. Margonia;b, G. Marona;29, A.T. Meneguzzoa;b, N. Pozzobona;b, P. Ronchesea;b, R. Rossina;b, F. Simonettoa;b, E. Torassaa, S. Venturaa, M. Zanettia;b, P. Zottoa;b INFN Sezione di Pavia a, Universita di Pavia b, Pavia, Italy A. Braghieria, F. Fallavollitaa;b, A. Magnania;b, P. Montagnaa;b, S.P. Rattia;b, V. Rea, M. Ressegotti, C. Riccardia;b, P. Salvinia, I. Vaia;b, P. Vituloa;b INFN Sezione di Perugia a, Universita di Perugia b, Perugia, Italy L. Alunni Solestizia;b, M. Biasinia;b, G.M. Bileia, C. Cecchia;b, D. Ciangottinia;b, L. Fanoa;b, P. Laricciaa;b, R. Leonardia;b, E. Manonia, G. Mantovania;b, V. Mariania;b, M. Menichellia, A. Rossia;b, A. Santocchiaa;b, D. Spigaa INFN Sezione di Pisa a, Universita di Pisa b, Scuola Normale Superiore di Pisa c, Pisa, Italy K. Androsova, P. Azzurria;13, G. Bagliesia, J. Bernardinia, T. Boccalia, L. Borrello, R. Castaldia, M.A. Cioccia;b, R. Dell'Orsoa, G. Fedia, L. Gianninia;c, A. Giassia, M.T. Grippoa;27, F. Ligabuea;c, T. Lomtadzea, E. Mancaa;c, G. Mandorlia;c, L. Martinia;b, A. Messineoa;b, F. Pallaa, A. Rizzia;b, A. Savoy-Navarroa;30, P. Spagnoloa, R. Tenchinia, G. Tonellia;b, A. Venturia, P.G. Verdinia INFN Sezione di Roma a, Sapienza Universita di Roma b, Rome, Italy L. Baronea;b, F. Cavallaria, M. Cipriania;b, D. Del Rea;b;13, M. Diemoza, S. Gellia;b, E. Longoa;b, F. Margarolia;b, R. Paramattia;b, F. Preiatoa;b, S. Rahatloua;b, C. Rovellia, F. Santanastasioa;b INFN Sezione di Torino a, Universita di Torino b, Torino, Italy, Universita del Piemonte Orientale c, Novara, Italy N. Amapanea;b, R. Arcidiaconoa;c, S. Argiroa;b, M. Arneodoa;c, N. Bartosika, R. Bellana;b, C. Biinoa, A. Cappati, N. Cartigliaa, F. Cennaa;b, M. Costaa;b, R. Covarellia;b, A. Deganoa;b, N. Demariaa, B. Kiania;b, C. Mariottia, S. Masellia, E. Migliorea;b, V. Monacoa;b, E. Monteila;b, M. Montenoa, M.M. Obertinoa;b, L. Pachera;b, N. Pastronea, M. Pelliccionia, G.L. Pinna Angionia;b, F. Raveraa;b, A. Romeroa;b, M. Ruspaa;c, R. Sacchia;b, K. Shchelinaa;b, V. Solaa, A. Solanoa;b, A. Staianoa, P. Traczyka;b INFN Sezione di Trieste a, Universita di Trieste b, Trieste, Italy S. Belfortea, M. Casarsaa, F. Cossuttia, G. Della Riccaa;b, A. Zanettia Kyungpook National University, Daegu, Korea D.H. Kim, G.N. Kim, M.S. Kim, J. Lee, S. Lee, S.W. Lee, C.S. Moon, Y.D. Oh, S. Sekmen, D.C. Son, Y.C. Yang Chonbuk National University, Jeonju, Korea A. Lee Chonnam National University, Institute for Universe and Elementary Particles, H. Kim, D.H. Moon, G. Oh Hanyang University, Seoul, Korea J.A. Brochero Cifuentes, J. Goh, T.J. Kim Korea University, Seoul, Korea J. Lim, S.K. Park, Y. Roh Seoul National University, Seoul, Korea S. Cho, S. Choi, Y. Go, D. Gyun, S. Ha, B. Hong, Y. Jo, Y. Kim, K. Lee, K.S. Lee, S. Lee, J. Almond, J. Kim, J.S. Kim, H. Lee, K. Lee, K. Nam, S.B. Oh, B.C. Radburn-Smith, S.h. Seo, U.K. Yang, H.D. Yoo, G.B. Yu University of Seoul, Seoul, Korea M. Choi, H. Kim, J.H. Kim, J.S.H. Lee, I.C. Park, G. Ryu Sungkyunkwan University, Suwon, Korea Y. Choi, C. Hwang, J. Lee, I. Yu Vilnius University, Vilnius, Lithuania V. Dudenas, A. Juodagalvis, J. Vaitkus National Centre for Particle Physics, Universiti Malaya, Kuala Lumpur, Malaysia M.N. Yusli, Z. Zolkapli I. Ahmed, Z.A. Ibrahim, M.A.B. Md Ali31, F. Mohamad Idris32, W.A.T. Wan Abdullah, Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico Reyes-Almanza, R, Ramirez-Sanchez, G., Duran-Osuna, M. C., H. Castilla-Valdez, E. De La Cruz-Burelo, I. Heredia-De La Cruz33, Rabadan-Trejo, R. I., R. Lopez-Fernandez, J. Mejia Guisao, A. Sanchez-Hernandez Universidad Iberoamericana, Mexico City, Mexico S. Carrillo Moreno, C. Oropeza Barrera, F. Vazquez Valencia Benemerita Universidad Autonoma de Puebla, Puebla, Mexico I. Pedraza, H.A. Salazar Ibarguen, C. Uribe Estrada Universidad Autonoma de San Luis Potos , San Luis Potos , Mexico A. Morelos Pineda University of Auckland, Auckland, New Zealand University of Canterbury, Christchurch, New Zealand National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan A. Ahmad, M. Ahmad, Q. Hassan, H.R. Hoorani, A. Saddique, M.A. Shah, M. Shoaib, National Centre for Nuclear Research, Swierk, Poland H. Bialkowska, M. Bluj, B. Boimska, T. Frueboes, M. Gorski, M. Kazana, K. Nawrocki, K. Romanowska-Rybinska, M. Szleper, P. Zalewski Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland