Search for supersymmetry in events with at least three electrons or muons, jets, and missing transverse momentum in proton-proton collisions at $$ \sqrt{s}=13 $$ TeV

Journal of High Energy Physics, Feb 2018

The CMS collaboration, A. M. Sirunyan, A. Tumasyan, W. Adam, F. Ambrogi, E. Asilar, T. Bergauer, J. Brandstetter, E. Brondolin, M. Dragicevic, et al.

A PDF file should load here. If you do not see its contents the file may be temporarily unavailable at the journal website or you do not have a PDF plug-in installed and enabled in your browser.

Alternatively, you can download the file locally and open with any standalone PDF reader:

https://link.springer.com/content/pdf/10.1007%2FJHEP02%282018%29067.pdf

Search for supersymmetry in events with at least three electrons or muons, jets, and missing transverse momentum in proton-proton collisions at $$ \sqrt{s}=13 $$ TeV

HJE 13 TeV momentum in proton-proton collisions at A search for new physics is carried out in events with at least three electrons or muons in any combination, jets, and missing transverse momentum. Results are based on the sample of proton-proton collision data produced by the LHC at a center-of-mass energy of 13 TeV and collected by the CMS experiment in 2016. The data sample analyzed corresponds to an integrated luminosity of 35.9 fb 1. Events are classi ed according to the number of b jets, missing transverse momentum, hadronic transverse momentum, and the invariant mass of same- avor dilepton pairs with opposite charge. No signi cant excess above the expected standard model background is observed. Exclusion limits at 95% condence level are computed for four di erent supersymmetric simpli ed models with pair production of gluinos or third-generation squarks. In the model with gluino pair production, with subsequent decays into a top quark-antiquark pair and a neutralino, gluinos with masses smaller than 1610 GeV are excluded for a massless lightest supersymmetric particle. In the case of bottom squark pair production, the bottom squark masses are excluded up to 840 GeV for charginos lighter than 200 GeV. For a simpli ed model of heavy top squark pair production, the et2 mass is excluded up to 720, 780, or 710 GeV for models with an exclusive et2 ! et1H decay, an exclusive et2 ! et1Z decay, or an equally probable mix of those two decays. In order to provide a simpli ed version of the analysis for easier interpretation, a small set of aggregate signal regions also has been de ned, providing a compromise between simplicity and analysis sensitivity. Hadron-Hadron scattering (experiments); Supersymmetry; Lepton produc- - The CMS collaboration 1 Introduction 2 3 4 5 6 7 8 Search strategy Background estimation Systematic uncertainties Results Conclusions The CMS collaboration The CMS detector Event selection criteria and Monte Carlo simulation at a center-of-mass energy of 13 TeV throughout 2016, is used. Results of this analysis are interpreted in the context of supersymmetric (SUSY) models [26{34]. Supersymmetry is an extension of the SM that predicts a SUSY partner for every SM particle by introducing a new symmetry between bosons and fermions. It can potentially provide solutions to questions left open by the SM, such as the hierarchy problem and the nature of dark matter. More speci cally, models in which R-parity [31] is conserved, whereby SUSY particles are produced only in pairs, can include a dark matter candidate in the form of a stable and undetectable lightest SUSY particle (LSP). In the models considered in this paper, the LSP is assumed to be the lightest neutralino (a mixture of the superpartners of the Higgs and Z bosons, and of the photon). { 1 { p p p p g e g e eb1 eb1 χ− e1 χ+ e1 t t t t t χ0 e1 χ0 e1 W− χ0 e1 χ0 e1 W+ p p p p g e g e et2 et2 0 χ e2 χ± e1 et1 et1 q q′ q q Z(H) Z χ0 e1 χ0 e1 W± t t χ0 e1 χ0 e1 H(Z) mass of the e01 ples for SUSY processes that can give rise to multilepton nal states are shown in gure 1. Throughout this paper lepton refers to an electron or a muon. The models under consideration in this analysis feature the pair production of gluinos, eg, or third generation squarks, be1 or et2, superpartners of gluons and third generation quarks, respectively, for a wide spectrum of possible masses. A typical process predicted by SUSY models consists of gluino pair production with each gluino decaying to a top quark pair, tt, and an LSP, e01 ( gure 1, upper left), or to a pair of quarks and a neutralino, e02, or chargino, e1 . The latter would then decay into a Z or W boson, and an LSP ( gure 1, upper right). The rst model is referred to as T1tttt and the second one as T5qqqqVV throughout this paper. Other models feature bottom squark, be1, pair production, with subsequent cascade decays resulting in top quarks, W bosons and LSPs ( gure 1, lower left) or pair production of the heaviest of the two top squark states, et2, with subsequent decays to top quarks, Higgs or Z bosons, and LSPs ( gure 1, lower right). The latter process allows a challenging scenario tralino, to be probed in which the mass di erence between the lighter top squark, et1, and the neuas T6ttWW and T6ttHZ, respectively. Through the decays of W, Z or Higgs bosons these e01, is close to the mass of the top quark [36, 37]. These two models are denoted processes can result in several leptons. In addition to the presence of multiple leptons, these models predict events with multiple jets and missing transverse momentum, largely induced by the undetected LSPs. The SUSY particles that are not directly included in the diagrams are assumed to be too heavy to be accessible at the LHC. Therefore, the only free parameters in these models are the mass of the produced gluinos or squarks, the masses of the possible intermediate particles in the decay chain, like e20 or e1 , and the { 2 { responding to an integrated luminosity of 36.1 fb 1, gluinos with masses up to 1870 GeV can be excluded [38] assuming the model depicted in gure 1 (upper left). A comparable search at the same center-of-mass energy with the CMS detector in 2015, based on a data sample corresponding to an integrated luminosity of 2.3 fb 1, excluded gluino masses below 1175 GeV [39]. The current analysis improves upon the one performed with the data collected in 2015 with a more advanced strategy that exploits the transverse mass reconstructed with a lepton and the missing transverse momentum vector. Taking into account that approximately 15 times more data were collected in 2016, a new control region dominated by events from the ttZ process and a new interpretation of the results based on a T6ttHZ model also were added. 2 The CMS detector The CMS detector features a superconducting solenoid with an internal diameter of 6 m that creates a magnetic eld of 3.8 T. Inside the magnet volume are a silicon pixel and strip tracker, an electromagnetic calorimeter (ECAL) made of lead tungstate crystals, and a hadronic calorimeter (HCAL) made of brass and scintillator material, each composed of a barrel and two endcap sections. Forward calorimeters extend the pseudorapidity ( ) coverage for the HCAL. In the barrel section of the ECAL, an energy resolution of about 1% is achieved for unconverted or late-converting photons in the tens of GeV energy range. The remaining barrel photons have a resolution of about 1.3% up to j j = 1, rising to about 2.5% at j j = 1:4. In the endcaps, the resolution of unconverted or late-converting photons is about 2.5%, while the remaining endcap photons have a resolution between 3 and 4% [40]. When combining information from the entire detector, the jet energy resolution amounts typically to 15% at 10 GeV, 8% at 100 GeV, and 4% at 1 TeV, to be compared to about 40%, 12%, and 5% obtained when the ECAL and HCAL calorimeters alone are used. Muons are measured in the range j j < 2:4, with detection planes made using three technologies: drift tubes, cathode strip chambers, and resistive plate chambers. Matching muons to tracks measured in the silicon tracker results in a relative transverse momentum resolution for muons with 20 < pT < 100 GeV of 1.3{2.0% in the barrel and better than 6% in the endcaps, The pT resolution in the barrel is better than 10% for muons with pT up to 1 TeV [41]. The rst level of the CMS trigger system [42], composed of specialized hardware processors, uses information from the calorimeters and muon detectors to select the most interesting events in a xed time interval of less than 4 s. The high-level trigger (HLT) processor farm further decreases the event rate from approximately 100 kHz to around 1 kHz, before the storage of the data. A more detailed description of the CMS detector, together with a de nition of the coordinate system used and the relevant kinematic variables, can be found in [43]. 3 Event selection criteria and Monte Carlo simulation Events are reconstructed using the particle ow, PF, algorithm [44], which reconstructs and identi es each individual particle with an optimized combination of information from the { 3 { p ( various elements of the CMS detector. The objects identi ed as particles by this algorithm are commonly referred to as PF candidates. Jets are clustered from PF candidates using the anti-kT algorithm [45, 46] with a distance parameter of 0.4. Only jets with transverse momentum (pT) larger than 30 GeV falling within j j < 2:4 are considered. To avoid double counting, the closest matching jets to leptons are not considered if they are separated from the lepton by less than 0.4 in R )2 + ( )2. Here and are the di erences in and azimuthal angle ( , in radians) between the considered lepton and a given jet. Additional criteria are applied to reject events containing noise and mismeasured jets. Jet energy scale (JES) corrections are applied to correct simulated jets for residual di erences with data [47, 48]. T in an event [51, 52]. The combined secondary vertex algorithm CSVv2 [49, 50] is used to assess the likelihood that a jet originates from a bottom quark. The tagging e ciency for true b avor jets is typically 70% and the misidenti cation probabilities are 10% and 1% for c quark and light- avor jets, respectively. Jets with pT > 25 GeV and within j j < 2:4 are considered for b tagging. Another variable related to jets that is used throughout this analysis is the scalar sum of the transverse momenta of all jets, de ned as HT = P have pT > 30 GeV. The missing transverse momentum pmiss is de ned as the magnitude of T p~miss, the negative vector sum of the transverse momenta all PF candidates reconstructed jets pT, where jets Electron candidates are reconstructed using tracking and ECAL information, by combining the clusters of energy deposits in the ECAL with Gaussian sum lter tracks [53]. The electron identi cation is performed using a multivariate discriminant built with shower shape variables, track-cluster matching variables, and track quality variables. The algorithm is optimized to select electrons from the decay of W and Z bosons with a 90% e ciency while rejecting electron candidates originating from jets. To reject electrons originating from photon conversions inside the detector, electrons are required to have all possible measurements in the innermost tracker layers and to be incompatible with any conversion-like secondary vertices. The identi cation of the muon is performed using the quality of the matching between the measurements of the tracker and the muon system [41]. The muon identi cation e ciency is at least 96%, with some variation depending on pT and . The reconstructed vertex with the largest value of summed physics object p2T is taken to be the primary pp interaction vertex. The physics objects are the objects returned by a jet nding algorithm [45, 46] applied to all charged tracks associated with the vertex, plus the corresponding associated missing transverse momentum. Both muon and electron candidates are required to have a transverse impact parameter smaller than 0.5 mm with respect to the primary vertex and a longitudinal impact parameter smaller than 1 mm. In addition, a selection on the three-dimensional impact parameter signi cance, de ned as the value of impact parameter divided by its uncertainty, is applied. This value has to be smaller than 4 for both electrons and muons. Additional information about the isolation of the lepton is necessary to discriminate between leptons originating from decays of heavy particles such as W and Z bosons (\prompt" leptons) and those produced in hadron decays or jets misidenti ed as leptons (\nonprompt" leptons). The lepton isolation criterion is constructed using three di erent variables. { 4 { HJEP02(18)67 The relative isolation, Irel, is de ned as the ratio of the amount of energy measured in a cone around the lepton to the pT of the lepton, p`T, with a p`T-dependent radius [54]: R 10 GeV min(max(p`T; 50 GeV); 200 GeV) : (3.1) Requiring Irel below a given threshold ensures that the lepton is locally isolated, even in Lorentz-boosted topologies. The second isolation variable is the ratio of the lepton pT and that of the jet geometrically closest to the lepton: pratio = p`T=pjTet. In most cases this is the jet containing the T lepton. If no jet is found within a cone de ned by R < 0:4, the ratio is set to 1. The use of prTatio provides a way to identify nonprompt low-pT leptons originating from low-pT b jets, which decay with a larger opening angle than the one used in Irel. The last variable used in the isolation criteria of leptons is prTel, de ned as the magnitude of the component of the lepton momentum perpendicular to the axis of the closest jet. The jet axis is obtained by subtracting the momentum vector of the lepton from that of the jet. If no matched jet is found around the lepton, the variable is set to 0. This variable allows the recovery of leptons from accidental overlap with jets in Lorentz-boosted topologies. For the calculation of prTel and the previously mentioned pratio, jets with pT > 5 GeV and T without any additional identi cation criteria are considered. Using those three variables, a lepton is considered isolated if the following condition is ful lled: Irel < I1 AND (prTatio > I2 OR prTel > I3): (3.2) The values of I1, I2, and I3 depend on the avor of the lepton; the probability to misidentify a jet as a lepton is higher for electrons than for muons, so tighter isolation values are used for the former. For electrons (muons), the tight selection requirements are I1 = 0:12 (0.16), I2 = 0:76 (0.69), and I3 = 7:2 (6.0) GeV. The isolation requirement for leptons to pass the loose working point of the selection is signi cantly relaxed, only consisting of Irel < 0:4. Events used in this analysis are required to pass trigger selection criteria that target dilepton and multilepton events. The following two sets of triggers are used in a logic OR con guration. One set of triggers requires that the two leptons satisfy loose isolation criteria and that the highest-pT (leading) lepton have pT > 23 (17) GeV and the second highest-pT (sub-leading) lepton have pT > 12 (8) GeV for muons (electrons). The second set of triggers places no requirements on the isolation, has a lower pT threshold for both leptons (pT > 8 GeV), and requires the HT reconstructed in the trigger to be greater than 300 GeV. With the thresholds on the pT of the leptons and on the HT applied, the e ciency per event is near 100%. The selection requires the presence of at least three well-identi ed leptons in the event. The leptons must satisfy pT thresholds that depend on the lepton avor and the amount of hadronic activity in the event. For events with low hadronic activity (HT < 400 GeV), the leading electron (muon) must satisfy pT > 25 (20) GeV and sub-leading electrons (muons) must satisfy pT > 15 (10) GeV. In events with high hadronic activity (HT > 400 GeV), { 5 { lepton pairs are required to have an invariant mass (m``) greater than 12 GeV to suppress Drell-Yan and quarkonium processes. In order to estimate the contribution from SM processes with prompt leptons in the signal regions and to calculate the predicted yields from new physics models, Monte Carlo (MC) simulations are used. The MadGraph5 amc@nlov2.2.2 or v2.3.3 generator [55] was used to simulate events for the tt, W and tWZ processes, at leading order (LO), and for ttZ, ttW, tZq, tHq, tHW, WWZ, WZZ, ZZZ, tt , and Z nal states, at next-to-leading order (NLO) in perturbative quantum chromodynamics. The NLO powheg v2 [56] generator is exploited for the ttH [57] and diboson [58, 59] production. The NNPDF3.0LO [60] parton distribution functions (PDFs) are used for the simulated samples generated at LO and the NNPDF3.0NLO [60] PDFs for those generated at NLO. Parton showering and hadronization are simulated using the pythia v8.212 generator [61] with the CUETP8M1 tune [62, 63]. A double-counting of the partons generated with MadGraph5 amc@nloand those with pythia is removed using the MLM [64] and the FxFx [65] matching schemes, in the LO and NLO samples, respectively. The CMS detector response is modeled using a Geant4-based model [66]. The simulated samples include additional simultaneous interactions per bunch crossing (pileup), with distributions that are weighted to match the observed data. Monte Carlo simulation of signal events used for interpretation of the nal results is done with the MadGraph5 amc@nlo program at LO precision, allowing for up to two additional partons in the calculation of the matrix elements. The SUSY particle decays, parton showering, and hadronization are simulated with pythia v8.212. The detector response for signal events is simulated using a CMS fast-simulation package [67] that is validated with respect to the Geant4-based model. All simulated events are processed with the same reconstruction procedure as data. Cross sections for SUSY signal processes, calculated at NLO with next-to-leading-logarithmic (NLL) resummation, were provided by the LHC SUSY Cross section Working Group [68{73]. 4 Search strategy A baseline selection is applied to the dataset containing events of interest: three or more electrons or muons, at least two jets (Njets 2), pTmiss 50 GeV, and m`` 12 GeV for all opposite-charge, same- avor lepton pairs. All these requirements are listed in table 1. Two di erent regions are de ned, based on whether or not an event contains an oppositecharge, same- avor lepton pair with an invariant mass within the 15 GeV window around the Z boson mass [74]. If such a lepton pair is found the event is categorized as \on-Z", otherwise \o -Z". Events are further categorized into signal regions, which are de ned according to several event observables: Nb jets, HT, pTmiss, m``, as well as the transverse mass reconstructed with a lepton and the missing transverse momentum vector, MT = r 2p`TpTmiss h1 cos ` p~Tmiss : i { 6 { (4.1) Number of selected leptons 2 >12 >50 (70 in low Nb jets and low HT category) If the event is categorized as on-Z, the MT is calculated with the lepton that is not involved in the Z boson mass reconstruction, otherwise the lepton yielding the lowest MT value (MTmin) is used in the computation of this variable. The classi cation of selected events based on the number of b jets creates signal regions with high signal-to-background ratios for events from di erent signal models. For example, the T1tttt model features several b jets, which would be categorized into signal regions that are almost free of the leptonic WZ background owing to the b jet requirements. Including the 0 b jet signal regions keeps the analysis sensitive to signatures without b jets, such as T5qqqqVV model. Additionally, a categorization in HT and pmiss is useful to distinguish T between compressed and noncompressed SUSY spectra, i.e. models with small or large mass di erences between the SUSY particles in the decay chain. category is split, depending on the number of b jets (0, 1 and 2), the value of HT (greater or lower than 400 GeV), and pmiss (greater or lower than 150 GeV). These SRs are denoted as SR 1-12. Motivated by the low expected yield of events with high b jet multiplicities, one inclusive SR with pmiss < 300 GeV and HT < 600 GeV has been de ned for T 3 b jets (SR 13), and additionally to this three SRs with signi cant amounts of HT (>600 GeV, SRs 14, 15) or pTmiss (>300 GeV, SR 16) have been introduced, since various noncompressed SUSY models yield very high values for these variables. These latter three regions are inclusive in the number of b jets. All of the 0 b jet regions, as well as three regions with high HT and pmiss values, are further split depending whether MT is smaller (designated with the letter T \a" after the region number) or greater (designated with \b") than 120 GeV, leading to a total of 23 regions for each of the o -Z and on-Z categories. In the on-Z regions with 0 or 1 b jet and 60 < HT < 400 GeV, the pmiss lower bound is raised to 70 GeV to completely T suppress the contribution from the Drell-Yan process. In order to provide a simpli ed version of the analysis for easier interpretation, a small set of aggregate signal regions has been de ned, providing a compromise between simplicity and analysis sensitivity. The de nition of these so-called super signal regions (SSR) is given in table 3. The additional requirement MT greater than 120 GeV was added to the SSRs with respect to the relevant SRs. 5 Background estimation All backgrounds leading to the multilepton nal states targeted by this analysis can be subdivided into the categories listed below. { 7 { HT [GeV] 50(70) pmiss < 150 GeV 150 T inclusive 50 to 70 GeV only for the on-Z SR1 and SR5. Signal regions that are further subdivided at MT = 120 GeV are indicated with y. The search regions are mirrored for on- and o -Z categories. HJEP02(18)67 of b jets, along with additional simultaneous requirements on MT, pTmiss, and HT. Nonprompt leptons are leptons from heavy- avor decays, misidenti ed hadrons, muons from light-meson decays in ight, or electrons from unidenti ed photon conversions. In this analysis tt events can enter the signal regions if nonprompt leptons are present in addition to the prompt leptons from the W boson decays. Top quark pair production gives the largest contribution for regions with low HT and pmiss values, and therefore predominately T populates signal regions 1 and 5, with 0 and 1 b jet, respectively. Apart from tt, Drell T Yan events can enter the baseline selection. However, they are largely suppressed by the pmiss > 50 GeV selection, and additional rejection is achieved by increasing the pmiss requirement to 70 GeV for on-Z regions with low HT and low pmiss. Processes that yield T only one prompt lepton in addition to nonprompt ones, such as W+jets and various single T top quark channels, are e ectively suppressed by the three-lepton requirement because of the low probability that two nonprompt leptons satisfy the tight identi cation and isolation requirements. Albeit small, this contribution is nevertheless accounted for in our method to estimate the background due to nonprompt leptons (see below). Diboson production can yield multilepton nal states with up to three prompt leptons (WZ or W ) and up to four prompt leptons (ZZ or Z ), rendering irreducible backgrounds for this analysis. For simplicity, in the following we refer to these backgrounds as WZ and ZZ, respectively. The WZ production has a sizable contribution in the on-Z events, especially in the SRs without b jets. The yields of these backgrounds in the various SRs are estimated by means of MC simulation, with the normalization factors derived from control regions in data. { 8 { Other rare SM processes that can yield three or more leptons are ttW, ttZ, and triboson production. We also include the contribution from the SM Higgs boson produced in association with a vector boson or a pair of top quarks in this category of backgrounds, as well as processes that produce additional leptons from internal conversions, which are events that contain a virtual photon that decays to leptons. The internal conversion background components, X+ , are strongly suppressed by the pmiss > 50 GeV and Njets T 2 requirements. The background events containing top quark(s) in association with a W, Z or Higgs boson or another pair of top quarks are denoted as ttX, except for ttZ which is separately delineated. For the estimation of the latter process, the same strategy as for the WZ is used. All other processes are grouped into one category that is denoted as rare SM processes. The contribution from these processes as well as ttX are estimated from MC simulation. The background contribution from nonprompt leptons is estimated using the tight-toloose ratio method [54]. In this method, the yield is estimated in an application region that is similar to the signal region but which contains at least one lepton that fails the tight identi cation and isolation requirements but satis es the loose requirements. The events in this region are weighted by f =(1 f ), where the tight-to-loose ratio f is the probability that a loosely identi ed lepton also satis es the full set of requirements. This ratio is measured as a function of lepton pT and in a control sample of multijet events that is enriched in nonprompt leptons (measurement region). In this region, we require exactly one lepton, satisfying the loose object selection, and one recoiling jet with R(jet; `) > 1:0 and pT > 30 GeV in the event. To suppress processes that can contribute prompt leptons from a W or Z boson decay, such as W(+jets), DY or tt, we additionally require both pmiss and MT to be below 20 GeV. The remaining contribution from these processes within the measurement region is estimated from MC simulation and subsequently subtracted from T the data. In order to reduce the dependence of the tight-to-loose ratio on the avor composition of the jets from which the nonprompt leptons originate, this ratio is parameterized as a function of a variable that correlates more strongly with the mother parton pT than with the lepton pT. This variable is calculated by correcting the lepton pT as a function of the energy in the isolation cone around it. This de nition leaves the pT of the leptons satisfying the tight isolation criteria unchanged and modi es the pT of those failing these criteria so that it is a better proxy for the mother parton pT and results in a smaller variation as a function of the mother parton pT. The avor dependence, which is much more important for the case of electrons, is further reduced by adjusting the loose electron selection to obtain similar f values for nonprompt electrons that originate from light- or heavy- avor jets. As a result, the tight-to-loose ratio measured in a multijet sample leads to a good description of nonprompt background originating from tt events, which in most of the SR are dominant in this category of background. The tight-to-loose ratio method for estimating the nonprompt background is validated both in a closure test in simulation and in a data control region orthogonal to the baseline selection with minimal signal contamination. This region is de ned by the requirement of three leptons that satisfy the nominal identi cation, isolation, and pT selection, one or two { 9 { jets, 30 < pmiss < 50 GeV, and no dilepton pair with an invariant mass compatible with an agreement of the order of 20{30% between the predicted and observed yields in this control region. The WZ process is one of the main backgrounds in the regions with 0 b jets, while ttZ gives a signi cant contribution in categories enriched in b jets. As mentioned earlier, the contribution of these backgrounds is estimated from simulation, but their normalizations are obtained from a simultaneous t using two control regions, designed so that each is highly enriched in one of the processes. The WZ control region is de ned by the requirement of three leptons satisfying the nominal identi cation and isolation selections. Two leptons have to form an opposite charge, same avor pair with jm`` mZj < 15 GeV, the number of jets and b jets has to be 1 and 0, respectively. The pmiss has to be in the range 30 < pmiss < 100 GeV, and MT is required to be at least 50 GeV to suppress contamination from T the Drell-Yan process. The purity of the WZ control region is 80%. The orthogonal control T region for ttZ is de ned similarly to that for WZ, except for a requirement on the number of jets: three leptons satisfying the nominal identi cation and isolation selection are to be T found, two of them forming an opposite charge, same avor pair with jm`` mZj < 15 GeV, at least 3 jets, and 30 < pmiss < 50 GeV. Events are classi ed by the number of b jets, and three bins are formed for the ttZ CR: the 0 b jet category, where the background is dominated by the WZ and tt processes, and the 1 and 2 b jet categories, enriched in ttZ. The overall purity of the ttZ process is 20%, increasing to 50% in the bins with at least one b jet. These three bins, together with the WZ control region are used in a simultaneous t to obtain the scale factors for the normalization of the simulated samples. In the t to data, the normalization and relative population across all four bins of all the components are allowed to vary according to experimental and theoretical uncertainties. For the WZ process the obtained scale factor is compatible with unity, 1:01 0:07, and no correction is applied to the simulation, while for the ttZ it is found to be 1:14 0:28. Therefore the yields from the MC ttZ sample obtained in the baseline region are scaled by a factor of 1.14. 6 Systematic uncertainties The uncertainties in the expected SM backgrounds and signal yields are categorized as experimental, such as those related to the JES or the b tagging e ciency description in the simulation; theoretical, such as the uncertainties in the considered cross sections; statistical, related to the observed yield in control regions in data; and as uncertainties in the background estimation methods relying on control regions in data. These uncertainties and their e ect on the predicted yields are described below and summarized in table 4. One of the major experimental sources of uncertainty is the knowledge of the JES. This uncertainty a ects all simulated background and signal events. For the data set used in this analysis, the uncertainties in the jet energy scale vary from 1% to 8%, depending on the transverse momentum and pseudorapidity of the jet. The impact of these uncertainties is assessed by shifting the jet energy correction factors for each jet up and down by one standard deviation and recalculating all kinematic quantities. The systematic uncertainties 2.5 1{10 1{10 1{5 15 3 | | | | 10{100 1{10 1{20 3{18 | | | HJEP02(18)67 E ect on the backgrounds [%] E ect on signal [%] JES Pileup b tag e ciency Lepton e ciencies HLT e ciencies Nonprompt application region statistics Nonprompt extrapolation WZ control region normalization ttZ control region normalization Limited size of simulated samples ISR modeling Modeling of unclustered energy Ren., fact. scales, cross section (ttW, ttH) Ren., fact. scales, acceptance (ttW, ttZ, ttH, signal) PDFs (ttW, ttZ, ttH) Other rare backgrounds related to JES corrections are also propagated to the pmiss calculation. The propagation of the variation of the JES results in a variation of 1{10% in the predicted event yields in the various signal regions of this analysis. A similar approach is used for the uncertainties associated with the corrections for the b tagging e ciencies for light, charm and bottom avor jets, which are parameterized as a function of pT and . The variation of the scale factor correcting for the di erences between data and simulation is at a maximum of the order of 10% per jet, and leads to an overall e ect in the range of 1{10% depending on the signal region and on the topology of the event. The inaccuracy of the inelastic cross section value that a ects the pile up rate gives up to a 5% e ect. The sources of uncertainties explained here were also studied for the signal samples, and their impact on the predicted signal yields in every search region has been estimated following the same procedures. Lepton identi cation and isolation scale factors have been measured as a function of lepton pT and . They are applied to correct for residual di erences in lepton selection e ciencies between data and simulation. The corresponding uncertainties are estimated to be about 3% per lepton for both avors, and additionally 2% per lepton is assigned to the signal leptons due to the detector fast simulation. Assuming 100% correlation between the uncertainties on the corrections for the di erent leptons, a at uncertainty of 9% is taken into account for the background, while 15% is considered for the signal. The uncertainty related to the HLT trigger e ciency is evaluated to amount to 3%. For the nonprompt and misidenti ed lepton background, several systematic uncertainties are considered. The statistical uncertainty from the application region, which is used to estimate this background contribution, ranges from 10 to 100%. The regions where these uncertainties are large are generally regions where the overall contribution from this background is small. The uncertainty arising from the electroweak background subtraction in the measurement region for the tight-to-loose ratio is propagated from the uncertainty on the scale factor obtained from the t to the control regions. In the case where no events are observed in the application region, an upper limit of the background expectation is used as determined from the upper limit at 68% con dence level (CL) multiplied by the most likely tight-to-loose ratio value. The systematic uncertainty related to the extrapolation from the control regions to the signal regions for the nonprompt lepton background is estimated to be 30%. This value has been extracted from closure tests performed by applying the method described in section 5 to simulated samples containing nonprompt leptons. From the simultaneous t in the control regions, the uncertainty in the normalization of the WZ process is estimated to be 10%, while a value of 25% is found for ttZ background. The limited size of the generated MC samples represents an additional source of uncertainty. For the backgrounds that are estimated from simulation, such as ttW, ttZ and ttH, as well as for all the signal processes, this statistical uncertainty is computed from the number of MC events entering the signal regions and varies widely across the SRs. For signal e ciency calculations additional uncertainties in the description of the initial-state radiation (ISR) are taken into account. The modeling of ISR by the version of the MadGraph5 amc@nlo generator used for signal events was compared against a data sample of tt events in the dilepton nal state. The corresponding corrections range from 0.51 to 0.92, depending on the jet multiplicity. These corrections are then applied on simulated SUSY events based on the number of ISR jets to improve upon the MadGraph5 amc@nlo modeling of the multiplicity of additional jets from ISR. Half the magnitude of these ISR corrections is assigned as an additional systematic uncertainty, which can be as large as 10%. The uncertainty in potential di erences between the modeling of pmiss in data and T the fast simulation arising from unclustered energy in the CMS detector is evaluated by comparing the reconstructed pTmiss with the pTmiss obtained using generator-level information. This uncertainty ranges up to 20%. Theoretical uncertainties include the uncertainty in the renormalization ( R) and factorization ( F) scales, and in the knowledge of the PDFs. These uncertainties are evaluated for several processes, namely ttW, ttZ, and ttH, which are dominant backgrounds in several signal regions. Both the changes in the acceptance and cross sections related to these e ects are taken into account and propagated to the nal uncertainties. For the study of the renormalization and factorization uncertainties, variations up and down by a factor of two with respect to the nominal values of F and R are evaluated. The maximum di erence in the yields with respect to the nominal case is observed when both scales are varied up and down simultaneously. The e ect on the overall cross section is found to be 13% for ttW and 11% for ttH backgrounds. The e ect of the variations of F and R on the acceptance is taken as additional, uncorrelated uncertainty on the acceptance corresponding to di erent signal regions. This e ect is found to vary between 3% and 18% depending on the SR and the process. The uncertainty related to the PDFs is estimated from the 100 NNPDF 3.0 replicas, computing the deviation with respect to the nominal yield for each of them in every signal region (the cross section and acceptance e ect are considered together) [60]. The rootmean-square of the variations is taken as the value of the systematic uncertainty. Since no signi cant di erences between signal regions have been found, a at uncertainty of 3% (2%) is considered for ttW (ttZ and ttH) backgrounds. This value also includes the e ect of the strong coupling constant variation, S(MZ), which is added in quadrature. An extra, conservative, at uncertainty of 50% is assigned to the yield of the remaining rare processes, which are not well measured. 7 Comparisons between data and the predicted background of the distributions of the four event observables used for signal region categorization, namely HT, pTmiss, MT and Nb jets, as well as the lepton pT spectra, the lepton avor composition, and the event jet multiplicity are shown in gure 2 ( gure 3) for events satisfying the selection criteria of the o -Z (on-Z). yields in the individual SR bins. The same information is also presented in tables 5 and 6 for the o -Z and on-Z regions, respectively. Table 7 represents the yields in the SSRs. The number of events observed in data is found to be consistent with the predicted background yields in all 46 SRs. The results of the search are interpreted by setting limits on superpartner masses using simpli ed models. For each mass point, the observations, background predictions, and expected signal yields from all on-Z and o -Z search regions are combined to extract the minimum cross section that can be excluded at a 95% CL using the CLs method [75{77], in which asymptotic approximations for the distribution of the test-statistic, which is a ratio of pro led likelihoods, are used [78]. Log-normal nuisance parameters are used to describe the uncertainties listed in section 6. The limits are shown in gure 5 for the T1tttt model (left) and for the T5qqqqVV model (right). In the T5qqqqVV model each gluino decays to a pair of light quarks and a neutralino ( e02) or chargino ( e1 ), followed by the decay of that neutralino or chargino to a W or Z boson, respectively, and an LSP ( gure 1, top right). The probability for the decay to proceed via the e1 , + e1 , or e20 is taken to be 1/3 for each case. In this scenario, the second neutralino e20 and chargino are assumed to be mass-degenerate, with masses equal to 0:5(mg + me01 ). e The limits on the bottom squark pair production cross section are shown in gure 6. In this model, the mass of the LSP is set to 50 GeV. Finally, the limits on the et2 pair production cross section are shown in gure 7. In this scenario, the mass di erence between the et1 and the LSP is set to 175 GeV, the et1 decays via a top quark to LSP, and the et2 decays via a Z or Higgs boson to et1. We consider the reference values B(et2 ! et1Z) = 0, 50, and 100%; the sensitivity is diminished for the et1H nal state because of the additional branching factors for Higgs cascade decays to electrons or muons via gauge bosons or tau leptons. e e off-Z off-Z ttZ ttX WZ Rare t~2 → t~1H (700, 175) × 10 t~2 → t~1H (600, 425) × 10 HT80[0GeV] ttZ ttX WZ Rare t~2 → t~1H(700,175) ×10 200Leading lepton pT [GeV] 300 400 ttZ ttX WZ Rare t~2 → ~t1H (700, 175) × 10 t~2 → ~t1H (600, 425) × 10 ttZ ttX WZ Rare 4 Nb jets 5 ttZ ttX WZ Rare ttZ ttX WZ Rare t~2 → t~1H(700,175) ×10 t~2 → t~1H(600,425) ×10 G s t n e v e D D s t n e ve 800 600 400 200 V 300 CMS off-Z 100 off-Z off-Z CMS off-Z n e red 1.52 D 2 a D Nonprompt Data ttZ ttX WZ Rare ttZ ttX WZ Rare ttZ ttX WZ Rare t~2 → t~1H(700,175) ×10 t~2 → t~1H(600,425) ×10 G G 0 5 0 1 2 3 eee m(et1) = 425 GeV) scenarios. o -Z baseline selection: the number of jets and b jets, HT, MT, pmiss, the lepton pT spectra and T the event yields by avor category are shown. The background events containing top quark(s) in association with a W, Z or Higgs boson, except ttZ, or another pair of top quarks are denoted as ttX. The last bin includes the over ow events, and the hatched area represents the statistical and combined systematic uncertainties in the prediction. The lower panels show the ratio of the observed and predicted yields in each bin. For illustration the yields, multiplied by a factor 10, for two signal mass points in the T6ttHZ model, where the B(et2 ! et1H) = 100%, are displayed for non-compressed (m(et2) = 700 GeV and m(et1) = 175 GeV) and compressed (m(et2) = 600 GeV and CMS on-Z D 2 a 1 / red 1.52 D 0 a 1 / v D Nonprompt Data ttZ ttX WZ Rare ttZ ttX WZ Rare Nonprompt ttZ ttX WZ Rare t~2 → t~1Z(700,175) ×10 t~2 → t~1Z(600,550) ×10 n G n e v e e v v on-Z on-Z 8 Njets G 0 5 on-Z v v 4 1 2 3 200 400 600 ttZ ttX WZ Rare 4 Nb jets 5 ttZ ttX WZ Rare t~2 → t~1Z (700, 175) × 10 t~2 → t~1Z (600, 550) × 10 Nonprompt Data ttZ ttX WZ Rare t~2 → t~1Z (700, 175) × 10 t~2 → t~1Z (600, 550) × 10 e / s t 06G200 1 D e G 0 3 / 1 D s t e ve1000 500 V 300 CMS on-Z 100 on-Z ttZ ttX WZ Rare t~2 → t~1Z (700, 175) × 10 t~2 → t~1Z (600, 550) × 10 HT80[0GeV] ttZ ttX WZ Rare t~2 → ~t1Z (700, 175) × 10 t~2 → ~t1Z (600, 550) × 10 Nonprompt Data ttZ ttX WZ Rare t~2 → t~1Z (700, 175) × 10 t~2 → t~1Z (600, 550) × 10 μμe μee eee V 0 0 e n on-Z T 200Leading lepton pT [GeV] 300 400 baseline selection: the number of jets and b jets, HT, MT, pTmiss, the lepton pT spectra and the event yields by avor category are shown. The background events containing top quark(s) in association with a W, Z or Higgs boson, except ttZ, or another pair of top quarks are denoted as ttX. The last bin includes the over ow events, and the hatched area represents the combined statistical and systematic uncertainties in the prediction. The lower panels show the ratio of the observed and predicted yields in each bin. For illustration the yields, multiplied by a factor 10, for two signal mass points in the T6ttHZ model, where the B(et2 ! et1Z) = 100%, are displayed for non-compressed (m(et2) = 700 GeV and m(et1) = 175 GeV) and compressed (m(et2) = 600 GeV and m(et1) = 550 GeV) 10−1 3 d re 2 /p 1 a off-Z e e Data ttZ ttX WZ Rare ttZ ttX WZ Rare t ~ → t~ Z (700, 175) × 10 (right) signal regions. The background events containing top quark(s) in association with a W, Z or Higgs boson, except ttZ, or another pair of top quarks are denoted as ttX. The hatched area represents the statistical and systematic uncertainties on the prediction. The lower panels show the ratio of the observed and predicted yields in each bin. For illustration the yields, multiplied by a in the T6ttHZ model to represent compressed and non-compressed scenarios. factor 10, for et2 ! et1H (left) and et2 ! et1Z (right) decays are displayed for two signal mass points Search regions providing the best sensitivity to new physics scenarios depend on the considered models and their parameters. In the non-compressed scenario of the T1tttt model, the most sensitive region is o -Z SR16b (high pmiss and MT region). When considT ering the compressed scenario, the contribution from SR16b region remains the largest, up to the most compressed cases where the SR12 o -Z region (2 b jets, medium pmiss and high HT) starts to contribute signi cantly. For the T5qqqqVV model in the non-compressed scenario, the most sensitive regions are on-Z SR16b and SR15b (high and medium pmiss, high HT and high MT values). When moving towards more compressed scenarios, the most signi cant contributions come from the SR16b and SR15b on-Z regions, until reaching the compressed scenario where the most sensitive region is SR4b (medium pmiss, high HT and high MT). The exclusion limit for T6ttWW model is dominated by both o -Z SR16 regions (high pmiss region). For the T6ttHZ model with B(et2 ! et1Z) = 0%, the T limits in the non-compressed scenario are driven by the o -Z SR15a (high HT, medium pmiss, low MT), while for compressed case by o -Z SR13 (high Nb jets, low and medium T HT and pmiss). For B(et2 ! et1Z) = 50% in the non-compressed scenario, the on-Z SR16b T region dominates the exclusion limit, while in the compressed scenario the on-Z SR13 (high Nb jets) and SR15b (high HT, medium pmiss, high MT) give the highest contribution. Fi T nally, for B(et2 ! et1Z) = 100% the on-Z SR16b plays the leading role in both compressed and non-compressed scenarios. Inclusive 400-600 60{400 400-600 60{400 400-600 60{600 600 60 50{150 150{300 50{150 150{300 50{150 150{300 50{150 150{300 50{150 150{300 50{150 150{300 50{300 50{150 150{300 300 <120 120 <120 120 <120 120 <120 120 Inclusive Inclusive Inclusive <120 120 <120 120 <120 120 206 1:4 25:9 0:84 15:6 0:19 6:0 0:19 202 25:6 15:4 7:3 47:7 5:3 5:8 2:9 3:9 14:4 0:28 12:1 0:40 12:1 0:70 6 0:5 2:1 0:34 1:6 0:09 0:8 0:09 6 1:9 1:3 1 2:8 0:5 0:7 0:5 0:7 1:2 0:14 1:4 0:12 1:5 0:25 35 0:2 4:3 0:12 2:1 0:02 0:7 0:04 44 4:6 2:2 1:1 7:6 0:6 0:8 0:4 0:6 1:6 0:04 1:6 0:05 1:9 0:11 201 191 3 24 0 21 0 5 0 25 21 7 51 5 9 2 6 20 0 10 0 7 0 SR1a SR1b SR2a SR2b SR3a SR3b SR4a SR4b SR5 SR6 SR7 SR8 SR9 SR10 SR11 SR12 SR13 SR14a SR14b SR15a SR15b SR16a SR16b HJEP02(18)67 statistical uncertainty, while the second represents the systematic uncertainty. Inclusive 60-400 400-600 60{400 400-600 60{400 400-600 60{600 600 60 70-150 150{300 50{150 150{300 70-150 150{300 50{150 150{300 50{150 150-300 50{150 150{300 50{300 50{150 150{300 300 <120 120 <120 120 <120 120 <120 120 statistical uncertainty, while the second represents the systematic uncertainty. Nonprompt 0:63 ttZ ttX WZ Rare Total Observed 0:14 0:23 0:01 0:12 1:1 SSR1 0:38 0:06 0:04 0:01 0:06 0:4 0 0:19 0:00 taining top quark(s) in association with a W, Z or Higgs boson, except ttZ, or another pair of top quarks are denoted as ttX. The rst uncertainty states the statistical uncertainty, while the second represents the systematic uncertainty. SR1a SR1b SR2a SR2b SR3a SR3b SR4a SR4b SR5 SR6 SR7 SR8 SR9 SR10 SR11 SR12 SR13 SR14a SR14b SR15a SR15b SR16a SR16b 0:06 0:13 0:02 0:01 0:01 0:15 o i it 10−1 s o r 10−2 e p 5 o i it il m 10−1 s o r 10−2 e p T5qqqqVV (right) simpli ed models. For the latter model the branching fraction of gluino decay to neutralino or chargino is equal to 1/3 and m are to the left and below the observed and expected limit curves. The color scale indicates the excluded cross section at a given point in the mass plane. e1 = me02 = 0:5(mg + me01 ). The excluded regions e ]1400 V e ±[G11200 ∼χ m 1000 800 600 400 200 CMS it m li r p u 5 400 500 600 700 800 900 1000 1100 mb~ [GeV] 1 simpli ed model. The mass of the neutralino is set to 50 GeVe.1 The descriptions of the excluded versus meb1 plane for T6ttWW regions and color scale are the same as in gure 5. HJEP02(18)67 Phys. Lett. 49B (1974) 52 [INSPIRE]. (1974) 39 [INSPIRE]. [32] P. Fayet, Supergauge invariant extension of the Higgs mechanism and a model for the electron and its neutrino, Nucl. Phys. B 90 (1975) 104 [INSPIRE]. [35] LHC New Physics Working Group collaboration, D. Alves, Simpli ed models for LHC new physics searches, J. Phys. G 39 (2012) 105005 [arXiv:1105.2838] [INSPIRE]. [36] CMS collaboration, Search for top-squark pairs decaying into Higgs or Z bosons in pp collisions at p s = 8 TeV, Phys. Lett. B 736 (2014) 371 [arXiv:1405.3886] [INSPIRE]. [37] ATLAS collaboration, Search for direct top squark pair production in events with a Higgs or Z boson and missing transverse momentum in p detector, JHEP 08 (2017) 006 [arXiv:1706.03986] [INSPIRE]. s = 13 TeV pp collisions with the ATLAS [38] ATLAS collaboration, Search for supersymmetry in nal states with two same-sign or three leptons and jets using 36 fb 1 of p JHEP 09 (2017) 084 [arXiv:1706.03731] [INSPIRE]. s = 13 TeV pp collision data with the ATLAS detector, [39] CMS collaboration, Search for new phenomena with multiple charged leptons in s = 13 TeV, Eur. Phys. J. C 77 (2017) 635 [26] P. Ramond, Dual theory for free fermions, Phys. Rev. D 3 (1971) 2415 [INSPIRE]. [27] Yu. A. Golfand and E.P. Likhtman, Extension of the algebra of Poincare group generators and violation of p invariance, JETP Lett. 13 (1971) 323 [Pisma Zh. Eksp. Teor. Fiz. 13 (1971) 452] [INSPIRE]. proton{proton collisions at p [arXiv:1701.06940] [INSPIRE]. detector in proton-proton collisions at p [arXiv:1502.02702] [INSPIRE]. p [40] CMS collaboration, Performance of photon reconstruction and identi cation with the CMS s = 8 TeV, 2015 JINST 10 P08010 [41] CMS collaboration, Performance of CMS muon reconstruction in pp collision events at s = 7 TeV, 2012 JINST 7 P10002 [arXiv:1206.4071] [INSPIRE]. [42] CMS collaboration, The CMS trigger system, 2017 JINST 12 P01020 [arXiv:1609.02366] [43] CMS collaboration, The CMS experiment at the CERN LHC, 2008 JINST 3 S08004 [44] CMS collaboration, Particle- ow reconstruction and global event description with the CMS detector, 2017 JINST 12 P10003 [arXiv:1706.04965] [INSPIRE]. [47] CMS collaboration, Determination of jet energy calibration and transverse momentum resolution in CMS, 2011 JINST 6 P11002 [arXiv:1107.4277] [INSPIRE]. [48] CMS collaboration, Jet energy scale and resolution in the CMS experiment in pp collisions at 8 TeV, 2017 JINST 12 P02014 [arXiv:1607.03663] [INSPIRE]. [49] CMS collaboration, Identi cation of b-quark jets with the CMS experiment, 2013 JINST 8 collisions at 13 TeV, arXiv:1712.07158 [INSPIRE]. [50] CMS collaboration, Identi cation of heavy- avour jets with the CMS detector in pp [51] CMS collaboration, Performance of the CMS missing transverse momentum reconstruction in pp data at p s = 8 TeV, 2015 JINST 10 P02006 [arXiv:1411.0511] [INSPIRE]. [52] CMS collaboration, Performance of missing energy reconstruction in 13 TeV pp collision data using the CMS detector, CMS-PAS-JME-16-004 (2016). [53] CMS collaboration, Performance of electron reconstruction and selection with the CMS detector in proton-proton collisions at p [arXiv:1502.02701] [INSPIRE]. s = 8 TeV, 2015 JINST 10 P06005 [54] CMS collaboration, Search for new physics in same-sign dilepton events in proton{proton collisions at p s = 13 TeV, Eur. Phys. J. C 76 (2016) 439 [arXiv:1605.03171] [INSPIRE]. [55] J. Alwall et al., The automated computation of tree-level and next-to-leading order di erential cross sections and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE]. [56] S. Alioli, P. Nason, C. Oleari and E. Re, A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX, JHEP 06 (2010) 043 [arXiv:1002.2581] [INSPIRE]. [57] H.B. Hartanto, B. Jager, L. Reina and D. Wackeroth, Higgs boson production in association with top quarks in the POWHEG BOX, Phys. Rev. D 91 (2015) 094003 [arXiv:1501.04498] [58] T. Melia, P. Nason, R. Rontsch and G. Zanderighi, W +W , W Z and ZZ production in the POWHEG BOX, JHEP 11 (2011) 078 [arXiv:1107.5051] [INSPIRE]. [59] P. Nason and G. Zanderighi, W +W , W Z and ZZ production in the POWHEG-BOX-V2, Eur. Phys. J. C 74 (2014) 2702 [arXiv:1311.1365] [INSPIRE]. (2015) 040 [arXiv:1410.8849] [INSPIRE]. [60] NNPDF collaboration, R.D. Ball et al., Parton distributions for the LHC Run II, JHEP 04 [61] T. Sjostrand, S. Mrenna and P.Z. Skands, A brief introduction to PYTHIA 8.1, Comput. Phys. Commun. 178 (2008) 852 [arXiv:0710.3820] [INSPIRE]. Phys. J. C 74 (2014) 3024 [arXiv:1404.5630] [INSPIRE]. [62] P. Skands, S. Carrazza and J. Rojo, Tuning PYTHIA 8.1: the Monash 2013 Tune, Eur. [63] CMS collaboration, Event generator tunes obtained from underlying event and multiparton scattering measurements, Eur. Phys. J. C 76 (2016) 155 [arXiv:1512.00815] [INSPIRE]. [64] J. Alwall et al., Comparative study of various algorithms for the merging of parton showers 12 (2009) 041 [arXiv:0909.4418] [INSPIRE]. 2637 [arXiv:1105.1110] [INSPIRE]. [71] W. Beenakker et al., Soft-gluon resummation for squark and gluino hadroproduction, JHEP [73] C. Borschensky et al., Squark and gluino production cross sections in pp collisions at s = 13, 14, 33 and 100 TeV, Eur. Phys. J. C 74 (2014) 3174 [arXiv:1407.5066] [INSPIRE]. [74] Particle Data Group collaboration, C. Patrignani et al., Review of particle physics, Chin. Phys. C 40 (2016) 100001 [INSPIRE]. [75] T. Junk, Con dence level computation for combining searches with small statistics, Nucl. Instrum. Meth. A 434 (1999) 435 [hep-ex/9902006] [INSPIRE]. [76] A.L. Read, Presentation of search results: the CLs technique, J. Phys. G 28 (2002) 2693 [arXiv:0706.2569] [INSPIRE]. [arXiv:1209.6215] [INSPIRE]. Instrum. Meth. A 506 (2003) 250 [INSPIRE]. 331 (2011) 032049 [INSPIRE]. [INSPIRE]. p [INSPIRE]. [77] ATLAS and CMS collaborations and The LHC Higgs Combination Group, Procedure for the LHC Higgs boson search combination in Summer 2011, ATL-PHYS-PUB-2011-11 (2011). [78] G. Cowan, K. Cranmer, E. Gross and O. Vitells, Asymptotic formulae for likelihood-based tests of new physics, Eur. Phys. J. C 71 (2011) 1554 [Erratum ibid. C 73 (2013) 2501] [arXiv:1007.1727] [INSPIRE]. Yerevan Physics Institute, Yerevan, Armenia A.M. Sirunyan, A. Tumasyan Institut fur Hochenergiephysik, Wien, Austria W. Adam, F. Ambrogi, E. Asilar, T. Bergauer, J. Brandstetter, E. Brondolin, M. Dragicevic, J. Ero, M. Flechl, M. Friedl, R. Fruhwirth1, V.M. Ghete, J. Grossmann, J. Hrubec, M. Jeitler1, A. Konig, N. Krammer, I. Kratschmer, D. Liko, T. Madlener, I. Mikulec, D. Spitzbart, W. Waltenberger, J. Wittmann, C.-E. Wulz1, M. Zarucki Institute for Nuclear Problems, Minsk, Belarus V. Chekhovsky, V. Mossolov, J. Suarez Gonzalez Universiteit Antwerpen, Antwerpen, Belgium Haevermaet, P. Van Mechelen, N. Van Remortel Vrije Universiteit Brussel, Brussel, Belgium E.A. De Wolf, D. Di Croce, X. Janssen, J. Lauwers, M. Van De Klundert, H. Van S. Abu Zeid, F. Blekman, J. D'Hondt, I. De Bruyn, J. De Clercq, K. Deroover, G. Flouris, D. Lontkovskyi, S. Lowette, S. Moortgat, L. Moreels, Q. Python, K. Skovpen, S. Tavernier, W. Van Doninck, P. Van Mulders, I. Van Parijs Universite Libre de Bruxelles, Bruxelles, Belgium D. Beghin, H. Brun, B. Clerbaux, G. De Lentdecker, H. Delannoy, G. Fasanella, L. Favart, R. Goldouzian, A. Grebenyuk, G. Karapostoli, T. Lenzi, J. Luetic, T. Maerschalk, A. Marinov, A. Randle-conde, T. Seva, C. Vander Velde, P. Vanlaer, D. Vannerom, R. Yonamine, F. Zenoni, F. Zhang2 Ghent University, Ghent, Belgium A. Cimmino, T. Cornelis, D. Dobur, A. Fagot, M. Gul, I. Khvastunov, D. Poyraz, C. Roskas, S. Salva, M. Tytgat, W. Verbeke, N. Zaganidis Universite Catholique de Louvain, Louvain-la-Neuve, Belgium H. Bakhshiansohi, O. Bondu, S. Brochet, G. Bruno, C. Caputo, A. Caudron, S. De Visscher, C. Delaere, M. Delcourt, B. Francois, A. Giammanco, A. Jafari, M. Komm, G. Krintiras, V. Lemaitre, A. Magitteri, A. Mertens, M. Musich, K. Piotrzkowski, L. Quertenmont, M. Vidal Marono, S. Wertz Universite de Mons, Mons, Belgium N. Beliy Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil W.L. Alda Junior, F.L. Alves, G.A. Alves, L. Brito, M. Correa Martins Junior, C. Hensel, A. Moraes, M.E. Pol, P. Rebello Teles Pereira Brazil S. Ahujaa, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil E. Belchior Batista Das Chagas, W. Carvalho, J. Chinellato3, A. Custodio, E.M. Da Costa, G.G. Da Silveira4, D. De Jesus Damiao, S. Fonseca De Souza, L.M. Huertas Guativa, H. Malbouisson, M. Melo De Almeida, C. Mora Herrera, L. Mundim, H. Nogima, A. Santoro, A. Sznajder, E.J. Tonelli Manganote3, F. Torres Da Silva De Araujo, A. Vilela Universidade Estadual Paulista a, Universidade Federal do ABC b, S~ao Paulo, C.A. Bernardesa, T.R. Fernandez Perez Tomeia, E.M. Gregoresb, P.G. Mercadanteb, S.F. Novaesa, Sandra S. Padulaa, D. Romero Abadb, J.C. Ruiz Vargasa Institute for Nuclear Research and Nuclear Energym Bulgarian Academy of Sciences, So a, Bulgaria S. Stoykova, G. Sultanov A. Aleksandrov, R. Hadjiiska, P. Iaydjiev, M. Misheva, M. Rodozov, M. Shopova, University of So a, So a, Bulgaria A. Dimitrov, I. Glushkov, L. Litov, B. Pavlov, P. Petkov Beihang University, Beijing, China W. Fang5, X. Gao5 Institute of High Energy Physics, Beijing, China M. Ahmad, J.G. Bian, G.M. Chen, H.S. Chen, M. Chen, Y. Chen, C.H. Jiang, D. Leggat, H. Liao, Z. Liu, F. Romeo, S.M. Shaheen, A. Spiezia, J. Tao, C. Wang, Z. Wang, E. Yazgan, H. Zhang, S. Zhang, J. Zhao Beijing, China State Key Laboratory of Nuclear Physics and Technology, Peking University, Y. Ban, G. Chen, Q. Li, S. Liu, Y. Mao, S.J. Qian, D. Wang, Z. Xu Universidad de Los Andes, Bogota, Colombia C. Avila, A. Cabrera, L.F. Chaparro Sierra, C. Florez, C.F. Gonzalez Hernandez, J.D. Ruiz Alvarez University of Split, Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, Split, Croatia B. Courbon, N. Godinovic, D. Lelas, I. Puljak, P.M. Ribeiro Cipriano, T. Sculac University of Split, Faculty of Science, Split, Croatia Z. Antunovic, M. Kovac Institute Rudjer Boskovic, Zagreb, Croatia V. Brigljevic, D. Ferencek, K. Kadija, B. Mesic, A. Starodumov6, T. Susa University of Cyprus, Nicosia, Cyprus M.W. Ather, A. Attikis, G. Mavromanolakis, J. Mousa, C. Nicolaou, F. Ptochos, P.A. Razis, H. Rykaczewski Charles University, Prague, Czech Republic M. Finger7, M. Finger Jr.7 Universidad San Francisco de Quito, Quito, Ecuador E. Carrera Jarrin Academy of Scienti c Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt A. Ellithi Kamel8, S. Khalil9, A. Mohamed9 National Institute of Chemical Physics and Biophysics, Tallinn, Estonia R.K. Dewanjee, M. Kadastik, L. Perrini, M. Raidal, A. Tiko, C. Veelken Department of Physics, University of Helsinki, Helsinki, Finland P. Eerola, J. Pekkanen, M. Voutilainen Helsinki Institute of Physics, Helsinki, Finland J. Harkonen, T. Jarvinen, V. Karimaki, R. Kinnunen, T. Lampen, K. Lassila-Perini, S. Lehti, T. Linden, P. Luukka, E. Tuominen, J. Tuominiemi, E. Tuovinen Lappeenranta University of Technology, Lappeenranta, Finland J. Talvitie, T. Tuuva IRFU, CEA, Universite Paris-Saclay, Gif-sur-Yvette, France M. Besancon, F. Couderc, M. Dejardin, D. Denegri, J.L. Faure, F. Ferri, S. Ganjour, S. Ghosh, A. Givernaud, P. Gras, G. Hamel de Monchenault, P. Jarry, I. Kucher, E. Locci, M. Machet, J. Malcles, G. Negro, J. Rander, A. Rosowsky, M.O . Sahin, M. Titov Laboratoire Leprince-Ringuet, Ecole polytechnique, CNRS/IN2P3, Universite Paris-Saclay, Palaiseau, France A. Abdulsalam, C. Amendola, I. Antropov, S. Ba oni, F. Beaudette, P. Busson, L. Cadamuro, C. Charlot, R. Granier de Cassagnac, M. Jo, S. Lisniak, A. Lobanov, J. Martin Blanco, M. Nguyen, C. Ochando, G. Ortona, P. Paganini, P. Pigard, R. Salerno, J.B. Sauvan, Y. Sirois, A.G. Stahl Leiton, T. Strebler, Y. Yilmaz, A. Zabi, A. Zghiche Universite de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France S. Gadrat J.-L. Agram10, J. Andrea, D. Bloch, J.-M. Brom, M. Buttignol, E.C. Chabert, N. Chanon, C. Collard, E. Conte10, X. Coubez, J.-C. Fontaine10, D. Gele, U. Goerlach, M. Jansova, A.-C. Le Bihan, N. Tonon, P. Van Hove Centre de Calcul de l'Institut National de Physique Nucleaire et de Physique des Particules, CNRS/IN2P3, Villeurbanne, France Universite de Lyon, Universite Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucleaire de Lyon, Villeurbanne, France S. Beauceron, C. Bernet, G. Boudoul, R. Chierici, D. Contardo, P. Depasse, H. El Mamouni, J. Fay, L. Finco, S. Gascon, M. Gouzevitch, G. Grenier, B. Ille, F. Lagarde, I.B. Laktineh, M. Lethuillier, L. Mirabito, A.L. Pequegnot, S. Perries, A. Popov11, V. Sordini, M. Vander Donckt, S. Viret A. Khvedelidze7 Z. Tsamalaidze7 Georgian Technical University, Tbilisi, Georgia Tbilisi State University, Tbilisi, Georgia RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany C. Autermann, L. Feld, M.K. Kiesel, K. Klein, M. Lipinski, M. Preuten, C. Schomakers, J. Schulz, T. Verlage, V. Zhukov11 RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany A. Albert, E. Dietz-Laursonn, D. Duchardt, M. Endres, M. Erdmann, S. Erdweg, T. Esch, R. Fischer, A. Guth, M. Hamer, T. Hebbeker, C. Heidemann, K. Hoepfner, S. Knutzen, M. Merschmeyer, A. Meyer, P. Millet, S. Mukherjee, T. Pook, M. Radziej, H. Reithler, M. Rieger, F. Scheuch, D. Teyssier, S. Thuer RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany G. Flugge, B. Kargoll, T. Kress, A. Kunsken, J. Lingemann, T. Muller, A. Nehrkorn, A. Nowack, C. Pistone, O. Pooth, A. Stahl12 Deutsches Elektronen-Synchrotron, Hamburg, Germany M. Aldaya Martin, T. Arndt, C. Asawatangtrakuldee, K. Beernaert, O. Behnke, U. Behrens, A. Bermudez Mart nez, A.A. Bin Anuar, K. Borras13, V. Botta, A. Campbell, P. Connor, C. Contreras-Campana, F. Costanza, C. Diez Pardos, G. Eckerlin, D. Eckstein, T. Eichhorn, E. Eren, E. Gallo14, J. Garay Garcia, A. Geiser, A. Gizhko, J.M. Grados Luyando, A. Grohsjean, P. Gunnellini, M. Gutho , A. Harb, J. Hauk, M. Hempel15, H. Jung, A. Kalogeropoulos, M. Kasemann, J. Keaveney, C. Kleinwort, I. Korol, D. Krucker, W. Lange, A. Lelek, T. Lenz, J. Leonard, K. Lipka, W. Lohmann15, R. Mankel, I.-A. Melzer-Pellmann, A.B. Meyer, G. Mittag, J. Mnich, A. Mussgiller, E. Ntomari, D. Pitzl, A. Raspereza, B. Roland, M. Savitskyi, P. Saxena, R. Shevchenko, S. Spannagel, N. Stefaniuk, G.P. Van Onsem, R. Walsh, Y. Wen, K. Wichmann, C. Wissing, O. Zenaiev University of Hamburg, Hamburg, Germany S. Bein, V. Blobel, M. Centis Vignali, T. Dreyer, E. Garutti, D. Gonzalez, J. Haller, A. Hinzmann, M. Ho mann, A. Karavdina, R. Klanner, R. Kogler, N. Kovalchuk, S. Kurz, T. Lapsien, I. Marchesini, D. Marconi, M. Meyer, M. Niedziela, D. Nowatschin, F. Pantaleo12, T. Pei er, A. Perieanu, C. Scharf, P. Schleper, A. Schmidt, S. Schumann, J. Schwandt, J. Sonneveld, H. Stadie, G. Steinbruck, F.M. Stober, M. Stover, H. Tholen, D. Troendle, E. Usai, L. Vanelderen, A. Vanhoefer, B. Vormwald Institut fur Experimentelle Kernphysik, Karlsruhe, Germany M. Akbiyik, C. Barth, S. Baur, E. Butz, R. Caspart, T. Chwalek, F. Colombo, W. De Boer, A. Dierlamm, B. Freund, R. Friese, M. Gi els, D. Haitz, F. Hartmann12, S.M. Heindl, U. Husemann, F. Kassel12, S. Kudella, H. Mildner, M.U. Mozer, Th. Muller, M. Plagge, G. Quast, K. Rabbertz, M. Schroder, I. Shvetsov, G. Sieber, H.J. Simonis, R. Ulrich, S. Wayand, M. Weber, T. Weiler, S. Williamson, C. Wohrmann, R. Wolf Institute of Nuclear and Particle Physics (INPP), NCSR Demokritos, Aghia Paraskevi, Greece I. Topsis-Giotis G. Anagnostou, G. Daskalakis, T. Geralis, V.A. Giakoumopoulou, A. Kyriakis, D. Loukas, National and Kapodistrian University of Athens, Athens, Greece G. Karathanasis, S. Kesisoglou, A. Panagiotou, N. Saoulidou National Technical University of Athens, Athens, Greece K. Kousouris University of Ioannina, Ioannina, Greece I. Evangelou, C. Foudas, P. Kokkas, S. Mallios, N. Manthos, I. Papadopoulos, E. Paradas, J. Strologas, F.A. Triantis MTA-ELTE Lendulet CMS Particle and Nuclear Physics Group, Eotvos Lorand University, Budapest, Hungary M. Csanad, N. Filipovic, G. Pasztor, G.I. Veres16 Wigner Research Centre for Physics, Budapest, Hungary G. Bencze, C. Hajdu, D. Horvath17, A. Hunyadi, F. Sikler, V. Veszpremi, A.J. Zsigmond Institute of Nuclear Research ATOMKI, Debrecen, Hungary N. Beni, S. Czellar, J. Karancsi18, A. Makovec, J. Molnar, Z. Szillasi Institute of Physics, University of Debrecen, Debrecen, Hungary M. Bartok16, P. Raics, Z.L. Trocsanyi, B. Ujvari Indian Institute of Science (IISc), Bangalore, India S. Choudhury, J.R. Komaragiri National Institute of Science Education and Research, Bhubaneswar, India S. Bahinipati19, S. Bhowmik, P. Mal, K. Mandal, A. Nayak20, D.K. Sahoo19, N. Sahoo, S.K. Swain Panjab University, Chandigarh, India S. Bansal, S.B. Beri, V. Bhatnagar, R. Chawla, N. Dhingra, A.K. Kalsi, A. Kaur, M. Kaur, R. Kumar, P. Kumari, A. Mehta, J.B. Singh, G. Walia University of Delhi, Delhi, India Ashok Kumar, Aashaq Shah, A. Bhardwaj, S. Chauhan, B.C. Choudhary, R.B. Garg, S. Keshri, A. Kumar, S. Malhotra, M. Naimuddin, K. Ranjan, R. Sharma Saha Institute of Nuclear Physics, HBNI, Kolkata, India R. Bhardwaj, R. Bhattacharya, S. Bhattacharya, U. Bhawandeep, S. Dey, S. Dutt, S. Dutta, S. Ghosh, N. Majumdar, A. Modak, K. Mondal, S. Mukhopadhyay, S. Nandan, A. Purohit, A. Roy, D. Roy, S. Roy Chowdhury, S. Sarkar, M. Sharan, S. Thakur HJEP02(18)67 Indian Institute of Technology Madras, Madras, India P.K. Behera Bhabha Atomic Research Centre, Mumbai, India R. Chudasama, D. Dutta, V. Jha, V. Kumar, A.K. Mohanty12, P.K. Netrakanti, L.M. Pant, P. Shukla, A. Topkar Tata Institute of Fundamental Research-A, Mumbai, India T. Aziz, S. Dugad, B. Mahakud, S. Mitra, G.B. Mohanty, N. Sur, B. Sutar Tata Institute of Fundamental Research-B, Mumbai, India S. Banerjee, S. Bhattacharya, S. Chatterjee, P. Das, M. Guchait, Sa. Jain, S. Kumar, M. Maity21, G. Majumder, K. Mazumdar, T. Sarkar21, N. Wickramage22 Indian Institute of Science Education and Research (IISER), Pune, India S. Chauhan, S. Dube, V. Hegde, A. Kapoor, K. Kothekar, S. Pandey, A. Rane, S. Sharma Institute for Research in Fundamental Sciences (IPM), Tehran, Iran S. Chenarani23, E. Eskandari Tadavani, S.M. Etesami23, M. Khakzad, M. Mohammadi Najafabadi, M. Naseri, S. Paktinat Mehdiabadi24, F. Rezaei Hosseinabadi, B. Safarzadeh25, M. Zeinali University College Dublin, Dublin, Ireland M. Felcini, M. Grunewald INFN Sezione di Bari a, Universita di Bari b, Politecnico di Bari c, Bari, Italy M. Abbresciaa;b, C. Calabriaa;b, A. Colaleoa, D. Creanzaa;c, L. Cristellaa;b, N. De Filippisa;c, M. De Palmaa;b, F. Erricoa;b, L. Fiorea, G. Iasellia;c, S. Lezkia;b, G. Maggia;c, M. Maggia, G. Minielloa;b, S. Mya;b, S. Nuzzoa;b, A. Pompilia;b, G. Pugliesea;c, R. Radognaa, A. Ranieria, G. Selvaggia;b, A. Sharmaa, L. Silvestrisa;12, R. Vendittia, P. Verwilligena INFN Sezione di Bologna a, Universita di Bologna b, Bologna, Italy G. Abbiendia, C. Battilanaa;b, D. Bonacorsia;b, S. Braibant-Giacomellia;b, R. Campaninia;b, P. Capiluppia;b, A. Castroa;b, F.R. Cavalloa, S.S. Chhibraa, G. Codispotia;b, M. Cu ania;b, G.M. Dallavallea, F. Fabbria, A. Fanfania;b, D. Fasanellaa;b, P. Giacomellia, C. Grandia, L. Guiduccia;b, S. Marcellinia, G. Masettia, A. Montanaria, F.L. Navarriaa;b, A. Perrottaa, A.M. Rossia;b, T. Rovellia;b, G.P. Sirolia;b, N. Tosia INFN Sezione di Catania a, Universita di Catania b, Catania, Italy S. Albergoa;b, S. Costaa;b, A. Di Mattiaa, F. Giordanoa;b, R. Potenzaa;b, A. Tricomia;b, C. Tuvea;b L. Viliania;b;12 INFN Sezione di Firenze a, Universita di Firenze b, Firenze, Italy G. Barbaglia, K. Chatterjeea;b, V. Ciullia;b, C. Civininia, R. D'Alessandroa;b, E. Focardia;b, P. Lenzia;b, M. Meschinia, S. Paolettia, L. Russoa;26, G. Sguazzonia, D. Stroma, INFN Laboratori Nazionali di Frascati, Frascati, Italy L. Benussi, S. Bianco, F. Fabbri, D. Piccolo, F. Primavera12 INFN Sezione di Genova a, Universita di Genova b, Genova, Italy V. Calvellia;b, F. Ferroa, E. Robuttia, S. Tosia;b INFN Sezione di Milano-Bicocca a, Universita di Milano-Bicocca b, Milano, Italy A. Benagliaa, L. Brianzaa;b, F. Brivioa;b, V. Cirioloa;b, M.E. Dinardoa;b, S. Fiorendia;b, S. Gennaia, A. Ghezzia;b, P. Govonia;b, M. Malbertia;b, S. Malvezzia, R.A. Manzonia;b, D. Menascea, L. Moronia, M. Paganonia;b, K. Pauwelsa;b, D. Pedrinia, S. Pigazzinia;b;27, S. Ragazzia;b, N. Redaellia, T. Tabarelli de Fatisa;b INFN Sezione di Napoli a, Universita di Napoli 'Federico II' b, Napoli, Italy, Universita della Basilicata c, Potenza, Italy, Universita G. Marconi d, