Measurement of the inclusive $$ \mathrm{t}\overline{\mathrm{t}} $$ cross section in pp collisions at s=5.02$$ \sqrt{s}=5.02 $$ TeV using final states with at least one charged lepton

Journal of High Energy Physics, Mar 2018

The CMS collaboration, A. M. Sirunyan, A. Tumasyan, W. Adam, F. Ambrogi, E. Asilar, T. Bergauer, J. Brandstetter, E. Brondolin, M. Dragicevic, et al.

A PDF file should load here. If you do not see its contents the file may be temporarily unavailable at the journal website or you do not have a PDF plug-in installed and enabled in your browser.

Alternatively, you can download the file locally and open with any standalone PDF reader:

https://link.springer.com/content/pdf/10.1007%2FJHEP03%282018%29115.pdf

Measurement of the inclusive $$ \mathrm{t}\overline{\mathrm{t}} $$ cross section in pp collisions at s=5.02$$ \sqrt{s}=5.02 $$ TeV using final states with at least one charged lepton

HJE p Measurement of the inclusive tt cross section in pp The top quark pair production cross section ( tt) is measured for the rst time in pp collisions at a center-of-mass energy of 5.02 TeV. The data were collected by the CMS experiment at the LHC and correspond to an integrated luminosity of 27.4 pb 1. The measurement is performed by analyzing events with at least one charged lepton. The measured cross section is tt = 69:5 relative uncertainty of 12%. The result is in agreement with the expectation from the standard model. The impact of the presented measurement on the determination of the gluon distribution function is investigated. Hadron-Hadron scattering (experiments); Top physics - 5.02 TeV The CMS collaboration 3 Data, simulated samples and theoretical cross section 1 Introduction 2 The CMS detector 4 Object reconstruction 5 Event selection 6 Background estimation 6.1 The `+jets nal state 6.2 The dilepton nal state 7 Systematic uncertainties 8 Measurement of the tt cross section 8.1 8.2 The `+jets nal state The dilepton nal state 8.3 Combination 9 QCD analysis 10 Summary The CMS collaboration in proton-proton (pp) collisions have been published at p by the gluon, where the gluon distribution is poorly known. Precise measurements of tt s values of 7 and 8 [3{6] and 13 TeV [7{10] by the ATLAS and CMS Collaborations at the LHC. In November 2015, the LHC delivered pp collisions at p of tt events initiated by gluon-gluon collisions grows monotonically with ps. It is around 73% at 5.02 TeV, as calculated with powheg (v2) [11{13] at next-to-leading order (NLO) s = 5:02 TeV. The fraction { 1 { using the NNPDF3.0 NLO [14] parton distribution functions (PDFs), and increases to around 86% at 13 TeV, making this new data set partially complementary to the higherenergy samples. Measurements of tt production at various p s probe di erent values of x and thus can provide complementary information on the gluon distribution. In addition, future measurements of tt in nuclear collisions at the same nucleon-nucleon center-ofmass energy [15, 16] would pro t from the availability of a reference measurement in pp collisions at p ps. This has already been demonstrated with the rst observation of the tt process using s = 5:02 TeV, without the need to extrapolate from measurements at di erent proton-nucleus collisions at a higher nucleon-nucleon center-of-mass energy [17]. In the SM, top quarks in pp collisions are mostly produced as tt pairs. Each top This analysis represents the rst measurement of tt in pp collisions at p s = 5:02 TeV using tt candidate events with `+jets, where leptons are either electrons (` = e) or muons (` = ), and dilepton (e or ) nal states. In the former case, tt is extracted by a t to the distribution of a kinematic variable for di erent categories of lepton avor and jet multiplicity, while in the latter an event counting approach is used. The two results are then combined in the nal measurement, which is used as input to a quantum chromodynamics (QCD) analysis at next-to-next-to-leading order (NNLO) to investigate the impact on the determination of the gluon distribution in the less-explored kinematic range of x & 0:1. This paper is structured as follows. Section 2 describes the CMS detector. Section 3 gives a summary of the data and simulated samples used. After the discussion of the object reconstruction in section 4, and of the trigger and event selection in section 5, section 6 describes the determination of the background sources. The systematic uncertainties are discussed in section 7. The extraction of tt is presented in section 8 and the impact of the presented measurement on the determination of the proton PDFs is discussed in section 9. A summary of all the results is given in section 10. 2 The CMS detector The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal diameter, providing a magnetic eld of 3.8 T parallel to the beam direction. Within the solenoid volume are a silicon pixel and strip tracker, a lead tungstate crystal electromagnetic calorimeter (ECAL), and a brass and scintillator hadron calorimeter (HCAL), each composed of a barrel and two endcap sections. A preshower detector, con{ 2 { sisting of two planes of silicon sensors interleaved with about 3 radiation lengths of lead, is located in front of the endcap regions of ECAL. Hadron forward calorimeters using steel as an absorber and quartz bers as the sensitive material extend the pseudorapidity coverage provided by the barrel and endcap detectors from j j = 3:0 to 5:2. Charged particle trajectories with j j < 2:5 are measured by the tracker system, while the energy deposits in ECAL and HCAL cells are summed to de ne the calorimeter tower energies, subsequently used to calculate the energies and directions of hadronic jets. Muons are detected in the pseudorapidity window j j < 2:4 in gas-ionization detectors embedded in the steel ux-return yoke outside the solenoid. Photons and electrons are reconstructed by their deposited energy in groups of ECAL crystals (\clusters"). Events of interest are selected using a two-tiered trigger system [18]. The rst level, composed of custom hardware processors, uses information from the calorimeters and muon detectors to select events at a rate of around 100 kHz within a time interval of less than 4 s. The second level, known as the high-level trigger, consists of a farm of processors running a version of the full event reconstruction software optimized for fast processing, and reduces the event rate to around 1 kHz before data storage. A more detailed description of the CMS detector, together with a de nition of the coordinate system used and the relevant kinematic variables, can be found in ref. [19]. 3 Data, simulated samples and theoretical cross section This analysis is based on an integrated luminosity of 27:4 0:6 pb 1 [20]. The presence of multiple proton collisions in the same or nearby bunch crossings (\pileup") results in an average number of overlapping interactions estimated online to be 1.4, assuming a total inelastic cross section of 65 mb. Several Monte Carlo (MC) event generators are used to simulate signal and background events. The NLO powheg (v2) [11{13] generator is used for tt events, assuming a value of 172.5 GeV for the top quark mass (mtop). These events are passed to pythia (v8.205) [21, 22] to simulate parton showering, hadronization, and the underlying event, using the CUETP8M1 [ 23, 24 ] tune for the default tt MC sample. The NNPDF3.0 NLO PDFs with strong coupling s(MZ) = 0:118 at the Z boson mass scale MZ are utilized in the MC calculations. The MadGraph5 amc@nlo (v5 2.2.2) generator [ 25 ] is used to simulate W boson production with additional jets (W+jets), and high-mass (>50 GeV) Drell-Yan quarkantiquark annihilation into lepton-antilepton pairs through Z boson or virtual-photon exchange (referred to as \Z= "). The simulation includes up to two extra partons at matrix element level, and the FxFx merging procedure [26] is used to interface with pythia. Low-mass Z/ events (20{50 GeV) are simulated with pythia. The normalization of the W+jets and Z/ processes is either derived from data (in the dilepton channel) or estimated based on the NNLO cross sections (in the `+jets channel) from the fewz program (v3.1.b2) [27]. Single top quark plus W boson events (tW) are simulated using powheg (v1) [28, 29] interfaced with pythia, and are normalized to the approximate NNLO cross sections [30]. The contributions from WW and WZ production (referred to as { 3 { \WV") are simulated with pythia, and are normalized to the NLO cross sections calculated with the mcfm (v8.0) program [31]. All generated events undergo a full Geant4 [32] simulation of the detector response. The expected signal yields are normalized to the value of the SM prediction for the tt production cross section: NNLO = 68:9 +12::93 (scale) 2:3 (PDF) +11::40 ( s) pb; (3.1) as calculated with the Top++ program [33] at NNLO in perturbative QCD, including softgluon resummation at next-to-next-to-leading-logarithmic order [34], using the NNPDF 3.0 NNLO PDF set, with s(MZ) = 0:118 and mtop = 172:5 GeV. The systematic uncertainties in the theoretical tt cross section are associated with the choice of the renormalization ( R) and factorization ( F) scales | nominally set at R = F = the top quark transverse momentum | as well as with the PDF set and the s value. The uncertainty of 0.1% in the LHC beam energy [35] translates into an additional uncertainty of 0.22 pb in the expected cross section, with negligible impact on the acceptance of any of p mt2op + p2T;top with pT;top the channels included in this analysis. 4 Object reconstruction The particle- ow (PF) algorithm [36] is used to reconstruct and identify individual particles using an optimized combination of information from the various elements of the CMS detector. The electron momentum is calculated by combining the energy measurement in the ECAL with the momentum measurement in the tracker, taking into account the bremsstrahlung photons spatially compatible with originating from the electron track. The momentum resolution for electrons with transverse momentum pT decays ranges from 1.7% for nonshowering electrons in the barrel region to 4.5% for showering electrons in the endcaps [37]. Muon candidates are reconstructed from a combination of the information collected by the muon spectrometer and the silicon tracker. This results in a relative pT resolution of 1.3{2.0% in the barrel and better than 6% in the endcaps, for muons with 20 < pT < 100 GeV and within the range j j < 2:4 [38, 39]. The photon energy is directly obtained from the ECAL measurement, corrected for zero-suppression e ects. The charged hadron energies are determined from a combination of their momenta measured in the tracker and the matching ECAL and HCAL energy deposits, corrected for zero-suppression e ects and for the response function of the calorimeters to hadronic showers. Finally, the neutral hadron energies are obtained from the corresponding corrected 45 GeV from Z ! ee ECAL and HCAL energies. The missing transverse momentum vector is de ned as the negative vector sum of the momenta of all reconstructed PF candidates in an event, projected onto the plane and the corrections to jet momenta are propagated to the pTmiss calculation [40]. perpendicular to the direction of the proton beams. Its magnitude is referred to as pTmiss The reconstructed vertex with the largest value of summed physics-object p2T is taken to be the primary pp interaction vertex. The physics objects are the jets, clustered using the jet nding algorithm [41, 42] with the tracks assigned to the vertex as inputs, and the { 4 { p ( associated pmiss. The isolation of electron and muon candidates from nearby jet activity is then evaluated as follows. For electron and muon candidates, a cone of R = 0:3 and 0.4, respectively, is constructed around the direction of the lepton track at the primary event vertex, where R is de ned as )2 + ( )2, and and are the di erences in pseudorapidity and azimuthal angle between the directions of the lepton and another particle. A relative isolation discriminant, Irel, is calculated by the ratio between the scalar pT sum of all particle candidates inside the cone consistent with originating from the primary vertex and the pT of the lepton candidate. In this sum, we exclude the pT of the lepton candidate. The neutral particle contribution to Irel is corrected for energy deposits from pileup interactions using di erent techniques for electrons and muons. For muons, half of the total pT of the charged hadron PF candidates not originating from the primary vertex is subtracted. The factor of one half accounts for the di erent fraction of charged and neutral particles in the cone. For electrons, the FastJet technique [43] is used, in which the median of the energy-density distribution of neutral particles (within the area of any jet in the event) multiplied by the geometric area of the isolation cone | scaled by a factor that accounts for the residual -dependence of the average energy deposition due to pileup | is subtracted. The e ciency of the lepton selection is measured using a \tag-and-probe" method in same- avor dilepton events enriched in Z boson candidates, following the method of ref. [44]. The sample of Z ! + by the same trigger requirement used by the main analysis (section 5). The Z ! e+e sample for electron e ciency extraction makes use of events that satisfy a diphoton trigger with symmetric transverse energy, ET = P i Ei sin i, thresholds of ET = 15 GeV covering the full tracker acceptance, where Ei is the energy seen by the calorimeters for the ith particle, i is the polar angle of particle i, and the sum is over all particles emitted into a xed solid angle in the event. Pairs of photon candidates above the ET threshold are accepted only if their invariant mass is above 50 GeV. The trigger selection requires a loose identi cation using cluster shower shapes and a selection based on the ratio of the hadronic to the electromagnetic energy of the photon candidates. Based on a comparison of the lepton selection e ciency in data and simulation, the event yield in simulation is events used for muon e ciency extraction is selected corrected using data-to-simulation scale factors. Jets are reconstructed from the PF candidates using the anti-kT clustering algorithm [41] with a distance parameter of 0.4. Jets closer than R = 0:3 to the nearest muon or electron are discarded. Jet energy corrections extracted from full detector simulation are also applied as a function of jet pT and [45] to data and simulation. A residual correction to the data is applied to account for the discrepancy between data and simulation in the jet response. 