K. Bunkowski, A. Byszuk34, K. Doroba, A. Kalinowski, M. Konecki, J. Krolikowski, M. Misiura, M. Olszewski, A. Pyskir, M. Walczak Laboratorio de Instrumentac~ao e F sica Experimental de Part culas, Lisboa, Portugal P. Bargassa, C. Beir~ao Da Cruz E Silva, B. Calpas35, A. Di Francesco, P. Faccioli, M. Gallinaro, J. Hollar, N. Leonardo, L. Lloret Iglesias, M.V. Nemallapudi, J. Seixas, O. Toldaiev, D. Vadruccio, J. Varela Joint Institute for Nuclear Research, Dubna, Russia S. Afanasiev, P. Bunin, M. Gavrilenko, I. Golutvin, I. Gorbunov, A. Kamenev, V. Karjavin, A. Lanev, A. Malakhov, V. Matveev36;37, V. Palichik, V. Perelygin, S. Shmatov, S. Shulha, N. Skatchkov, V. Smirnov, N. Voytishin, A. Zarubin Petersburg Nuclear Physics Institute, Gatchina (St. Petersburg), Russia Y. Ivanov, V. Kim38, E. Kuznetsova39, P. Levchenko, V. Murzin, V. Oreshkin, I. Smirnov, V. Sulimov, L. Uvarov, S. Vavilov, A. Vorobyev Institute for Nuclear Research, Moscow, Russia Yu. Andreev, A. Dermenev, S. Gninenko, N. Golubev, A. Karneyeu, M. Kirsanov, N. Krasnikov, A. Pashenkov, D. Tlisov, A. Toropin Institute for Theoretical and Experimental Physics, Moscow, Russia V. Epshteyn, V. Gavrilov, N. Lychkovskaya, V. Popov, I. Pozdnyakov, G. Safronov, A. Spiridonov, A. Stepennov, M. Toms, E. Vlasov, A. Zhokin Moscow Institute of Physics and Technology, Moscow, Russia T. Aushev, A. Bylinkin37 National Research Nuclear University 'Moscow Engineering Physics Institute' (MEPhI), Moscow, Russia M. Chadeeva40, O. Markin, P. Parygin, D. Philippov, S. Polikarpov, V. Rusinov, E. Zhemchugov P.N. Lebedev Physical Institute, Moscow, Russia V. Andreev, M. Azarkin37, I. Dremin37, M. Kirakosyan37, A. Terkulov Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia S. Petrushanko, V. Savrin A. Baskakov, A. Belyaev, E. Boos, V. Bunichev, M. Dubinin41, L. Dudko, A. Ershov, A. Gribushin, V. Klyukhin, O. Kodolova, I. Lokhtin, I. Miagkov, S. Obraztsov, Novosibirsk State University (NSU), Novosibirsk, Russia V. Blinov42, Y.Skovpen42, D. Shtol42 State Research Center of Russian Federation, Institute for High Energy Physics, Protvino, Russia I. Azhgirey, I. Bayshev, S. Bitioukov, D. Elumakhov, V. Kachanov, A. Kalinin, D. Konstantinov, V. Krychkine, V. Petrov, R. Ryutin, A. Sobol, S. Troshin, N. Tyurin, A. Uzunian, A. Volkov University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia P. Adzic43, P. Cirkovic, D. Devetak, M. Dordevic, J. Milosevic, V. Rekovic Centro de Investigaciones Energeticas Medioambientales y Tecnologicas (CIEMAT), Madrid, Spain J. Alcaraz Maestre, M. Barrio Luna, M. Cerrada, N. Colino, B. De La Cruz, A. Delgado Peris, A. Escalante Del Valle, C. Fernandez Bedoya, J.P. Fernandez Ramos, J. Flix, M.C. Fouz, P. Garcia-Abia, O. Gonzalez Lopez, S. Goy Lopez, J.M. Hernandez, M.I. Josa, A. Perez-Calero Yzquierdo, J. Puerta Pelayo, A. Quintario Olmeda, I. Redondo, L. Romero, M.S. Soares, A. Alvarez Fernandez Universidad Autonoma de Madrid, Madrid, Spain J.F. de Troconiz, M. Missiroli, D. Moran J. Cuevas, C. Erice, J. Fernandez Menendez, I. Gonzalez Caballero, J.R. Gonzalez Fernandez, E. Palencia Cortezon, S. Sanchez Cruz, I. Suarez Andres, P. Vischia, J.M. Vizan Garcia Santander, Spain Instituto de F sica de Cantabria (IFCA), CSIC-Universidad de Cantabria, I.J. Cabrillo, A. Calderon, B. Chazin Quero, E. Curras, J. Duarte Campderros, M. Fernandez, J. Garcia-Ferrero, G. Gomez, A. Lopez Virto, J. Marco, C. Martinez Rivero, P. Martinez Ruiz del Arbol, F. Matorras, J. Piedra Gomez, T. Rodrigo, A. Ruiz-Jimeno, L. Scodellaro, N. Trevisani, I. Vila, R. Vilar Cortabitarte CERN, European Organization for Nuclear Research, Geneva, Switzerland D. Abbaneo, E. Au ray, P. Baillon, A.H. Ball, D. Barney, M. Bianco, P. Bloch, A. Bocci, C. Botta, T. Camporesi, R. Castello, M. Cepeda, G. Cerminara, E. Chapon, Y. Chen, D. d'Enterria, A. Dabrowski, V. Daponte, A. David, M. De Gruttola, A. De Roeck, E. Di Marco44, M. Dobson, B. Dorney, T. du Pree, M. Dunser, N. Dupont, A. Elliott-Peisert, P. Everaerts, G. Franzoni, J. Fulcher, W. Funk, D. Gigi, K. Gill, F. Glege, D. Gulhan, S. Gundacker, M. Gutho , P. Harris, J. Hegeman, V. Innocente, P. Janot, O. Karacheban16, J. Kieseler, H. Kirschenmann, V. Knunz, A. Kornmayer13, M.J. Kortelainen, C. Lange, P. Lecoq, C. Lourenco, M.T. Lucchini, L. Malgeri, M. Mannelli, A. Martelli, F. Meijers, J.A. Merlin, S. Mersi, E. Meschi, P. Milenovic45, F. Moortgat, M. Mulders, H. Neugebauer, S. Orfanelli, L. Orsini, L. Pape, E. Perez, M. Peruzzi, A. Petrilli, G. Petrucciani, A. Pfei