Search for electroweak production of charginos and neutralinos in WH events in proton-proton collisions at \( \sqrt{s}=13 \) TeV

Journal of High Energy Physics, Nov 2017

Results are reported from a search for physics beyond the standard model in proton-proton collision events with a charged lepton (electron or muon), two jets identified as originating from a bottom quark decay, and significant imbalance in the transverse momentum. The search was performed using a data sample corresponding to 35.9 fb−1, collected by the CMS experiment in 2016 at \( \sqrt{s}=13 \) TeV. Events with this signature can arise, for example, from the electroweak production of gauginos, which are predicted in models based on supersymmetry. The event yields observed in data are consistent with the estimated standard model backgrounds. Limits are obtained on the cross sections for chargino-neutralino \( \left({\tilde{\chi}}_1^{\pm }{\tilde{\chi}}_2^0\right) \) production in a simplified model of supersymmetry with the decays \( {\chi}_1^{\pm}\to {\mathrm{W}}^{\pm }{\tilde{\chi}}_1^0\kern0.5em \mathrm{and}\kern0.5em {\tilde{\chi}}_2^0\to \mathrm{H}{\chi}_1^0 \). Values of \( {m}_{{\tilde{\chi}}_1^{\pm }} \) between 220 and 490 GeV are excluded at 95% confidence level by this search when the \( {\tilde{\chi}}_1^0 \) is massless, and values of \( {m}_{{\tilde{\chi}}_1^0} \) are 1 excluded up to 110 GeV for \( {m}_{{\tilde{\chi}}_1^{\pm }}\approx 450 \) GeV.

A PDF file should load here. If you do not see its contents the file may be temporarily unavailable at the journal website or you do not have a PDF plug-in installed and enabled in your browser.

Alternatively, you can download the file locally and open with any standalone PDF reader:

https://link.springer.com/content/pdf/10.1007%2FJHEP11%282017%29029.pdf

Search for electroweak production of charginos and neutralinos in WH events in proton-proton collisions at \( \sqrt{s}=13 \) TeV

Received: June at p s = 13 TeV neutralinos in WH events in proton-proton collisions Results are reported from a search for physics beyond the standard model in proton-proton collision events with a charged lepton (electron or muon), two jets identi ed as originating from a bottom quark decay, and signi cant imbalance in the transverse momentum. The search was performed using a data sample corresponding to 35.9 fb 1, collected by the CMS experiment in 2016 at p arise, for example, from the electroweak production of gauginos, which are predicted in models based on supersymmetry. The event yields observed in data are consistent with the estimated standard model backgrounds. Limits are obtained on the cross sections for chargino-neutralino ( e1 e20) production in a simpli ed model of supersymmetry with the Hadron-Hadron scattering (experiments); Supersymmetry - The CMS collaboration decays e1 ! W e01 and e2 ! He01. Values of m 0 e1 excluded up to 110 GeV for m at 95% con dence level by this search when the e10 is massless, and values of me01 are between 220 and 490 GeV are excluded e1 1 Introduction The CMS detector Event samples, reconstruction, and selection 2 3 3.1 3.2 3.3 4.1 4.2 4.3 4 Backgrounds Object de nition and preselection Signal region de nition Signal and background simulation Dilepton top quark backgrounds W boson backgrounds Other backgrounds 5 Results 6 Interpretation 7 Summary The CMS collaboration 1 Introduction particles are created in pairs, and the lightest supersymmetric particle (LSP) is stable [9{ 11]. As a result, SUSY also provides a potential connection to cosmology as the LSP, if neutral and stable, may be a viable dark matter candidate. Previous searches based on 13 TeV proton-proton collision data at the CERN LHC focused on strong production of colored SUSY particles [12{28]. Pair production of these particles would have the largest cross section for SUSY processes and therefore provides the strongest discovery potential with small datasets. However, the absence of signals in these searches suggests that strongly produced SUSY particles may be too massive to be found with the present data. In contrast, neutralinos ( 0) and charginos ( superpartners of the SM electroweak gauge bosons and the Higgs bosons, can have masses within the accessible range. Because of the absence of color charge, the production cross e ), mixtures of the { 1 { e p p χ0 e2 χ± e1 neutralino ( e1 e20) production with the decays e1 ! W e01 and e20 ! H e01, as shown in lightest neutralino gure 1. Both the e1 and e20 are assumed to be wino-like and have the same mass. The e01, produced in the decays of e1 or the e02, is considered to be the stable LSP, which escapes detection. When the W boson decays leptonically, this process typically results in a signature with one lepton, two jets that originate from the decay H ! bb, and large missing transverse momentum from the neutrino in the W boson decay and the LSPs. Results of searches for electroweak pair production of SUSY particles were previously reported by the ATLAS and CMS Collaborations using data sets of 8 TeV proton-proton (pp) collisions [36{38] in a variety of event topologies and nal states. No excesses above the SM expectations were observed, and the results of those searches were used to place lower limits on the mass of pair-produced charginos and neutralinos. Assuming mass-degenerate e1 and e20, and sleptons (the SUSY partners of the SM leptons) with lower masses, the searches probed masses up to approximately 700 GeV. For the WH decays assumed here, the strongest mass limit was around 270 GeV. With the increase of the LHC collision energy from 8 to 13 TeV, and a signi cantly larger data set, searches based on 13 TeV data have the potential to quickly surpass the sensitivity of the previous analyses. { 2 { This paper presents the result of a search using a data set corresponding to an integrated luminosity of 35.9 fb 1 of pp collisions collected at a center-of-mass energy of 13 TeV with the CMS detector in 2016. The results are interpreted in the simpli ed SUSY model with chargino-neutralino production depicted in gure 1. 2 The CMS detector The central feature of the CMS apparatus is a superconducting solenoid, 13 m in length and 6 m in diameter, which provides an axial magnetic eld of 3.8 T. Within the eld volume are several particle detection systems. Charged-particle trajectories are measured with silicon pixel and strip trackers, covering 0 in azimuth and j j < 2:5 in pseudorapidity, where ln[tan( =2)] and is the polar angle of the trajectory of the particle with respect to the counterclockwise beam direction. The transverse momentum, the component of the momentum p in the plane orthogonal to the beam, is de ned in terms of the polar angle as pT = p sin . A lead-tungstate crystal electromagnetic calorimeter and a brass and scintillator hadron calorimeter surround the tracking volume, providing energy measurements of electrons, photons, and hadronic jets in the range j j < 3:0. Muons are identi ed and measured within j j < 2:4 by gas-ionization detectors embedded in the steel ux-return yoke of the solenoid. Forward calorimeters on each side of the interaction point encompass 3:0 < j j < 5:0. The detector is nearly hermetic, allowing momentum imbalance measurements in the plane transverse to the beam direction. A two-tier trigger system selects pp collision events of interest for use in physics analyses. A detailed description of the CMS detector, together with a de nition of the coordinate system used and the relevant kinematic variables, can be found in ref. [ 39 ]. 3 3.1 Event samples, reconstruction, and selection Object de nition and preselection Event reconstruction is based on the particle- ow (PF) algorithm [ 40, 41 ], which combines information from the tracker, calorimeter, and muon systems to reconstruct and identify PF candidates, i.e., charged and neutral hadrons, photons, muons, and electrons. To select collision events, we require at least one reconstructed vertex. The reconstructed vertex with the largest value of summed physics-object p2T is taken to be the primary pp interaction vertex. The physics objects are the objects returned by a jet nding algorithm [42, 43] applied to all charged tracks associated with the vertex, plus the corresponding associated missing transverse momentum. The missing transverse momentum vector, p~miss, is de ned as the negative vector sum of the momenta of all reconstructed PF candidates projected onto the plane perpendicular to the proton beams. Its magnitude is referred to as ETmiss. Events with possible contributions from beam halo processes or anomalous noise in the calorimeter can have large values of ETmiss and are rejected using dedicated lters [44]. Data events are selected using triggers that require the presence of an isolated electron or muon with pT thresholds of 27 GeV or 24 GeV, respectively. Muon events may also be accepted using a trigger that does not require isolation but instead requires pT > 50 GeV. and pT of the electron (muon). ! `` events, varies in the Selected events are required to have exactly one lepton (electron or muon), with electrons (muons) satisfying pT > 30(25) GeV and j j < 1:44(2:1). Electron candidates are reconstructed starting from a cluster of energy deposits in the electromagnetic calorimeter. The cluster is then matched to a reconstructed track. The electron selection is based on the shower shape, track-cluster matching, and consistency between the cluster energy and the track momentum [45]. Muon candidates are reconstructed by performing a global t that requires consistent hit patterns in the tracker and the muon system [46]. For both lepton avors, the impact parameter with respect to the primary vertex is required to be less than 0.5 mm in the transverse plane and 1 mm along the beam direction. p ( Leptons are required to be isolated from other activity in the event. A measure of lepton isolation is the scalar pT sum (psTum) of all PF candidates not associated with the lepton within a cone of radius R )2 + ( )2 = 0:3, where and are the distances between the lepton and the PF candidates at the primary vertex in - space [47]. Only charged PF candidates compatible with the primary vertex are included in the sum. The average contribution of particles from additional pp interactions in the same or nearby bunch crossings (pileup) is subtracted from psTum. We require that psTum be less than 5 GeV. Typical lepton identi cation and isolation e ciencies, measured in samples of Z= ? ! `` events, are approximately 80{85% (85{90%) for electrons (muons), depending on pT and . Particle- ow candidates are clustered to form jets using the anti-kT clustering algorithm [42] with a distance parameter of 0.4, as implemented in the FastJet package [43]. Only charged PF candidates compatible with the primary vertex are used in the clustering. The pileup contribution to the jet energy is estimated on an event-by-event basis using the jet area method described in [48] and is subtracted from the overall jet pT. Corrections are applied to the energy measurements of jets to account for non-uniform detector response and are propagated consistently as a correction to p~miss [49, 50]. The selected lepton can also be reconstructed as a jet, so any jets within R = 0:4 of the lepton are removed from T the list of considered jets. Selected events are required to contain exactly two jets with pT > 30 GeV and j j < 2:4. Both of these jets must be consistent with containing the decay products of a heavyavor (HF) hadron, as identi ed using the combined secondary vertex (CSVv2) tagging algorithm [51]. Such jets are referred to as b jets. The CSVv2 algorithm has three main operating points: loose, medium, and tight. We require both jets to be tagged according to the loose operating point, and at least one of them to be tagged with the medium operating point. The e ciency of this algorithm for jets arising from b quarks with pT between 30 and 400 GeV is in the range 60{65% (70{75%) for the medium (loose) working point. The misidenti cation rate for jets arising from light quarks or gluons is approximately 1% (10%) for the medium (loose) working point. The largest background in this search arises from tt and tW events with decays into two-lepton nal states in which one of the leptons is not reconstructed or identi ed. In order to reduce these backgrounds, we search for a second electron or muon with pT > 5 GeV and looser identi cation and isolation requirements, and reject events where such a lepton { 4 { is found. Second leptons are