5 Event selection The event sample is selected by a loose online trigger and further ltered o ine to remove noncollision events, such as beam-gas interactions or cosmic rays. Collision events containing one high-pT electron (muon) candidate are selected online by requiring values of ET { 5 { (pT) greater than 40 (15) GeV and of j j less than 3.1 (2.5). The measured trigger e ciency for each decay channel, relative to the nal selection, is higher than 90%. In the `+jets analysis, electron candidates are selected if they have pT > 40 GeV and j j < 2:1. Further identi cation and isolation criteria are applied to the electron candidates. Electrons reconstructed in the ECAL barrel (endcap) are required to have Irel < 4 (5)%. Electron candidates in the 1:44 < j j < 1:57 region, i.e., in the transition region between the barrel and endcap sections of the ECAL, are excluded because the reconstruction of an electron object in this region is less e cient. Muons are required to have pT > 25 GeV and j j < 2:1. Additional identi cation criteria are applied and Irel is required to be < 15%. Events are rejected if they contain extra electrons or muons identi ed using a looser set of identi cation criteria and have pT > 10 or 15 GeV, respectively. The distinct signature of two b jets, expected in tt decays, is rare in background events, and thus is exploited in the `+jets analysis. Backgrounds from W+jets, QCD multijet, and Z/ events are controlled by counting the number of b jets in the selected events. In addition, two light- avor jets are expected to be produced in the decay of one of the W bosons for signal events. The correlation in phase space of these light jets carries a distinctive hallmark with respect to the main backgrounds. To that end, jets are selected if they have pT > 30 GeV and j j < 2:4. The avor of the jets is identi ed using a combined secondary vertex algorithm [46] with an operating point that yields a b jet identi cation e ciency of about 70%, and misidenti cation (mistag) probabilities of about 1% and 15% for light- avor (u, d, s, and gluons) and c jets, respectively. The event selection requires at least two non-b-tagged jets to be identi ed as candidates from the W boson hadronic decay. Additional jets passing the b quark identi cation criteria are counted and used to classify the selected events in none (0 b), exactly one (1 b), or at least two ( 2 b) tagged jet categories. The e ciency of the b jet identi cation algorithm is measured in situ, simultaneously with the signal cross section. Dilepton events are required to contain at least one muon candidate at trigger level. No requirement on the presence of electron candidates is made at trigger level owing to the relatively high-ET threshold (40 GeV) of the trigger. Electrons are selected if they have pT > 20 GeV, j j < 2:4, and Irel < 9 (or 12)% if in the barrel (or one of the endcaps). As in the `+jets channel, electrons detected in the transition region between the barrel and endcap sections of the ECAL are excluded. Muons are required to have pT > 18 GeV, j j < 2:1, and Irel < 15%. At least two jets satisfying the criteria pT > 25 GeV and j j < 3 are required. Events are subsequently selected if they have a pair of leptons with opposite charge (e or ) passing the requirements listed above. In events with more than one pair of leptons passing the above selection, the two leptons of opposite charge that yield the highest scalar pT sum are selected. Candidate events with dilepton invariant masses of M`` < 20 GeV are removed to suppress events from decays of heavy- avor resonances and low-mass Z/ processes. Dilepton events with two muons in the nal state are still dominated by the Z/ background. In order to suppress this contribution, events in the Z boson mass window of 76 < M`` < 106 GeV are vetoed in this channel. To further suppress the Z/ events, a T requirement on pmiss of >35 GeV is imposed. { 6 { In both the `+jets and dilepton analyses, events with leptons are considered as signal if they decay to electrons or muons that satisfy the selection requirements, and are included in the simulation. 6 Background estimation section, there is a nonnegligible contribution from the latter faking a tt event with `+jets in the nal state. Both the contribution from hard fragmentation of c and b quarks whose hadrons decay semileptonically, and the contribution from misidenti ed leptons, such as from either punch-through hadrons or collimated jets with a high electromagnetic fraction, can yield `+jets-like topologies. The estimation of the QCD multijet background is separately performed for the events T with 0, 1, or 2 b jets using a control region where either the muon candidate fails a looser isolation requirement (Irel < 20%) or the electron candidate fails the identi cation criteria. The choice of the QCD multijet control region has been made in such a way as to minimize the contamination due to the signal and W+jets events, while retaining a large number of events in the sample for the estimation of this type of background. The initial normalization of the QCD multijet contribution in the signal region is derived from events with pmiss < 20 GeV (\reduced-signal" region). Events in both the reducedsignal and control regions ful lling this requirement are counted. After subtracting the expected contributions from non-QCD processes, the ratio between the numbers of events observed in the reduced-signal region and in the control region, is used as a transfer factor to normalize the QCD multijet background estimate. In both the electron and muon channels, a 30% uncertainty is assigned to the estimate of the expected contribution from non-QCD processes, estimated after varying the QCD scales in the W+jets simulation. This uncertainty propagates as both a normalization and a shape uncertainty in the predicted distributions for the QCD multijet processes. The variations are applied independently in the reduced-signal and control regions in order to determine an uncertainty envelope. A more accurate normalization for this contribution is obtained by the t performed to extract the nal cross section, described in section 8.1. 6.2 The dilepton nal state Final states with two genuine leptons can originate from background processes, primarily from Z/ ! + (where the leptonic decays can yield e or plus pmiss due T to the neutrinos), tW, and WV events. Other background sources, such as W+jets events or tt production in the `+jets nal state, can contaminate the signal sample if a jet is misidenti ed as a lepton, or if an event contains a lepton from the decay of b or c hadrons. These are included in the \non-W/Z" category, since genuine leptons are de ned as originating from decays of W or Z bosons. The yields from tW and WV events are estimated { 7 { from simulation, while the contribution of the Z/ background is evaluated using control samples in data. The rate of non-W/Z backgrounds is extracted from control samples in data for the e channel and is estimated from simulation for the background normalization is estimated, as in ref. [47], from the number of events within the Z boson mass window in data, which is extrapolated to the number of events outside the window. A scale factor of 0:91 0:14 (stat) is obtained in the e channel, and 0:96 0:78 (stat) in the channel. The estimation is performed using events with at least two jets, and the dependence on di erent jet multiplicities is discussed in section 7. The non-W/Z background in the e channel is estimated using an extrapolation from a control region of same-sign (SS) dilepton events to the signal region of opposite-sign (OS) dileptons. The SS control region is de ned using the same criteria as for the nominal signal region, except requiring dilepton pairs of the same charge. The muon isolation requirement is relaxed in order to enhance the number of events. The SS dilepton events predominantly contain at least one misidenti ed lepton. Other SM processes produce genuine SS or charge-misidenti ed dilepton events with signi cantly smaller rates; these are estimated using simulation and subtracted from the observed number of events in data. The scaling from the SS control region in data to the signal region is performed using an extrapolation factor extracted from MC simulation, given by the ratio of the number of OS events with misidenti ed leptons to the number of SS events with misidenti ed leptons. The resulting estimate for the non-W/Z background is 1:0 0:9 (stat) events, where the central value comes from the estimation using events with at least two jets. No particular dependence of this scale factor is observed for di erent jet multiplicities within the large statistical uncertainty. 7 Systematic uncertainties The integrated luminosity has been estimated o ine using a pixel cluster counting method [20]. The estimation takes into account normalization uncertainties and uncertainties related to the di erent conditions during typical physics periods relative to the specially tailored beam-separation scans, adding up to a total uncertainty of 2:3%. The uncertainties in the electron trigger e ciency (1.5%) and the identi cation and isolation e ciency (2.5%) are estimated by changing the values of the data-to-simulation scale factors within their uncertainties, as obtained from the \tag-and-probe" method. The uncertainty in the muon identi cation and isolation e ciency, including the trigger e ciency, is 3% and covers one standard deviation of the scale factor from unity. The impact of the uncertainty in the jet energy scale (JES) is estimated by changing the pT- and -dependent JES corrections by a constant 2.8% [45, 48]. The uncertainty in jet energy resolution (JER) is estimated through -dependent changes in the JER corrections to the simulation [45, 48]. The uncertainty arising from the use of pmiss in the channel is dominated by the unclustered energy contribution to pmiss [40]. Finally, T T a 30% uncertainty is conservatively assigned to the jet misidenti cation probability in the { 8 { HJEP03(218)5 `+jets analysis, as no dedicated measurement of this quantity has been performed for the considered data set. Theoretical uncertainties in the simulation of tt production cause a systematic bias related to the missing higher-order diagrams in powheg, which is estimated through studies of the signal modeling by modifying the R; F scales within a factor of two with respect to their nominal value. In the `+jets analysis, the impact of the R; F variations are examined independently, while in the dilepton analysis they are varied simultaneously. In both analyses, these variations are applied independently at the matrix element (ME) and parton shower (PS) levels. The uncertainty arising from the hadronization model mainly a ects the JES and the fragmentation of jets. The hadronization uncertainty is determined by comparing samples of events generated with powheg, where the hadronization is either modeled with pythia or herwig++ (v2.7.1) [49]. This also accounts for di erences in the PS model and the underlying event. The uncertainty from the choice of PDF is determined by reweighting the sample of simulated tt events according to the root-mean-square (RMS) variation of the NNPDF3.0 replica set. Two extra variations of s are added in quadrature to determine the total PDF uncertainty. In the `+jets