er, M. Pierini, A. Racz, T. Reis, G. Rolandi46, M. Rovere, H. Sakulin, C. Schafer, C. Schwick, M. Seidel, M. Selvaggi, A. Sharma, P. Silva, P. Sphicas47, A. Stakia, J. Steggemann, M. Stoye, M. Tosi, D. Treille, A. Triossi, A. Tsirou, V. Veckalns48, G.I. Veres18, M. Verweij, N. Wardle, W.D. Zeuner Paul Scherrer Institut, Villigen, Switzerland W. Bertly, L. Caminada49, K. Deiters, W. Erdmann, R. Horisberger, Q. Ingram, H.C. Kaestli, D. Kotlinski, U. Langenegger, T. Rohe, S.A. Wiederkehr Institute for Particle Physics, ETH Zurich, Zurich, Switzerland F. Bachmair, L. Bani, P. Berger, L. Bianchini, B. Casal, G. Dissertori, M. Dittmar, M. Donega, C. Grab, C. Heidegger, D. Hits, J. Hoss, G. Kasieczka, T. Klijnsma, W. Lustermann, B. Mangano, M. Marionneau, M.T. Meinhard, D. Meister, F. Micheli, P. Musella, F. Nessi-Tedaldi, F. Pandol , J. Pata, F. Pauss, G. Perrin, L. Perrozzi, M. Quittnat, M. Reichmann, M. Schonenberger, L. Shchutska, V.R. Tavolaro, K. Theo latos, M.L. Vesterbacka Olsson, R. Wallny, D.H. Zhu Universitat Zurich, Zurich, Switzerland T.K. Aarrestad, C. Amsler50, M.F. Canelli, A. De Cosa, R. Del Burgo, S. Donato, C. Galloni, T. Hreus, B. Kilminster, J. Ngadiuba, D. Pinna, G. Rauco, P. Robmann, D. Salerno, C. Seitz, Y. Takahashi, A. Zucchetta National Central University, Chung-Li, Taiwan V. Candelise, T.H. Doan, Sh. Jain, R. Khurana, C.M. Kuo, W. Lin, A. Pozdnyakov, S.S. Yu National Taiwan University (NTU), Taipei, Taiwan Arun Kumar, P. Chang, Y. Chao, K.F. Chen, P.H. Chen, F. Fiori, W.-S. Hou, Y. Hsiung, Y.F. Liu, R.-S. Lu, E. Paganis, A. Psallidas, A. Steen, J.f. Tsai Chulalongkorn University, Faculty of Science, Department of Physics, Bangkok, Thailand Turkey B. Asavapibhop, K. Kovitanggoon, G. Singh, N. Srimanobhas Cukurova University, Physics Department, Science and Art Faculty, Adana, A. Adiguzel51, F. Boran, S. Cerci52, S. Damarseckin, Z.S. Demiroglu, C. Dozen, I. Dumanoglu, S. Girgis, G. Gokbulut, Y. Guler, I. Hos53, E.E. Kangal54, O. Kara, A. Kayis Topaksu, U. Kiminsu, M. Oglakci, G. Onengut55, K. Ozdemir56, D. Sunar Cerci52, B. Tali52, S. Turkcapar, I.S. Zorbakir, C. Zorbilmez Middle East Technical University, Physics Department, Ankara, Turkey B. Bilin, G. Karapinar57, K. Ocalan58, M. Yalvac, M. Zeyrek Bogazici University, Istanbul, Turkey E. Gulmez, M. Kaya59, O. Kaya60, S. Tekten, E.A. Yetkin61 Istanbul Technical University, Istanbul, Turkey M.N. Agaras, S. Atay, A. Cakir, K. Cankocak Institute for Scintillation Materials of National Academy of Science of Ukraine, Kharkov, Ukraine B. Grynyov Kharkov, Ukraine L. Levchuk, P. Sorokin National Scienti c Center, Kharkov Institute of Physics and Technology, University of Bristol, Bristol, United Kingdom R. Aggleton, F. Ball, L. Beck, J.J. Brooke, D. Burns, E. Clement, D. Cussans, O. Davignon, H. Flacher, J. Goldstein, M. Grimes, G.P. Heath, H.F. Heath, J. Jacob, L. Kreczko, C. Lucas, D.M. Newbold62, S. Paramesvaran, A. Poll, T. Sakuma, S. Seif El Nasr-storey, D. Smith, V.J. Smith Rutherford Appleton Laboratory, Didcot, United Kingdom K.W. Bell, A. Belyaev63, C. Brew, R.M. Brown, L. Calligaris, D. Cieri, D.J.A. Cockerill, J.A. Coughlan, K. Harder, S. Harper, E. Olaiya, D. Petyt, C.H. Shepherd-Themistocleous, A. Thea, I.R. Tomalin, T. Williams Imperial College, London, United Kingdom G. Auzinger, R. Bainbridge, S. Breeze, O. Buchmuller, A. Bundock, S. Casasso, M. Citron, D. Colling, L. Corpe, P. Dauncey, G. Davies, A. De Wit, M. Della Negra, R. Di Maria, A.-M. Magnan, S. Malik, L. Mastrolorenzo, T. Matsushita, J. Nash, A. Nikitenko6, V. Palladino, M. Pesaresi, D.M. Raymond, A. Richards, A. Rose, E. Scott, C. Seez, A. Shtipliyski, S. Summers, A. Tapper, K. Uchida, M. Vazquez Acosta64, T. Virdee13, D. Winterbottom, J. Wright, S.C. Zenz Brunel University, Uxbridge, United Kingdom J.E. Cole, P.R. Hobson, A. Khan, P. Kyberd, I.D. Reid, P. Symonds, L. Teodorescu, M. Turner Baylor University, Waco, U.S.A. A. Borzou, K. Call, J. Dittmann, K. Hatakeyama, H. Liu, N. Pastika, C. Smith Catholic University of America, Washington DC, U.S.A. R. Bartek, A. Dominguez The University of Alabama, Tuscaloosa, U.S.A. A. Buccilli, S.I. Cooper, C. Henderson, P. Rumerio, C. West