Investigating temporal access in a flipped classroom: procrastination persists

International Journal of Educational Technology in Higher Education, Jan 2018

This paper reports on a study that examines the learning behaviors and characteristics of students in a mobile applications computer programming class that adopted a “flipped” learning style. By harvesting learning analytics data from a learning management system, we created visualizations of work intensity to explore temporal patterns of students’ behavior and then correlate them with the students’ performance. Findings indicate that low, medium, and high performing students tend to access learning materials late with work intensity spiking on the lecture day, specifically during the lecture session. While high and low performing students show no difference in temporal access to material, medium performing students demonstrate the greatest degree of vibrancy regarding course content material access. Further a discussion of implications and insights on procrastination in the context of flipped classrooms are included.

A PDF file should load here. If you do not see its contents the file may be temporarily unavailable at the journal website or you do not have a PDF plug-in installed and enabled in your browser.

Alternatively, you can download the file locally and open with any standalone PDF reader:

https://link.springer.com/content/pdf/10.1186%2Fs41239-017-0083-9.pdf

Investigating temporal access in a flipped classroom: procrastination persists

AlJarrah et al. International Journal of Educational Technology in Higher Education Investigating temporal access in a flipped classroom: procrastination persists Abeer AlJarrah Michael K. Thomas Mohamed Shehab This paper reports on a study that examines the learning behaviors and characteristics of students in a mobile applications computer programming class that adopted a “flipped” learning style. By harvesting learning analytics data from a learning management system, we created visualizations of work intensity to explore temporal patterns of students' behavior and then correlate them with the students' performance. Findings indicate that low, medium, and high performing students tend to access learning materials late with work intensity spiking on the lecture day, specifically during the lecture session. While high and low performing students show no difference in temporal access to material, medium performing students demonstrate the greatest degree of vibrancy regarding course content material access. Further a discussion of implications and insights on procrastination in the context of flipped classrooms are included. Flipped course; Computer science instruction; Learning; Moodle; Visualization; Mobile application development education; Learning analytics; Learning with video; Procrastination Introduction Despite a great deal of effort in supporting learning among students in university-based computer science (CS) courses, many students struggle. In a multi-national study of failure rates among students in introductory computer programming classes at the university level, it was found that even small improvements in failure rates could have a great deal of impact on the field. The authors of this study (Porter, Guzdial, McDowell, & Simon, 2013) state “Assuming that the pass rate found in this survey is representative, approximately 650,000 students every year do not pass CS1. In this light, just a small improvement of the pass rate of CS1 would cause a gigantic increase in the number of students passing (and perhaps eventually graduating) – a one percent increase in the pass rate means 20,000 students extra passing CS1” (p. 35). The authors note that even small changes in the pass rates of students taking entry level computer science courses would impact tens of thousands of students who might otherwise be discouraged by their struggles and leave computer science pursuits altogether. However, there have been laudable efforts in the reform of computer science instruction. Pair programming, media computation, and peer instruction practices have been found to greatly enhance students’ success rates and increase student retention in the field (Bennedsen & Caspersen, 2007) . Studies focused on computer programming classes have identified several key factors related to student success and perseverance at major universities. These factors include (1) previous computing experience; (2) work style preference; (3) self-efficacy for computer programming; (4) poor math skills; and (5) poor advising (Beaubouef & Mason, 2005) . It is clear that many students of computer science struggle. We also know that it is very important that computer science students learn to regulate their behavior as they take on challenging course work early in their studies of computer science. This self-regulation of learning behavior among students is associated with higher student grades and long-term retention (Shell, Hazley, Soh, Ingraham, & Ramsay, 2013) . Procrastination is a challenging that has both academic and extra-academic dimensions. Procrastinating behaviors should be addressed early in a student’s career to prevent the emergence of problems later (Senécal, Julien, & Guay, 2003) . The “flipped classroom” model is a pedagogical approach that offers greater flexibility, and active student engagement than traditional teacher-centered strategies. It reverses the typical pattern of a lecture being followed by homework assignments. Then, class time is devoted to problem solving exercises, hands-on projects, or indepth discussions. This model has increased in popularity among students particularly low achievers (Nouri, 2016) . Learning Management Systems (LMS) such as Moodle, Canvas, Blackboard, and Desire2Learn have become key components in implementing this teaching style. Fortunately, such systems not only provide an information conduit for students to use to access course content and complete course assignments, but also to provide a rich repository of data regarding students’ behavior. An LMS may record when students access materials and can indicate precisely what materials are accessed. By creating ways of this data speak to instructors, we may provide them with a tool to help them make data driven decisions about their pedagogy. It is now possible for instructors to actually see what materials students access, which students access the materials, and how much time they spend accessing materials. For e (...truncated)


This is a preview of a remote PDF: https://link.springer.com/content/pdf/10.1186%2Fs41239-017-0083-9.pdf

Abeer AlJarrah, Michael K. Thomas, Mohamed Shehab. Investigating temporal access in a flipped classroom: procrastination persists, International Journal of Educational Technology in Higher Education, 2018, pp. 1, Volume 15, Issue 1, DOI: 10.1186/s41239-017-0083-9