analysis, the uncertainty in the choice of the R; F scales in the W+jets simulation is taken into account by considering alternative shapes and yields after varying independently the R; F scales, following a similar procedure to that described above for the signal. Due to the nite event count in the W+jets simulated sample, an additional bin-by-bin uncertainty is assigned by generating an alternative shape to t (see section 8.1), where the bin prediction is varied by 1 standard deviation, while keeping all the other bins at their nominal expectation. The uncertainty assigned to the QCD multijet background includes the statistical uncertainty in the data, and the uncertainty from the non-QCD multijet contributions subtracted from the control region, as described in section 6.1, and an additional 30%{100% normalization uncertainty. The latter depends on the event category and stems from the measured di erence with respect to an alternative estimate of the QCD normalization based on the transverse mass, mT, of the lepton and pmiss system. T The magnitude of mT equals momentum and is the azimuthal angle between the lepton and the direction of p~miss. T Finally, a 30% normalization uncertainty in the theoretical tW, Z/ cross sections is assigned [5], given the previously unexplored p , and WV background s value and that the nal states contain several jets. In the dilepton channel, an uncertainty of 30% is assumed [5] for the cross sections of the tW and WV backgrounds to cover the theoretical uncertainties and the e ect of nite simulated samples. The uncertainty in the Z/ estimation is calculated by combining in quadrature the statistical uncertainty and an additional 30% from the variation of the scale factor in the di erent levels of selection, resulting in uncertainties of about 30 and 80% in the e and channels, respectively. The systematic uncertainty in the nonW/Z background is estimated to be 90% in the e channel and is dominated by the statistical uncertainty in the method. Owing to the limited sample size in the data, the method cannot be applied in the channel. The estimation is therefore based on MC simulation, and an uncertainty of 100% is conservatively assigned. cos ), where pT is the lepton transverse p 2pTpTmiss(1 { 9 { 8.1 In the `+jets analysis, the tt cross section is measured in a ducial phase space by means of a t. Two variables were independently considered for the t, which are sensitive to the resonant behavior of the light jets produced from the W boson hadronic decay in a tt event. Given that these light jets, here denoted by j and j0, are correlated during production, they are also expected to be closer in phase space when compared to pairs of other jets in the event. The angular distance R can thus be used as a metric to rank all pairs of non-btagged jets in the event, maximizing the probability of selecting those from the W boson hadronic decay in cases where more than two non-b-tagged jets are found. From simulation we expect that the signal peaks at low R, while the background is uniformly distributed up to R 3. Above that value, fewer events are expected and background processes are predicted to dominate. The invariant mass M (j; j0) of jets j and j0 also has a distinctive peaking feature for the signal in contrast with a smooth background continuum. From simulation we expect that the minimum angular distance R between all pairs of jets j and j0, the Rmin(j; j0), is robust against signal modeling uncertainties such as the choice of R; F scales and jet energy scale and resolution, while the M (j; j0) variable tends to be more a ected by such uncertainties. Owing to its more robust systematic uncertainties and signal-to-background discrimination power, the Rmin(j; j0) variable is used to extract the tt cross section. In order to maximize the sensitivity of the analysis, the Rmin(j; j0) distributions are categorized according to the number of jets | in addition to the ones assigned to the W boson hadronic decay | passing the b quark identi cation criteria. In total, 6 categories are used, corresponding to electron or muon events with 0, 1, or 2 b jets. The expected number of signal and background events in each category prior to the t and the observed yields are given in table 1. Good agreement is observed between data and expectations. The M (j; j0) and Rmin(j; j0) distributions are shown in gure 1. The distributions have been combined for the e+jets and +jets channels to maximize the statistical precision and are shown for events with di erent b-tagged jet multiplicities. Fair agreement is observed between data and the pre- t expectations. A pro le likelihood ratio (PLR) method, similar to the one employed in ref. [10], is used to perform the t. In addition, a scale factor for the b tagging e ciency (SFb) is included as a parameter of interest in the t. The PLR is written as: ( ; SFb) = L( ; SFb; ^ ) L(^; S^Fb; ^ ) ; ^ (8.1) where = = theo is the signal strength (ratio of the observed tt cross section to the expectation from theory) and is a set of nuisance parameters that encode the e ect on the expectations due to variations in the sources of the systematic uncertainties described in section 7. The quantities ^^ correspond to the values of the nuisance parameters that maximize the likelihood for the speci ed signal strength and b tagging e ciency (conditional the di erent b tag categories for the e+jets and +jets analyses, prior to the t. With the exception of the QCD multijet estimate, for which the total uncertainty is reported, the uncertainties re ect the statistical uncertainty in the simulated samples. s s s t t t v v E E V CMS e G l + ≥ 2 jets 0 0 V CMS e20 l + ≥ 2 jets G n n e e V CMS e G l + ≥ 2 jets CMS ne l + ≥ 2 jets v 62000 / n 4e00 200 0 0 s t E 1000 500 0 0 Rmin(j; j0) variable for `+jets events in the 0 b (left), 1 b (center), and 2 b (right) tagged jet categories. The distributions from data are compared to the sum of the expectations for the signal and backgrounds prior to any t. The QCD multijet background is estimated from data (see section 5.1). The cross-hatched band represents the statistical and the integrated luminosity uncertainties in the expected signal and background yields added in quadrature. The vertical bars on the data points represent the statistical uncertainties. F1.2 S 1.1 1 0.9 Observed Expected Observed 68% CL Expected 68% CL CMS l + ≥ 2 jets μ e l = e, μ Distributions Count and SFb in the `+jets analysis. The solid (dashed) contour refers to the result from data (expectation from simulation). The solid (hollow) diamond represents the observed t result (SM expectation). Right: summary of the signal strengths separately obtained in the e+jets and +jets channels, and after their combination in the `+jets channel. The results of the analysis from the distributions are compared to those from the cross-check analysis with event counting (Count). The inner (outer) bars correspond to the statistical (total) uncertainty in the signal strengths. likelihood), and ^, S^Fb, ^ are, respectively, the values of the signal strength, b tagging e ciency, and nuisance parameters that maximize the likelihood. Figure 2 (left) shows the two-dimensional contours at the 68% con dence level (CL) obtained from the scan of 2 ln( ), as functions of and SFb. The expected results, obtained using the Asimov data set [50], are compared to the observed results and found to be in agreement well within one standard deviation. The signal strength is obtained after pro ling SFb and the result is = 1:00 +00::1009 (stat) +00::0098 (syst). As a cross-check, the signal strength is also extracted by tting only the total number of events observed in each of the six categories. The observed value = 1:03 +00::1100 (stat) +00::2111 (syst) is in agreement with the analysis using the Rmin(j; j0) distributions. Figure 2 (right) summarizes the results obtained for the signal strength t in each channel separately from the analysis of the distributions and from event counting. In both cases, a large contribution to the uncertainty is systematic in nature, although the statistical component is still signi cant. In the `+jets combination, the +jets channel is expected and observed to carry the largest weight. In order to estimate the impact of the experimental systematic uncertainties in the measured signal strength, the t is repeated after xing one nuisance parameter at a time at its post- t uncertainty ( 1 standard deviation) values. The impact on the signal strength t is then evaluated from the di erence induced in the nal result from this procedure. By repeating the ts, the e ect of some nuisance parameters being xed may be reabsorbed by a variation of the ones being pro led, owing to correlations. As such, the individual experimental uncertainties obtained and summarized in table 2 can only be interpreted as the observed post- t values, and not as an absolute, orthogonalized breakdown of uncerStatistical uncertainty Experimental systematic uncertainty W+jets background QCD multijet background Other background Jet energy scale Jet energy resolution b tagging Electron e ciency Muon e ciency Hadronization model of tt signal R; F scales of tt signal (PS) R; F scales of tt signal (ME) Total uncertainty Individual experimental uncertainties Theoretical uncertainties Distr. analysis of distributions, and in the cross-check from event counting. The \Other background" component includes the contributions from Z/ , tW, and WV events. The total uncertainty is obtained by adding in quadrature the statistical, experimental systematic, and theoretical uncertainties. The individual experimental uncertainties are obtained by repeating the t after xing one nuisance parameter at a time at its post- t uncertainty ( 1 standard deviation) value. The values quoted have been symmetrized. tainties. With respect to the event counting, the analysis of the distributions is less prone to the uncertainties in the QCD multijet background, jet energy resolution, and signal modeling. In both cases, the signal modeling uncertainties and the b tagging e ciency are among the largest sources of uncertainty. The ducial cross section is measured in events with one electron (muon) in the range pT > 35 (25) GeV and j j < 2:1 (including the transition region for electrons), and at least two jets with pT > 25 GeV and j j < 2:4. After multiplying the signal strength by the theoretical expectations (eq. (3.1)), we nd d = 20:8 2:0 (stat) 1:8 (syst) 0:5 (lumi) pb: The combined acceptance in the e+jets and +jets channels is estimated using the NLO powheg simulation to be A = 0:301 0:007, with the uncertainty being dominated by the variation of the R; F scales at ME and PS levels and the hadronization model used for the tt signal. The uncertainty due to the PDFs is included but veri ed to be less important. Taking into account the acceptance of the analysis and its uncertainty, the inclusive tt cross section is determined to be in agreement with the SM prediction and attaining a 13% total relative uncertainty. In the dilepton analysis, the tt cross section is extracted from an event counting measurement. Figure 3 shows the distributions of the jet multiplicity and the scalar pT sum of all jets (HT), for events passing the dilepton criteria in the e channel. In addition, it displays the lepton-pair invariant mass and pT distributions, after requiring at least two jets in the event in the e ant mass distributions in the channel. Figure 4 shows the pmiss and the lepton-pair invari T channel for events passing the dilepton criteria, and T the Z boson veto with the pmiss > 35 GeV requirement, in the second case. The predicted distributions take into account the e ciency corrections described in section 5 and the background estimations discussed in section 6.2. Good agreement is observed between the data and predictions for both signal and background. The ducial tt production cross section is measured by counting events in the visible phase space (de ned by the same pT, j j, and multiplicity requirements for leptons and jets as described in section 5, but including the transition region for electrons) and is denoted by d . It is extrapolated to the full phase space in order to determine the inclusive tt cross section using the expression tt = N " A L NB = d A ; (8.2) where N is the total number of dilepton events observed in data, NB the number of estimated background events, " the selection e ciency, A the acceptance, and L the integrated luminosity. Table 3 gives the total number of events observed in data, together with the total number of signal and background events expected from simulation or estimated from data, after the full set of selection criteria. The total detector, trigger, and reconstruction e ciency is estimated from data to be " = 0:55 ) channel. Using the de nitions above, the yields from table 3, and the systematic uncertainties from table 4, the measured ducial cross section for tt production is channel and The acceptance, as estimated from MC simulation, is found to be A = 0:53 ) channel. The statistical uncertainty (from MC simulation) is included in the uncertainty in A. By extrapolating to the full phase space, the inclusive tt cross section is measured to be tt = 77 19 (stat) 4 (syst) 2 (lumi) pb CMS Data V e 50 100 150 200 250 300 20 40 60 80 120 Dilepton p (GeV) 100 T sum of all jets (HT) for events passing the dilepton criteria, and of the (lower row) invariant mass and pT of the lepton pair after requiring at least two jets, in the e channel. The Z/ and nonW/Z backgrounds are determined from data (see section 6.2). The cross-hatched band represents the statistical and integrated luminosity uncertainties in the expected signal and background yields added in quadrature. The vertical bars on the data points represent the statistical uncertainties. The last bin of the distributions contains the over ow events. 