Boston University, Boston, U.S.A. D. Zou Brown University, Providence, U.S.A. D. Arcaro, A. Avetisyan, T. Bose, D. Gastler, D. Rankin, C. Richardson, J. Rohlf, L. Sulak, G. Benelli, D. Cutts, A. Garabedian, J. Hakala, U. Heintz, J.M. Hogan, K.H.M. Kwok, E. Laird, G. Landsberg, Z. Mao, M. Narain, S. Piperov, S. Sagir, R. Syarif, D. Yu University of California, Davis, Davis, U.S.A. R. Band, C. Brainerd, D. Burns, M. Calderon De La Barca Sanchez, M. Chertok, J. Conway, R. Conway, P.T. Cox, R. Erbacher, C. Flores, G. Funk, M. Gardner, W. Ko, R. Lander, C. Mclean, M. Mulhearn, D. Pellett, J. Pilot, S. Shalhout, M. Shi, J. Smith, M. Squires, D. Stolp, K. Tos, M. Tripathi, Z. Wang University of California, Los Angeles, U.S.A. M. Bachtis, C. Bravo, R. Cousins, A. Dasgupta, A. Florent, J. Hauser, M. Ignatenko, N. Mccoll, D. Saltzberg, C. Schnaible, V. Valuev University of California, Riverside, Riverside, U.S.A. E. Bouvier, K. Burt, R. Clare, J. Ellison, J.W. Gary, S.M.A. Ghiasi Shirazi, G. Hanson, J. Heilman, P. Jandir, E. Kennedy, F. Lacroix, O.R. Long, M. Olmedo Negrete, M.I. Paneva, A. Shrinivas, W. Si, L. Wang, H. Wei, S. Wimpenny, B. R. Yates University of California, San Diego, La Jolla, U.S.A. J.G. Branson, S. Cittolin, M. Derdzinski, B. Hashemi, A. Holzner, D. Klein, G. Kole, V. Krutelyov, J. Letts, I. Macneill, M. Masciovecchio, D. Olivito, S. Padhi, M. Pieri, M. Sani, V. Sharma, S. Simon, M. Tadel, A. Vartak, S. Wasserbaech65, J. Wood, F. Wurthwein, A. Yagil, G. Zevi Della Porta bara, U.S.A. N. Amin, R. Bhandari, J. Bradmiller-Feld, C. Campagnari, A. Dishaw, V. Dutta, M. Franco Sevilla, C. George, F. Golf, L. Gouskos, J. Gran, R. Heller, J. Incandela, S.D. Mullin, A. Ovcharova, H. Qu, J. Richman, D. Stuart, I. Suarez, J. Yoo California Institute of Technology, Pasadena, U.S.A. D. Anderson, J. Bendavid, A. Bornheim, J.M. Lawhorn, H.B. Newman, T. Nguyen, C. Pena, M. Spiropulu, J.R. Vlimant, S. Xie, Z. Zhang, R.Y. Zhu Carnegie Mellon University, Pittsburgh, U.S.A. M.B. Andrews, T. Ferguson, T. Mudholkar, M. Paulini, J. Russ, M. Sun, H. Vogel, I. Vorobiev, M. Weinberg University of Colorado Boulder, Boulder, U.S.A. J.P. Cumalat, W.T. Ford, F. Jensen, A. Johnson, M. Krohn, S. Leontsinis, T. Mulholland, K. Stenson, S.R. Wagner Cornell University, Ithaca, U.S.A. J. Alexander, J. Chaves, J. Chu, S. Dittmer, K. Mcdermott, N. Mirman, J.R. Patterson, A. Rinkevicius, A. Ryd, L. Skinnari, L. So , S.M. Tan, Z. Tao, J. Thom, J. Tucker, P. Wittich, M. Zientek Fermi National Accelerator Laboratory, Batavia, U.S.A. S. Abdullin, M. Albrow, G. Apollinari, A. Apresyan, A. Apyan, S. Banerjee, L.A.T. Bauerdick, A. Beretvas, J. Berryhill, P.C. Bhat, G. Bolla, K. Burkett, J.N. Butler, A. Canepa, G.B. Cerati, H.W.K. Cheung, F. Chlebana, M. Cremonesi, J. Duarte, V.D. Elvira, J. Freeman, Z. Gecse, E. Gottschalk, L. Gray, D. Green, S. Grunendahl, O. Gutsche, R.M. Harris, S. Hasegawa, J. Hirschauer, Z. Hu, B. Jayatilaka, S. Jindariani, M. Johnson, U. Joshi, B. Klima, B. Kreis, S. Lammel, D. Lincoln, R. Lipton, M. Liu, T. Liu, R. Lopes De Sa, J. Lykken, K. Maeshima, N. Magini, J.M. Marra no, S. Maruyama, D. Mason, P. McBride, P. Merkel, S. Mrenna, S. Nahn, V. O'Dell, K. Pedro, O. Prokofyev, G. Rakness, L. Ristori, B. Schneider, E. Sexton-Kennedy, A. Soha, W.J. Spalding, L. Spiegel, S. Stoynev, J. Strait, N. Strobbe, L. Taylor, S. Tkaczyk, N.V. Tran, L. Uplegger, E.W. Vaandering, C. Vernieri, M. Verzocchi, R. Vidal, M. Wang, H.A. Weber, A. Whitbeck University of Florida, Gainesville, U.S.A. D. Acosta, P. Avery, P. Bortignon, D. Bourilkov, A. Brinkerho , A. Carnes, M. Carver, D. Curry, R.D. Field, I.K. Furic, J. Konigsberg, A. Korytov, K. Kotov, P. Ma, K. Matchev, H. Mei, G. Mitselmakher, D. Rank, D. Sperka, N. Terentyev, L. Thomas, J. Wang, S. Wang, J. Yelton Florida International University, Miami, U.S.A. Y.R. Joshi, S. Linn, P. Markowitz, J.L. Rodriguez Florida State University, Tallahassee, U.S.A. A. Ackert, T. Adams, A. Askew, S. Hagopian, V. Hagopian, K.F. Johnson, T. Kolberg, G. Martinez, T. Perry, H. Prosper, A. Saha, A. Santra, R. Yohay Florida Institute of Technology, Melbourne, U.S.A. M.M. Baarmand, V. Bhopatkar, S. Colafranceschi, M. Hohlmann, D. Noonan, T. Roy, F. Yumiceva University of Illinois at Chicago (UIC), Chicago, U.S.A. M.R. Adams, L. Apanasevich, D. Berry, R.R. Betts, R. Cavanaugh, X. Chen, O. Evdokimov, C.E. Gerber, D.A. Hangal, D.J. Hofman, K. Jung, J. Kamin, I.D. Sandoval Gonzalez, M.B. Tonjes, H. Trauger, N. Varelas, H. Wang, Z. Wu, J. Zhang The University of Iowa, Iowa City, U.S.A. B. Bilki66, W. Clarida, K. Dilsiz67, S. Durgut, R.P. Gandrajula, M. Haytmyradov, V. Khristenko, J.