required to satisfy psum=pT < 0:1, where psum is calculated T T here with a cone radius of R = 0.2 for plTep 50 GeV, and R = max(0:05; 10 GeV=plTep) at higher values of lepton transverse momentum. We also reject events with reconstructed hadronically decaying tau leptons with pT > 20 GeV [52], or isolated tracks with pT > 10 GeV and opposite electric charge relative to the selected lepton. For this purpose, a track is considered isolated if psum=pT < 0:1 and psum < 6 GeV, where psum here is T T T constructed with charged PF candidates compatible with the primary vertex, the cone radius is R = 0:3, and pT is the transverse momentum of the track. MT > 50 GeV, where MT is the transverse mass of the lepton-ETmiss system, de ned as The nal two requirements that complete the preselection are ETmiss 125 GeV and q MT = 2p`TETmiss[1 cos( )]; (3.1) transverse momentum of the lepton and p~miss. where p`T is the transverse momentum of the lepton and 150 GeV, consistent with the Higgs boson mass within the resolution. The Mbb distribution for signal and background processes is shown in gure 2 (top left), displaying a clear peak for signal events near the Higgs boson mass. To suppress single-lepton backgrounds originating from semileptonic tt, W + jets, and single top quark processes, the preselection requirement on MT is tightened to >150 GeV. This is because the MT distribution in these processes with a single leptonically decaying W boson has a kinematic endpoint MT < mW, where mW is the W boson mass. The endpoint can be exceeded by o mass-shell W bosons or because of detector resolution e ects. The MT requirement signi cantly reduces single-lepton backgrounds, as shown in gure 2 (bottom left). In order to further suppress both semileptonic and dileptonic tt backgrounds, we utilize the contransverse mass variable, MCT [53, 54]: q MCT = 2pbT1pbT2[1 + cos( bb)]; (3.2) where pbT1 and pbT2 are the transverse momenta of the two jets, and bb is the azimuthal angle between the pair. As shown in refs. [53, 54], this variable has a kinematic endpoint at (m2( ) m2( ))=m( ), where is the pair-produced heavy particle and is the invisible particle produced in the decay of . In the case of tt events, when both jets from b quarks are correctly identi ed, the kinematic endpoint corresponds to the top quark mass, while signal events tend to have higher values of MCT. This is shown in gure 2 (bottom right). We require MCT > 170 GeV. After all other selections, we de ne two exclusive bins in ETmiss to enhance sensitivity to signal models with di erent mass spectra: 125 The ETmiss distribution is shown in gure 2 (top right). ETmiss < 200 GeV and ETmiss 200 GeV. { 5 { v v bb [GeV] right) for signal and background events in simulation after the preselection. The ETmiss, MT, and MCT distributions are shown after the 90 < Mbb < 150 GeV requirement. Expected signal distributions are also overlaid as open histograms for various mass points, with the signal cross section scaled up by a factor of 50 for display purposes. The legend entries for signal give the masses (m e1 ; me01 ) in GeV and the factor by which the signal cross section has been scaled. 3.3 Signal and background simulation Samples of tt, W + jets, and Z + jets events, as well as tt production in association with a vector boson, are generated using the MadGraph5 amc@nlo 2.2.2 [55] generator at leading order (LO) with the MLM matching scheme [56], while tW and single top quark t-channel events are generated at next-to-leading-order (NLO) using powheg V2 [57{59]. A top quark mass of mt = 172:5 GeV, and the NNPDF3.0 LO or NLO [60] parton distribution functions (PDFs) are used in the event generation. Single top quark s-channel production is simulated using MadGraph5 amc@nlo 2.2.2 at NLO precision with the FxFx matching scheme [61]. Samples of diboson (WW, WZ, and ZZ) events are generated with either powheg or MadGraph5 amc@nlo at NLO precision. Normalization of the { 6 { simulated background samples is performed using the most accurate cross section calculations available [55, 62{72], which generally correspond to NLO or next-to-NLO precision. The chargino-neutralino signal samples are also generated with Mad T Graph5 amc@nlo at LO precision. For these samples we improve on the modeling of system of SUSY particles, by reweighting the pISR distribution in these events. initial-state radiation (ISR), which a ects the total transverse momentum (pITSR) of the This reweighting procedure is based on studies of the pT of Z bosons [73]. The reweighting factors range between 1.18 at pISR = 125 GeV and 0.78 for pISR > 600 GeV. We take the T deviation from 1.0 as the systematic uncertainty in the reweighting procedure. T Parton showering and fragmentation in all of these samples are performed using pythia V8.212 [74] with the CUETP8M1 tune [75]. For both signal and background events, additional simultaneous proton-proton interactions (pileup) are generated with pythia and superimposed on the hard collisions. The response of the CMS detector for SM background samples is simulated using Geant4-based model [76], while that for new physics signals is performed using the CMS fast simulation package [77]. All simulated events are processed with the same chain of reconstruction programs as that used for collision data. Small di erences between the b tagging e ciencies measured in data and simulation are corrected using data-to-simulation scale factors. Corrections are also applied to account for di erences between lepton selection e ciencies (trigger, reconstruction, identi cation, and isolation) in data and simulation. 4 Backgrounds The backgrounds for this search are classi ed into six categories. The rst and most important category, referred to as dilepton top quark events, consists mainly of events from top quark pair production with both quarks decaying leptonically, but also including contributions from the associated production of a single top quark with a W boson, both of which decay leptonically. The second to fth categories include processes with a single leptonically decaying W boson. Events with a single W are divided into two categories: those with b jets (W+HF, for \heavy avor") and those without (W+LF, for \light avor"). A separate category comprises WZ events in which the Z boson decays to bb (WZ ! ` bb). Events with one leptonically decaying top quark, either from tt or from single top quark t- or schannel production, are included in the fth category (\single-lepton top quark"). Finally, other SM processes contribute a small amount to the expected yield in the signal region and are grouped together in the \rare" category. This includes events from Z + jets, WW, WZ (except the decays described above), ZZ, triboson, ttW, ttZ, and WH ! ` bb processes. All background processes are modeled using MC simulation. Three data control regions (CRs) are de ned by inverting the signal region selection requirements, as summarized in CRs at the preselection level are de ned with looser cuts in order to check the modeling of key discriminant variables. The CRs after the signal region level selections are used to validate the modeling of the main backgrounds and to assign systematic uncertainties in the background predictions. The regions CRMbb and CR0b are split into two bins in ETmiss { 7 { Selection N(leptons) Isolated track veto Tau candidate veto Number of b tags [125; 200); 200 >150 >170 =1 or 2 inverted if 1` inverted if 1` Preselection level =2 | 125 >150 | Signal region selection level not used >50 >170 >150 >170 CRMbb =1 X X =2 125 >150 | >150 >170 is always less than 1% of the total SM yields, and typically much smaller. The dilepton top quark background can be isolated in the CR2` control region by selecting dilepton events. In addition to a lepton passing the analysis selections, events must contain one of the following: a second electron or muon, an isolated track candidate, or a tau lepton candidate. The latter categories are included to accept hadronically decaying tau leptons. If all the kinematic selections used for the signal regions are applied, the number of events in CR2` is too low to validate the modeling of the dilepton top quark background. Therefore, this CR is used primarily to validate the modeling of Mbb. Since the signal produces a resonant peak in the Mbb distribution, the requirement on Mbb is inverted to de ne the background-dominated control region CRMbb, which includes a mixture of all backgrounds in proportions similar to those in the signal region. Consequently, this control region is dominated by the dilepton top quark background and is used to validate the modeling of these processes in the kinematic tails of the ETmiss, MT, and MCT distributions. The CR0b region is designed to study the W + LF background. It is used to validate the modeling of the kinematic tails in ETmiss, MT, and MCT for W + jets processes. In this region, the dijet mass Mjj computed from the two selected jets is used in place of Mbb. The background estimation and the associated uncertainties are described in the following sections. 4.1 Dilepton top quark backgrounds The dilepton top quark process contributes to the event sample in the signal region when the second lepton is not reconstructed or identi ed. Due to the presence of two neutrinos, { 8 { eV 104 CMS Data W+LF Rare W+HF paring data to MC simulation. (right) Distribution in Mbb in CRMbb after preselection level cuts de ned in table 1. The signal region range of 90 150 GeV has been removed from the plot. Mbb these events tend to have higher ETmiss than the single-lepton backgrounds, and their MT distribution is not bounded by the W boson mass. However, as mentioned above, the MCT requirement signi cantly suppresses dilepton top quark events. The modeling of this background is validated in two steps. First, the modeling of the Mbb distribution is validated in CR2`; second, the modeling in the kinematic tails of the ETmiss, MT, and MCT distributions is validated in CRMbb. Distributions of Mbb in CR2` and CRMbb, after the preselection level cuts de ned in table 1, are displayed in gure 3 (left) and gure 3 (right), respectively. In CR2`, we observe agreement between data and MC, validating the modeling of the Mbb distribution. We then use CRMbb at the signal region selection level to derive a scale factor for the dilepton top quark background separately in each of the analysis ETmiss bins. All other background components are subtracted from the observed data yields, and the result is compared to the dilepton top quark MC prediction. Agreement is observed in the higher ETmiss bin within statistical uncertainties. For the lower ETmiss bin, we nd fewer events in data than predicted, and we derive a scale factor of 0.72 for the dilepton top quark background in this bin. From the statistical precision of the data, we assign a systematic uncertainty of 30% in the prediction for both bins. This accounts for any e ects that could impact the modeling of this background in simulation, including generator assumptions on factorization and renormalization scales, and PDFs, as well as experimental uncertainties in the jet energy scale, the lepton identi cation and isolation, trigger, and b tagging e ciencies. 