0 1 2 3 50 100 150 200 250 HT (GeV) 300 T pmiss (GeV) 140 8 G 6 0 2 / s t n e v 4 E 2 0 0 V 10 G 0 / s 5 0 0 V 1e02 0 2 ts10 n E 1 10−1 0 Data tt WV tW Z/γ* Non-W/Z ± e±μ CMS s t n teria and Z boson veto, and of the (right) invariant mass of the lepton pair after the pmiss > 35 GeV T requirement in the channel. The cross-hatched band represents the statistical and integrated luminosity uncertainties in the expected signal and background yields added in quadrature. The vertical bars on the data points represent the statistical uncertainties. The last bin of the distributions contains the over ow events. e 0.92 selection. The values are given for the individual sources of background, tt signal, and data. The uncertainties correspond to the statistical component. HJEP03(218)5 Non-W/Z leptons tt signal Total surements for the dilepton channels. The relative uncertainties tt= tt (in %), as well as absolute uncertainties in tt, tt (in pb), are presented. The statistical and total uncertainties are also given, where the latter are the quadrature sum of the statistical and systematic uncertainties. in the e tt = 59 29 (stat) 11 (syst) channel. Table 4 summarizes the relative and absolute statistical and systematic uncertainties from di erent sources contributing to tt. The separate total systematic uncertainty without the uncertainty in the integrated luminosity, the part attributed to the integrated luminosity, and the statistical contribution are added in quadrature to obtain the total uncertainty. The cross sections, measured with a relative uncertainty of 25 and 52%, are in agreement with the SM prediction (eq. (3.1)) within the uncertainties in the The three individual tt measurements are combined using the BLUE method [ 51, 52 ] to determine an overall tt cross section. All systematic uncertainties are considered as fully correlated across all channels, with the following exceptions: the uncertainty associated with the nite event size of the simulated samples is taken as uncorrelated; the electron identi cation is not relevant for the channel; and the b tagging and QCD multijet background uncertainties are only considered for the `+jets channel. In the `+jets channel, the WV and Z= backgrounds are not considered separately but as part of the \Other backgrounds" component, which is dominated by tW events. The uncertainty associated with this category is therefore treated as fully correlated with the tW uncertainty in the dileptonic channels and uncorrelated with the WV and Z= uncertainties. The combined inclusive tt cross section is measured to be: tt = 69:5 where the total uncertainty is the sum in quadrature of the individual uncertainties. The weights of the individual measurements, to be understood in the sense of ref. [ 52 ], are 81.8% for `+jets, 13.5% for e , and 4.7% for channels. The combined result is found to be robust by performing an iterative variant of the BLUE method [53] and varying some assumptions on the correlations of di erent combinations of systematic uncertainties. Also, the post- t correlations between the nuisance parameters in the `+jets channel have been checked and found to have negligible impact. Figure 5 presents a summary of CMS measurements [5, 6, 9, 10] of tt in pp collisions s in the `+jets and dilepton channels, compared to the NNLO+NNLL prediction using the NNPDF3.0 PDF set with the inset, the results from this analysis at p s(MZ) = 0:118 and mtop = 172:5 GeV. In s = 5:02 TeV are also compared to the predictions from the MMHT14 [54], CT14 [ 55 ], and ABMP16 [ 56 ] PDF sets, with the latter using s(MZ) = 0:115 and mtop = 170:4 GeV. Theoretical predictions using di erent PDF sets have comparable values and uncertainties, once consistent values of s and mtop are associated with the respective PDF set. measurements at p s = 7, 8 [5, 6], and 13 [9, 10] TeV in the separate `+jets and dilepton channels are displayed, along with the combined measurement at 5.02 TeV from this analysis. The NNLO+NNLL theoretical prediction [34] using the NNPDF3.0 [14] PDF set with 172:5 GeV is shown in the main plot. In the inset, additional predictions at p the MMHT14 [54], CT14 [ 55 ], and ABMP16 [ 56 ] PDF sets, the latter with s(MZ) = 0:118 and mtop = s = 5:02 TeV using s(MZ) = 0:115 and mtop = 170:4 GeV, are compared, along with the NNPDF3.0 prediction, to the individual and combined results from this analysis. The vertical bars and bands represent the total uncertainties in the data and in the predictions, respectively. 9 QCD analysis To illustrate the impact of the tt measurements at p s = 5:02 TeV on the knowledge of the proton PDFs, the results are used in a QCD analysis at NNLO, together with the combined measurements of neutral- and charged-current cross sections for deep inelastic electronand positron-proton scattering (DIS) at HERA [57], and the CMS measurement [58] of the muon charge asymmetry in W boson production at p s = 8 TeV. The latter data set is used in order to improve the constraint on the light-quark distributions. Version 2.0.0 of xFitter [59, 60], the open-source QCD-analysis framework for PDF determination, is employed, with the partons evolved using the Dokshitzer-Gribov-LipatovAltarelli-Parisi equations [61{66] at NNLO, as implemented in the qcdnum 17-01/13 program [67]. The treatment and the choices for the central values and variations of the c and b quark masses, the strong coupling, and the strange-quark content fraction of the proton follow that of earlier CMS analyses, e.g., ref. [58]. The R; F scales are set to the four-momentum transfer in the case of the DIS data, the W boson mass for the muon charge asymmetry results, and the top quark mass in the case of tt. The systematic uncertainties in all three measurements of tt and their correlations are treated the same way as in the combination described in section 8.3. The theoretical predictions for tt are obtained at NNLO using the hathor calculation [68], assuming mtop = 172:5 GeV. The bin-to-bin correlations of the experimental uncertainties in the muon charge asymmetry and DIS measurements are taken into account. The theoretical predictions for the muon charge asymmetry are obtained as described in ref. [58]. The procedure for the determination of the PDFs follows the approach used in the QCD analysis of ref. [58] and results in a 14-parameter t. The parametrized PDFs are the gluon distribution, xg, the valence quark distributions, xuv, xdv, and the u-type and d-type antiquark distributions, xU , xD. The relations xU = xu and xD = xd + xs are assumed at the initial scale of the QCD evolution Q20 = 1:9 GeV2. At this scale, the parametrizations are of the form: xg(x) = AgxBg (1 x)Cg (1 + Dgx); xuv(x) = Auv xBuv (1 xdv(x) = Adv xBdv (1 xU (x) = A xBU (1 U xD(x) = ADxBD (1 x)Cuv (1 + Duv x + Euv x2); x)Cdv ; x)CU (1 + E x2); U x)CD : (9.1) (9.2) (9.3) (9.4) (9.5) The normalization parameters Auv , Adv , and Ag are determined by the QCD sum rules, the B parameters are responsible for the small-x behavior of the PDFs, and the C parameters describe the shape of the distribution as x ! 1. Additional constraints B U = BD and A U = AD(1 s=(d + s), which is set to 0:31 fs) are imposed, with fs being the strangeness fraction, 0:08 as in ref. [69], consistent with the value obtained using the CMS measurements of W+c production [70]. Using the measured values for tt allows the addition of a new free parameter, Duv , in eq. (9.2), as compared to the analysis in ref. [58]. The predicted and measured cross sections for all the data sets, together with their corresponding uncertainties, are used to build a global 2, minimized to determine the PDF parameters [59, 60]. The results of the t are given in table 5. The quality of the overall t can be judged based on the global 2 divided by the number of degrees of freedom, ndof . For each data set included in the t, the partial 2 divided by the number of the measurements (data points), ndp, is also provided. The correlated part of 2, also given in table 5, quanti es the in uence of the correlated systematic uncertainties in the t. The global and partial somewhat high 2 values indicate a general agreement among all the data sets. The 2=ndp values for the combined DIS data are very similar to those observed in ref. [57], where they are investigated in detail. The experimental uncertainties in the measurements are propagated to the extracted QCD t parameters using the MC method [71, 72]. In this method, 400 replicas of pseudodata are generated, with measured values for tt allowed to vary within the statistical and systematic uncertainties. For each of them, the PDF t is performed and the uncertainty di erential cross sections and their matching to parton shower simulations, JHEP 07 (2014) [27] K. Melnikov and F. Petriello, Electroweak gauge boson production at hadron colliders through O( s2), Phys. Rev. D 74 (2006) 114017 [hep-ph/0609070] [INSPIRE]. HJEP03(218)5 011] [arXiv:0907.4076] [INSPIRE]. [29] E. Re, Single-top Wt-channel production matched with parton showers using the POWHEG method, Eur. Phys. J. C 71 (2011) 1547 [arXiv:1009.2450] [INSPIRE]. [30] N. Kidonakis, Top quark production, in the proceedings of the Helmholtz International Summer School on Physics of Heavy Quarks and Hadrons (HQ 2013), July 15{28, Dubna, Russia (2013), arXiv:1311.0283 [INSPIRE]. [31] J.M. Campbell and R.K. Ellis, MCFM for the Tevatron and the LHC, Nucl. Phys. Proc. Suppl. 205-206 (2010) 10 [arXiv:1007.3492] [INSPIRE]. [32] GEANT4 collaboration, S. Agostinelli et al., GEANT4 { a simulation toolkit, Nucl. Instrum. Meth. A 506 (2003) 250 [INSPIRE]. [33] M. Czakon and A. Mitov, Top++: a program for the calculation of the top-pair cross-section at hadron colliders, Comput. Phys. Commun. 185 (2014) 2930 [arXiv:1112.5675] [INSPIRE]. [34] M. Czakon, P. Fiedler and A. Mitov, Total top-quark pair-production cross section at hadron colliders through O( s4), Phys. Rev. Lett. 110 (2013) 252004 [arXiv:1303.6254] [INSPIRE]. [35] E. Todesco and J. Wenninger, Large hadron collider momentum calibration and accuracy, Phys. Rev. Accel. Beams 20 (2017) 081003 [INSPIRE]. [36] CMS collaboration, Particle- ow reconstruction and global event description with the CMS detector, 2017 JINST 12 P10003 [arXiv:1706.04965] [INSPIRE]. [37] CMS collaboration, Performance of electron reconstruction and selection with the CMS s = 8 TeV, 2015 JINST 10 P06005 detector in proton-proton collisions at p [arXiv:1502.02701] [INSPIRE]. p s = 7 TeV, 2012 JINST 7 P10002 [arXiv:1206.4071] [INSPIRE]. [38] CMS collaboration, Performance of CMS muon reconstruction in pp collision events at at ps = 7 TeV at the LHC, 2013 JINST 8 P11002 [arXiv:1306.6905] [INSPIRE]. [39] CMS collaboration, The performance of the CMS muon detector in proton-proton collisions [40] CMS collaboration, Performance of missing energy reconstruction in 13 TeV pp collision data using the CMS detector, CMS-PAS-JME-16-004 (2016). [41] M. Cacciari, G.P. Salam and G. Soyez, The anti-kt jet clustering algorithm, JHEP 04 (2008) 063 [arXiv:0802.1189] [INSPIRE]. [arXiv:1111.6097] [INSPIRE]. [arXiv:0707.1378] [INSPIRE]. s = 7 TeV, JHEP 01 (2011) 080 [arXiv:1012.2466] [INSPIRE]. [44] CMS collaboration, Measurements of inclusive W and Z cross sections in pp collisions at [45] CMS collaboration, Determination of jet energy calibration and transverse momentum resolution in CMS, 2011 JINST 6 P11002 [arXiv:1107.4277] [INSPIRE]. [46] CMS collaboration, Identi cation of heavy- avour jets with the CMS detector in pp collisions at 13 TeV, submitted to JINST (2017), arXiv:1712.07158 [INSPIRE]. [47] CMS collaboration, First measurement of the cross section for top-quark pair production in proton-proton collisions at p [48] CMS collaboration, Jet energy scale and resolution in the CMS experiment in pp collisions at 8 TeV, 2017 JINST 12 P02014 [arXiv:1607.03663] [INSPIRE]. deep inelastic e p scattering cross sections and QCD analysis of HERA data, Eur. Phys. J. C 75 (2015) 580 [arXiv:1506.06042] [INSPIRE]. [58] CMS collaboration, Measurement of the di erential cross section and charge asymmetry for inclusive pp ! W [arXiv:1603.01803] [INSPIRE]. + X production at p s = 8 TeV, Eur. Phys. J. C 76 (2016) 469 [59] S. Alekhin et al., HERAFitter, Eur. Phys. J. C 75 (2015) 304 [arXiv:1410.4412] [INSPIRE]. [60] xFitter collaboration, http://www.x tter.org. Nucl. Phys. 15 (1972) 438 [INSPIRE]. 