-P. Merlo, H. Mermerkaya68, A. Mestvirishvili, A. Moeller, J. Nachtman, H. Ogul69, Y. Onel, F. Ozok70, A. Penzo, C. Snyder, E. Tiras, J. Wetzel, K. Yi Johns Hopkins University, Baltimore, U.S.A. B. Blumenfeld, A. Cocoros, N. Eminizer, D. Fehling, L. Feng, A.V. Gritsan, W.T. Hung, P. Maksimovic, J. Roskes, U. Sarica, M. Swartz, M. Xiao, C. You The University of Kansas, Lawrence, U.S.A. A. Al-bataineh, P. Baringer, A. Bean, S. Boren, J. Bowen, J. Castle, S. Khalil, A. Kropivnitskaya, D. Majumder, W. Mcbrayer, M. Murray, C. Royon, S. Sanders, E. Schmitz, R. Stringer, J.D. Tapia Takaki, Q. Wang Kansas State University, Manhattan, U.S.A. A. Ivanov, K. Kaadze, Y. Maravin, A. Mohammadi, L.K. Saini, N. Skhirtladze, S. Toda Lawrence Livermore National Laboratory, Livermore, U.S.A. F. Rebassoo, D. Wright University of Maryland, College Park, U.S.A. C. Anelli, A. Baden, O. Baron, A. Belloni, B. Calvert, S.C. Eno, C. Ferraioli, N.J. Hadley, S. Jabeen, G.Y. Jeng, R.G. Kellogg, J. Kunkle, A.C. Mignerey, F. Ricci-Tam, Y.H. Shin, A. Skuja, S.C. Tonwar Massachusetts Institute of Technology, Cambridge, U.S.A. D. Abercrombie, B. Allen, V. Azzolini, R. Barbieri, A. Baty, R. Bi, S. Brandt, W. Busza, I.A. Cali, M. D'Alfonso, Z. Demiragli, G. Gomez Ceballos, M. Goncharov, D. Hsu, Y. Iiyama, G.M. Innocenti, M. Klute, D. Kovalskyi, Y.S. Lai, Y.-J. Lee, A. Levin, P.D. Luckey, B. Maier, A.C. Marini, C. Mcginn, C. Mironov, S. Narayanan, X. Niu, C. Paus, C. Roland, G. Roland, J. Salfeld-Nebgen, G.S.F. Stephans, K. Tatar, D. Velicanu, J. Wang, T.W. Wang, B. Wyslouch University of Minnesota, Minneapolis, U.S.A. A.C. Benvenuti, R.M. Chatterjee, A. Evans, P. Hansen, S. Kalafut, Y. Kubota, Z. Lesko, J. Mans, S. Nourbakhsh, N. Ruckstuhl, R. Rusack, J. Turkewitz University of Mississippi, Oxford, U.S.A. J.G. Acosta, S. Oliveros E. Avdeeva, K. Bloom, D.R. Claes, C. Fangmeier, R. Gonzalez Suarez, R. Kamalieddin, I. Kravchenko, J. Monroy, J.E. Siado, G.R. Snow, B. Stieger State University of New York at Bu alo, Bu alo, U.S.A. M. Alyari, J. Dolen, A. Godshalk, C. Harrington, I. Iashvili, D. Nguyen, A. Parker, S. Rappoccio, B. Roozbahani Northeastern University, Boston, U.S.A. moto, R. Teixeira De Lima, D. Trocino, D. Wood Northwestern University, Evanston, U.S.A. G. Alverson, E. Barberis, A. Hortiangtham, A. Massironi, D.M. Morse, D. Nash, T. OriS. Bhattacharya, O. Charaf, K.A. Hahn, N. Mucia, N. Odell, B. Pollack, M.H. Schmitt, K. Sung, M. Trovato, M. Velasco University of Notre Dame, Notre Dame, U.S.A. N. Dev, M. Hildreth, K. Hurtado Anampa, C. Jessop, D.J. Karmgard, N. Kellams, K. Lannon, N. Loukas, N. Marinelli, F. Meng, C. Mueller, Y. Musienko36, M. Planer, A. Reinsvold, R. Ruchti, G. Smith, S. Taroni, M. Wayne, M. Wolf, A. Woodard The Ohio State University, Columbus, U.S.A. J. Alimena, L. Antonelli, B. Bylsma, L.S. Durkin, S. Flowers, B. Francis, A. Hart, C. Hill, W. Ji, B. Liu, W. Luo, D. Puigh, B.L. Winer, H.W. Wulsin Princeton University, Princeton, U.S.A. A. Benaglia, S. Cooperstein, O. Driga, P. Elmer, J. Hardenbrook, P. Hebda, S. Higginbotham, D. Lange, J. Luo, D. Marlow, K. Mei, I. Ojalvo, J. Olsen, C. Palmer, P. Piroue, D. Stickland, C. Tully University of Puerto Rico, Mayaguez, U.S.A. S. Malik, S. Norberg Purdue University, West Lafayette, U.S.A. A. Barker, V.E. Barnes, S. Das, S. Folgueras, L. Gutay, M.K. Jha, M. Jones, A.W. Jung, A. Khatiwada, D.H. Miller, N. Neumeister, C.C. Peng, J.F. Schulte, J. Sun, F. Wang, W. Xie Purdue University Northwest, Hammond, U.S.A. T. Cheng, N. Parashar, J. Stupak Rice University, Houston, U.S.A. A. Adair, B. Akgun, Z. Chen, K.M. Ecklund, F.J.M. Geurts, M. Guilbaud, W. Li, B. Michlin, M. Northup, B.P. Padley, J. Roberts, J. Rorie, Z. Tu, J. Zabel University of Rochester, Rochester, U.S.A. A. Bodek, P. de Barbaro, R. Demina, Y.t. Duh, T. Ferbel, M. Galanti, A. Garcia-Bellido, J. Han, O. Hindrichs, A. Khukhunaishvili, K.H. Lo, P. Tan, M. Verzetti The Rockefeller University, New York, U.S.A. R. Ciesielski, K. Goulianos, C. Mesropian Rutgers, The State University of New Jersey, Piscataway, U.S.A. A. Agapitos, J.P. Chou, Y. Gershtein, T.A. Gomez Espinosa, E. Halkiadakis, M. Heindl, E. Hughes, S. Kaplan, R. Kunnawalkam Elayavalli, S. Kyriacou, A. Lath, R. Montalvo, K. Nash, M. Osherson, H. Saka, S. Salur, S. Schnetzer, D. She eld, S. Somalwar, R. Stone, S. Thomas, P. Thomassen, M. Walker University of Tennessee, Knoxville, U.S.A. A.G. Delannoy, M. Foerster, J. Heideman, G. Riley, K. Rose, S. Spanier, K. Thapa Texas A&M University, College Station, U.S.A. O. Bouhali71, A. Castaneda Hernandez71, A. Celik, M. Dalchenko, M. De Mattia, A. Delgado, S. Dildick, R. Eusebi, J. Gilmore, T. Huang, T. Kamon72, R. Mueller, Y. Pakhotin, R. Patel, A. Perlo , L. Pernie, D. Rathjens, A. Safonov, A. Tatarinov, K.A. Ulmer Texas Tech University, Lubbock, U.S.A. N. Akchurin, J. Damgov, F. De Guio, P.R. Dudero, J. Faulkner, E. Gurpinar, S. Kunori, K. Lamichhane, S.W. Lee, T. Libeiro, T. Peltola, S. Undleeb, I. Volobouev, Z. Wang Vanderbilt University, Nashville, U.S.A. S. Greene, A. Gurrola, R. Janjam, W. Johns, C. Maguire, A. Melo, H. Ni, P. Sheldon, S. Tuo, J. Velkovska, Q. Xu University of Virginia, Charlottesville, U.S.A. M.W. Arenton, P. Barria, B. Cox, R. Hirosky, A. Ledovskoy, H. Li, C. Neu, T. Sinthuprasith, X. Sun, Y. Wang, E. Wolfe, F. Xia Wayne State University, Detroit, U.S.A. R. Harr, P.E. Karchin, J. Sturdy, S. Zaleski University of Wisconsin - Madison, Madison, WI, U.S.A. M. Brodski, J. Buchanan, C. Caillol, S. Dasu, L. Dodd, S. Duric, B. Gomber, M. Grothe, M. Herndon, A. Herve, U. Hussain, P. Klabbers, A. Lanaro, A. Levine, K. Long, R. Loveless, G.A. Pierro, G. Polese, T. Ruggles, A. Savin, N. Smith, W.H. Smith, D. Taylor, N. Woods y: Deceased China 1: Also at Vienna University of Technology, Vienna, Austria 2: Also at State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, 3: Also at Universidade Estadual de Campinas, Campinas, Brazil 4: Also at Universidade Federal de Pelotas, Pelotas, Brazil 5: Also at Universite Libre de Bruxelles, Bruxelles, Belgium 6: Also at Institute for Theoretical and Experimental Physics, Moscow, Russia 7: Also at Joint Institute for Nuclear Research, Dubna, Russia 8: Also at Helwan University, Cairo, Egypt 10: Now at Fayoum University, El-Fayoum, Egypt 11: Also at Universite de Haute Alsace, Mulhouse, France 12: Also at Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia 13: Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland 14: Also at RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany 15: Also at University of Hamburg, Hamburg, Germany 16: Also at Brandenburg University of Technology, Cottbus, Germany 17: Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary 18: Also at MTA-ELTE Lendulet CMS Particle and Nuclear Physics Group, Eotvos Lorand University, Budapest, Hungary 19: Also at Institute of Physics, University of Debrecen, Debrecen, Hungary 20: Also at Indian Institute of Technology Bhubaneswar, Bhubaneswar, India 21: Also at Institute of Physics, Bhubaneswar, India 22: Also at University of Visva-Bharati, Santiniketan, India 23: Also at University of Ruhuna, Matara, Sri Lanka 24: Also at Isfahan University of Technology, Isfahan, Iran 25: Also at Yazd University, Yazd, Iran 26: Also at Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran 27: Also at Universita degli Studi di Siena, Siena, Italy 28: Also at INFN Sezione di Milano-Bicocca; Universita di Milano-Bicocca, Milano, Italy 29: Also at Laboratori Nazionali di Legnaro dell'INFN, Legnaro, Italy 30: Also at Purdue University, West Lafayette, U.S.A. 31: Also at International Islamic University of Malaysia, Kuala Lumpur, Malaysia 32: Also at Malaysian Nuclear Agency, MOSTI, Kajang, Malaysia 33: Also at Consejo Nacional de Ciencia y Tecnolog a, Mexico city, Mexico 34: Also at Warsaw University of Technology, Institute of Electronic Systems, Warsaw, Poland 35: Also at Czech Technical University, Praha, Czech Republic 36: Also at Institute for Nuclear Research, Moscow, Russia 37: Now at National Research Nuclear University 'Moscow 38: Also at St. Petersburg State Polytechnical University, St. Petersburg, Russia 39: Also at University of Florida, Gainesville, U.S.A. 40: Also at P.N. Lebedev Physical Institute, Moscow, Russia 41: Also at California Institute of