4.2 W boson backgrounds The MT requirement (>150 GeV) e ectively suppresses the contribution from W + jets events. However, as discussed above, events from W + jets can still enter the MT tail due { 9 { HJEP1(207)9 10−1 W+HF tails of all kinematic variables such as MT. the preselection requirements. The data and simulation agree within uncertainties. The observed yields in data are then compared with MC predictions after applying all the kinematic requirements at signal region selection level de ned in table 1. We nd agreement within statistical uncertainties. Based on the statistical precision of the data, we assign a 10% systematic uncertainty in the W + jets prediction. This procedure directly tests the W + jets background prediction in the kinematic phase space of the signal region, including experimental uncertainties in the jet energy scale, in the e ciencies for trigger, lepton identi cation and isolation. It also accounts for most generator assumptions. Additional uncertainties for e ects not tested by this procedure are discussed below. For the W + LF background, the uncertainty due to the b tagging requirements is evaluated by varying the b tagging e ciencies within their measured uncertainties. The uncertainty in the yield in the signal regions is 1%. For the W + HF background the e ects contributing to the kinematic tails are similar to those in W + LF. In this case the tail of the MT distribution receives contributions from o -shell W boson production and ETmiss resolution e ects, but also from neutrinos in semileptonic decays within the b jets. Since this last e ect is accounted for in the event generation, we do not apply any additional correction or uncertainty for kinematic tail modeling beyond the one derived above in CR0b. The most uncertain aspect of the prediction for the W+HF background is the estimate of its cross section relative to the W + LF process. We assign a 50% uncertainty to the normalization of this background [78]. This uncertainty is validated by comparing data to simulation in a CR with 60 < MT < 120 GeV and with one or two jets, where the dominant contribution to the event sample is from W + jets. We nd that the 50% uncertainty conservatively covers di erences between data and simulation as a function of the number of b jets. Finally, the uncertainty in this prediction due to the uncertainty in the b tagging e ciency is also evaluated and found to be 5%. The e ects discussed above also contribute to the tail of the MT distribution in WZ ! ` bb events. As a result, the tail modeling systematic uncertainty for this background is taken to be the same as those evaluated in CR0b. An additional uncertainty of 12% is applied to the normalization of the WZ ! ` bb background, based on the CMS cross section measurement of inclusive WZ production at 13 TeV [79]. A unique aspect of the WZ ! ` bb background is that Mbb peaks at the Z boson mass, at the lower edge of the Mbb selection used in this analysis. Uncertainties in the jet energy scale can therefore strongly impact the prediction of this background. By varying the jet energy scale within its uncertainty, we derive an uncertainty of 27% in the WZ ! ` bb background prediction. While this uncertainty is large, the absolute magnitude of this background remains very small in the signal region. Finally, the uncertainty in the background prediction for this process due to the uncertainty in the b tagging e ciency is 2%. 4.3 Other backgrounds The single-lepton top quark backgrounds are highly suppressed by several of the selections applied in this analysis. Since these contain exactly one leptonically decaying W boson, the MT requirement is an e ective discriminant against them. Requiring exactly two jets also suppresses the tt ! ` + jets background, which typically has four jets in the nal state. As a result, this background comprises a small fraction of the expected SM prediction in the signal region. Isolating the single-lepton top quark background in a region kinematically similar to the signal region is di cult since dilepton top quark events tend to dominate when requiring large MT. The main source of uncertainty in the prediction of this backgrounds is the modeling of the ETmiss resolution, which was found to be well modeled in the study of CR0b. Additional studies of ETmiss resolution are performed using + jets events following the method used in ref. [78]. The resolution in data is found to be up to 20% worse than in simulation, leading to higher single-lepton top quark yields than expected from simulation. However, the impact of this e ect on the total background prediction is negligible. Due to the di culties in de ning a dedicated control region for this process, we assign a conservative uncertainty of 100% to the single lepton top quark background prediction. The \rare" backgrounds contribute less than 15% of the expected yield in the signal region. We apply an uncertainty of 50% on the event yields from these processes. 5 Results Figure 5 shows the distributions of Mbb in data compared with the SM background prediction after all signal region requirements except the Mbb selection. No signi cant deviations from the predictions are observed. Table 2 shows the expected SM background yields in the signal region compared to the observation, as well as predicted yields for several signal HJEP1(207)9 eV 10 G 0 0 Data Distributions in Mbb after all signal region kinematic requirements for the two 200 GeV). The signal region is 90 Mbb 150 GeV. The hatched band shows the total uncertainty in the background prediction, including statistical and systematic components. The expected signal distribution for a reference SUSY model is overlaid as an open histogram, and the legend (on the last line) gives the masses as (m e1 ; me01 ) in GeV. models with the masses (m background prediction betwee1en the two bins is 0.61. The correlation is incorporated in the ; me01 ) indicated in GeV. The correlation coe cient for the likelihood model described below for the interpretation of the results, and it can be used to reinterpret these results in other signal models [80]. 6 Interpretation The results of this analysis are interpreted in the context of the simpli ed SUSY model depicted in gure 1, e1 e20 ! W H e01 e01 . The e1 and e20 are assumed to have the same mass, and the branching fractions for the decays listed above are taken to be 100%. The W and Higgs bosons are taken to decay according to their SM branching fractions. Cross section limits as a function of the SUSY particle masses are set using a modi ed frequentist approach, employing the CLs criterion and an asymptotic formulation [81{84]. Both signal regions are considered simultaneously in setting limits. The \expected" limit is that under the background-only hypothesis, while the \observed" limit re ects the data yields in the signal regions. The production cross sections are computed at NLO plus next-to-leadinglog (NLL) precision in a limit of mass-degenerate wino e1 and e20, light bino e10, and with all the other sparticles assumed to be heavy and decoupled [85, 86]. The uncertainty in the cross section calculation includes variations of factorization and renormalization scales, and of the PDFs. The systematic uncertainties in the signal yield are summarized in table 3. The signal models with the largest acceptance uncertainties are those with m = me02 me01 ' mH. ETmiss < 200 GeV ETmiss Dilepton top quark W + LF W + HF WZ ! ` bb Single-lepton top quark Rare Data Total SM background e1 e10 (225,75) e1 e10 (250,1) e1 e10 (500,1) e1 e10 (500,125) e1 e10 (350,100) 4:6 0:2 1:0 0:1 1:6 2:4 7:6 0:9 1:0 2:7 0:0+00::20 7:5 2:5 11 1:5 0:1 0:9 0:1 1:6 0:4 1:0 0:1 0:1 0:3 4:9 0:5 1:3 0:4 0:3 1:2 8:7 2:3 10:0 6:3 5:5 8:0 7 1:7 0:4 1:0 0:2 0:4 0:7 2:2 0:4 1:2 0:2 0:2 0:5 both statistical and systematic sources. The correlation coe cient for the background prediction between the two bins is 0.61. Predicted yields are shown also for several signal models with the masses (m e1 ; me01 ) indicated in GeV and with statistical-only uncertainties. For these models, the kinematic properties of the events are most similar to those from SM backgrounds, and as a result, the acceptance is smaller than for models with larger m. For these models with compressed mass spectra, the largest uncertainties in the signal yields arise from the jet energy scale (up to 40%), ETmiss resolution in fast simulation (up to 50%), and limited size of MC samples (up to 60%). These uncertainties reach their maximal values only for models where the acceptance of this analysis is very small and the sensitivity is similarly small. For models with large m, where this analysis has the best sensitivity, these uncertainties typically amount to only a few percent. Other experimental and theoretical uncertainties are also considered and lead to small changes in the expected yields. These include e ects from the renormalization and factorization scales assumed in the generator on the signal acceptance, the b tagging e ciency, the lepton reconstruction, identi cation, and isolation e ciency, the trigger e ciency, and the modeling of pileup. Finally, the uncertainty in the integrated luminosity is 2.5% [87]. Figure 6 shows the expected and observed 95% con dence level (CL) exclusion limits two-dimensional plane of m 0 for e1 e2 ! W H e01 e01 as a function of m e1 e1 and me01 (right). This search excludes m e1 values between assuming me01 = 1 GeV (left) and then in the 450 GeV. 220 and 490 GeV when me01 = 1 GeV, and me01 values up to 110 GeV when m e1 is around HJEP1(207)9 Source Pileup Integrated luminosity Size of MC samples ISR modeling b tagging e ciency Lepton e ciency Trigger e ciency Jet energy scale Fastsim ETmiss resolution Renormalization and factorization scales Typical range of values [%] values. The ranges represent variation across the signal masses probed. ] 103CMS b p exclusion. The ed1ashed black line represents the expected exclusion, while the green and yellow , assuming me01 = 1 GeV. The solid black line and points represent the observed H e01 e01 as bands indicate the 1 and 2 standard deviation (s.d.) uncertainties in the expected limit. The magenta line shows the theoretical cross section with its uncertainty. (right) Exclusion limits at the 95% CL in the plane of m represents the observed (expectee1d) exclusion region. The thin dashed red line indicates the +1 and me01 . The area below the thick black (dashed red) curve s.d.exp. experimental uncertainty. The -1 s.d.exp. line does not appear as no mass points would be excluded in that case. The thin black lines show the e ect of the theoretical uncertainties ( 1 s.d.theory) on the signal cross section. 10 1 10 2 A search is performed for beyond the standard model physics in events with a leptonically decaying W boson, a Higgs boson decaying to a bb pair, and large transverse momentum imbalance. The search uses proton-proton collision data recorded by the CMS experiment in 2016 at p s = 13 TeV, corresponding to an integrated luminosity of 35.9 fb 1. The event yields observed in data are consistent with the estimated standard model backgrounds. The results are used to set cross section limits on chargino-neutralino production in a simpli ed supersymmetric model with degenerate masses for e1 and e02 and with the decays e1 ! W con dence level by this search when the e1 e01 is massless, and values of me01 are excluded up between 220 and 490 GeV are excluded at 95% Acknowledgments 450 GeV. These results signi cantly extend the previous best limits, e1 and up to 90 GeV in me01. We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative sta s at CERN and at other CMS institutes for their contributions to the success of the CMS e ort. In addition, we gratefully acknowledge the computing centers and personnel of the Worldwide LHC Computing Grid for delivering so e ectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMWFW and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES and CSF (Croatia); RPF (Cyprus); SENESCYT (Ecuador); MoER, ERC IUT, and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NIH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); MSIP and NRF (Republic of Korea); LAS (Lithuania); MOE and UM (Malaysia); BUAP, CINVESTAV, CONACYT, LNS, SEP, and UASLP-FAI (Mexico); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS, RFBR and RAEP (Russia); MESTD (Serbia); SEIDI, CPAN, PCTI and FEDER (Spain); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter, IPST, STAR, and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU and SFFR (Ukraine); STFC (United Kingdom); DOE and NSF (U.S.A.). Individuals have received support from the Marie-Curie program and the European Research Council and Horizon 2020 Grant, contract No. 675440 (European Union); the Leventis Foundation; the A. P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy O ce; the Fonds pour la Formation a la Recherche dans l'Industrie et dans l'Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the Ministry of Education, Youth and Sports (MEYS) of the Czech Republic; the Council of Science and Industrial Research, India; the HOMING PLUS program of the Foundation for Polish Science, co nanced from European Union, Regional Development Fund, the Mobility Plus program of the Ministry of Science and Higher Education, the National Science Center (Poland), contracts Harmonia 2014/14/M/ST2/00428, Opus 2014/13/B/ST2/02543, 2014/15/B/ST2/03998, and 2015/19/B/ST2/02861, Sonata-bis 2012/07/E/ST2/01406; the National Priorities Research Program by Qatar National Research Fund; the Programa Clar n-COFUND del Principado de Asturias; the Thalis and Aristeia programs co nanced by EU-ESF and the Greek NSRF; the Rachadapisek Sompot Fund for Postdoctoral Fellowship, Chulalongkorn University and the Chulalongkorn Academic into Its 2nd