298 [INSPIRE]. [61] V.N. Gribov and L.N. Lipatov, Deep inelastic ep scattering in perturbation theory, Sov. J. 97B (1980) 437 [INSPIRE]. HJEP03(218)5 nonsinglet case, Nucl. Phys. B 688 (2004) 101 [hep-ph/0403192] [INSPIRE]. [66] A. Vogt, S. Moch and J.A.M. Vermaseren, The three-loop splitting functions in QCD: the singlet case, Nucl. Phys. B 691 (2004) 129 [hep-ph/0404111] [INSPIRE]. [67] M. Botje, QCDNUM: fast QCD evolution and convolution, Comput. Phys. Commun. 182 (2011) 490 [arXiv:1005.1481] [INSPIRE]. [68] M. Aliev et al., HATHOR: HAdronic Top and Heavy quarks crOss section calculatoR, Comput. Phys. Commun. 182 (2011) 1034 [arXiv:1007.1327] [INSPIRE]. [69] A.D. Martin, W.J. Stirling, R.S. Thorne and G. Watt, Parton distributions for the LHC, Eur. Phys. J. C 63 (2009) 189 [arXiv:0901.0002] [INSPIRE]. production at p [70] CMS collaboration, Measurement of the muon charge asymmetry in inclusive pp ! W + X s = 7 TeV and an improved determination of light parton distribution functions, Phys. Rev. D 90 (2014) 032004 [arXiv:1312.6283] [INSPIRE]. [71] W.T. Giele and S. Keller, Implications of hadron collider observables on parton distribution function uncertainties, Phys. Rev. D 58 (1998) 094023 [hep-ph/9803393] [INSPIRE]. [72] W.T. Giele, S.A. Keller and D.A. Kosower, Parton distribution function uncertainties, hep-ph/0104052 [INSPIRE]. Yerevan Physics Institute, Yerevan, Armenia A.M. Sirunyan, A. Tumasyan Institut fur Hochenergiephysik, Wien, Austria W. Adam, F. Ambrogi, E. Asilar, T. Bergauer, J. Brandstetter, E. Brondolin, M. Dragicevic, J. Ero, M. Flechl, M. Friedl, R. Fruhwirth1, V.M. Ghete, J. Grossmann, J. Hrubec, M. Jeitler1, A. Konig, N. Krammer, I. Kratschmer, D. Liko, T. Madlener, I. Mikulec, E. Pree, D. Rabady, N. Rad, H. Rohringer, J. Schieck1, R. Schofbeck, M. Spanring, D. Spitzbart, W. Waltenberger, J. Wittmann, C.-E. Wulz1, M. Zarucki Institute for Nuclear Problems, Minsk, Belarus V. Chekhovsky, V. Mossolov, J. Suarez Gonzalez Universiteit Antwerpen, Antwerpen, Belgium Haevermaet, P. Van Mechelen, N. Van Remortel Vrije Universiteit Brussel, Brussel, Belgium E.A. De Wolf, D. Di Croce, X. Janssen, J. Lauwers, M. Van De Klundert, H. Van S. Abu Zeid, F. Blekman, J. D'Hondt, I. De Bruyn, J. De Clercq, K. Deroover, G. Flouris, D. Lontkovskyi, S. Lowette, S. Moortgat, L. Moreels, Q. Python, K. Skovpen, S. Tavernier, W. Van Doninck, P. Van Mulders, I. Van Parijs Universite Libre de Bruxelles, Bruxelles, Belgium H. Brun, B. Clerbaux, G. De Lentdecker, H. Delannoy, G. Fasanella, L. Favart, R. Goldouzian, A. Grebenyuk, G. Karapostoli, T. Lenzi, J. Luetic, T. Maerschalk, A. Marinov, A. Randle-conde, T. Seva, C. Vander Velde, P. Vanlaer, D. Vannerom, R. Yonamine, F. Zenoni, F. Zhang2 Ghent University, Ghent, Belgium A. Cimmino, T. Cornelis, D. Dobur, A. Fagot, M. Gul, I. Khvastunov, D. Poyraz, C. Roskas, S. Salva, M. Tytgat, W. Verbeke, N. Zaganidis Universite Catholique de Louvain, Louvain-la-Neuve, Belgium H. Bakhshiansohi, O. Bondu, S. Brochet, G. Bruno, C. Caputo, A. Caudron, S. De Visscher, C. Delaere, M. Delcourt, B. Francois, A. Giammanco, A. Jafari, M. Komm, G. Krintiras, V. Lemaitre, A. Magitteri, A. Mertens, M. Musich, K. Piotrzkowski, L. Quertenmont, M. Vidal Marono, S. Wertz Universite de Mons, Mons, Belgium N. Beliy Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil W.L. Alda Junior, F.L. Alves, G.A. Alves, L. Brito, M. Correa Martins Junior, C. Hensel, A. Moraes, M.E. Pol, P. Rebello Teles Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil E. Belchior Batista Das Chagas, W. Carvalho, J. Chinellato3, A. Custodio, E.M. Da Costa, G.G. Da Silveira4, D. De Jesus Damiao, S. Fonseca De Souza, L.M. Huertas Guativa, H. Malbouisson, M. Melo De Almeida, C. Mora Herrera, L. Mundim, H. Nogima, A. Santoro, A. Sznajder, E.J. Tonelli Manganote3, F. Torres Da Silva De Araujo, A. Vilela Pereira Brazil S. Ahujaa, Universidade Estadual Paulista a, Universidade Federal do ABC b, S~ao Paulo, C.A. Bernardesa, T.R. Fernandez Perez Tomeia, E.M. Gregoresb, P.G. Mercadanteb, S.F. Novaesa, Sandra S. Padulaa, D. Romero Abadb, J.C. Ruiz Vargasa Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, So a, Bulgaria S. Stoykova, G. Sultanov A. Aleksandrov, R. Hadjiiska, P. Iaydjiev, M. Misheva, M. Rodozov, M. Shopova, University of So a, So a, Bulgaria A. Dimitrov, I. Glushkov, L. Litov, B. Pavlov, P. Petkov Beihang University, Beijing, China W. Fang5, X. Gao5 Institute of High Energy Physics, Beijing, China M. Ahmad, J.G. Bian, G.M. Chen, H.S. Chen, M. Chen, Y. Chen, C.H. Jiang, D. Leggat, H. Liao, Z. Liu, F. Romeo, S.M. Shaheen, A. Spiezia, J. Tao, C. Wang, Z. Wang, E. Yazgan, H. Zhang, S. Zhang, J. Zhao Beijing, China State Key Laboratory of Nuclear Physics and Technology, Peking University, Y. Ban, G. Chen, Q. Li, S. Liu, Y. Mao, S.J. Qian, D. Wang, Z. Xu Universidad de Los Andes, Bogota, Colombia C. Avila, A. Cabrera, L.F. Chaparro Sierra, C. Florez, C.F. Gonzalez Hernandez, J.D. Ruiz Alvarez University of Split, Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, Split, Croatia B. Courbon, N. Godinovic, D. Lelas, I. Puljak, P.M. Ribeiro Cipriano, T. Sculac University of Split, Faculty of Science, Split, Croatia Z. Antunovic, M. Kovac Institute Rudjer Boskovic, Zagreb, Croatia V. Brigljevic, D. Ferencek, K. Kadija, B. Mesic, A. Starodumov6, T. Susa University of Cyprus, Nicosia, Cyprus M.W. Ather, A. Attikis, G. Mavromanolakis, J. Mousa, C. Nicolaou, F. Ptochos, P.A. Razis, H. Rykaczewski Charles University, Prague, Czech Republic M. Finger7, M. Finger Jr.7 Universidad San Francisco de Quito, Quito, Ecuador E. Carrera Jarrin Academy of Scienti c Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt Y. Assran8;9, M.A. Mahmoud10;9, A. Mahrous11 National Institute of Chemical Physics and Biophysics, Tallinn, Estonia R.K. Dewanjee, M. Kadastik, L. Perrini, M. Raidal, A. Tiko, C. Veelken Department of Physics, University of Helsinki, Helsinki, Finland P. Eerola, J. Pekkanen, M. Voutilainen Helsinki Institute of Physics, Helsinki, Finland J. Harkonen, T. Jarvinen, V. Karimaki, R. Kinnunen, T. Lampen, K. Lassila-Perini, S. Lehti, T. Linden, P. Luukka, E. Tuominen, J. Tuominiemi, E. Tuovinen Lappeenranta University of Technology, Lappeenranta, Finland J. Talvitie, T. Tuuva IRFU, CEA, Universite Paris-Saclay, Gif-sur-Yvette, France M. Besancon, F. Couderc, M. Dejardin, D. Denegri, J.L. Faure, F. Ferri, S. Ganjour, S. Ghosh, A. Givernaud, P. Gras, G. Hamel de Monchenault, P. Jarry, I. Kucher, E. Locci, M. Machet, J. Malcles, G. Negro, J. Rander, A. Rosowsky, M.O . Sahin, M. Titov Laboratoire Leprince-Ringuet, Ecole polytechnique, CNRS/IN2P3, Universite Paris-Saclay, Palaiseau, France A. Abdulsalam, I. Antropov, S. Ba oni, F. Beaudette, P. Busson, L. Cadamuro, C. Charlot, R. Granier de Cassagnac, M. Jo, S. Lisniak, A. Lobanov, J. Martin Blanco, M. Nguyen, C. Ochando, G. Ortona, P. Paganini, P. Pigard, S. Regnard, R. Salerno, J.B. Sauvan, Y. Sirois, A.G. Stahl Leiton, T. Strebler, Y. Yilmaz, A. Zabi, A. Zghiche Universite de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France S. Gadrat J.-L. Agram12, J. Andrea, D. Bloch, J.-M. Brom, M. Buttignol, E.C. Chabert, N. Chanon, C. Collard, E. Conte12, X. Coubez, J.-C. Fontaine12, D. Gele, U. Goerlach, M. Jansova, A.-C. Le Bihan, N. Tonon, P. Van Hove Centre de Calcul de l'Institut National de Physique Nucleaire et de Physique des Particules, CNRS/IN2P3, Villeurbanne, France Universite de Lyon, Universite Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucleaire de Lyon, Villeurbanne, France S. Beauceron, C. Bernet, G. Boudoul, R. Chierici, D. Contardo, P. Depasse, H. El Mamouni, J. Fay, L. Finco, S. Gascon, M. Gouzevitch, G. Grenier, B. Ille, F. Lagarde, I.B. Laktineh, M. Lethuillier, L. Mirabito, A.L. Pequegnot, S. Perries, A. Popov13, V. Sordini, M. Vander Donckt, S. Viret A. Khvedelidze7 D. Lomidze Georgian Technical University, Tbilisi, Georgia Tbilisi State University, Tbilisi, Georgia RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany C. Autermann, S. Beranek, L. Feld, M.K. Kiesel, K. Klein, M. Lipinski, M. Preuten, C. Schomakers, J. Schulz, T. Verlage, V. Zhukov13 RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany A. Albert, E. Dietz-Laursonn, D. Duchardt, M. Endres, M. Erdmann, S. Erdweg, T. Esch, R. Fischer, A. Guth, M. Hamer, T. Hebbeker, C. Heidemann, K. Hoepfner, S. Knutzen, M. Merschmeyer, A. Meyer, P. Millet, S. Mukherjee, M. Olschewski, K. Padeken, T. Pook, M. Radziej, H. Reithler, M. Rieger, F. Scheuch, D. Teyssier, S. Thuer RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany G. Flugge, B. Kargoll, T. Kress, A. Kunsken, J. Lingemann, T. Muller, A. Nehrkorn, A. Nowack, C. Pistone, O. Pooth, A. Stahl14 Deutsches Elektronen-Synchrotron, Hamburg, Germany M. Aldaya Martin, T. Arndt, C. Asawatangtrakuldee, K. Beernaert, O. Behnke, U. Behrens, A. Bermudez Mart nez, A.A. Bin Anuar, K. Borras15, V. Botta, A. Campbell, P. Connor, C. Contreras-Campana, F. Costanza, C. Diez Pardos, G. Eckerlin, D. Eckstein, T. Eichhorn, E. Eren, E. Gallo16, J. Garay Garcia, A. Geiser, A. Gizhko, J.M. Grados Luyando, A. Grohsjean, P. Gunnellini, M. Gutho , A. Harb, J. Hauk, M. Hempel17, H. Jung, A. Kalogeropoulos, M. Kasemann, J. Keaveney, C. Kleinwort, I. Korol, D. Krucker, W. Lange, A. Lelek, T. Lenz, J. Leonard, K. Lipka, W. Lohmann17, R. Mankel, I.-A. Melzer-Pellmann, A.B. Meyer, G. Mittag, J. Mnich, A. Mussgiller, E. Ntomari, D. Pitzl, A. Raspereza, B. Roland, M. Savitskyi, P. Saxena, R. Shevchenko, S. Spannagel, N. Stefaniuk, G.P. Van Onsem, R. Walsh, Y. Wen, K. Wichmann, C. Wissing, O. Zenaiev University of Hamburg, Hamburg, Germany S. Bein, V. Blobel, M. Centis Vignali, T. Dreyer, E. Garutti, D. Gonzalez, J. Haller, A. Hinzmann, M. Ho mann, A. Karavdina, R. Klanner, R. Kogler, N. Kovalchuk, S. Kurz, T. Lapsien, I. Marchesini, D. Marconi, M. Meyer, M. Niedziela, D. Nowatschin, F. Pantaleo14, T. Pei er, A. Perieanu, C. Scharf, P. Schleper, A. Schmidt, S. Schumann, J. Schwandt, J. Sonneveld, H. Stadie, G. Steinbruck, F.M. Stober, M. Stover, H. Tholen, D. Troendle, E. Usai, L. Vanelderen, A. Vanhoefer, B. Vormwald Institut fur Experimentelle Kernphysik, Karlsruhe, Germany M. Akbiyik, C. Barth, S. Baur, E. Butz, R. Caspart, T. Chwalek, F. Colombo, W. De Boer, A. Dierlamm, B. Freund, R. Friese, M. Gi els, A. Gilbert, D. Haitz, F. Hartmann14, S.M. Heindl, U. Husemann, F. Kassel14, S. Kudella, H. Mildner, M.U. Mozer, Th. Muller, M. Plagge, G. Quast, K. Rabbertz, M. Schroder, I. Shvetsov, G. Sieber, H.J. Simonis, R. Ulrich, S. Wayand, M. Weber, T. Weiler, S. Williamson, C. Wohrmann, R. Wolf Institute of Nuclear and Particle Physics (INPP), NCSR Demokritos, Aghia Paraskevi, Greece I. Topsis-Giotis G. Anagnostou, G. Daskalakis, T. Geralis, V.A. Giakoumopoulou, A. Kyriakis, D. Loukas, National and Kapodistrian University of Athens, Athens, Greece G. Karathanasis, S. Kesisoglou, A. Panagiotou, N. Saoulidou National Technical University of Athens, Athens, Greece K. Kousouris University of Ioannina, Ioannina, Greece I. Evangelou, C. Foudas, P. Kokkas, S. Mallios, N. Manthos, I. Papadopoulos, E. Paradas, J. Strologas, F.A. Triantis MTA-ELTE Lendulet CMS Particle and Nuclear Physics Group, Eotvos Lorand University, Budapest, Hungary M. Csanad, N. Filipovic, G. Pasztor, G.I. Veres18 Wigner Research Centre for Physics, Budapest, Hungary G. Bencze, C. Hajdu, D. Horvath19, A. Hunyadi, F. Sikler, V. Veszpremi, A.J. Zsigmond Institute of Nuclear Research ATOMKI, Debrecen, Hungary N. Beni, S. Czellar, J. Karancsi20, A. Makovec, J. Molnar, Z. Szillasi Institute of Physics, University of Debrecen, Debrecen, Hungary M. Bartok18, P. Raics, Z.L. Trocsanyi, B. Ujvari Indian Institute of Science (IISc), Bangalore, India S. Choudhury, J.R. Komaragiri National Institute of Science Education and Research, Bhubaneswar, India S. Bahinipati21, S. Bhowmik, P. Mal, K. Mandal, A. Nayak22, D.K. Sahoo21, N. Sahoo, S.K. Swain Panjab University, Chandigarh, India S. Bansal, S.B. Beri, V. Bhatnagar, R. Chawla, N. Dhingra, A.K. Kalsi, A. Kaur, M. Kaur, R. Kumar, P. Kumari, A. Mehta, J.B. Singh, G. Walia University of Delhi, Delhi, India Ashok Kumar, Aashaq Shah, A. Bhardwaj, S. Chauhan, B.C. Choudhary, R.B. Garg, S. Keshri, A. Kumar, S. Malhotra, M. Naimuddin, K. Ranjan, R. Sharma Saha Institute of Nuclear Physics, HBNI, Kolkata, India R. Bhardwaj, R. Bhattacharya, S. Bhattacharya, U. Bhawandeep, S. Dey, S. Dutt, S. Dutta, S. Ghosh, N. Majumdar, A. Modak, K. Mondal, S. Mukhopadhyay, S. Nandan, A. Purohit, A. Roy, D. Roy, S. Roy Chowdhury, S. Sarkar, M. Sharan, S. Thakur HJEP03(218)5 Indian Institute of Technology Madras, Madras, India P.K. Behera Bhabha Atomic Research Centre, Mumbai, India R. Chudasama, D. Dutta, V. Jha, V. Kumar, A.K. Mohanty14, P.K. Netrakanti, L.M. Pant, P. Shukla, A. Topkar