Technology, Pasadena, U.S.A. 42: Also at Budker Institute of Nuclear Physics, Novosibirsk, Russia 43: Also at Faculty of Physics, University of Belgrade, Belgrade, Serbia 44: Also at INFN Sezione di Roma; Sapienza Universita di Roma, Rome, Italy 45: Also at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia 46: Also at Scuola Normale e Sezione dell'INFN, Pisa, Italy 47: Also at National and Kapodistrian University of Athens, Athens, Greece 48: Also at Riga Technical University, Riga, Latvia 49: Also at Universitat Zurich, Zurich, Switzerland 50: Also at Stefan Meyer Institute for Subatomic Physics (SMI), Vienna, Austria 51: Also at Istanbul University, Faculty of Science, Istanbul, Turkey 53: Also at Istanbul Aydin University, Istanbul, Turkey 54: Also at Mersin University, Mersin, Turkey 55: Also at Cag University, Mersin, Turkey 56: Also at Piri Reis University, Istanbul, Turkey 57: Also at Izmir Institute of Technology, Izmir, Turkey 58: Also at Necmettin Erbakan University, Konya, Turkey 59: Also at Marmara University, Istanbul, Turkey 60: Also at Kafkas University, Kars, Turkey 61: Also at Istanbul Bilgi University, Istanbul, Turkey 62: Also at Rutherford Appleton Laboratory, Didcot, United Kingdom 63: Also at School of Physics and Astronomy, University of Southampton, Southampton, United 64: Also at Instituto de Astrof sica de Canarias, La Laguna, Spain 65: Also at Utah Valley University, Orem, U.S.A. 66: Also at Beykent University, Istanbul, Turkey 67: Also at Bingol University, Bingol, Turkey 68: Also at Erzincan University, Erzincan, Turkey 69: Also at Sinop University, Sinop, Turkey 70: Also at Mimar Sinan University, Istanbul, Istanbul, Turkey 71: Also at Texas A&M University at Qatar, Doha, Qatar 72: Also at Kyungpook National University, Daegu, Korea Instrum. Meth . A 506 ( 2003 ) 250 [INSPIRE]. Trans . Nucl. Sci. 53 ( 2006 ) 270 [INSPIRE]. scattering measurements , Eur. Phys. J. C 76 ( 2016 ) 155 [arXiv: 1512 .00815] [INSPIRE]. [44] GEANT4 collaboration , S. Agostinelli et al., GEANT4 | a simulation toolkit , Nucl. [ 45 ] GEANT4 collaboration , J. Allison et al., GEANT4 developments and applications , IEEE [47] M. Cacciari , G.P. Salam and G. Soyez, The anti-kt jet clustering algorithm , JHEP 04 ( 2008 ) [48] M. Cacciari , G.P. Salam and G. Soyez, FastJet user manual , Eur. Phys. J. C 72 ( 2012 ) 1896 [49] M. Cacciari and G.P. Salam , Pileup subtraction using jet areas , Phys. Lett. B 659 ( 2008 ) 119 [50] M. Cacciari , G.P. Salam and G. Soyez, The catchment area of jets , JHEP 04 ( 2008 ) 005 [62] M. Bonvini , F. Caola , S. Forte , K. Melnikov and G. Ridol , Signal-background interference quark approximation , Phys. Lett. B 744 ( 2015 ) 43 [arXiv: 1503 .01274] [INSPIRE]. [64] C.S. Li , H.T. Li , D.Y. Shao and J. Wang , Soft gluon resummation in the signal-background interference process of gg(! h ) ! ZZ , JHEP 08 ( 2015 ) 065 [arXiv: 1504 .02388] [INSPIRE]. [65] G. Passarino , Higgs CAT , Eur. Phys. J. C 74 ( 2014 ) 2866 [arXiv: 1312 .2397] [INSPIRE]. [66] S. Catani and M. Grazzini , An NNLO subtraction formalism in hadron collisions and its application to Higgs boson production at the LHC , Phys. Rev. Lett . 98 ( 2007 ) 222002 [68] L. Landau , On the energy loss of fast particles by ionization , J. Phys. (USSR) 8 ( 1944 ) 201 [70] J. Butterworth et al., PDF4LHC recommendations for LHC Run II, J . Phys. G 43 ( 2016 )


This is a preview of a remote PDF: https://link.springer.com/content/pdf/10.1007%2FJHEP11%282017%29047.pdf

A. M. Sirunyan, A. Tumasyan, W. Adam, F. Ambrogi, E. Asilar, T. Bergauer, J. Brandstetter, E. Brondolin, M. Dragicevic, J. Erö, M. Flechl, M. Friedl, R. Frühwirth, V. M. Ghete, J. Grossmann, J. Hrubec, M. Jeitler, A. König, N. Krammer, I. Krätschmer, D. Liko, T. Madlener, I. Mikulec, E. Pree, D. Rabady, N. Rad, H. Rohringer, J. Schieck, R. Schöfbeck, M. Spanring, D. Spitzbart, W. Waltenberger, J. Wittmann, C.-E. Wulz, M. Zarucki, V. Chekhovsky, V. Mossolov, J. Suarez Gonzalez, E. A. De Wolf, D. Di Croce, X. Janssen, J. Lauwers, H. Van Haevermaet, P. Van Mechelen, N. Van Remortel, S. Abu Zeid, F. Blekman, J. D’Hondt, I. De Bruyn, J. De Clercq, K. Deroover, G. Flouris, D. Lontkovskyi, S. Lowette, S. Moortgat, L. Moreels, A. Olbrechts, Q. Python, K. Skovpen, S. Tavernier, W. Van Doninck, P. Van Mulders, I. Van Parijs, H. Brun, B. Clerbaux, G. De Lentdecker, H. Delannoy, G. Fasanella, L. Favart, R. Goldouzian, A. Grebenyuk, G. Karapostoli, T. Lenzi, J. Luetic, T. Maerschalk, A. Marinov, A. Randle-conde, T. Seva, C. Vander Velde, P. Vanlaer, D. Vannerom, R. Yonamine, F. Zenoni, F. Zhang, A. Cimmino, T. Cornelis, D. Dobur, A. Fagot, M. Gul, I. Khvastunov, D. Poyraz, C. Roskas, S. Salva, M. Tytgat, W. Verbeke, N. Zaganidis, H. Bakhshiansohi, O. Bondu, S. Brochet, G. Bruno, A. Caudron, S. De Visscher, C. Delaere, M. Delcourt, B. Francois, A. Giammanco, A. Jafari, M. Komm, G. Krintiras, V. Lemaitre, A. Magitteri, A. Mertens, M. Musich, K. Piotrzkowski, L. Quertenmont, M. Vidal Marono, S. Wertz, N. Beliy, W. L. Aldá Júnior, F. L. Alves, G. A. Alves, L. Brito, M. Correa Martins Junior, C. Hensel, A. Moraes, M. E. Pol, P. Rebello Teles, E. Belchior Batista Das Chagas, W. Carvalho, J. Chinellato, A. Custódio, E. M. Da Costa, G. G. Da Silveira, D. De Jesus Damiao, S. Fonseca De Souza, L. M. Huertas Guativa, H. Malbouisson, M. Melo De Almeida, C. Mora Herrera, L. Mundim, H. Nogima, A. Santoro, A. Sznajder, E. J. Tonelli Manganote, F. Torres Da Silva De Araujo, A. Vilela Pereira, S. Ahuja, C. A. Bernardes, T. R. Fernandez Perez Tomei, E. M. Gregores, P. G. Mercadante, S. F. Novaes, Sandra S. Padula, D. Romero Abad, J. C. Ruiz Vargas, A. Aleksandrov, R. Hadjiiska, P. Iaydjiev, M. Misheva, M. Rodozov, M. Shopova, S. Stoykova, G. Sultanov, A. Dimitrov, I. Glushkov, L. Litov, B. Pavlov, P. Petkov, W. Fang, X. Gao, M. Ahmad, J. G. Bian, G. M. Chen, H. S. Chen, M. Chen, Y. Chen, C. H. Jiang, D. Leggat, H. Liao, Z. Liu, F. Romeo, S. M. Shaheen, A. Spiezia, J. Tao, C. Wang, Z. Wang, E. Yazgan, H. Zhang, J. Zhao, Y. Ban, G. Chen, Q. Li, S. Liu, Y. Mao, S. J. Qian, D. Wang, Z. Xu, C. Avila, A. Cabrera, L. F. Chaparro Sierra, C. Florez, C. F. González Hernández, J. D. Ruiz Alvarez, B. Courbon, N. Godinovic, D. Lelas, I. Puljak, P. M. Ribeiro Cipriano, T. Sculac, Z. Antunovic, M. Kovac, V. Brigljevic, D. Ferencek, K. Kadija, B. Mesic, A. Starodumov, T. Susa, M. W. Ather, A. Attikis, G. Mavromanolakis, J. Mousa, C. Nicolaou, F. Ptochos, P. A. Razis, H. Rykaczewski, M. Finger, M. Finger Jr., E. Carrera Jarrin, A. A. Abdelalim, R. Aly, Y. Mohammed, R. K. Dewanjee, M. Kadastik, L. Perrini, M. Raidal, A. Tiko, C. Veelken, P. Eerola, J. Pekkanen, M. Voutilainen, J. Härkönen, T. Järvinen, V. Karimäki, R. Kinnunen, T. Lampén, K. Lassila-Perini, S. Lehti, T. Lindén, P. Luukka, E. Tuominen, J. Tuominiemi, E. Tuovinen, J. Talvitie, T. Tuuva, M. Besancon, F. Couderc, M. Dejardin, D. Denegri, J. L. Faure, F. Ferri, S. Ganjour, S. Ghosh, A. Givernaud, P. Gras, G. Hamel de Monchenault, P. Jarry, I. Kucher, E. Locci, M. Machet, J. Malcles, G. Negro, J. Rander, A. Rosowsky, M. Ö. Sahin, M. Titov, A. Abdulsalam, I. Antropov, S. Baffioni, F. Beaudette, P. Busson, L. Cadamuro, C. Charlot, R. Granier de Cassagnac, M. Jo, S. Lisniak, A. Lobanov, J. Martin Blanco, M. Nguyen, C. Ochando, G. Ortona, P. Paganini, P. Pigard, S. Regnard, R. Salerno, J. B. Sauvan, Y. Sirois, A. G. Stahl Leiton, T. Strebler, Y. Yilmaz, A. Zabi, A. Zghiche, J.-L. Agram, J. Andrea, D. Bloch, J.-M. Brom, M. Buttignol, E. C. Chabert, N. Chanon, C. Collard, E. Conte, X. Coubez, J.-C. Fontaine, D. Gelé, U. Goerlach, M. Jansová, A.-C. Le Bihan, N. Tonon, P. Van Hove, S. Gadrat, S. Beauceron, C. Bernet, G. Boudoul, R. Chierici, D. Contardo, P. Depasse, H. El Mamouni, J. Fay, L. Finco, S. Gascon, M. Gouzevitch, G. Grenier, B. Ille, F. Lagarde, I. B. Laktineh, M. Lethuillier, L. Mirabito, A. L. Pequegnot, S. Perries, A. Popov, V. Sordini, M. Vander Donckt, S. Viret, A. Khvedelidze, Z. Tsamalaidze, C. Autermann, S. Beranek, L. Feld, M. K. Kiesel, K. Klein, M. Lipinski, M. Preuten, C. Schomakers, J. Schulz, T. Verlage, A. Albert, E. Dietz-Laursonn, D. Duchardt, M. Endres, M. Erdmann, S. Erdweg, T. Esch, R. Fischer, A. Güth, M. Hamer, T. Hebbeker, C. Heidemann, K. Hoepfner, S. Knutzen, M. Merschmeyer, A. Meyer, P. Millet, S. Mukherjee, M. Olschewski, K. Padeken, T. Pook, M. Radziej, H. Reithler, M. Rieger, F. Scheuch, D. Teyssier, S. Thüer, G. Flügge, B. Kargoll, T. Kress, A. Künsken. Measurements of properties of the Higgs boson decaying into the four-lepton final state in pp collisions at \( \sqrt{s}=13 \) TeV, Journal of High Energy Physics, 2017, 47, DOI: 10.1007/JHEP11(2017)047