Century Project Advancement Project (Thailand); and the Welch Foundation, contract C-1845. Open Access. This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited. (1971) 452] [INSPIRE]. Phys. Lett. B 49 (1974) 52 [INSPIRE]. (1974) 39 [INSPIRE]. [4] D.V. Volkov and V.P. Akulov, Possible universal neutrino interaction, JETP Lett. 16 (1972) 438 [Pisma Zh. Eksp. Teor. Fiz. 16 (1972) 621] [INSPIRE]. [5] J. Wess and B. Zumino, A Lagrangian model invariant under supergauge transformations, [6] J. Wess and B. Zumino, Supergauge transformations in four-dimensions, Nucl. Phys. B 70 [7] P. Fayet, Supergauge invariant extension of the Higgs mechanism and a model for the electron and its neutrino, Nucl. Phys. B 90 (1975) 104 [INSPIRE]. [INSPIRE]. [9] G.R. Farrar and P. Fayet, Phenomenology of the production, decay and detection of new hadronic states associated with supersymmetry, Phys. Lett. B 76 (1978) 575 [INSPIRE]. [10] C. Boehm, A. Djouadi and M. Drees, Light scalar top quarks and supersymmetric dark matter, Phys. Rev. D 62 (2000) 035012 [hep-ph/9911496] [INSPIRE]. [11] C. Balazs, M. Carena and C.E.M. Wagner, Dark matter, light stops and electroweak baryogenesis, Phys. Rev. D 70 (2004) 015007 [hep-ph/0403224] [INSPIRE]. [12] ATLAS collaboration, Search for new phenomena in nal states with large jet multiplicities and missing transverse momentum with ATLAS using p s = 13 TeV proton-proton collisions, HJEP1(207)9 transverse momentum at p 392 [arXiv:1605.03814] [INSPIRE]. produced in pp collisions at p [13] ATLAS collaboration, Search for new phenomena in nal states with an energetic jet and large missing transverse momentum in pp collisions at p s = 13 TeV using the ATLAS [14] ATLAS collaboration, Search for squarks and gluinos in nal states with jets and missing s = 13 TeV with the ATLAS detector, Eur. Phys. J. C 76 (2016) [15] ATLAS collaboration, Search for pair production of gluinos decaying via stop and sbottom in events with b-jets and large missing transverse momentum in pp collisions at p with the ATLAS detector, Phys. Rev. D 94 (2016) 032003 [arXiv:1605.09318] [INSPIRE]. [16] CMS collaboration, Search for new physics with the MT2 variable in all-jets nal states HJEP1(207)9 s = 13 TeV, JHEP 10 (2016) 006 [arXiv:1603.04053] [17] CMS collaboration, Search for supersymmetry in multijet events with missing transverse momentum in proton-proton collisions at 13 TeV, Phys. Rev. D 96 (2017) 032003 transverse momentum at p 565 [arXiv:1605.04285] [INSPIRE]. tagging in pp collisions at p at ps = 13 TeV, Phys. Rev. D 95 (2017) 012003 [arXiv:1609.07658] [INSPIRE]. [18] CMS collaboration, Inclusive search for supersymmetry using razor variables in pp collisions [19] CMS collaboration, A search for new phenomena in pp collisions at ps = 13 TeV in nal states with missing transverse momentum and at least one jet using the T variable, Eur. Phys. J. C 77 (2017) 294 [arXiv:1611.00338] [INSPIRE]. [20] ATLAS collaboration, Search for supersymmetry at ps = 13 TeV in nal states with jets and two same-sign leptons or three leptons with the ATLAS detector, Eur. Phys. J. C 76 (2016) 259 [arXiv:1602.09058] [INSPIRE]. [21] CMS collaboration, Search for physics beyond the Standard Model in events with two leptons p of same sign, missing transverse momentum and jets in proton-proton collisions at s = 13 TeV, Eur. Phys. J. C 77 (2017) 578 [arXiv:1704.07323] [INSPIRE]. [22] ATLAS collaboration, Search for top squarks in nal states with one isolated lepton, jets and missing transverse momentum in p Phys. Rev. D 94 (2016) 052009 [arXiv:1606.03903] [INSPIRE]. s = 13 TeV pp collisions with the ATLAS detector, [23] ATLAS collaboration, Search for new phenomena in nal states with large jet multiplicities and missing transverse momentum with ATLAS using p Phys. Lett. B 757 (2016) 334 [arXiv:1602.06194] [INSPIRE]. s = 13 TeV proton-proton collisions, [24] ATLAS collaboration, Search for gluinos in events with an isolated lepton, jets and missing s = 13 TeV with the ATLAS detector, Eur. Phys. J. C 76 (2016) [25] CMS collaboration, Search for supersymmetry in the all-hadronic nal state using top quark s = 13 TeV, Phys. Rev. D 96 (2017) 012004 [arXiv:1701.01954] [26] CMS collaboration, Search for supersymmetry in events with one lepton and multiple jets in s = 13 TeV, Phys. Rev. D 95 (2017) 012011 [27] CMS collaboration, Search for new phenomena with multiple charged leptons in s = 13 TeV, Eur. Phys. J. C 77 (2017) 635 [arXiv:1701.06940] [28] CMS collaboration, Search for supersymmetry in pp collisions at p s = 13 TeV in the single-lepton nal state using the sum of masses of large-radius jets, JHEP 08 (2016) 122 [29] ATLAS and CMS collaborations, Measurements of the Higgs boson production and decay rates and constraints on its couplings from a combined ATLAS and CMS analysis of the LHC pp collision data at ps = 7 and 8 TeV, JHEP 08 (2016) 045 [arXiv:1606.02266] [INSPIRE]. via on-shell e ective theories, hep-ph/0703088 [INSPIRE]. [34] LHC New Physics Working Group collaboration, D. Alves, Simpli ed models for LHC new physics searches, J. Phys. G 39 (2012) 105005 [arXiv:1105.2838] [INSPIRE]. [35] CMS collaboration, Interpretation of searches for supersymmetry with simpli ed models, Phys. Rev. D 88 (2013) 052017 [arXiv:1301.2175] [INSPIRE]. [36] CMS collaboration, Searches for electroweak neutralino and chargino production in channels with Higgs, Z and W bosons in pp collisions at 8 TeV, Phys. Rev. D 90 (2014) 092007 [arXiv:1409.3168] [INSPIRE]. HJEP1(207)9 [37] CMS collaboration, Searches for electroweak production of charginos, neutralinos and sleptons decaying to leptons and W , Z and Higgs bosons in pp collisions at 8 TeV, Eur. Phys. J. C 74 (2014) 3036 [arXiv:1405.7570] [INSPIRE]. [38] ATLAS collaboration, Search for the electroweak production of supersymmetric particles in s = 8 TeV pp collisions with the ATLAS detector, Phys. Rev. D 93 (2016) 052002 p LHC collisions recorded in the CMS detector, CMS-PAS-PFT-10-001, CERN, Geneva detector in proton-proton collisions at p [44] CMS collaboration, Missing transverse energy performance of the CMS detector, 2011 [45] CMS collaboration, Performance of electron reconstruction and selection with the CMS s = 8 TeV, 2015 JINST 10 P06005 p s = 7 TeV, 2012 JINST 7 P10002 [arXiv:1206.4071] [INSPIRE]. [46] CMS collaboration, Performance of CMS muon reconstruction in pp collision events at [47] CMS collaboration, Description and performance of track and primary-vertex reconstruction with the CMS tracker, 2014 JINST 9 P10009 [arXiv:1405.6569] [INSPIRE]. [arXiv:0707.1378] [INSPIRE]. [49] CMS collaboration, Determination of jet energy calibration and transverse momentum resolution in CMS, 2011 JINST 6 P11002 [arXiv:1107.4277] [INSPIRE]. [50] CMS collaboration, Jet energy scale and resolution in the CMS experiment in pp collisions at 8 TeV, 2017 JINST 12 P02014 [arXiv:1607.03663] [INSPIRE]. [51] CMS collaboration, Identi cation of b-quark jets with the CMS experiment, 2013 JINST 8 P04013 [arXiv:1211.4462] [INSPIRE]. [52] CMS collaboration, Reconstruction and identi cation of lepton decays to hadrons and at CMS, 2016 JINST 11 P01019 [arXiv:1510.07488] [INSPIRE]. [53] D.R. Tovey, On measuring the masses of pair-produced semi-invisibly decaying particles at hadron colliders, JHEP 04 (2008) 034 [arXiv:0802.2879] [INSPIRE]. [54] G. Polesello and D.R. Tovey, Supersymmetric particle mass measurement with the boost-corrected contransverse mass, JHEP 03 (2010) 030 [arXiv:0910.0174] [INSPIRE]. [55] J. Alwall et al., The automated computation of tree-level and next-to-leading order di erential cross sections and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE]. [56] J. Alwall et al., Comparative study of various algorithms for the merging of parton showers and matrix elements in hadronic collisions, Eur. Phys. J. C 53 (2008) 473 [arXiv:0706.2569] [INSPIRE]. [57] P. Nason, A new method for combining NLO QCD with shower Monte Carlo algorithms, JHEP 11 (2004) 040 [hep-ph/0409146] [INSPIRE]. [58] S. Frixione, P. Nason and C. Oleari, Matching NLO QCD computations with parton shower simulations: the POWHEG method, JHEP 11 (2007) 070 [arXiv:0709.2092] [INSPIRE]. [59] S. Alioli, P. Nason, C. Oleari and E. Re, A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX, JHEP 06 (2010) 043 [arXiv:1002.2581] [INSPIRE]. [60] NNPDF collaboration, R.D. Ball et al., Parton distributions for the LHC run II, JHEP 04 (2015) 040 [arXiv:1410.8849] [INSPIRE]. [arXiv:1209.6215] [INSPIRE]. [61] R. Frederix and S. Frixione, Merging meets matching in MC@NLO, JHEP 12 (2012) 061 011] [arXiv:0907.4076] [INSPIRE]. [63] E. Re, Single-top W t-channel production matched with parton showers using the POWHEG POWHEG BOX, JHEP 11 (2011) 078 [arXiv:1107.5051] [INSPIRE]. B 710 (2012) 612 [arXiv:1111.5869] [INSPIRE]. all-fermionic scattering channels, JHEP 12 (2012) 054 [arXiv:1207.0236] [INSPIRE]. [69] M. Czakon and A. Mitov, NNLO corrections to top pair production at hadron colliders: the quark-gluon reaction, JHEP 01 (2013) 080 [arXiv:1210.6832] [INSPIRE]. [70] M. Czakon, P. Fiedler and A. Mitov, Total top-quark pair-production cross section at hadron colliders through O( S4), Phys. Rev. Lett. 110 (2013) 252004 [arXiv:1303.6254] [INSPIRE]. [71] R. Gavin, Y. Li, F. Petriello and S. Quackenbush, W physics at the LHC with FEWZ 2:1, Comput. Phys. Commun. 184 (2013) 208 [arXiv:1201.5896] [INSPIRE]. [72] R. Gavin, Y. Li, F. Petriello and S. Quackenbush, FEWZ 2:0: a code for hadronic Z production at next-to-next-to-leading order, Comput. Phys. Commun. 182 (2011) 2388 [arXiv:1011.3540] [INSPIRE]. pp collisions at p [73] CMS collaboration, Search for top-squark pair production in the single-lepton nal state in s = 8 TeV, Eur. Phys. J. C 73 (2013) 2677 [arXiv:1308.1586] [INSPIRE]. [74] T. Sjostrand, S. Mrenna and P.Z. Skands, A brief introduction to PYTHIA 8:1, Comput. Phys. Commun. 178 (2008) 852 [arXiv:0710.3820] [INSPIRE]. [75] CMS collaboration, Event generator tunes obtained from underlying event and multiparton scattering measurements, Eur. Phys. J. C 76 (2016) 155 [arXiv:1512.00815] [INSPIRE]. [76] GEANT4 collaboration, S. Agostinelli et al., GEANT4: a simulation toolkit, Nucl. Instrum. Meth. A 506 (2003) 250 [INSPIRE]. [77] S. Abdullin, P. Azzi, F. Beaudette, P. Janot and A. Perrotta, The fast simulation of the CMS detector at LHC, J. Phys. Conf. Ser. 331 (2011) 032049 [INSPIRE]. [78] CMS collaboration, Searches for pair production of third-generation squarks in p pp collisions, Eur. Phys. J. C 77 (2017) 327 [arXiv:1612.03877] [INSPIRE]. p s = 13 TeV, Phys. Lett. B 766 (2017) 268 [arXiv:1607.06943] [INSPIRE]. [79] CMS collaboration, Measurement of the W Z production cross section in pp collisions at [80] CMS collaboration, Simpli ed likelihood for the re-interpretation of public CMS results, CMS-NOTE-2017-001, CERN, Geneva Switzerland, (2017). [INSPIRE]. [INSPIRE]. [arXiv:1007.1727] [INSPIRE]. [84] ATLAS, CMS collaborations and the LHC Higgs Combination Group, Procedure for the LHC Higgs boson search combination in Summer 2011, ATL-PHYS-PUB-2011-011, CERN, Geneva Switzerland, (2011) [CMS-NOTE-2011-005]. CMS-PAS-LUM-17-001, CERN, Geneva Switzerland, (2017). Yerevan Physics Institute, Yerevan, Armenia A.M. Sirunyan, A. Tumasyan Institut fur Hochenergiephysik, Wien, Austria W. Adam, F. Ambrogi, E. Asilar, T. Bergauer, J. Brandstetter, E. Brondolin, M. Dragicevic, J. Ero, M. Flechl, M. Friedl, R. Fruhwirth1, V.M. Ghete, J. Grossmann, J. Hrubec, M. Jeitler1, A. Konig, N. Krammer, I. Kratschmer, D. Liko, T. Madlener, I. Mikulec, E. Pree, D. Rabady, N. Rad, H. Rohringer, J. Schieck1, R. Schofbeck, M. Spanring, D. Spitzbart, J. Strauss, W. Waltenberger, J. Wittmann, C.