Tata Institute of Fundamental Research-A, Mumbai, India T. Aziz, S. Dugad, B. Mahakud, S. Mitra, G.B. Mohanty, N. Sur, B. Sutar Tata Institute of Fundamental Research-B, Mumbai, India S. Banerjee, S. Bhattacharya, S. Chatterjee, P. Das, M. Guchait, Sa. Jain, S. Kumar, M. Maity23, G. Majumder, K. Mazumdar, T. Sarkar23, N. Wickramage24 Indian Institute of Science Education and Research (IISER), Pune, India S. Chauhan, S. Dube, V. Hegde, A. Kapoor, K. Kothekar, S. Pandey, A. Rane, S. Sharma Institute for Research in Fundamental Sciences (IPM), Tehran, Iran S. Chenarani25, E. Eskandari Tadavani, S.M. Etesami25, M. Khakzad, M. Mohammadi Najafabadi, M. Naseri, S. Paktinat Mehdiabadi26, F. Rezaei Hosseinabadi, B. Safarzadeh27, M. Zeinali University College Dublin, Dublin, Ireland M. Felcini, M. Grunewald INFN Sezione di Bari a, Universita di Bari b, Politecnico di Bari c, Bari, Italy M. Abbresciaa;b, C. Calabriaa;b, A. Colaleoa, D. Creanzaa;c, L. Cristellaa;b, N. De Filippisa;c, M. De Palmaa;b, F. Erricoa;b, L. Fiorea, G. Iasellia;c, S. Lezkia;b, G. Maggia;c, M. Maggia, G. Minielloa;b, S. Mya;b, S. Nuzzoa;b, A. Pompilia;b, G. Pugliesea;c, R. Radognaa, A. Ranieria, G. Selvaggia;b, A. Sharmaa, L. Silvestrisa;14, R. Vendittia, P. Verwilligena INFN Sezione di Bologna a, Universita di Bologna b, Bologna, Italy G. Abbiendia, C. Battilanaa;b, D. Bonacorsia;b, S. Braibant-Giacomellia;b, R. Campaninia;b, P. Capiluppia;b, A. Castroa;b, F.R. Cavalloa, S.S. Chhibraa, G. Codispotia;b, M. Cu ania;b, G.M. Dallavallea, F. Fabbria, A. Fanfania;b, D. Fasanellaa;b, P. Giacomellia, C. Grandia, L. Guiduccia;b, S. Marcellinia, G. Masettia, A. Montanaria, F.L. Navarriaa;b, A. Perrottaa, A.M. Rossia;b, T. Rovellia;b, G.P. Sirolia;b, N. Tosia INFN Sezione di Catania a, Universita di Catania b, Catania, Italy S. Albergoa;b, S. Costaa;b, A. Di Mattiaa, F. Giordanoa;b, R. Potenzaa;b, A. Tricomia;b, C. Tuvea;b L. Viliania;b;14 INFN Sezione di Firenze a, Universita di Firenze b, Firenze, Italy G. Barbaglia, K. Chatterjeea;b, V. Ciullia;b, C. Civininia, R. D'Alessandroa;b, E. Focardia;b, P. Lenzia;b, M. Meschinia, S. Paolettia, L. Russoa;28, G. Sguazzonia, D. Stroma, INFN Laboratori Nazionali di Frascati, Frascati, Italy L. Benussi, S. Bianco, F. Fabbri, D. Piccolo, F. Primavera14 INFN Sezione di Genova a, Universita di Genova b, Genova, Italy V. Calvellia;b, F. Ferroa, E. Robuttia, S. Tosia;b INFN Sezione di Milano-Bicocca a, Universita di Milano-Bicocca b, Milano, Italy A. Benagliaa, L. Brianzaa;b, F. Brivioa;b, V. Cirioloa;b, M.E. Dinardoa;b, S. Fiorendia;b, S. Gennaia, A. Ghezzia;b, P. Govonia;b, M. Malbertia;b, S. Malvezzia, R.A. Manzonia;b, D. Menascea, L. Moronia, M. Paganonia;b, K. Pauwelsa;b, D. Pedrinia, S. Pigazzinia;b;29, S. Ragazzia;b, T. Tabarelli de Fatisa;b INFN Sezione di Napoli a, Universita di Napoli 'Federico II' b, Napoli, Italy, Universita della Basilicata c, Potenza, Italy, Universita G. Marconi d, Roma, Italy F. Thyssena S. Buontempoa, N. Cavalloa;c, S. Di Guidaa;d;14, F. Fabozzia;c, F. Fiengaa;b, A.O.M. Iorioa;b, W.A. Khana, L. Listaa, S. Meolaa;d;14, P. Paoluccia;14, C. Sciaccaa;b, INFN Sezione di Padova a, Universita di Padova b, Padova, Italy, Universita di Trento c, Trento, Italy P. Azzia;14, N. Bacchettaa, L. Benatoa;b, D. Biselloa;b, A. Bolettia;b, R. Carlina;b, A. Carvalho Antunes De Oliveiraa;b, P. Checchiaa, M. Dall'Ossoa;b, P. De Castro Manzanoa, T. Dorigoa, U. Dossellia, F. Gasparinia;b, A. Gozzelinoa, S. Lacapraraa, P. Lujan, M. Margonia;b, A.T. Meneguzzoa;b, N. Pozzobona;b, P. Ronchesea;b, R. Rossina;b, F. Simonettoa;b, S. Venturaa, M. Zanettia;b, P. Zottoa;b, G. Zumerlea;b INFN Sezione di Pavia a, Universita di Pavia b, Pavia, Italy A. Braghieria, A. Magnania;b, P. Montagnaa;b, S.P. Rattia;b, V. Rea, M. Ressegotti, C. Riccardia;b, P. Salvinia, I. Vaia;b, P. Vituloa;b INFN Sezione di Perugia a, Universita di Perugia b, Perugia, Italy L. Alunni Solestizia;b, M. Biasinia;b, G.M. Bileia, C. Cecchia;b, D. Ciangottinia;b, L. Fanoa;b, P. Laricciaa;b, R. Leonardia;b, E. Manonia, G. Mantovania;b, V. Mariania;b, M. Menichellia, A. Rossia;b, A. Santocchiaa;b, D. Spigaa INFN Sezione di Pisa a, Universita di Pisa b, Scuola Normale Superiore di Pisa c, Pisa, Italy K. Androsova, P. Azzurria;14, G. Bagliesia, T. Boccalia, L. Borrello, R. Castaldia, M.A. Cioccia;b, R. Dell'Orsoa, G. Fedia, L. Gianninia;c, A. Giassia, M.T. Grippoa;28, F. Ligabuea;c, T. Lomtadzea, E. Mancaa;c, G. Mandorlia;c, L. Martinia;b, A. Messineoa;b, F. Pallaa, A. Rizzia;b, A. Savoy-Navarroa;30, P. Spagnoloa, R. Tenchinia, G. Tonellia;b, A. Venturia, P.G. Verdinia INFN Sezione di Roma a, Sapienza Universita di Roma b, Rome, Italy L. Baronea;b, F. Cavallaria, M. Cipriania;b, N. Dacia, D. Del Rea;b;14, E. Di Marcoa;b, M. Diemoza, S. Gellia;b, E. Longoa;b, F. Margarolia;b, B. Marzocchia;b, P. Meridiania, G. Organtinia;b, R. Paramattia;b, F. Preiatoa;b, S. Rahatloua;b, C. Rovellia, F. Santanastasioa;b INFN Sezione di Torino a, Universita di Torino b, Torino, Italy, Universita del Piemonte Orientale c, Novara, Italy N. Amapanea;b, R. Arcidiaconoa;c, S. Argiroa;b, M. Arneodoa;c, N. Bartosika, R. Bellana;b, C. Biinoa, N. Cartigliaa, F. Cennaa;b, M. Costaa;b, R. Covarellia;b, A. Deganoa;b, N. Demariaa, B. Kiania;b, C. Mariottia, S. Masellia, E. Migliorea;b, V. Monacoa;b, E. Monteila;b, M. Montenoa, M.M. Obertinoa;b, L. Pachera;b, N. Pastronea, M. Pelliccionia, G.L. Pinna Angionia;b, F. Raveraa;b, A. Romeroa;b, M. Ruspaa;c, R. Sacchia;b, K. Shchelinaa;b, V. Solaa, A. Solanoa;b, A. Staianoa, P. Traczyka;b INFN Sezione di Trieste a, Universita di Trieste b, Trieste, Italy S. Belfortea, M. Casarsaa, F. Cossuttia, G. Della Riccaa;b, A. Zanettia Kyungpook National University, Daegu, Korea D.H. Kim, G.N. Kim, M.S. Kim, J. Lee, S. Lee, S.W. Lee, C.S. Moon, Y.D. Oh, S. Sekmen, D.C. Son, Y.C. Yang Chonbuk National University, Jeonju, Korea A. Lee Chonnam National University, Institute for Universe and Elementary Particles, Kwangju, Korea H. Kim, D.H. Moon, G. Oh Hanyang University, Seoul, Korea J.A. Brochero Cifuentes, J. Goh, T.J. Kim Korea University, Seoul, Korea J. Lim, S.K. Park, Y. Roh Seoul National University, Seoul, Korea S.h. Seo, U.K. Yang, H.D. Yoo, G.B. Yu University of Seoul, Seoul, Korea M. Choi, H. Kim, J.H. Kim, J.S.H. Lee, I.C. Park Sungkyunkwan University, Suwon, Korea Y. Choi, C. Hwang, J. Lee, I. Yu Vilnius University, Vilnius, Lithuania V. Dudenas, A. Juodagalvis, J. Vaitkus S. Cho, S. Choi, Y. Go, D. Gyun, S. Ha, B. Hong, Y. Jo, Y. Kim, K. Lee, K.S. Lee, S. Lee, J. Almond, J. Kim, J.S. Kim, H. Lee, K. Lee, K. Nam, S.B. Oh, B.C. Radburn-Smith, National Centre for Particle Physics, Universiti Malaya, Kuala Lumpur, Malaysia M.N. Yusli, Z. Zolkapli I. Ahmed, Z.A. Ibrahim, M.A.B. Md Ali31, F. Mohamad Idris32, W.A.T. Wan Abdullah, HJEP03(218)5 Reyes-Almanza, R, Ramirez-Sanchez, G., Duran-Osuna, M. C., H. Castilla-Valdez, E. De La Cruz-Burelo, I. Heredia-De La Cruz33, Rabadan-Trejo, R. I., R. Lopez-Fernandez, J. Mejia Guisao, A. Sanchez-Hernandez Universidad Iberoamericana, Mexico City, Mexico S. Carrillo Moreno, C. Oropeza Barrera, F. Vazquez Valencia Benemerita Universidad Autonoma de Puebla, Puebla, Mexico I. Pedraza, H.A. Salazar Ibarguen, C. Uribe Estrada Universidad Autonoma de San Luis Potos , San Luis Potos , Mexico A. Morelos Pineda University of Auckland, Auckland, New Zealand University of Canterbury, Christchurch, New Zealand National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan A. Ahmad, M. Ahmad, Q. Hassan, H.R. Hoorani, S. Qazi, A. Saddique, M.A. Shah, National Centre for Nuclear Research, Swierk, Poland H. Bialkowska, M. Bluj, B. Boimska, T. Frueboes, M. Gorski, M. Kazana, K. Nawrocki, M. Szleper, P. Zalewski Warsaw, Poland Institute of Experimental Physics, Faculty of Physics, University of Warsaw, K. Bunkowski, A. Byszuk34, K. Doroba, A. Kalinowski, M. Konecki, J. Krolikowski, M. Misiura, M. Olszewski, A. Pyskir, M. Walczak Laboratorio de Instrumentac~ao e F sica Experimental de Part culas, Lisboa, Portugal P. Bargassa, C. Beir~ao Da Cruz E Silva, A. Di Francesco, P. Faccioli, B. Galinhas, M. Gallinaro, J. Hollar, N. Leonardo, L. Lloret Iglesias, M.V. Nemallapudi, J. Seixas, G. Strong, O. Toldaiev, D. Vadruccio, J. Varela Joint Institute for Nuclear Research, Dubna, Russia I. Golutvin, V. Karjavin, I. Kashunin, V. Korenkov, G. Kozlov, A. Lanev, A. Malakhov, V. Matveev35;36, V.V. Mitsyn, V. Palichik, V. Perelygin, S. Shmatov, V. Smirnov, V. Tro mov, N. Voytishin, B.S. Yuldashev37, A. Zarubin, V. Zhiltsov Petersburg Nuclear Physics Institute, Gatchina (St. Petersburg), Russia Y. Ivanov, V. Kim38, E. Kuznetsova39, P. Levchenko, V. Murzin, V. Oreshkin, I. Smirnov, V. Sulimov, L. Uvarov, S. Vavilov, A. Vorobyev Institute for Nuclear Research, Moscow, Russia Yu. Andreev, A. Dermenev, S. Gninenko, N. Golubev, A. Karneyeu, M. Kirsanov, N. Krasnikov, A. Pashenkov, D. Tlisov, A. Toropin Institute for Theoretical and Experimental Physics, Moscow, Russia V. Epshteyn, V. Gavrilov, N. Lychkovskaya, V. Popov, I. Pozdnyakov, G. Safronov, A. Spiridonov, A. Stepennov, M. Toms, E. Vlasov, A. Zhokin Moscow Institute of Physics and Technology, Moscow, Russia T. Aushev, A. Bylinkin36 National Research Nuclear University 'Moscow Engineering Physics Institute' (MEPhI), Moscow, Russia M. Chadeeva40, P. Parygin, D. Philippov, S. Polikarpov, E. Popova, V. Rusinov P.N. Lebedev Physical Institute, Moscow, Russia V. Andreev, M. Azarkin36, I. Dremin36, M. Kirakosyan36, A. Terkulov Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia P. Volkov A. Baskakov, A. Belyaev, E. Boos, V. Bunichev, M. Dubinin41, L. Dudko, A. Gribushin, V. Klyukhin, N. Korneeva, I. Lokhtin, I. Miagkov, S. Obraztsov, M. Per lov, V. Savrin, Novosibirsk State University (NSU), Novosibirsk, Russia V. Blinov42, Y.Skovpen42, D. Shtol42 State Research Center of Russian Federation, Institute for High Energy Physics, Protvino, Russia I. Azhgirey, I. Bayshev, S. Bitioukov, D. Elumakhov, V. Kachanov, A. Kalinin, D. Konstantinov, V. Krychkine, V. Petrov, R. Ryutin, A. Sobol, S. Troshin, N. Tyurin, A. Uzunian, A. Volkov University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia P. Adzic43, P. Cirkovic, D. Devetak, M. Dordevic, J. Milosevic, V. Rekovic Centro de Investigaciones Energeticas Medioambientales y Tecnologicas (CIEMAT), Madrid, Spain J. Alcaraz Maestre, M. Barrio Luna, M. Cerrada, N. Colino, B. De La Cruz, A. Delgado Peris, A. Escalante Del Valle, C. Fernandez Bedoya, J.P. Fernandez Ramos, J. Flix, M.C. Fouz, P. Garcia-Abia, O. Gonzalez Lopez, S. Goy Lopez, J.M. Hernandez, M.I. Josa, A. Perez-Calero Yzquierdo, J. Puerta Pelayo, A. Quintario Olmeda, I. Redondo, L. Romero, M.S. Soares, A. Alvarez Fernandez Universidad Autonoma de Madrid, Madrid, Spain C. Albajar, J.F. de Troconiz, M. Missiroli, D. Moran J. Cuevas, C. Erice, J. Fernandez Menendez, I. Gonzalez Caballero, J.R. Gonzalez Fernandez, E. Palencia Cortezon, S. Sanchez Cruz, P. Vischia, J.M. Vizan Garcia Instituto de F sica de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain I.J. Cabrillo, A. Calderon, B. Chazin Quero, E. Curras, J. Duarte Campderros, M. Fernandez, J. Garcia-Ferrero, G. Gomez, A. Lopez Virto, J. Marco, C. Martinez Rivero, P. Martinez Ruiz del Arbol, F. Matorras, J. Piedra Gomez, T. Rodrigo, A. Ruiz-Jimeno, L. Scodellaro, N. Trevisani, I. Vila, R. Vilar Cortabitarte CERN, European Organization for Nuclear Research, Geneva, Switzerland D. Abbaneo, E. Au ray, P. Baillon, A.H. Ball, D. Barney, M. Bianco, P. Bloch, A. Bocci, C. Botta, T. Camporesi, R. Castello, M. Cepeda, G. Cerminara, E. Chapon, Y. Chen, D. d'Enterria, A. Dabrowski, V. Daponte, A. David, M. De Gruttola, A. De Roeck, M. Dobson, B. Dorney, T. du Pree, M. Dunser, N. Dupont, A. Elliott-Peisert, P. Everaerts, F. Fallavollita, G. Franzoni, J. Fulcher, W. Funk, D. Gigi, K. Gill, F. Glege, D. Gulhan, P. Harris, J. Hegeman, V. Innocente, P. Janot, O. Karacheban17, J. Kieseler, H. Kirschenmann, V. Knunz, A. Kornmayer14, M.J. Kortelainen, M. Krammer1, C. Lange, P. Lecoq, C. Lourenco, M.T. Lucchini, L. Malgeri, M. Mannelli, A. Martelli, F. Meijers, J.A. Merlin, S. Mersi, E. Meschi, P. Milenovic44, F. Moortgat, M. Mulders, H. Neugebauer, S. Orfanelli, L. Orsini, L. Pape, E. Perez, M. Peruzzi, A. Petrilli, G. Petrucciani, A. Pfei er, M. Pierini, A. Racz, T. Reis, G. Rolandi45, M. Rovere, H. Sakulin, C. Schafer, C. Schwick, M. Seidel, M. Selvaggi, A. Sharma, P. Silva, P. Sphicas46, A. Stakia, J. Steggemann, M. Stoye, M. Tosi, D. Treille, A. Triossi, A. Tsirou, V. Veckalns47, M. Verweij, W.D. Zeuner Paul Scherrer Institut, Villigen, Switzerland W. Bertly, L. Caminada48, K. Deiters, W. Erdmann, R. Horisberger, Q. Ingram, H.C. Kaestli, D. Kotlinski, U. Langenegger, T. Rohe, S.A. Wiederkehr ETH Zurich | Institute for Particle Physics and Astrophysics (IPA), Zurich, Switzerland F. Bachmair, L. Bani, P. Berger, L. Bianchini, B. Casal, G. Dissertori, M. Dittmar, M. Donega, C. Grab, C. Heidegger, D. Hits, J. Hoss, G. Kasieczka, T. Klijnsma, W. Lustermann, B. Mangano, M. Marionneau, M.T. Meinhard, D. Meister, F. Micheli, P. Musella, F. Nessi-Tedaldi, F. Pandol , J. Pata, F. Pauss, G. Perrin, L. Perrozzi, M. Quittnat, M. Reichmann, M. Schonenberger, L. Shchutska, V.R. Tavolaro, K. Theo latos, M.L. Vesterbacka Olsson, R. Wallny, D.H. Zhu Universitat Zurich, Zurich, Switzerland T.K. Aarrestad, C. Amsler49, M.F. Canelli, A. De Cosa, R. Del Burgo, S. Donato, C. Galloni, T. Hreus, B. Kilminster, J. Ngadiuba, D. Pinna, G. Rauco, P. Robmann, D. Salerno, C. Seitz, Y. Takahashi, A. Zucchetta National Central University, Chung-Li, Taiwan V. Candelise, T.H. Doan, Sh. Jain, R. Khurana, C.M. Kuo, W. Lin, A. Pozdnyakov, S.S. Yu National Taiwan University (NTU), Taipei, Taiwan Arun Kumar, P. Chang, Y. Chao, K.F. Chen, P.H. Chen, F. Fiori, W.-S. Hou, Y. Hsiung, Y.F. Liu, R.-S. Lu, E. Paganis, A. Psallidas, A. Steen, J.f. Tsai Chulalongkorn University, Faculty of Science, Department of Physics, Bangkok, Thailand Turkey B. Asavapibhop, K. Kovitanggoon, G. Singh, N. Srimanobhas Cukurova University, Physics Department, Science and Art Faculty, Adana, M.N. Bakirci50, F. Boran, S. Damarseckin, Z.S. Demiroglu, C. Dozen, S. Girgis, G. Gokbulut, Y. Guler, I. Hos51, E.E. Kangal52, O. Kara, A. Kayis Topaksu, U. Kiminsu, M. Oglakci, G. Onengut53, K. Ozdemir54, S. Ozturk50, A. Polatoz, H. Topakli50, S. Turkcapar, I.S. Zorbakir, C. Zorbilmez Middle East Technical University, Physics Department, Ankara, Turkey B. Bilin, G. Karapinar55, K. Ocalan56, M. Yalvac, M. Zeyrek Bogazici University, Istanbul, Turkey E. Gulmez, M. Kaya57, O. Kaya58, S. Tekten, E.A. Yetkin59 Istanbul Technical University, Istanbul, Turkey M.N. Agaras, S. Atay, A. Cakir, K. Cankocak Institute for Scintillation Materials of National Academy of Science of Ukraine, Kharkov, Ukraine B. Grynyov Kharkov, Ukraine L. Levchuk, P. Sorokin National Scienti c Center, Kharkov Institute of Physics and Technology, University of Bristol, Bristol, United Kingdom R. Aggleton, F. Ball, L. Beck, J.J. Brooke, D. Burns, E. Clement, D. Cussans, O. Davignon, H. Flacher, J. Goldstein, M. Grimes, G.P. Heath, H.F. Heath, J. Jacob, L. Kreczko, C. Lucas, D.M. Newbold60, S. Paramesvaran, A. Poll, T. Sakuma, S. Seif El Nasr-storey, D. Smith, V.J. Smith Rutherford Appleton Laboratory, Didcot, United Kingdom K.W. Bell, A. Belyaev61, C. Brew, R.M. Brown, L. Calligaris, D. Cieri, D.J.A. Cockerill, J.A. Coughlan, K. Harder, S. Harper, E. Olaiya, D. Petyt, C.H. Shepherd-Themistocleous, A. Thea, I.R. Tomalin, T. Williams Imperial College, London, United Kingdom G. Auzinger, R. Bainbridge, S. Breeze, O. Buchmuller, A. Bundock, S. Casasso, M. Citron, D. Colling, L. Corpe, P. Dauncey, G. Davies, A. De Wit, M. Della Negra, R. Di Maria, A. Elwood, Y. Haddad, G. Hall, G. Iles, T. James, R. Lane, C. Laner, L. Lyons, A.-M. Magnan, S. Malik, L. Mastrolorenzo, T. Matsushita, J. Nash, A. Nikitenko6, V. Palladino, M. Pesaresi, D.M. Raymond, A. Richards, A. Rose, E. Scott, C. Seez, A. Shtipliyski, S. Summers, A. Tapper, K. Uchida, M. Vazquez Acosta62, T. Virdee14, N. Wardle, D. Winterbottom, J. Wright, S.C. Zenz Brunel University, Uxbridge, United Kingdom J.E. Cole, P.R. Hobson, A. Khan, P. Kyberd, I.D. Reid, P. Symonds, L. Teodorescu, M. Turner Baylor University, Waco, U.S.A. A. Borzou, K. Call, J. Dittmann, K. Hatakeyama, H. Liu, N. Pastika, C. Smith Catholic University of America, Washington DC, U.S.A. R. Bartek, A. Dominguez The University of Alabama, Tuscaloosa, U.S.A. A. Buccilli, S.I. Cooper, C. Henderson, P. Rumerio, C. West Boston University, Boston, U.S.A. D. Arcaro, A. Avetisyan, T. Bose, D. Gastler, D. Rankin, C. Richardson, J. Rohlf, L. Sulak, D. Zou D. Yu Brown University, Providence, U.S.A. G. Benelli, D. Cutts, A. Garabedian, J. Hakala, U. Heintz, J.M. Hogan, K.H.M. Kwok, E. Laird, G. Landsberg, Z. Mao, M. Narain, J. Pazzini, S. Piperov, S. Sagir, R. Syarif, University of California, Davis, Davis, U.S.A. R. Band, C. Brainerd, R. Breedon, D. Burns, M. Calderon De La Barca Sanchez, M. Chertok, J. Conway, R. Conway, P.T. Cox, R. Erbacher, C. Flores, G. Funk, M. Gardner, W. Ko, R. Lander, C. Mclean, M. Mulhearn, D. Pellett, J. Pilot, S. Shalhout, M. Shi, J. Smith, M. Squires, D. Stolp, K. Tos, M. Tripathi, Z. Wang University of California, Los Angeles, U.S.A. M. Bachtis, C. Bravo, R. Cousins, A. Dasgupta, A. Florent, J. Hauser, M. Ignatenko, N. Mccoll, D. Saltzberg, C. Schnaible, V. Valuev University of California, Riverside, Riverside, U.S.A. E. Bouvier, K. Burt, R. Clare, J. Ellison, J.W. Gary, S.M.A. Ghiasi Shirazi, G. Hanson, J. Heilman, P. Jandir, E. Kennedy, F. Lacroix, O.R. Long, M. Olmedo Negrete, M.I. Paneva, A. Shrinivas, W. Si, L. Wang, H. Wei, S. Wimpenny, B. R. Yates University of California, San Diego, La Jolla, U.S.A. J.G. Branson, S. Cittolin, M. Derdzinski, R. Gerosa, B. Hashemi, A. Holzner, D. Klein, G. Kole, V. Krutelyov, J. Letts, I. Macneill, M. Masciovecchio, D. Olivito, S. Padhi, M. Pieri, M. Sani, V. Sharma, S. Simon, M. Tadel, A. Vartak, S. Wasserbaech63, J. Wood, F. Wurthwein, A. Yagil, G. Zevi Della Porta University of California, Santa Barbara | Department of Physics, Santa Barbara, U.S.A. N. Amin, R. Bhandari, J. Bradmiller-Feld, C. Campagnari, A. Dishaw, V. Dutta, M. Franco Sevilla, C. George, F. Golf, L. Gouskos, J. Gran, R. Heller, J. Incandela, S.D. Mullin, A. Ovcharova, H. Qu, J. Richman, D. Stuart, I. Suarez, J. Yoo California Institute of Technology, Pasadena, U.S.A. D. Anderson, J. Bendavid, A. Bornheim, J.M. Lawhorn, H.B. Newman, T. Nguyen, C. Pena, M. Spiropulu, J.R. Vlimant, S. Xie, Z. Zhang, R.Y. Zhu Carnegie Mellon University, Pittsburgh, U.S.A. M.B. Andrews, T. Ferguson, T. Mudholkar, M. Paulini, J. Russ, M. Sun, H. Vogel, I. Vorobiev, M. Weinberg University of Colorado Boulder, Boulder, U.S.A. J.P. Cumalat, W.T. Ford, F. Jensen, A. Johnson, M. Krohn, S. Leontsinis, T. Mulholland, K. Stenson, S.R. Wagner Cornell University, Ithaca, U.S.A. J. Alexander, J. Chaves, J. Chu, S. Dittmer, K. Mcdermott, N. Mirman, J.R. Patterson, A. Rinkevicius, A. Ryd, L. Skinnari, L. So , S.M. Tan, Z. Tao, J. Thom, J. Tucker, P. Wittich, M. Zientek Fermi National Accelerator Laboratory, Batavia, U.S.A. S. Abdullin, M. Albrow, G. Apollinari, A. Apresyan, A. Apyan, S. Banerjee, L.A.T. Bauerdick, A. Beretvas, J. Berryhill, P.C. Bhat, G. Bollay, K. Burkett, J.N. Butler, A. Canepa, G.B. Cerati, H.W.K. Cheung, F. Chlebana, M. Cremonesi, J. Duarte, V.D. Elvira, J. Freeman, Z. Gecse, E. Gottschalk, L. Gray, D. Green, S. Grunendahl, O. Gutsche, R.M. Harris, S. Hasegawa, J. Hirschauer, Z. Hu, B. Jayatilaka, S. Jindariani, M. Johnson, U. Joshi, B. Klima, B. Kreis, S. Lammel, D. Lincoln, R. Lipton, M. Liu, T. Liu, R. Lopes De Sa, J. Lykken, K. Maeshima, N. Magini, J.M. Marra no, S. Maruyama, D. Mason, P. McBride, P. Merkel, S. Mrenna, S. Nahn, V. O'Dell, K. Pedro, O. Prokofyev, G. Rakness, L. Ristori, B. Schneider, E. Sexton-Kennedy, A. Soha, W.J. Spalding, L. Spiegel, S. Stoynev, J. Strait, N. Strobbe, L. Taylor, S. Tkaczyk, N.V. Tran, L. Uplegger, E.W. Vaandering, C. Vernieri, M. Verzocchi, R. Vidal, M. Wang, H.A. Weber, A. Whitbeck University of Florida, Gainesville, U.S.A. D. Acosta, P. Avery, P. Bortignon, D. Bourilkov, A. Brinkerho , A. Carnes, M. Carver, D. Curry, R.D. Field, I.K. Furic, J. Konigsberg, A. Korytov, K. Kotov, P. Ma, K. Matchev, H. Mei, G. Mitselmakher, D. Rank, D. Sperka, N. Terentyev, L. Thomas, J. Wang, S. Wang, J. Yelton Florida International University, Miami, U.S.A. Y.R. Joshi, S. Linn, P. Markowitz, J.L. Rodriguez Florida State University, Tallahassee, U.S.A. A. Ackert, T. Adams, A. Askew, S. Hagopian, V. Hagopian, K.F. Johnson, T. Kolberg, G. Martinez, T. Perry, H. Prosper, A. Saha, A. Santra, V. Sharma, R. Yohay Florida Institute of Technology, Melbourne, U.S.A. M.M. Baarmand, V. Bhopatkar, S. Colafranceschi, M. Hohlmann, D. Noonan, T. Roy, F. Yumiceva University of Illinois at Chicago (UIC), Chicago, U.S.A. M.R. Adams, L. Apanasevich, D. Berry, R.R. Betts, R. Cavanaugh, X. Chen, O. Evdokimov, C.E. Gerber, D.A. Hangal, D.J. Hofman, K. Jung, J. Kamin, I.D. Sandoval Gonzalez, M.B. Tonjes, H. Trauger, N. Varelas, H. Wang, Z. Wu, J. Zhang The University of Iowa, Iowa City, U.S.A. B. Bilki64, W. Clarida, K. Dilsiz65, S. Durgut, R.P. Gandrajula, M. Haytmyradov, V. Khristenko, J.-P. Merlo, H. Mermerkaya66, A. Mestvirishvili, A. Moeller, J. Nachtman, H. Ogul67, Y. Onel, F. Ozok68, A. Penzo, C. Snyder, E. Tiras, J. Wetzel, K. Yi Johns Hopkins University, Baltimore, U.S.A. B. Blumenfeld, A. Cocoros, N. Eminizer, D. Fehling, L. Feng, A.V. Gritsan, P. Maksimovic, J. Roskes, U. Sarica, M. Swartz, M. Xiao, C. You The University of Kansas, Lawrence, U.S.A. A. Al-bataineh, P. Baringer, A. Bean, S. Boren, J. Bowen, J. Castle, S. Khalil, A. Kropivnitskaya, D. Majumder, W. Mcbrayer, M. Murray, C. Royon, S. Sanders, E. Schmitz, J.D. Tapia Takaki, Q. Wang Kansas State University, Manhattan, U.S.A. A. Ivanov, K. Kaadze, Y. Maravin, A. Mohammadi, L.K. Saini, N. Skhirtladze, S. Toda Lawrence Livermore National Laboratory, Livermore, U.S.A. F. Rebassoo, D. Wright University of Maryland, College Park, U.S.A. C. Anelli, A. Baden, O. Baron, A. Belloni, B. Calvert, S.C. Eno, C. Ferraioli, N.J. Hadley, S. Jabeen, G.Y. Jeng, R.G. Kellogg, J. Kunkle, A.C. Mignerey, F. Ricci-Tam, Y.H. Shin, A. Skuja, S.C. Tonwar Massachusetts Institute of Technology, Cambridge, U.S.A. D. Abercrombie, B. Allen, V. Azzolini, R. Barbieri, A. Baty, R. Bi, S. Brandt, W. Busza, I.A. Cali, M. D'Alfonso, Z. Demiragli, G. Gomez Ceballos, M. Goncharov, D. Hsu, Y. Iiyama, G.M. Innocenti, M. Klute, D. Kovalskyi, Y.S. Lai, Y.-J. Lee, A. Levin, P.D. Luckey, B. Maier, A.C. Marini, C. Mcginn, C. Mironov, S. Narayanan, X. Niu, C. Paus, C. Roland, G. Roland, J. Salfeld-Nebgen, G.S.F. Stephans, K. Tatar, D. Velicanu, J. Wang, T.W. Wang, B. Wyslouch University of Minnesota, Minneapolis, U.S.A. A.C. Benvenuti, R.M. Chatterjee, A. Evans, P. Hansen, S. Kalafut, Y. Kubota, Z. Lesko, J. Mans, S. Nourbakhsh, N. Ruckstuhl, R. Rusack, J. Turkewitz University of Mississippi, Oxford, U.S.A. J.G. Acosta, S. Oliveros E. Avdeeva, K. Bloom, D.R. Claes, C. Fangmeier, R. Gonzalez Suarez, R. Kamalieddin, I. Kravchenko, J. Monroy, J.E. Siado, G.R. Snow, B. Stieger State University of New York at Bu alo, Bu alo, U.S.A. M. Alyari, J. Dolen, A. Godshalk, C. Harrington, I. Iashvili, D. Nguyen, A. Parker, S. Rappoccio, B. Roozbahani Northeastern University, Boston, U.S.A. moto, R. Teixeira De Lima, D. Trocino, D. Wood Northwestern University, Evanston, U.S.A. G. Alverson, E. Barberis, A. Hortiangtham, A. Massironi, D.M. Morse, D. Nash, T. OriS. Bhattacharya, O. Charaf, K.A. Hahn, N. Mucia, N. Odell, B. Pollack, M.H. Schmitt, K. Sung, M. Trovato, M. Velasco University of Notre Dame, Notre Dame, U.S.A. N. Dev, M. Hildreth, K. Hurtado Anampa, C. Jessop, D.J. Karmgard, N. Kellams, K. Lannon, N. Loukas, N. Marinelli, F. Meng, C. Mueller, Y. Musienko35, M. Planer, A. Reinsvold, R. Ruchti, G. Smith, S. Taroni, M. Wayne, M. Wolf, A. Woodard The Ohio State University, Columbus, U.S.A. J. Alimena, L. Antonelli, B. Bylsma, L.S. Durkin, S. Flowers, B. Francis, A. Hart, C. Hill, W. Ji, B. Liu, W. Luo, D. Puigh, B.L. Winer, H.W. Wulsin Princeton University, Princeton, U.S.A. S. Cooperstein, O. Driga, P. Elmer, J. Hardenbrook, P. Hebda, S. Higginbotham, D. Lange, J. Luo, D. Marlow, K. Mei, I. Ojalvo, J. Olsen, C. Palmer, P. Piroue, D. Stickland, C. Tully University of Puerto Rico, Mayaguez, U.S.A. S. Malik, S. Norberg Purdue University, West Lafayette, U.S.A. A. Barker, V.E. Barnes, S. Das, S. Folgueras, L. Gutay, M.K. Jha, M. Jones, A.W. Jung, A. Khatiwada, D.H. Miller, N. Neumeister, C.C. Peng, J.F. Schulte, J. Sun, F. Wang, W. Xie Purdue University Northwest, Hammond, U.S.A. T. Cheng, N. Parashar, J. Stupak Rice University, Houston, U.S.A. A. Adair, B. Akgun, Z. Chen, K.M. Ecklund, F.J.M. Geurts, M. Guilbaud, W. Li, B. Michlin, M. Northup, B.P. Padley, J. Roberts, J. Rorie, Z. Tu, J. Zabel University of Rochester, Rochester, U.S.A. A. Bodek, P. de Barbaro, R. Demina, Y.t. Duh, T. Ferbel, M. Galanti, A. Garcia-Bellido, J. Han, O. Hindrichs, A. Khukhunaishvili, K.H. Lo, P. Tan, M. Verzetti The Rockefeller University, New York, U.S.A. R. Ciesielski, K. Goulianos, C. Mesropian Rutgers, The State University of New Jersey, Piscataway, U.S.A. A. Agapitos, J.P. Chou, Y. Gershtein, T.A. Gomez Espinosa, E. Halkiadakis, M. Heindl, E. Hughes, S. Kaplan, R. Kunnawalkam Elayavalli, S. Kyriacou, A. Lath, R. Montalvo, K. Nash, M. Osherson, H. Saka, S. Salur, S. Schnetzer, D. She eld, S. Somalwar, R. Stone, S. Thomas, P. Thomassen, M. Walker University of Tennessee, Knoxville, U.S.A. A.G. Delannoy, M. Foerster, J. Heideman, G. Riley, K. Rose, S. Spanier, K. Thapa Texas A&M University, College Station, U.S.A. O. Bouhali69, A. Castaneda Hernandez69, A. Celik, M. Dalchenko, M. De Mattia, A. Delgado, S. Dildick, R. Eusebi, J. Gilmore, T. Huang, T. Kamon70, R. Mueller, Y. Pakhotin, R. Patel, A. Perlo , L. Pernie, D. Rathjens, A. Safonov, A. Tatarinov, K.A. Ulmer Texas Tech University, Lubbock, U.S.A. N. Akchurin, J. Damgov, F. De Guio, P.R. Dudero, J. Faulkner, E. Gurpinar, S. Kunori, K. Lamichhane, S.W. Lee, T. Libeiro, T. Peltola, S. Undleeb, I. Volobouev, Z. Wang Vanderbilt University, Nashville, U.S.A. S. Greene, A. Gurrola, R. Janjam, W. Johns, C. Maguire, A. Melo, H. Ni, P. Sheldon, S. Tuo, J. Velkovska, Q. Xu University of Virginia, Charlottesville, U.S.A. M.W. Arenton, P. Barria, B. Cox, R. Hirosky, M. Joyce, A. Ledovskoy, H. Li, C. Neu, T. Sinthuprasith, Y. Wang, E. Wolfe, F. Xia Wayne State University, Detroit, U.S.A. R. Harr, P.E. Karchin, J. Sturdy, S. Zaleski University of Wisconsin | Madison, Madison, WI, U.S.A. M. Brodski, J. Buchanan, C. Caillol, S. Dasu, L. Dodd, S. Duric, B. Gomber, M. Grothe, M. Herndon, A. Herve, U. Hussain, P. Klabbers, A. Lanaro, A. Levine, K. Long, R. Loveless, G.A. Pierro, G. Polese, T. Ruggles, A. Savin, N. Smith, W.H. Smith, D. Taylor, 1: Also at Vienna University of Technology, Vienna, Austria 2: Also at State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, N. Woods y: Deceased China 3: Also at Universidade Estadual de Campinas, Campinas, Brazil 4: Also at Universidade Federal de Pelotas, Pelotas, Brazil 5: Also at Universite Libre de Bruxelles, Bruxelles, Belgium 6: Also at Institute for Theoretical and Experimental Physics, Moscow, Russia 7: Also at Joint Institute for Nuclear Research, Dubna, Russia 8: Also at Suez University, Suez, Egypt 9: Now at British University in Egypt, Cairo, Egypt 10: Also at Fayoum University, El-Fayoum, Egypt 11: Now at Helwan University, Cairo, Egypt Moscow, Russia 13: Also at Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, 14: Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland 15: Also at RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany 16: Also at University of Hamburg, Hamburg, Germany 17: Also at Brandenburg University of Technology, Cottbus, Germany 18: Also at MTA-ELTE Lendulet CMS Particle and Nuclear Physics Group, Eotvos Lorand University, Budapest, Hungary 19: Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary 20: Also at Institute of Physics, University of Debrecen, Debrecen, Hungary 21: Also at Indian Institute of Technology Bhubaneswar, Bhubaneswar, India 22: Also at Institute of Physics, Bhubaneswar, India 23: Also at University of Visva-Bharati, Santiniketan, India 24: Also at University of Ruhuna, Matara, Sri Lanka 25: Also at Isfahan University of Technology, Isfahan, Iran 26: Also at Yazd University, Yazd, Iran 27: Also at Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran 28: Also at Universita degli Studi di Siena, Siena, Italy 29: Also at INFN Sezione di Milano-Bicocca; Universita di Milano-Bicocca, Milano, Italy 30: Also at Purdue University, West Lafayette, U.S.A. 31: Also at International Islamic University of Malaysia, Kuala Lumpur, Malaysia 32: Also at Malaysian Nuclear Agency, MOSTI, Kajang, Malaysia 33: Also at Consejo Nacional de Ciencia y Tecnolog a, Mexico city, Mexico 34: Also at Warsaw University of Technology, Institute of Electronic Systems, Warsaw, Poland 35: Also at Institute for Nuclear Research, Moscow, Russia 36: Now at National Research Nuclear University 'Moscow Uzbekistan 37: Also at Institute of Nuclear Physics of the Uzbekistan Academy of Sciences, Tashkent, 38: Also at St. Petersburg State Polytechnical University, St. Petersburg, Russia 39: Also at University of Florida, Gainesville, U.S.A. 40: Also at P.N. Lebedev Physical Institute, Moscow, Russia 41: Also at California Institute of Technology, Pasadena, U.S.A. 42: Also at Budker Institute of Nuclear Physics, Novosibirsk, Russia 43: Also at Faculty of Physics, University of Belgrade, Belgrade, Serbia 44: Also at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia 45: Also at Scuola Normale e Sezione dell'INFN, Pisa, Italy 46: Also at National and Kapodistrian University of Athens, Athens, Greece 47: Also at Riga Technical University, Riga, Latvia 48: Also at Universitat Zurich, Zurich, Switzerland 49: Also at Stefan Meyer Institute for Subatomic Physics (SMI), Vienna, Austria 50: Also at Gaziosmanpasa University, Tokat, Turkey 51: Also at Istanbul Aydin University, Istanbul, Turkey 52: Also at Mersin University, Mersin, Turkey 53: Also at Cag University, Mersin, Turkey 55: Also at Izmir Institute of Technology, Izmir, Turkey 56: Also at Necmettin Erbakan University, Konya, Turkey 57: Also at Marmara University, Istanbul, Turkey 58: Also at Kafkas University, Kars, Turkey 59: Also at Istanbul Bilgi University, Istanbul, Turkey 60: Also at Rutherford Appleton Laboratory, Didcot, United Kingdom 61: Also at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom 62: Also at Instituto de Astrof sica de Canarias, La Laguna, Spain 63: Also at Utah Valley University, Orem, U.S.A. 64: Also at Beykent University, Istanbul, Turkey 65: Also at Bingol University, Bingol, Turkey 66: Also at Erzincan University, Erzincan, Turkey 67: Also at Sinop University, Sinop, Turkey 68: Also at Mimar Sinan University, Istanbul, Istanbul, Turkey 69: Also at Texas A&M University at Qatar, Doha, Qatar 70: Also at Kyungpook National University, Daegu, Korea [24] P. Skands , S. Carrazza and J. Rojo , Tuning PYTHIA 8 . 1: the Monash 2013 Tune, Eur . [25] J. Alwall et al., The automated computation of tree-level and next-to-leading order [26] R. Frederix and S. Frixione , Merging meets matching in MC@NLO , JHEP 12 ( 2012 ) 061 [28] S. Alioli , P. Nason , C. Oleari and E. Re, NLO single-top production matched with shower in POWHEG: s- and t-channel contributions , JHEP 09 ( 2009 ) 111 [Erratum ibid . 02 ( 2010 ) [42] M. Cacciari , G.P. Salam and G. Soyez, FastJet user manual , Eur. Phys. J. C 72 ( 2012 ) 1896 [43] M. Cacciari and G.P. Salam , Pileup subtraction using jet areas , Phys. Lett. B 659 ( 2008 ) 119 [49] M. Bahr et al., HERWIG++ physics and manual , Eur. Phys. J. C 58 ( 2008 ) 639 [50] G. Cowan , K. Cranmer , E. Gross and O. Vitells , Asymptotic formulae for likelihood-based tests of new physics , Eur. Phys. J. C 71 ( 2011 ) 1554 [Erratum ibid . C 73 ( 2013 ) 2501] [51] L. Lyons , D. Gibaut and P. Cli ord, How to combine correlated estimates of a single physical quantity , Nucl. Instrum. Meth. A 270 ( 1988 ) 110 [INSPIRE]. [52] A. Valassi and R. Chierici , Information and treatment of unknown correlations in the combination of measurements using the BLUE method , Eur. Phys. J. C 74 ( 2014 ) 2717 [53] L. Lista , The bias of the unbiased estimator: a study of the iterative application of the BLUE method , Nucl. Instrum. Meth. A 764 ( 2014 ) 82 [Erratum ibid . A 773 ( 2015 ) 87] [54] L.A. Harland-Lang , A.D. Martin , P. Motylinski and R.S. Thorne , Parton distributions in the LHC era: MMHT 2014 PDFs, Eur . Phys. J. C 75 ( 2015 ) 204 [arXiv: 1412 .3989] [INSPIRE]. [55] S. Dulat et al., New parton distribution functions from a global analysis of quantum chromodynamics , Phys. Rev. D 93 ( 2016 ) 033006 [arXiv: 1506 .07443] [INSPIRE]. [56] S. Alekhin , J. Blumlein, S. Moch and R. Placakyte , Parton distribution functions, s and heavy-quark masses for LHC Run II, Phys . Rev. D 96 ( 2017 ) 014011 [arXiv: 1701 .05838] [57] ZEUS, H1 collaboration, H. Abramowicz et al., Combination of measurements of inclusive [62] G. Altarelli and G. Parisi , Asymptotic freedom in parton language , Nucl. Phys. B 126 ( 1977 ) [63] G. Curci , W. Furmanski and R. Petronzio , Evolution of parton densities beyond leading order: the nonsinglet case , Nucl. Phys. B 175 ( 1980 ) 27 [INSPIRE]. [64] W. Furmanski and R. Petronzio , Singlet parton densities beyond leading order , Phys. Lett. [65] S. Moch , J.A.M. Vermaseren and A. Vogt , The three loop splitting functions in QCD: the


This is a preview of a remote PDF: https://link.springer.com/content/pdf/10.1007%2FJHEP03%282018%29115.pdf

The CMS collaboration, A. M. Sirunyan, A. Tumasyan, W. Adam, F. Ambrogi, E. Asilar, T. Bergauer, J. Brandstetter, E. Brondolin, M. Dragicevic, J. Erö, M. Flechl, M. Friedl, R. Frühwirth, V. M. Ghete, J. Grossmann, J. Hrubec, M. Jeitler, A. König, N. Krammer, I. Krätschmer, D. Liko, T. Madlener, I. Mikulec, E. Pree, D. Rabady, N. Rad, H. Rohringer, J. Schieck, R. Schöfbeck, M. Spanring, D. Spitzbart, W. Waltenberger, J. Wittmann, C.-E. Wulz, M. Zarucki, V. Chekhovsky, V. Mossolov, J. Suarez Gonzalez, E. A. De Wolf, D. Di Croce, X. Janssen, J. Lauwers, M. Van De Klundert, H. Van Haevermaet, P. Van Mechelen, N. Van Remortel, S. Abu Zeid, F. Blekman, J. D’Hondt, I. De Bruyn, J. De Clercq, K. Deroover, G. Flouris, D. Lontkovskyi, S. Lowette, S. Moortgat, L. Moreels, Q. Python, K. Skovpen, S. Tavernier, W. Van Doninck, P. Van Mulders, I. Van Parijs, H. Brun, B. Clerbaux, G. De Lentdecker, H. Delannoy, G. Fasanella, L. Favart, R. Goldouzian, A. Grebenyuk, G. Karapostoli, T. Lenzi, J. Luetic, T. Maerschalk, A. Marinov, A. Randle-conde, T. Seva, C. Vander Velde, P. Vanlaer, D. Vannerom, R. Yonamine, F. Zenoni, F. Zhang, A. Cimmino, T. Cornelis, D. Dobur, A. Fagot, M. Gul, I. Khvastunov, D. Poyraz, C. Roskas, S. Salva, M. Tytgat, W. Verbeke, N. Zaganidis, H. Bakhshiansohi, O. Bondu, S. Brochet, G. Bruno, C. Caputo, A. Caudron, S. De Visscher, C. Delaere, M. Delcourt, B. Francois, A. Giammanco, A. Jafari, M. Komm, G. Krintiras, V. Lemaitre, A. Magitteri, A. Mertens, M. Musich, K. Piotrzkowski, L. Quertenmont, M. Vidal Marono, S. Wertz, N. Beliy, W. L. Aldá Júnior, F. L. Alves, G. A. Alves, L. Brito, M. Correa Martins Junior, C. Hensel, A. Moraes, M. E. Pol, P. Rebello Teles, E. Belchior Batista Das Chagas, W. Carvalho, J. Chinellato, A. Custódio, E. M. Da Costa, G. G. Da Silveira, D. De Jesus Damiao, S. Fonseca De Souza, L. M. Huertas Guativa, H. Malbouisson, M. Melo De Almeida, C. Mora Herrera, L. Mundim, H. Nogima, A. Santoro, A. Sznajder, E. J. Tonelli Manganote, F. Torres Da Silva De Araujo, A. Vilela Pereira, S. Ahuja, C. A. Bernardes, T. R. Fernandez Perez Tomei, E. M. Gregores, P. G. Mercadante, S. F. Novaes, Sandra S. Padula, D. Romero Abad, J. C. Ruiz Vargas, A. Aleksandrov, R. Hadjiiska, P. Iaydjiev, M. Misheva, M. Rodozov, M. Shopova, S. Stoykova, G. Sultanov, A. Dimitrov, I. Glushkov, L. Litov, B. Pavlov, P. Petkov, W. Fang, X. Gao, M. Ahmad, J. G. Bian, G. M. Chen, H. S. Chen, M. Chen, Y. Chen, C. H. Jiang, D. Leggat, H. Liao, Z. Liu, F. Romeo, S. M. Shaheen, A. Spiezia, J. Tao, C. Wang, Z. Wang, E. Yazgan, H. Zhang, S. Zhang, J. Zhao, Y. Ban, G. Chen, Q. Li, S. Liu, Y. Mao, S. J. Qian, D. Wang, Z. Xu, C. Avila, A. Cabrera, L. F. Chaparro Sierra, C. Florez, C. F. González Hernández, J. D. Ruiz Alvarez, B. Courbon, N. Godinovic, D. Lelas, I. Puljak, P. M. Ribeiro Cipriano, T. Sculac, Z. Antunovic, M. Kovac, V. Brigljevic, D. Ferencek, K. Kadija, B. Mesic, A. Starodumov, T. Susa, M. W. Ather, A. Attikis, G. Mavromanolakis, J. Mousa, C. Nicolaou, F. Ptochos, P. A. Razis, H. Rykaczewski, M. Finger, M. Finger, E. Carrera Jarrin, Y. Assran, M. A. Mahmoud, A. Mahrous, R. K. Dewanjee, M. Kadastik, L. Perrini, M. Raidal, A. Tiko, C. Veelken, P. Eerola, J. Pekkanen, M. Voutilainen, J. Härkönen, T. Järvinen, V. Karimäki, R. Kinnunen, T. Lampén, K. Lassila-Perini, S. Lehti, T. Lindén, P. Luukka, E. Tuominen, J. Tuominiemi, E. Tuovinen, J. Talvitie, T. Tuuva, M. Besancon, F. Couderc, M. Dejardin, D. Denegri, J. L. Faure, F. Ferri, S. Ganjour, S. Ghosh, A. Givernaud, P. Gras, G. Hamel de Monchenault, P. Jarry, I. Kucher, E. Locci, M. Machet, J. Malcles, G. Negro, J. Rander, A. Rosowsky, M. Ö. Sahin, M. Titov, A. Abdulsalam, I. Antropov, S. Baffioni, F. Beaudette, P. Busson, L. Cadamuro, C. Charlot, R. Granier de Cassagnac, M. Jo, S. Lisniak, A. Lobanov, J. Martin Blanco, M. Nguyen, C. Ochando, G. Ortona, P. Paganini, P. Pigard, S. Regnard, R. Salerno, J. B. Sauvan, Y. Sirois, A. G. Stahl Leiton, T. Strebler, Y. Yilmaz, A. Zabi, A. Zghiche, J.-L. Agram, J. Andrea, D. Bloch, J.-M. Brom, M. Buttignol, E. C. Chabert, N. Chanon, C. Collard, E. Conte, X. Coubez, J.-C. Fontaine, D. Gelé, U. Goerlach, M. Jansová, A.-C. Le Bihan, N. Tonon, P. Van Hove, S. Gadrat, S. Beauceron, C. Bernet, G. Boudoul, R. Chierici, D. Contardo, P. Depasse, H. El Mamouni, J. Fay, L. Finco, S. Gascon, M. Gouzevitch, G. Grenier, B. Ille, F. Lagarde, I. B. Laktineh, M. Lethuillier, L. Mirabito, A. L. Pequegnot, S. Perries, A. Popov, V. Sordini, M. Vander Donckt, S. Viret, A. Khvedelidze, D. Lomidze, C. Autermann, S. Beranek, L. Feld, M. K. Kiesel, K. Klein, M. Lipinski, M. Preuten, C. Schomakers, J. Schulz, T. Verlage, V. Zhukov, A. Albert, E. Dietz-Laursonn, D. Duchardt, M. Endres, M. Erdmann, S. Erdweg, T. Esch, R. Fischer, A. Güth, M. Hamer, T. Hebbeker, C. Heidemann, K. Hoepfner, S. Knutzen, M. Merschmeyer, A. Meyer, P. Millet, S. Mukherjee, M. Olschewski, K. Padeken, T. Pook, M. Radziej, H. Reithler, M. Rieger, F. Scheuch, D. Teyssier, S. Thüer. Measurement of the inclusive $$ \mathrm{t}\overline{\mathrm{t}} $$ cross section in pp collisions at s=5.02$$ \sqrt{s}=5.02 $$ TeV using final states with at least one charged lepton, Journal of High Energy Physics, 2018, 115, DOI: 10.1007/JHEP03(2018)115