Mapping upper-limb motor performance after stroke - a novel method with utility for individualized motor training

Journal of NeuroEngineering and Rehabilitation, Dec 2017

Chronic upper limb motor impairment is a common outcome of stroke. Therapeutic training can reduce motor impairment. Recently, a growing interest in evaluating motor training provided by robotic assistive devices has emerged. Robot-assisted therapy is attractive because it provides a means of increasing practice intensity without increasing the workload of physical therapists. However, movements practised through robotic assistive devices are commonly pre-defined and fixed across individuals. More optimal training may result from individualizing the selection of the trained movements based on the individual’s impairment profile. This requires quantitative assessment of the degree of the motor impairment prior to training, in relevant movement tasks. However, standard clinical measures for profiling motor impairment after stroke are often subjective and lack precision. We have developed a novel robot-mediated method for systematic and fine-grained mapping (or profiling) of individual performance across a wide range of planar arm reaching movements. Here we describe and demonstrate this mapping method and its utilization for individualized training. We also present a novel principle for the individualized selection of training movements based on the performance maps. To demonstrate the utility of our method we present examples of 2D performance maps produced from the kinetic and kinematics data of two individuals with stroke-related upper limb hemiparesis. The maps outline distinct regions of high motor impairment. The procedure of map-based selection of training movements and the change in motor performance following training is demonstrated for one participant. The performance mapping method is feasible to produce (online or offline). The 2D maps are easy to interpret and to be utilized for selecting individual performance-based training. Different performance maps can be easily compared within and between individuals, which potentially has diagnostic utility.

A PDF file should load here. If you do not see its contents the file may be temporarily unavailable at the journal website or you do not have a PDF plug-in installed and enabled in your browser.

Alternatively, you can download the file locally and open with any standalone PDF reader:

https://jneuroengrehab.biomedcentral.com/track/pdf/10.1186/s12984-017-0335-x

Mapping upper-limb motor performance after stroke - a novel method with utility for individualized motor training

Rosenthal et al. Journal of NeuroEngineering and Rehabilitation Mapping upper-limb motor performance after stroke - a novel method with utility for individualized motor training Orna Rosenthal 0 Alan M. Wing 0 Jeremy L. Wyatt 2 David Punt 1 R. Chris Miall 0 0 School of Psychology, University of Birmingham , B15 2TT, Birmingham , UK 1 School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham , B15 2TT, Birmingham , UK 2 School of Computer Science, University of Birmingham , B15 2TT, Birmingham , UK Background: Chronic upper limb motor impairment is a common outcome of stroke. Therapeutic training can reduce motor impairment. Recently, a growing interest in evaluating motor training provided by robotic assistive devices has emerged. Robot-assisted therapy is attractive because it provides a means of increasing practice intensity without increasing the workload of physical therapists. However, movements practised through robotic assistive devices are commonly pre-defined and fixed across individuals. More optimal training may result from individualizing the selection of the trained movements based on the individual's impairment profile. This requires quantitative assessment of the degree of the motor impairment prior to training, in relevant movement tasks. However, standard clinical measures for profiling motor impairment after stroke are often subjective and lack precision. We have developed a novel robot-mediated method for systematic and fine-grained mapping (or profiling) of individual performance across a wide range of planar arm reaching movements. Here we describe and demonstrate this mapping method and its utilization for individualized training. We also present a novel principle for the individualized selection of training movements based on the performance maps. Methods and Results: To demonstrate the utility of our method we present examples of 2D performance maps produced from the kinetic and kinematics data of two individuals with stroke-related upper limb hemiparesis. The maps outline distinct regions of high motor impairment. The procedure of map-based selection of training movements and the change in motor performance following training is demonstrated for one participant. Conclusions: The performance mapping method is feasible to produce (online or offline). The 2D maps are easy to interpret and to be utilized for selecting individual performance-based training. Different performance maps can be easily compared within and between individuals, which potentially has diagnostic utility. Stroke; rehabilitation; Motor assessment; Robot-assisted therapy; Upper-limb movements; Reaching task Background Impaired upper-limb (UL) function is one of the most common consequences of stroke [ 1–3 ], which can severely hamper activities of daily living and reduce quality of life. Certain intervention methods can promote some recovery of UL motor function though their outcome shows high variability and depends on the intensity (repetition) of the intervention [ 4–9 ]. Robotic assistive technologies can be beneficial for improving clinical scores of UL motor impairment [ 9, 10 ], by allowing intensive training [ 9, 11–14 ]. However, currently there is no consistent evidence for the effectiveness of robotassisted UL therapy for improving daily living activity [15]. One possibility is that the tasks performed with robotic assistance do not generalise to everyday tasks. Another possibility is that the tasks are not optimised for the trained individuals. Currently, in robot-assisted therapy the set of practiced movements are usually pre-determined, with limited regard to the motor profile of the individual (e.g. ‘centre-out’ point-to-point reaches, or forearm pronation/supination, wrist extension/flexion [ 16–18 ]). However, the effectiveness of training for motor recovery is likely to depend on the difficulty to perform the task due to motor impairment [ 19 ]. For example, training focused on unimpaired movements or on tasks that are either too easy or too difficult is likely to contribute relatively little to motor learning and recovery [ 19–21 ]. An advantage of the robot-mediated approach is that it allows the collection of various accurate and real-time data about motor performance that would be potentially useful for individualized adjustments of the therapy; e.g. selection of training tasks based on the profile of motor performance. Yet, prescribing training conditions based on a motor performance profile requires characterising motor performance across a range of movement conditions for each individual. Here we present a novel computerised method for systematically mapping individuals’ UL motor performance (or impairment) across a wide range of robot-mediated reaching movements. The map can then serve as a basis for individualised and performance-based selection of training movements. For optimal utilization of a motor performance map, the mapped metrics should r (...truncated)


This is a preview of a remote PDF: https://jneuroengrehab.biomedcentral.com/track/pdf/10.1186/s12984-017-0335-x

Orna Rosenthal, Alan M. Wing, Jeremy L. Wyatt, David Punt, R. Chris Miall. Mapping upper-limb motor performance after stroke - a novel method with utility for individualized motor training, Journal of NeuroEngineering and Rehabilitation, pp. 127,