-E. Wulz1, M. Zarucki Institute for Nuclear Problems, Minsk, Belarus V. Chekhovsky, V. Mossolov, J. Suarez Gonzalez Universiteit Antwerpen, Antwerpen, Belgium N. Van Remortel Vrije Universiteit Brussel, Brussel, Belgium E.A. De Wolf, D. Di Croce, X. Janssen, J. Lauwers, H. Van Haevermaet, P. Van Mechelen, S. Abu Zeid, F. Blekman, J. D'Hondt, I. De Bruyn, J. De Clercq, K. Deroover, G. Flouris, D. Lontkovskyi, S. Lowette, S. Moortgat, L. Moreels, A. Olbrechts, Q. Python, K. Skovpen, S. Tavernier, W. Van Doninck, P. Van Mulders, I. Van Parijs Universite Libre de Bruxelles, Bruxelles, Belgium H. Brun, B. Clerbaux, G. De Lentdecker, H. Delannoy, G. Fasanella, L. Favart, R. Goldouzian, A. Grebenyuk, G. Karapostoli, T. Lenzi, J. Luetic, T. Maerschalk, A. Marinov, A. Randle-conde, T. Seva, C. Vander Velde, P. Vanlaer, D. Vannerom, R. Yonamine, F. Zenoni, F. Zhang2 Ghent University, Ghent, Belgium A. Cimmino, T. Cornelis, D. Dobur, A. Fagot, M. Gul, I. Khvastunov, D. Poyraz, C. Roskas, S. Salva, M. Tytgat, W. Verbeke, N. Zaganidis Universite Catholique de Louvain, Louvain-la-Neuve, Belgium H. Bakhshiansohi, O. Bondu, S. Brochet, G. Bruno, A. Caudron, S. De Visscher, C. Delaere, M. Delcourt, B. Francois, A. Giammanco, A. Jafari, M. Komm, G. Krintiras, V. Lemaitre, A. Magitteri, A. Mertens, M. Musich, K. Piotrzkowski, L. Quertenmont, M. Vidal Marono, S. Wertz N. Beliy Universite de Mons, Mons, Belgium Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil W.L. Alda Junior, F.L. Alves, G.A. Alves, L. Brito, M. Correa Martins Junior, C. Hensel, A. Moraes, M.E. Pol, P. Rebello Teles Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil E. Belchior Batista Das Chagas, W. Carvalho, J. Chinellato3, A. Custodio, E.M. Da Costa, G.G. Da Silveira4, D. De Jesus Damiao, S. Fonseca De Souza, L.M. Huertas Guativa, H. Malbouisson, M. Melo De Almeida, C. Mora Herrera, L. Mundim, H. Nogima, A. Santoro, A. Sznajder, E.J. Tonelli Manganote3, F. Torres Da Silva De Araujo, A. Vilela Pereira Brazil S. Ahujaa, Sciences Universidade Estadual Paulista a, Universidade Federal do ABC b, S~ao Paulo, C.A. Bernardesa, T.R. Fernandez Perez Tomeia, E.M. Gregoresb, P.G. Mercadanteb, S.F. Novaesa, Sandra S. Padulaa, D. Romero Abadb, J.C. Ruiz Vargasa Institute for Nuclear Research and Nuclear Energy of Bulgaria Academy of A. Aleksandrov, R. Hadjiiska, P. Iaydjiev, M. Misheva, M. Rodozov, M. Shopova, S. Stoykova, G. Sultanov University of So a, So a, Bulgaria A. Dimitrov, I. Glushkov, L. Litov, B. Pavlov, P. Petkov Beihang University, Beijing, China W. Fang5, X. Gao5 Institute of High Energy Physics, Beijing, China M. Ahmad, J.G. Bian, G.M. Chen, H.S. Chen, M. Chen, Y. Chen, C.H. Jiang, D. Leggat, H. Liao, Z. Liu, F. Romeo, S.M. Shaheen, A. Spiezia, J. Tao, C. Wang, Z. Wang, E. Yazgan, H. Zhang, J. Zhao Beijing, China State Key Laboratory of Nuclear Physics and Technology, Peking University, Y. Ban, G. Chen, Q. Li, S. Liu, Y. Mao, S.J. Qian, D. Wang, Z. Xu Universidad de Los Andes, Bogota, Colombia C. Avila, A. Cabrera, L.F. Chaparro Sierra, C. Florez, C.F. Gonzalez Hernandez, J.D. Ruiz Alvarez University of Split, Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, Split, Croatia B. Courbon, N. Godinovic, D. Lelas, I. Puljak, P.M. Ribeiro Cipriano, T. Sculac University of Split, Faculty of Science, Split, Croatia Z. Antunovic, M. Kovac Institute Rudjer Boskovic, Zagreb, Croatia V. Brigljevic, D. Ferencek, K. Kadija, B. Mesic, A. Starodumov6, T. Susa University of Cyprus, Nicosia, Cyprus M.W. Ather, A. Attikis, G. Mavromanolakis, J. Mousa, C. Nicolaou, F. Ptochos, P.A. Razis, H. Rykaczewski Charles University, Prague, Czech Republic M. Finger7, M. Finger Jr.7 Universidad San Francisco de Quito, Quito, Ecuador E. Carrera Jarrin Academy of Scienti c Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt A. Ellithi Kamel8, S. Khalil9, A. Mohamed9 National Institute of Chemical Physics and Biophysics, Tallinn, Estonia R.K. Dewanjee, M. Kadastik, L. Perrini, M. Raidal, A. Tiko, C. Veelken Department of Physics, University of Helsinki, Helsinki, Finland P. Eerola, J. Pekkanen, M. Voutilainen Helsinki Institute of Physics, Helsinki, Finland J. Harkonen, T. Jarvinen, V. Karimaki, R. Kinnunen, T. Lampen, K. Lassila-Perini, S. Lehti, T. Linden, P. Luukka, E. Tuominen, J. Tuominiemi, E. Tuovinen Lappeenranta University of Technology, Lappeenranta, Finland J. Talvitie, T. Tuuva IRFU, CEA, Universite Paris-Saclay, Gif-sur-Yvette, France M. Besancon, F. Couderc, M. Dejardin, D. Denegri, J.L. Faure, F. Ferri, S. Ganjour, S. Ghosh, A. Givernaud, P. Gras, G. Hamel de Monchenault, P. Jarry, I. Kucher, E. Locci, M. Machet, J. Malcles, G. Negro, J. Rander, A. Rosowsky, M.O . Sahin, M. Titov Laboratoire Leprince-Ringuet, Ecole polytechnique, CNRS/IN2P3, Universite Paris-Saclay, Palaiseau, France A. Abdulsalam, I. Antropov, S. Ba oni, F. Beaudette, P. Busson, L. Cadamuro, C. Charlot, R. Granier de Cassagnac, M. Jo, S. Lisniak, A. Lobanov, J. Martin Blanco, M. Nguyen, C. Ochando, G. Ortona, P. Paganini, P. Pigard, S. Regnard, R. Salerno, J.B. Sauvan, Y. Sirois, A.G. Stahl Leiton, T. Strebler, Y. Yilmaz, A. Zabi, A. Zghiche Universite de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France S. Gadrat J.-L. Agram10, J. Andrea, D. Bloch, J.-M. Brom, M. Buttignol, E.C. Chabert, N. Chanon, C. Collard, E. Conte10, X. Coubez, J.-C. Fontaine10, D. Gele, U. Goerlach, M. Jansova, A.-C. Le Bihan, N. Tonon, P. Van Hove Centre de Calcul de l'Institut National de Physique Nucleaire et de Physique des Particules, CNRS/IN2P3, Villeurbanne, France Universite de Lyon, Universite Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucleaire de Lyon, Villeurbanne, France S. Beauceron, C. Bernet, G. Boudoul, R. Chierici, D. Contardo, P. Depasse, H. El Mamouni, J. Fay, L. Finco, S. Gascon, M. Gouzevitch, G. Grenier, B. Ille, F. Lagarde, I.B. Laktineh, M. Lethuillier, L. Mirabito, A.L. Pequegnot, S. Perries, A. Popov11, V. Sordini, M. Vander Donckt, S. Viret T. Toriashvili12 Z. Tsamalaidze7 Georgian Technical University, Tbilisi, Georgia Tbilisi State University, Tbilisi, Georgia RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany C. Autermann, S. Beranek, L. Feld, M.K. Kiesel, K. Klein, M. Lipinski, M. Preuten, C. Schomakers, J. Schulz, T. Verlage RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany A. Albert, E. Dietz-Laursonn, D. Duchardt, M. Endres, M. Erdmann, S. Erdweg, T. Esch, R. Fischer, A. Guth, M. Hamer, T. Hebbeker, C. Heidemann, K. Hoepfner, S. Knutzen, M. Merschmeyer, A. Meyer, P. Millet, S. Mukherjee, M. Olschewski, K. Padeken, T. Pook, M. Radziej, H. Reithler, M. Rieger, F. Scheuch, D. Teyssier, S. Thuer RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany G. Flugge, B. Kargoll, T. Kress, A. Kunsken, J. Lingemann, T. Muller, A. Nehrkorn, A. Nowack, C. Pistone, O. Pooth, A. Stahl13 Deutsches Elektronen-Synchrotron, Hamburg, Germany M. Aldaya Martin, T. Arndt, C. Asawatangtrakuldee, K. Beernaert, O. Behnke, U. Behrens, A. Bermudez Mart nez, A.A. Bin Anuar, K. Borras14, V. Botta, A. Campbell, P. Connor, C. Contreras-Campana, F. Costanza, C. Diez Pardos, G. Eckerlin, D. Eckstein, T. Eichhorn, E. Eren, E. Gallo15, J. Garay Garcia, A. Geiser, A. Gizhko, J.M. Grados Luyando, A. Grohsjean, P. Gunnellini, A. Harb, J. Hauk, M. Hempel16, H. Jung, A. Kalogeropoulos, M. Kasemann, J. Keaveney, C. Kleinwort, I. Korol, D. Krucker, W. Lange, A. Lelek, T. Lenz, J. Leonard, K. Lipka, W. Lohmann16, R. Mankel, I.A. Melzer-Pellmann, A.B. Meyer, G. Mittag, J. Mnich, A. Mussgiller, E. Ntomari, D. Pitzl, R. Placakyte, A. Raspereza, B. Roland, M. Savitskyi, P. Saxena, R. Shevchenko, S. Spannagel, N. Stefaniuk, G.P. Van Onsem, R. Walsh, Y. Wen, K. Wichmann, C. Wissing, O. Zenaiev University of Hamburg, Hamburg, Germany S. Bein, V. Blobel, M. Centis Vignali, A.R. Draeger, T. Dreyer, E. Garutti, D. Gonzalez, J. Haller, A. Hinzmann, M. Ho mann, A. Karavdina, R. Klanner, R. Kogler, N. Kovalchuk, S. Kurz, T. Lapsien, I. Marchesini, D. Marconi, M. Meyer, M. Niedziela, D. Nowatschin, F. Pantaleo13, T. Pei er, A. Perieanu, C. Scharf, P. Schleper, A. Schmidt, S. Schumann, J. Schwandt, J. Sonneveld, H. Stadie, G. Steinbruck, F.M. Stober, M. Stover, H. Tholen, D. Troendle, E. Usai, L. Vanelderen, A. Vanhoefer, B. Vormwald Institut fur Experimentelle Kernphysik, Karlsruhe, Germany M. Akbiyik, C. Barth, S. Baur, E. Butz, R. Caspart, T. Chwalek, F. Colombo, W. De Boer, A. Dierlamm, B. Freund, R. Friese, M. Gi els, A. Gilbert, D. Haitz, F. Hartmann13, Paraskevi, Greece I. Topsis-Giotis S.M. Heindl, U. Husemann, F. Kassel13, S. Kudella, H. Mildner, M.U. Mozer, Th. Muller, M. Plagge, G. Quast, K. Rabbertz, M. Schroder, I. Shvetsov, G. Sieber, H.J. Simonis, R. Ulrich, S. Wayand, M. Weber, T. Weiler, S. Williamson, C. Wohrmann, R. Wolf Institute of Nuclear and Particle Physics (INPP), NCSR Demokritos, Aghia G. Anagnostou, G. Daskalakis, T. Geralis, V.A. Giakoumopoulou, A. Kyriakis, D. Loukas, National and Kapodistrian University of Athens, Athens, Greece S. Kesisoglou, A. Panagiotou, N. Saoulidou University of Ioannina, Ioannina, Greece I. Evangelou, C. Foudas, P. Kokkas, S. Mallios, N. Manthos, I. Papadopoulos, E. Paradas, J. Strologas, F.A. Triantis MTA-ELTE Lendulet CMS Particle and Nuclear Physics Group, Eotvos Lorand University, Budapest, Hungary M. Csanad, N. Filipovic, G. Pasztor G. Bencze, C. Hajdu, G. Vesztergombi18, A.J. Zsigmond Wigner Research Centre for Physics, Budapest, Hungary D. Horvath17, A. Hunyadi, F. Sikler, V. Veszpremi, Institute of Nuclear Research ATOMKI, Debrecen, Hungary N. Beni, S. Czellar, J. Karancsi19, A. Makovec, J. Molnar, Z. Szillasi Institute of Physics, University of Debrecen, Debrecen, Hungary M. Bartok18, P. Raics, Z.L. Trocsanyi, B. Ujvari Indian Institute of Science (IISc), Bangalore, India S. Choudhury, J.R. Komaragiri National Institute of Science Education and Research, Bhubaneswar, India S. Bahinipati20, S. Bhowmik, P. Mal, K. Mandal, A. Nayak21, D.K. Sahoo20, N. Sahoo, S.K. Swain Panjab University, Chandigarh, India S. Bansal, S.B. Beri, V. Bhatnagar, U. Bhawandeep, R. Chawla, N. Dhingra, A.K. Kalsi, A. Kaur, M. Kaur, R. Kumar, P. Kumari, A. Mehta, J.B. Singh, G. Walia University of Delhi, Delhi, India Ashok Kumar, Aashaq Shah, A. Bhardwaj, S. Chauhan, B.C. Choudhary, R.B. Garg, S. Keshri, A. Kumar, S. Malhotra, M. Naimuddin, K. Ranjan, R. Sharma, V. Sharma Saha Institute of Nuclear Physics, HBNI, Kolkata, India R. Bhardwaj, R. Bhattacharya, S. Bhattacharya, S. Dey, S. Dutt, S. Dutta, S. Ghosh, N. Majumdar, A. Modak, K. Mondal, S. Mukhopadhyay, S. Nandan, A. Purohit, A. Roy, D. Roy, S. Roy Chowdhury, S. Sarkar, M. Sharan, S. Thakur Indian Institute of Technology Madras, Madras, India P.K. Behera Bhabha Atomic Research Centre, Mumbai, India R. Chudasama, D. Dutta, V. Jha, V. Kumar, A.K. Mohanty13, P.K. Netrakanti, L.M. Pant, P. Shukla, A. Topkar Tata Institute of Fundamental Research-A, Mumbai, India T. Aziz, S. Dugad, B. Mahakud, S. Mitra, G.B. Mohanty, B. Parida, N. Sur, B. Sutar Tata Institute of Fundamental Research-B, Mumbai, India S. Banerjee, S. Bhattacharya, S. Chatterjee, P. Das, M. Guchait, Sa. Jain, S. Kumar, M. Maity22, G. Majumder, K. Mazumdar, T. Sarkar22, N. Wickramage23 Indian Institute of Science Education and Research (IISER), Pune, India S. Chauhan, S. Dube, V. Hegde, A. Kapoor, K. Kothekar, S. Pandey, A. Rane, S. Sharma Institute for Research in Fundamental Sciences (IPM), Tehran, Iran S. Chenarani24, E. Eskandari Tadavani, S.M. Etesami24, M. Khakzad, M. Mohammadi Najafabadi, M. Naseri, S. Paktinat Mehdiabadi25, F. Rezaei Hosseinabadi, B. Safarzadeh26, M. Zeinali University College Dublin, Dublin, Ireland M. Felcini, M. Grunewald INFN Sezione di Bari a, Universita di Bari b, Politecnico di Bari c, Bari, Italy M. Abbresciaa;b, C. Calabriaa;b, C. Caputoa;b, A. Colaleoa, D. Creanzaa;c, L. Cristellaa;b, N. De Filippisa;c, M. De Palmaa;b, F. Erricoa;b, L. Fiorea, G. Iasellia;c, S. Lezkia;b, G. Maggia;c, M. Maggia, G. Minielloa;b, S. Mya;b, S. Nuzzoa;b, A. Pompilia;b, G. Pugliesea;c, R. Radognaa;b, A. Ranieria, G. Selvaggia;b, A. Sharmaa, L. Silvestrisa;13, R. Vendittia, P. Verwilligena INFN Sezione di Bologna a, Universita di Bologna b, Bologna, Italy G. Abbiendia, C. Battilanaa;b, D. Bonacorsia;b, S. Braibant-Giacomellia;b, R. Campaninia;b, P. Capiluppia;b, A. Castroa;b, F.R. Cavalloa, S.S. Chhibraa, G. Codispotia;b, M. Cu ania;b, G.M. Dallavallea, F. Fabbria, A. Fanfania;b, D. Fasanellaa;b, P. Giacomellia, C. Grandia, L. Guiduccia;b, S. Marcellinia, G. Masettia, A. Montanaria, F.L. Navarriaa;b, A. Perrottaa, A.M. Rossia;b, T. Rovellia;b, G.P. Sirolia;b, N. Tosia INFN Sezione di Catania a, Universita di Catania b, Catania, Italy S. Albergoa;b, S. Costaa;b, A. Di Mattiaa, F. Giordanoa;b, R. Potenzaa;b, A. Tricomia;b, C. Tuvea;b L. Viliania;b;13 INFN Sezione di Firenze a, Universita di Firenze b, Firenze, Italy G. Barbaglia, K. Chatterjeea;b, V. Ciullia;b, C. Civininia, R. D'Alessandroa;b, E. Focardia;b, P. Lenzia;b, M. Meschinia, S. Paolettia, L. Russoa;27, G. Sguazzonia, D. Stroma, INFN Laboratori Nazionali di Frascati, Frascati, Italy L. Benussi, S. Bianco, F. Fabbri, D. Piccolo, F. Primavera13 INFN Sezione di Genova a, Universita di Genova b, Genova, Italy V. Calvellia;b, F. Ferroa, E. Robuttia, S. Tosia;b INFN Sezione di Milano-Bicocca a, Universita di Milano-Bicocca b, Milano, Italy Italy L. Brianzaa;b, F. Brivioa;b, V. Cirioloa;b, M.E. Dinardoa;b, S. Fiorendia;b, S. Gennaia, A. Ghezzia;b, P. Govonia;b, M. Malbertia;b, S. Malvezzia, R.A. Manzonia;b, D. Menascea, L. Moronia, M. Paganonia;b, K. Pauwelsa;b, D. Pedrinia, S. Pigazzinia;b;28, S. Ragazzia;b, T. Tabarelli de Fatisa;b INFN Sezione di Napoli a, Universita di Napoli 'Federico II' b, Napoli, Italy, Universita della Basilicata c, Potenza, Italy, Universita G. Marconi d, Roma, S. Buontempoa, N. Cavalloa;c, S. Di Guidaa;d;13, M. Espositoa;b, F. Fabozzia;c, F. Fiengaa;b, A.O.M. Iorioa;b, W.A. Khana, G. Lanzaa, L. Listaa, S. Meolaa;d;13, P. Paoluccia;13, C. Sciaccaa;b, F. Thyssena Trento c, Trento, Italy INFN Sezione di Padova a, Universita di Padova b, Padova, Italy, Universita di P. Azzia;13, N. Bacchettaa, L. Benatoa;b, D. Biselloa;b, A. Bolettia;b, R. Carlina;b, A. Carvalho Antunes De Oliveiraa;b, P. Checchiaa, P. De Castro Manzanoa, T. Dorigoa, U. Dossellia, F. Gasparinia;b, U. Gasparinia;b, A. Gozzelinoa, S. Lacapraraa, M. Margonia;b, A.T. Meneguzzoa;b, N. Pozzobona;b, P. Ronchesea;b, R. Rossina;b, F. Simonettoa;b, E. Torassaa, M. Zanettia;b, P. Zottoa;b, G. Zumerlea;b INFN Sezione di Pavia a, Universita di Pavia b, Pavia, Italy A. Braghieria, F. Fallavollitaa;b, A. Magnania;b, P. Montagnaa;b, S.P. Rattia;b, V. Rea, M. Ressegotti, C. Riccardia;b, P. Salvinia, I. Vaia;b, P. Vituloa;b INFN Sezione di Perugia a, Universita di Perugia b, Perugia, Italy L. Alunni Solestizia;b, M. Biasinia;b, G.M. Bileia, C. Cecchia;b, D. Ciangottinia;b, L. Fanoa;b, P. Laricciaa;b, R. Leonardia;b, E. Manonia, G. Mantovania;b, V. Mariania;b, M. Menichellia, A. Rossia;b, A. Santocchiaa;b, D. Spigaa INFN Sezione di Pisa a, Universita di Pisa b, Scuola Normale Superiore di Pisa c, Pisa, Italy K. Androsova, P. Azzurria;13, G. Bagliesia, J. Bernardinia, T. Boccalia, L. Borrello, R. Castaldia, M.A. Cioccia;b, R. Dell'Orsoa, G. Fedia, L. Gianninia;c, A. Giassia, M.T. Grippoa;27, F. Ligabuea;c, T. Lomtadzea, E. Mancaa;c, G. Mandorlia;c, L. Martinia;b, A. Messineoa;b, F. Pallaa, A. Rizzia;b, A. Savoy-Navarroa;29, P. Spagnoloa, R. Tenchinia, G. Tonellia;b, A. Venturia, P.G. Verdinia INFN Sezione di Roma a, Sapienza Universita di Roma b, Rome, Italy L. Baronea;b, F. Cavallaria, M. Cipriania;b, D. Del Rea;b;13, M. Diemoza, S. Gellia;b, E. Longoa;b, F. Margarolia;b, Meridiania, R. Paramattia;b, F. Preiatoa;b, S. Rahatloua;b, C. Rovellia, F. Santanastasioa;b INFN Sezione di Torino a, Universita di Torino b, Torino, Italy, Universita del Piemonte Orientale c, Novara, Italy N. Amapanea;b, R. Arcidiaconoa;c, S. Argiroa;b, M. Arneodoa;c, N. Bartosika, R. Bellana;b, C. Biinoa, N. Cartigliaa, F. Cennaa;b, M. Costaa;b, R. Covarellia;b, A. Deganoa;b, N. Demariaa, B. Kiania;b, C. Mariottia, S. Masellia, E. Migliorea;b, V. Monacoa;b, E. Monteila;b, M. Montenoa, M.M. Obertinoa;b, L. Pachera;b, N. Pastronea, M. Pelliccionia, G.L. Pinna Angionia;b, F. Raveraa;b, A. Romeroa;b, M. Ruspaa;c, R. Sacchia;b, K. Shchelinaa;b, V. Solaa, A. Solanoa;b, A. Staianoa, P. Traczyka;b INFN Sezione di Trieste a, Universita di Trieste b, Trieste, Italy S. Belfortea, M. Casarsaa, F. Cossuttia, G. Della Riccaa;b, A. Zanettia Kyungpook National University, Daegu, Korea D.H. Kim, G.N. Kim, M.S. Kim, J. Lee, S. Lee, S.W. Lee, C.S. Moon, Y.D. Oh, S. Sekmen, D.C. Son, Y.C. Yang Chonbuk National University, Jeonju, Korea A. Lee Chonnam National University, Institute for Universe and Elementary Particles, Kwangju, Korea H. Kim, D.H. Moon, G. Oh Hanyang University, Seoul, Korea J.A. Brochero Cifuentes, J. Goh, T.J. Kim Korea University, Seoul, Korea J. Lim, S.K. Park, Y. Roh Seoul National University, Seoul, Korea S. Cho, S. Choi, Y. Go, D. Gyun, S. Ha, B. Hong, Y. Jo, Y. Kim, K. Lee, K.S. Lee, S. Lee, J. Almond, J. Kim, J.S. Kim, H. Lee, K. Lee, K. Nam, S.B. Oh, B.C. Radburn-Smith, S.h. Seo, U.K. Yang, H.D. Yoo, G.B. Yu University of Seoul, Seoul, Korea M. Choi, H. Kim, J.H. Kim, J.S.H. Lee, I.C. Park, G. Ryu Sungkyunkwan University, Suwon, Korea Y. Choi, C. Hwang, J. Lee, I. Yu Vilnius University, Vilnius, Lithuania V. Dudenas, A. Juodagalvis, J. Vaitkus HJEP1(207)9 National Centre for Particle Physics, Universiti Malaya, Kuala Lumpur, Malaysia M.N. Yusli, Z. Zolkapli I. Ahmed, Z.A. Ibrahim, M.A.B. Md Ali30, F. Mohamad Idris31, W.A.T. Wan Abdullah, Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico H. Castilla-Valdez, E. De La Cruz-Burelo, I. Heredia-De La Cruz32, R. Lopez-Fernandez, J. Mejia Guisao, A. Sanchez-Hernandez Universidad Iberoamericana, Mexico City, Mexico S. Carrillo Moreno, C. Oropeza Barrera, F. Vazquez Valencia Benemerita Universidad Autonoma de Puebla, Puebla, Mexico I. Pedraza, H.A. Salazar Ibarguen, C. Uribe Estrada Universidad Autonoma de San Luis Potos , San Luis Potos , Mexico A. Morelos Pineda University of Auckland, Auckland, New Zealand HJEP1(207)9 D. Krofcheck P.H. Butler M. Waqas University of Canterbury, Christchurch, New Zealand National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan A. Ahmad, M. Ahmad, Q. Hassan, H.R. Hoorani, A. Saddique, M.A. Shah, M. Shoaib, National Centre for Nuclear Research, Swierk, Poland H. Bialkowska, M. Bluj, B. Boimska, T. Frueboes, M. Gorski, M. Kazana, K. Nawrocki, K. Romanowska-Rybinska, M. Szleper, P. Zalewski Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland K. Bunkowski, A. Byszuk33, K. Doroba, A. Kalinowski, M. Konecki, J. Krolikowski, M. Misiura, M. Olszewski, A. Pyskir, M. Walczak Laboratorio de Instrumentac~ao e F sica Experimental de Part culas, Lisboa, Portugal P. Bargassa, C. Beir~ao Da Cruz E Silva, B. Calpas, A. Di Francesco, P. Faccioli, M. Gallinaro, J. Hollar, N. Leonardo, L. Lloret Iglesias, M.V. Nemallapudi, J. Seixas, O. Toldaiev, D. Vadruccio, J. Varela Joint Institute for Nuclear Research, Dubna, Russia S. Afanasiev, P. Bunin, M. Gavrilenko, I. Golutvin, I. Gorbunov, A. Kamenev, V. Karjavin, A. Lanev, A. Malakhov, V. Matveev34;35, V. Palichik, V. Perelygin, S. Shmatov, S. Shulha, N. Skatchkov, V. Smirnov, N. Voytishin, A. Zarubin Petersburg Nuclear Physics Institute, Gatchina (St. Petersburg), Russia Y. Ivanov, V. Kim36, E. Kuznetsova37, P. Levchenko, V. Murzin, V. Oreshkin, I. Smirnov, V. Sulimov, L. Uvarov, S. Vavilov, A. Vorobyev Institute for Nuclear Research, Moscow, Russia Yu. Andreev, A. Dermenev, S. Gninenko, N. Golubev, A. Karneyeu, M. Kirsanov, N. Krasnikov, A. Pashenkov, D. Tlisov, A. Toropin Institute for Theoretical and Experimental Physics, Moscow, Russia V. Epshteyn, V. Gavrilov, N. Lychkovskaya, V. Popov, I. Pozdnyakov, G. Safronov, A. Spiridonov, A. Stepennov, M. Toms, E. Vlasov, A. Zhokin HJEP1(207)9 Moscow Institute of Physics and Technology, Moscow, Russia T. Aushev, A. Bylinkin35 National Research Nuclear University 'Moscow Engineering Physics Institute' (MEPhI), Moscow, Russia M. Chadeeva38, P. Parygin, D. Philippov, S. Polikarpov, E. Popova, V. Rusinov P.N. Lebedev Physical Institute, Moscow, Russia V. Andreev, M. Azarkin35, I. Dremin35, M. Kirakosyan35, A. Terkulov Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia A. Snigirev A. Baskakov, A. Belyaev, E. Boos, M. Dubinin39, L. Dudko, A. Ershov, A. Gribushin, V. Klyukhin, O. Kodolova, I. Lokhtin, I. Miagkov, S. Obraztsov, S. Petrushanko, V. Savrin, Novosibirsk State University (NSU), Novosibirsk, Russia V. Blinov40, Y.Skovpen40, D. Shtol40 State Research Center of Russian Federation, Institute for High Energy Physics, Protvino, Russia I. Azhgirey, I. Bayshev, S. Bitioukov, D. Elumakhov, V. Kachanov, A. Kalinin, D. Konstantinov, V. Krychkine, V. Petrov, R. Ryutin, A. Sobol, S. Troshin, N. Tyurin, A. Uzunian, A. Volkov University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia P. Adzic41, P. Cirkovic, D. Devetak, M. Dordevic, J. Milosevic, V. Rekovic Centro de Investigaciones Energeticas Medioambientales y Tecnologicas (CIEMAT), Madrid, Spain J. Alcaraz Maestre, M. Barrio Luna, M. Cerrada, N. Colino, B. De La Cruz, A. Delgado Peris, A. Escalante Del Valle, C. Fernandez Bedoya, J.P. Fernandez Ramos, J. Flix, M.C. Fouz, P. Garcia-Abia, O. Gonzalez Lopez, S. Goy Lopez, J.M. Hernandez, M.I. Josa, A. Perez-Calero Yzquierdo, J. Puerta Pelayo, A. Quintario Olmeda, I. Redondo, L. Romero, M.S. Soares, A. Alvarez Fernandez Universidad Autonoma de Madrid, Madrid, Spain J.F. de Troconiz, M. Missiroli, D. Moran Universidad de Oviedo, Oviedo, Spain J. Cuevas, C. Erice, J. Fernandez Menendez, I. Gonzalez Caballero, J.R. Gonzalez Fernandez, E. Palencia Cortezon, S. Sanchez Cruz, I. Suarez Andres, P. Vischia, J.M. Vizan Garcia Santander, Spain Instituto de F sica de Cantabria (IFCA), CSIC-Universidad de Cantabria, I.J. Cabrillo, A. Calderon, B. Chazin Quero, E. Curras, M. Fernandez, J. Garcia-Ferrero, G. Gomez, A. Lopez Virto, J. Marco, C. Martinez Rivero, P. Martinez Ruiz del Arbol, F. Matorras, J. Piedra Gomez, T. Rodrigo, A. Ruiz-Jimeno, L. Scodellaro, N. Trevisani, I. Vila, R. Vilar Cortabitarte CERN, European Organization for Nuclear Research, Geneva, Switzerland D. Abbaneo, E. Au ray, P. Baillon, A.H. Ball, D. Barney, M. Bianco, P. Bloch, A. Bocci, C. Botta, T. Camporesi, R. Castello, M. Cepeda, G. Cerminara, E. Chapon, Y. Chen, D. d'Enterria, A. Dabrowski, V. Daponte, A. David, M. De Gruttola, A. De Roeck, E. Di Marco42, M. Dobson, B. Dorney, T. du Pree, M. Dunser, N. Dupont, A. Elliott-Peisert, P. Everaerts, G. Franzoni, J. Fulcher, W. Funk, D. Gigi, K. Gill, F. Glege, D. Gulhan, S. Gundacker, M. Gutho , P. Harris, J. Hegeman, V. Innocente, P. Janot, O. Karacheban16, J. Kieseler, H. Kirschenmann, V. Knunz, A. Kornmayer13, M.J. Kortelainen, C. Lange, P. Lecoq, C. Lourenco, M.T. Lucchini, L. Malgeri, M. Mannelli, A. Martelli, F. Meijers, J.A. Merlin, S. Mersi, E. Meschi, P. Milenovic43, F. Moortgat, M. Mulders, H. Neugebauer, S. Orfanelli, L. Orsini, L. Pape, E. Perez, M. Peruzzi, A. Petrilli, G. Petrucciani, A. Pfei er, M. Pierini, A. Racz, T. Reis, G. Rolandi44, M. Rovere, H. Sakulin, C. Schafer, C. Schwick, M. Seidel, M. Selvaggi, A. Sharma, P. Silva, P. Sphicas45, J. Steggemann, M. Stoye, M. Tosi, D. Treille, A. Triossi, A. Tsirou, V. Veckalns46, G.I. Veres18, M. Verweij, N. Wardle, W.D. Zeuner Paul Scherrer Institut, Villigen, Switzerland W. Bertly, L. Caminada47, K. Deiters, W. Erdmann, R. Horisberger, Q. Ingram, H.C. Kaestli, D. Kotlinski, U. Langenegger, T. Rohe, S.A. Wiederkehr Institute for Particle Physics, ETH Zurich, Zurich, Switzerland F. Bachmair, L. Bani, P. Berger, L. Bianchini, B. Casal, G. Dissertori, M. Dittmar, M. Donega, C. Grab, C. Heidegger, D. Hits, J. Hoss, G. Kasieczka, T. Klijnsma, W. Lustermann, B. Mangano, M. Marionneau, M.T. Meinhard, D. Meister, F. Micheli, P. Musella, F. Nessi-Tedaldi, F. Pandol , J. Pata, F. Pauss, G. Perrin, L. Perrozzi, M. Quittnat, M. Schonenberger, L. Shchutska, V.R. Tavolaro, K. Theo latos, M.L. Vesterbacka Olsson, R. Wallny, A. Zagozdzinska33, D.H. Zhu Universitat Zurich, Zurich, Switzerland T.K. Aarrestad, C. Amsler48, M.F. Canelli, A. De Cosa, S. Donato, C. Galloni, T. Hreus, B. Kilminster, J. Ngadiuba, D. Pinna, G. Rauco, P. Robmann, D. Salerno, C. Seitz, A. Zucchetta National Central University, Chung-Li, Taiwan V. Candelise, T.H. Doan, Sh. Jain, R. Khurana, C.M. Kuo, W. Lin, A. Pozdnyakov, S.S. Yu National Taiwan University (NTU), Taipei, Taiwan Arun Kumar, P. Chang, Y. Chao, K.F. Chen, P.H. Chen, F. Fiori, W.-S. Hou, Y. Hsiung, Y.F. Liu, R.-S. Lu, M. Min~ano Moya, E. Paganis, A. Psallidas, J.f. Tsai Chulalongkorn University, Faculty of Science, Department of Physics, Bangkok, Thailand Turkey B. Asavapibhop, K. Kovitanggoon, G. Singh, N. Srimanobhas Cukurova University, Physics Department, Science and Art Faculty, Adana, A. Adiguzel49, F. Boran, S. Cerci50, S. Damarseckin, Z.S. Demiroglu, C. Dozen, I. Dumanoglu, S. Girgis, G. Gokbulut, Y. Guler, I. Hos51, E.E. Kangal52, O. Kara, A. Kayis Topaksu, U. Kiminsu, M. Oglakci, G. Onengut53, K. Ozdemir54, D. Sunar Cerci50, B. Tali50, S. Turkcapar, I.S. Zorbakir, C. Zorbilmez Middle East Technical University, Physics Department, Ankara, Turkey B. Bilin, G. Karapinar55, K. Ocalan56, M. Yalvac, M. Zeyrek Bogazici University, Istanbul, Turkey E. Gulmez, M. Kaya57, O. Kaya58, S. Tekten, E.A. Yetkin59 Istanbul Technical University, Istanbul, Turkey M.N. Agaras, S. Atay, A. Cakir, K. Cankocak Institute for Scintillation Materials of National Academy of Science of Ukraine, Kharkov, Ukraine B. Grynyov Kharkov, Ukraine L. Levchuk, P. Sorokin National Scienti c Center, Kharkov Institute of Physics and Technology, University of Bristol, Bristol, United Kingdom R. Aggleton, F. Ball, L. Beck, J.J. Brooke, D. Burns, E. Clement, D. Cussans, O. Davignon, H. Flacher, J. Goldstein, M. Grimes, G.P. Heath, H.F. Heath, J. Jacob, L. Kreczko, C. Lucas, D.M. Newbold60, S. Paramesvaran, A. Poll, T. Sakuma, S. Seif El Nasr-storey, D. Smith, V.J. Smith Rutherford Appleton Laboratory, Didcot, United Kingdom K.W. Bell, A. Belyaev61, C. Brew, R.M. Brown, L. Calligaris, D. Cieri, D.J.A. Cockerill, J.A. Coughlan, K. Harder, S. Harper, E. Olaiya, D. Petyt, C.H. Shepherd-Themistocleous, A. Thea, I.R. Tomalin, T. Williams Imperial College, London, United Kingdom R. Bainbridge, S. Breeze, O. Buchmuller, A. Bundock, S. Casasso, M. Citron, D. Colling, L. Corpe, P. Dauncey, G. Davies, A. De Wit, M. Della Negra, R. Di Maria, A. Elwood, S.C. Zenz M. Turner Y. Haddad, G. Hall, G. Iles, T. James, R. Lane, C. Laner, L. Lyons, A.-M. Magnan, S. Malik, L. Mastrolorenzo, T. Matsushita, J. Nash, A. Nikitenko6, V. Palladino, M. Pesaresi, D.M. Raymond, A. Richards, A. Rose, E. Scott, C. Seez, A. Shtipliyski, S. Summers, A. Tapper, K. Uchida, M. Vazquez Acosta62, T. Virdee13, D. Winterbottom, J. Wright, Brunel University, Uxbridge, United Kingdom J.E. Cole, P.R. Hobson, A. Khan, P. Kyberd, I.D. Reid, P. Symonds, L. Teodorescu, Baylor University, Waco, U.S.A. A. Borzou, K. Call, J. Dittmann, K. Hatakeyama, H. Liu, N. Pastika, C. Smith HJEP1(207)9 Catholic University of America, Washington DC, U.S.A. R. Bartek, A. Dominguez The University of Alabama, Tuscaloosa, U.S.A. A. Buccilli, S.I. Cooper, C. Henderson, P. Rumerio, C. West Boston University, Boston, U.S.A. D. Zou Brown University, Providence, U.S.A. D. Arcaro, A. Avetisyan, T. Bose, D. Gastler, D. Rankin, C. Richardson, J. Rohlf, L. Sulak, G. Benelli, D. Cutts, A. Garabedian, J. Hakala, U. Heintz, J.M. Hogan, K.H.M. Kwok, E. Laird, G. Landsberg, Z. Mao, M. Narain, S. Piperov, S. Sagir, R. Syarif, D. Yu University of California, Davis, Davis, U.S.A. R. Band, C. Brainerd, D. Burns, M. Calderon De La Barca Sanchez, M. Chertok, J. Conway, R. Conway, P.T. Cox, R. Erbacher, C. Flores, G. Funk, M. Gardner, W. Ko, R. Lander, C. Mclean, M. Mulhearn, D. Pellett, J. Pilot, S. Shalhout, M. Shi, J. Smith, M. Squires, D. Stolp, K. Tos, M. Tripathi, Z. Wang University of California, Los Angeles, U.S.A. M. Bachtis, C. Bravo, R. Cousins, A. Dasgupta, A. Florent, J. Hauser, M. Ignatenko, N. Mccoll, D. Saltzberg, C. Schnaible, V. Valuev University of California, Riverside, Riverside, U.S.A. E. Bouvier, K. Burt, R. Clare, J. Ellison, J.W. Gary, S.M.A. Ghiasi Shirazi, G. Hanson, J. Heilman, P. Jandir, E. Kennedy, F. Lacroix, O.R. Long, M. Olmedo Negrete, M.I. Paneva, A. Shrinivas, W. Si, L. Wang, H. Wei, S. Wimpenny, B. R. Yates University of California, San Diego, La Jolla, U.S.A. J.G. Branson, S. Cittolin, M. Derdzinski, B. Hashemi, A. Holzner, D. Klein, G. Kole, V. Krutelyov, J. Letts, I. Macneill, M. Masciovecchio, D. Olivito, S. Padhi, M. Pieri, M. Sani, V. Sharma, S. Simon, M. Tadel, A. Vartak, S. Wasserbaech63, J. Wood, F. Wurthwein, A. Yagil, G. Zevi Della Porta University of California, Santa Barbara - Department of Physics, Santa Barbara, U.S.A. N. Amin, R. Bhandari, J. Bradmiller-Feld, C. Campagnari, A. Dishaw, V. Dutta, M. Franco Sevilla, C. George, F. Golf, L. Gouskos, J. Gran, R. Heller, J. Incandela, S.D. Mullin, A. Ovcharova, H. Qu, J. Richman, D. Stuart, I. Suarez, J. Yoo California Institute of Technology, Pasadena, U.S.A. D. Anderson, J. Bendavid, A. Bornheim, J.M. Lawhorn, H.B. Newman, T. Nguyen, C. Pena, M. Spiropulu, J.R. Vlimant, S. Xie, Z. Zhang, R.Y. Zhu Carnegie Mellon University, Pittsburgh, U.S.A. M.B. Andrews, T. Ferguson, T. Mudholkar, M. Paulini, J. Russ, M. Sun, H. Vogel, I. Vorobiev, M. Weinberg University of Colorado Boulder, Boulder, U.S.A. J.P. Cumalat, W.T. Ford, F. Jensen, A. Johnson, M. Krohn, S. Leontsinis, T. Mulholland, K. Stenson, S.R. Wagner Cornell University, Ithaca, U.S.A. J. Alexander, J. Chaves, J. Chu, S. Dittmer, K. Mcdermott, N. Mirman, J.R. Patterson, A. Rinkevicius, A. Ryd, L. Skinnari, L. So , S.M. Tan, Z. Tao, J. Thom, J. Tucker, P. Wittich, M. Zientek Fermi National Accelerator Laboratory, Batavia, U.S.A. S. Abdullin, M. Albrow, G. Apollinari, A. Apresyan, A. Apyan, S. Banerjee, L.A.T. Bauerdick, A. Beretvas, J. Berryhill, P.C. Bhat, G. Bolla, K. Burkett, J.N. Butler, A. Canepa, G.B. Cerati, H.W.K. Cheung, F. Chlebana, M. Cremonesi, J. Duarte, V.D. Elvira, J. Freeman, Z. Gecse, E. Gottschalk, L. Gray, D. Green, S. Grunendahl, O. Gutsche, R.M. Harris, S. Hasegawa, J. Hirschauer, Z. Hu, B. Jayatilaka, S. Jindariani, M. Johnson, U. Joshi, B. Klima, B. Kreis, S. Lammel, D. Lincoln, R. Lipton, M. Liu, T. Liu, R. Lopes De Sa, J. Lykken, K. Maeshima, N. Magini, J.M. Marra no, S. Maruyama, D. Mason, P. McBride, P. Merkel, S. Mrenna, S. Nahn, V. O'Dell, K. Pedro, O. Prokofyev, G. Rakness, L. Ristori, B. Schneider, E. Sexton-Kennedy, A. Soha, W.J. Spalding, L. Spiegel, S. Stoynev, J. Strait, N. Strobbe, L. Taylor, S. Tkaczyk, N.V. Tran, L. Uplegger, E.W. Vaandering, C. Vernieri, M. Verzocchi, R. Vidal, M. Wang, H.A. Weber, A. Whitbeck University of Florida, Gainesville, U.S.A. D. Acosta, P. Avery, P. Bortignon, D. Bourilkov, A. Brinkerho , A. Carnes, M. Carver, D. Curry, S. Das, R.D. Field, I.K. Furic, J. Konigsberg, A. Korytov, K. Kotov, P. Ma, K. Matchev, H. Mei, G. Mitselmakher, D. Rank, D. Sperka, N. Terentyev, L. Thomas, J. Wang, S. Wang, J. Yelton Florida International University, Miami, U.S.A. Y.R. Joshi, S. Linn, P. Markowitz, J.L. Rodriguez Florida State University, Tallahassee, U.S.A. A. Ackert, T. Adams, A. Askew, S. Hagopian, V. Hagopian, K.F. Johnson, T. Kolberg, G. Martinez, T. Perry, H. Prosper, A. Saha, A. Santra, R. Yohay Florida Institute of Technology, Melbourne, U.S.A. M.M. Baarmand, V. Bhopatkar, S. Colafranceschi, M. Hohlmann, D. Noonan, T. Roy, F. Yumiceva University of Illinois at Chicago (UIC), Chicago, U.S.A. M.R. Adams, L. Apanasevich, D. Berry, R.R. Betts, R. Cavanaugh, X. Chen, O. Evdokimov, C.E. Gerber, D.A. Hangal, D.J. Hofman, K. Jung, J. Kamin, I.D. Sandoval Gonzalez, M.B. Tonjes, H. Trauger, N. Varelas, H. Wang, Z. Wu, J. Zhang The University of Iowa, Iowa City, U.S.A. B. Bilki64, W. Clarida, K. Dilsiz65, S. Durgut, R.P. Gandrajula, M. Haytmyradov, V. Khristenko, J.-P. Merlo, H. Mermerkaya66, A. Mestvirishvili, A. Moeller, J. Nachtman, H. Ogul67, Y. Onel, F. Ozok68, A. Penzo, C. Snyder, E. Tiras, J. Wetzel, K. Yi Johns Hopkins University, Baltimore, U.S.A. B. Blumenfeld, A. Cocoros, N. Eminizer, D. Fehling, L. Feng, A.V. Gritsan, P. Maksimovic, J. Roskes, U. Sarica, M. Swartz, M. Xiao, C. You The University of Kansas, Lawrence, U.S.A. A. Al-bataineh, P. Baringer, A. Bean, S. Boren, J. Bowen, J. Castle, S. Khalil, A. Kropivnitskaya, D. Majumder, W. Mcbrayer, M. Murray, C. Royon, S. Sanders, E. Schmitz, R. Stringer, J.D. Tapia Takaki, Q. Wang Kansas State University, Manhattan, U.S.A. A. Ivanov, K. Kaadze, Y. Maravin, A. Mohammadi, L.K. Saini, N. Skhirtladze, S. Toda Lawrence Livermore National Laboratory, Livermore, U.S.A. F. Rebassoo, D. Wright University of Maryland, College Park, U.S.A. C. Anelli, A. Baden, O. Baron, A. Belloni, B. Calvert, S.C. Eno, C. Ferraioli, N.J. Hadley, S. Jabeen, G.Y. Jeng, R.G. Kellogg, J. Kunkle, A.C. Mignerey, F. Ricci-Tam, Y.H. Shin, A. Skuja, S.C. Tonwar Massachusetts Institute of Technology, Cambridge, U.S.A. D. Abercrombie, B. Allen, V. Azzolini, R. Barbieri, A. Baty, R. Bi, S. Brandt, W. Busza, I.A. Cali, M. D'Alfonso, Z. Demiragli, G. Gomez Ceballos, M. Goncharov, D. Hsu, Y. Iiyama, G.M. Innocenti, M. Klute, D. Kovalskyi, Y.S. Lai, Y.-J. Lee, A. Levin, P.D. Luckey, B. Maier, A.C. Marini, C. Mcginn, C. Mironov, S. Narayanan, X. Niu, C. Paus, C. Roland, G. Roland, J. Salfeld-Nebgen, G.S.F. Stephans, K. Tatar, D. Velicanu, J. Wang, T.W. Wang, B. Wyslouch University of Minnesota, Minneapolis, U.S.A. A.C. Benvenuti, R.M. Chatterjee, A. Evans, P. Hansen, S. Kalafut, Y. Kubota, Z. Lesko, J. Mans, S. Nourbakhsh, N. Ruckstuhl, R. Rusack, J. Turkewitz University of Mississippi, Oxford, U.S.A. J.G. Acosta, S. Oliveros E. Avdeeva, K. Bloom, D.R. Claes, C. Fangmeier, R. Gonzalez Suarez, R. Kamalieddin, I. Kravchenko, J. Monroy, J.E. Siado, G.R. Snow, B. Stieger State University of New York at Bu alo, Bu alo, U.S.A. M. Alyari, J. Dolen, A. Godshalk, C. Harrington, I. Iashvili, D. Nguyen, A. Parker, S. Rappoccio, B. Roozbahani Northeastern University, Boston, U.S.A. moto, R. Teixeira De Lima, D. Trocino, D. Wood Northwestern University, Evanston, U.S.A. G. Alverson, E. Barberis, A. Hortiangtham, A. Massironi, D.M. Morse, D. Nash, T. OriS. Bhattacharya, O. Charaf, K.A. Hahn, N. Mucia, N. Odell, B. Pollack, M.H. Schmitt, K. Sung, M. Trovato, M. Velasco University of Notre Dame, Notre Dame, U.S.A. N. Dev, M. Hildreth, K. Hurtado Anampa, C. Jessop, D.J. Karmgard, N. Kellams, K. Lannon, N. Loukas, N. Marinelli, F. Meng, C. Mueller, Y. Musienko34, M. Planer, A. Reinsvold, R. Ruchti, G. Smith, S. Taroni, M. Wayne, M. Wolf, A. Woodard The Ohio State University, Columbus, U.S.A. J. Alimena, L. Antonelli, B. Bylsma, L.S. Durkin, S. Flowers, B. Francis, A. Hart, C. Hill, W. Ji, B. Liu, W. Luo, D. Puigh, B.L. Winer, H.W. Wulsin Princeton University, Princeton, U.S.A. A. Benaglia, S. Cooperstein, O. Driga, P. Elmer, J. Hardenbrook, P. Hebda, S. Higginbotham, D. Lange, J. Luo, D. Marlow, K. Mei, I. Ojalvo, J. Olsen, C. Palmer, P. Piroue, D. Stickland, C. Tully University of Puerto Rico, Mayaguez, U.S.A. S. Malik, S. Norberg Purdue University, West Lafayette, U.S.A. A. Barker, V.E. Barnes, S. Folgueras, L. Gutay, M.K. Jha, M. Jones, A.W. Jung, A. Khatiwada, D.H. Miller, N. Neumeister, C.C. Peng, J.F. Schulte, J. Sun, F. Wang, W. Xie Purdue University Northwest, Hammond, U.S.A. T. Cheng, N. Parashar, J. Stupak Rice University, Houston, U.S.A. A. Adair, B. Akgun, Z. Chen, K.M. Ecklund, F.J.M. Geurts, M. Guilbaud, W. Li, B. Michlin, M. Northup, B.P. Padley, J. Roberts, J. Rorie, Z. Tu, J. Zabel University of Rochester, Rochester, U.S.A. A. Bodek, P. de Barbaro, R. Demina, Y.t. Duh, T. Ferbel, M. Galanti, A. Garcia-Bellido, J. Han, O. Hindrichs, A. Khukhunaishvili, K.H. Lo, P. Tan, M. Verzetti The Rockefeller University, New York, U.S.A. R. Ciesielski, K. Goulianos, C. Mesropian Rutgers, The State University of New Jersey, Piscataway, U.S.A. A. Agapitos, J.P. Chou, Y. Gershtein, T.A. Gomez Espinosa, E. Halkiadakis, M. Heindl, E. Hughes, S. Kaplan, R. Kunnawalkam Elayavalli, S. Kyriacou, A. Lath, R. Montalvo, K. Nash, M. Osherson, H. Saka, S. Salur, S. Schnetzer, D. She eld, S. Somalwar, R. Stone, S. Thomas, P. Thomassen, M. Walker University of Tennessee, Knoxville, U.S.A. A.G. Delannoy, M. Foerster, J. Heideman, G. Riley, K. Rose, S. Spanier, K. Thapa Texas A&M University, College Station, U.S.A. O. Bouhali69, A. Castaneda Hernandez69, A. Celik, M. Dalchenko, M. De Mattia, A. Delgado, S. Dildick, R. Eusebi, J. Gilmore, T. Huang, T. Kamon70, R. Mueller, Y. Pakhotin, R. Patel, A. Perlo , L. Pernie, D. Rathjens, A. Safonov, A. Tatarinov, K.A. Ulmer Texas Tech University, Lubbock, U.S.A. N. Akchurin, J. Damgov, F. De Guio, P.R. Dudero, J. Faulkner, E. Gurpinar, S. Kunori, K. Lamichhane, S.W. Lee, T. Libeiro, T. Peltola, S. Undleeb, I. Volobouev, Z. Wang Vanderbilt University, Nashville, U.S.A. S. Greene, A. Gurrola, R. Janjam, W. Johns, C. Maguire, A. Melo, H. Ni, P. Sheldon, S. Tuo, J. Velkovska, Q. Xu University of Virginia, Charlottesville, U.S.A. M.W. Arenton, P. Barria, B. Cox, R. Hirosky, A. Ledovskoy, H. Li, C. Neu, T. Sinthuprasith, X. Sun, Y. Wang, E. Wolfe, F. Xia Wayne State University, Detroit, U.S.A. R. Harr, P.E. Karchin, J. Sturdy, S. Zaleski University of Wisconsin - Madison, Madison, WI, U.S.A. M. Brodski, J. Buchanan, C. Caillol, S. Dasu, L. Dodd, S. Duric, B. Gomber, M. Grothe, M. Herndon, A. Herve, U. Hussain, P. Klabbers, A. Lanaro, A. Levine, K. Long, R. Loveless, G.A. Pierro, G. Polese, T. Ruggles, A. Savin, N. Smith, W.H. Smith, D. Taylor, N. Woods y: Deceased China 1: Also at Vienna University of Technology, Vienna, Austria 2: Also at State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, 3: Also at Universidade Estadual de Campinas, Campinas, Brazil 4: Also at Universidade Federal de Pelotas, Pelotas, Brazil 5: Also at Universite Libre de Bruxelles, Bruxelles, Belgium 6: Also at Institute for Theoretical and Experimental Physics, Moscow, Russia 7: Also at Joint Institute for Nuclear Research, Dubna, Russia 8: Now at Cairo University, Cairo, Egypt 10: Also at Universite de Haute Alsace, Mulhouse, France 11: Also at Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia 12: Also at Tbilisi State University, Tbilisi, Georgia 13: Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland 14: Also at RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany 15: Also at University of Hamburg, Hamburg, Germany 16: Also at Brandenburg University of Technology, Cottbus, Germany 17: Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary 18: Also at MTA-ELTE Lendulet CMS Particle and Nuclear Physics Group, Eotvos Lorand University, Budapest, Hungary 19: Also at Institute of Physics, University of Debrecen, Debrecen, Hungary 20: Also at Indian Institute of Technology Bhubaneswar, Bhubaneswar, India 21: Also at Institute of Physics, Bhubaneswar, India 22: Also at University of Visva-Bharati, Santiniketan, India 23: Also at University of Ruhuna, Matara, Sri Lanka 24: Also at Isfahan University of Technology, Isfahan, Iran 25: Also at Yazd University, Yazd, Iran 26: Also at Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran 27: Also at Universita degli Studi di Siena, Siena, Italy 28: Also at INFN Sezione di Milano-Bicocca; Universita di Milano-Bicocca, Milano, Italy 29: Also at Purdue University, West Lafayette, U.S.A. 30: Also at International Islamic University of Malaysia, Kuala Lumpur, Malaysia 31: Also at Malaysian Nuclear Agency, MOSTI, Kajang, Malaysia 32: Also at Consejo Nacional de Ciencia y Tecnolog a, Mexico city, Mexico 33: Also at Warsaw University of Technology, Institute of Electronic Systems, Warsaw, Poland 34: Also at Institute for Nuclear Research, Moscow, Russia 35: Now at National Research Nuclear University 'Moscow 36: Also at St. Petersburg State Polytechnical University, St. Petersburg, Russia 37: Also at University of Florida, Gainesville, U.S.A. 38: Also at P.N. Lebedev Physical Institute, Moscow, Russia 39: Also at California Institute of Technology, Pasadena, U.S.A. 40: Also at Budker Institute of Nuclear Physics, Novosibirsk, Russia 41: Also at Faculty of Physics, University of Belgrade, Belgrade, Serbia 42: Also at INFN Sezione di Roma; Sapienza Universita di Roma, Rome, Italy Belgrade, Serbia 44: Also at Scuola Normale e Sezione dell'INFN, Pisa, Italy 45: Also at National and Kapodistrian University of Athens, Athens, Greece 46: Also at Riga Technical University, Riga, Latvia 47: Also at Universitat Zurich, Zurich, Switzerland 48: Also at Stefan Meyer Institute for Subatomic Physics (SMI), Vienna, Austria 49: Also at Istanbul University, Faculty of Science, Istanbul, Turkey 50: Also at Adiyaman University, Adiyaman, Turkey 51: Also at Istanbul Aydin University, Istanbul, Turkey 43: Also at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, 53: Also at Cag University, Mersin, Turkey 54: Also at Piri Reis University, Istanbul, Turkey 55: Also at Izmir Institute of Technology, Izmir, Turkey 56: Also at Necmettin Erbakan University, Konya, Turkey 57: Also at Marmara University, Istanbul, Turkey 58: Also at Kafkas University, Kars, Turkey 59: Also at Istanbul Bilgi University, Istanbul, Turkey 60: Also at Rutherford Appleton Laboratory, Didcot, United Kingdom 61: Also at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom 62: Also at Instituto de Astrof sica de Canarias, La Laguna, Spain 63: Also at Utah Valley University, Orem, U.S.A. 64: Also at Beykent University, Istanbul, Turkey 65: Also at Bingol University, Bingol, Turkey 66: Also at Erzincan University, Erzincan, Turkey 67: Also at Sinop University, Sinop, Turkey 68: Also at Mimar Sinan University, Istanbul, Istanbul, Turkey 69: Also at Texas A&M University at Qatar, Doha, Qatar 70: Also at Kyungpook National University, Daegu, Korea [1] P. Ramond , Dual theory for free fermions , Phys. Rev. D 3 ( 1971 ) 2415 [INSPIRE]. [2] Yu . A. Golfand and E.P. Likhtman , Extension of the algebra of Poincare group generators and violation of p invariance , JETP Lett . 13 ( 1971 ) 323 [Pisma Zh . Eksp. Teor. Fiz . 13 [3] A. Neveu and J.H. Schwarz , Factorizable dual model of pions, Nucl . Phys. B 31 ( 1971 ) 86 [8] H.P. Nilles , Supersymmetry, supergravity and particle physics, Phys. Rept . 110 ( 1984 ) 1 detector , Phys. Rev. D 94 ( 2016 ) 032005 [arXiv: 1604 .07773] [INSPIRE]. [30] S.P. Martin , A supersymmetry primer , Adv. Ser. Direct. High Energy Phys . 18 ( 1998 ) 1 [Adv . Ser. Direct. High Energy Phys . 21 ( 2010 ) 1] [hep- ph/9709356] [INSPIRE]. [31] N. Arkani-Hamed et al., MARMOSET: the path from LHC data to the new Standard Model [32] J. Alwall , P. Schuster and N. Toro , Simpli ed models for a rst characterization of new physics at the LHC , Phys. Rev. D 79 ( 2009 ) 075020 [arXiv: 0810 .3921] [INSPIRE]. [33] J. Alwall , M.-P. Le , M. Lisanti and J.G. Wacker , Model-independent jets plus missing energy searches , Phys. Rev. D 79 ( 2009 ) 015005 [arXiv: 0809 .3264] [INSPIRE]. [39] CMS collaboration, The CMS experiment at the CERN LHC, 2008 JINST 3 S08004 [40] CMS collaboration, Particle- ow event reconstruction in CMS and performance for jets, taus and MET , CMS-PAS-PFT- 09-001, CERN, Geneva Switzerland , ( 2009 ). [41] CMS collaboration, Commissioning of the particle- ow event reconstruction with the rst [42] M. Cacciari , G.P. Salam and G. Soyez, The anti-kt jet clustering algorithm , JHEP 04 ( 2008 ) [43] M. Cacciari , G.P. Salam and G. Soyez, FastJet user manual , Eur. Phys. J. C 72 ( 2012 ) 1896 JINST 6 P09001 [arXiv: 1106 .5048] [INSPIRE]. [48] M. Cacciari and G.P. Salam , Pileup subtraction using jet areas , Phys. Lett. B 659 ( 2008 ) 119 [62] S. Alioli , P. Nason , C. Oleari and E. Re, NLO single-top production matched with shower in POWHEG: s- and t-channel contributions , JHEP 09 ( 2009 ) 111 [Erratum ibid . 02 ( 2010 ) method , Eur. Phys. J. C 71 ( 2011 ) 1547 [arXiv: 1009 .2450] [INSPIRE]. [64] T. Melia , P. Nason , R. Rontsch and G. Zanderighi , W +W , W Z and ZZ production in the [65] M. Beneke , P. Falgari , S. Klein and C. Schwinn , Hadronic top-quark pair production with NNLL threshold resummation , Nucl. Phys. B 855 ( 2012 ) 695 [arXiv: 1109 .1536] [INSPIRE]. [66] M. Cacciari , M. Czakon , M. Mangano , A. Mitov and P. Nason , Top-pair production at hadron colliders with next-to-next-to-leading logarithmic soft-gluon resummation , Phys. Lett. [67] P. Barnreuther , M. Czakon and A. Mitov , Percent level precision physics at the Tevatron: rst genuine NNLO QCD corrections to qq ! tt + X, Phys . Rev. Lett . 109 ( 2012 ) 132001 [68] M. Czakon and A. Mitov , NNLO corrections to top-pair production at hadron colliders: the [ 85] B. Fuks , M. Klasen , D.R. Lamprea and M. Rothering , Gaugino production in proton-proton collisions at a center-of-mass energy of 8 TeV , JHEP 10 ( 2012 ) 081 [arXiv: 1207 .2159] [82] T. Junk , Con dence level computation for combining searches with small statistics , Nucl. Instrum. Meth. A 434 ( 1999 ) 435 [ hep -ex/9902006] [INSPIRE]. [83] G. Cowan , K. Cranmer , E. Gross and O. Vitells , Asymptotic formulae for likelihood-based tests of new physics , Eur. Phys. J. C 71 ( 2011 ) 1554 [Erratum ibid . C 73 ( 2013 ) 2501] [86] B. Fuks , M. Klasen , D.R. Lamprea and M. Rothering , Precision predictions for electroweak superpartner production at hadron colliders with resummino , Eur. Phys. J. C 73 ( 2013 ) 2480 [87] CMS collaboration, CMS luminosity measurements for the 2016 data taking period,


This is a preview of a remote PDF: https://link.springer.com/content/pdf/10.1007%2FJHEP11%282017%29029.pdf

A. M. Sirunyan, A. Tumasyan, W. Adam, F. Ambrogi, E. Asilar, T. Bergauer, J. Brandstetter, E. Brondolin, M. Dragicevic, J. Erö, M. Flechl, M. Friedl, R. Frühwirth, V. M. Ghete, J. Grossmann, J. Hrubec, M. Jeitler, A. König, N. Krammer, I. Krätschmer, D. Liko, T. Madlener, I. Mikulec, E. Pree, D. Rabady, N. Rad, H. Rohringer, J. Schieck, R. Schöfbeck, M. Spanring, D. Spitzbart, J. Strauss, W. Waltenberger, J. Wittmann, C.-E. Wulz, M. Zarucki, V. Chekhovsky, V. Mossolov, J. Suarez Gonzalez, E. A. De Wolf, D. Di Croce, X. Janssen, J. Lauwers, H. Van Haevermaet, P. Van Mechelen, N. Van Remortel, S. Abu Zeid, F. Blekman, J. D’Hondt, I. De Bruyn, J. De Clercq, K. Deroover, G. Flouris, D. Lontkovskyi, S. Lowette, S. Moortgat, L. Moreels, A. Olbrechts, Q. Python, K. Skovpen, S. Tavernier, W. Van Doninck, P. Van Mulders, I. Van Parijs, H. Brun, B. Clerbaux, G. De Lentdecker, H. Delannoy, G. Fasanella, L. Favart, R. Goldouzian, A. Grebenyuk, G. Karapostoli, T. Lenzi, J. Luetic, T. Maerschalk, A. Marinov, A. Randle-conde, T. Seva, C. Vander Velde, P. Vanlaer, D. Vannerom, R. Yonamine, F. Zenoni, F. Zhang, A. Cimmino, T. Cornelis, D. Dobur, A. Fagot, M. Gul, I. Khvastunov, D. Poyraz, C. Roskas, S. Salva, M. Tytgat, W. Verbeke, N. Zaganidis, H. Bakhshiansohi, O. Bondu, S. Brochet, G. Bruno, A. Caudron, S. De Visscher, C. Delaere, M. Delcourt, B. Francois, A. Giammanco, A. Jafari, M. Komm, G. Krintiras, V. Lemaitre, A. Magitteri, A. Mertens, M. Musich, K. Piotrzkowski, L. Quertenmont, M. Vidal Marono, S. Wertz, N. Beliy, W. L. Aldá Júnior, F. L. Alves, G. A. Alves, L. Brito, M. Correa Martins Junior, C. Hensel, A. Moraes, M. E. Pol, P. Rebello Teles, E. Belchior Batista Das Chagas, W. Carvalho, J. Chinellato, A. Custódio, E. M. Da Costa, G. G. Da Silveira, D. De Jesus Damiao, S. Fonseca De Souza, L. M. Huertas Guativa, H. Malbouisson, M. Melo De Almeida, C. Mora Herrera, L. Mundim, H. Nogima, A. Santoro, A. Sznajder, E. J. Tonelli Manganote, F. Torres Da Silva De Araujo, A. Vilela Pereira, S. Ahuja, C. A. Bernardes, T. R. Fernandez Perez Tomei, E. M. Gregores, P. G. Mercadante, S. F. Novaes, Sandra S. Padula, D. Romero Abad, J. C. Ruiz Vargas, A. Aleksandrov, R. Hadjiiska, P. Iaydjiev, M. Misheva, M. Rodozov, M. Shopova, S. Stoykova, G. Sultanov, A. Dimitrov, I. Glushkov, L. Litov, B. Pavlov, P. Petkov, W. Fang, X. Gao, M. Ahmad, J. G. Bian, G. M. Chen, H. S. Chen, M. Chen, Y. Chen, C. H. Jiang, D. Leggat, H. Liao, Z. Liu, F. Romeo, S. M. Shaheen, A. Spiezia, J. Tao, C. Wang, Z. Wang, E. Yazgan, H. Zhang, J. Zhao, Y. Ban, G. Chen, Q. Li, S. Liu, Y. Mao, S. J. Qian, D. Wang, Z. Xu, C. Avila, A. Cabrera, L. F. Chaparro Sierra, C. Florez, C. F. González Hernández, J. D. Ruiz Alvarez, B. Courbon, N. Godinovic, D. Lelas, I. Puljak, P. M. Ribeiro Cipriano, T. Sculac, Z. Antunovic, M. Kovac, V. Brigljevic, D. Ferencek, K. Kadija, B. Mesic, A. Starodumov, T. Susa, M. W. Ather, A. Attikis, G. Mavromanolakis, J. Mousa, C. Nicolaou, F. Ptochos, P. A. Razis, H. Rykaczewski, M. Finger, M. Finger Jr., E. Carrera Jarrin, A. Ellithi Kamel, S. Khalil, A. Mohamed, R. K. Dewanjee, M. Kadastik, L. Perrini, M. Raidal, A. Tiko, C. Veelken, P. Eerola, J. Pekkanen, M. Voutilainen, J. Härkönen, T. Järvinen, V. Karimäki, R. Kinnunen, T. Lampén, K. Lassila-Perini, S. Lehti, T. Lindén, P. Luukka, E. Tuominen, J. Tuominiemi, E. Tuovinen, J. Talvitie, T. Tuuva, M. Besancon, F. Couderc, M. Dejardin, D. Denegri, J. L. Faure, F. Ferri, S. Ganjour, S. Ghosh, A. Givernaud, P. Gras, G. Hamel de Monchenault, P. Jarry, I. Kucher, E. Locci, M. Machet, J. Malcles, G. Negro, J. Rander, A. Rosowsky, M. Ö. Sahin, M. Titov, A. Abdulsalam, I. Antropov, S. Baffioni, F. Beaudette, P. Busson, L. Cadamuro, C. Charlot, R. Granier de Cassagnac, M. Jo, S. Lisniak, A. Lobanov, J. Martin Blanco, M. Nguyen, C. Ochando, G. Ortona, P. Paganini, P. Pigard, S. Regnard, R. Salerno, J. B. Sauvan, Y. Sirois, A. G. Stahl Leiton, T. Strebler, Y. Yilmaz, A. Zabi, A. Zghiche, J.-L. Agram, J. Andrea, D. Bloch, J.-M. Brom, M. Buttignol, E. C. Chabert, N. Chanon, C. Collard, E. Conte, X. Coubez, J.-C. Fontaine, D. Gelé, U. Goerlach, M. Jansová, A.-C. Le Bihan, N. Tonon, P. Van Hove, S. Gadrat, S. Beauceron, C. Bernet, G. Boudoul, R. Chierici, D. Contardo, P. Depasse, H. El Mamouni, J. Fay, L. Finco, S. Gascon, M. Gouzevitch, G. Grenier, B. Ille, F. Lagarde, I. B. Laktineh, M. Lethuillier, L. Mirabito, A. L. Pequegnot, S. Perries, A. Popov, V. Sordini, M. Vander Donckt, S. Viret, T. Toriashvili, Z. Tsamalaidze, C. Autermann, S. Beranek, L. Feld, M. K. Kiesel, K. Klein, M. Lipinski, M. Preuten, C. Schomakers, J. Schulz, T. Verlage, A. Albert, E. Dietz-Laursonn, D. Duchardt, M. Endres, M. Erdmann, S. Erdweg, T. Esch, R. Fischer, A. Güth, M. Hamer, T. Hebbeker, C. Heidemann, K. Hoepfner, S. Knutzen, M. Merschmeyer, A. Meyer, P. Millet, S. Mukherjee, M. Olschewski, K. Padeken, T. Pook, M. Radziej, H. Reithler, M. Rieger, F. Scheuch, D. Teyssier, S. Thüer, G. Flügge, B. Kargoll, T. Kress. Search for electroweak production of charginos and neutralinos in WH events in proton-proton collisions at \( \sqrt{s}=13 \) TeV, Journal of High Energy Physics, 2017, 29, DOI: 10.1007/JHEP11(2017)029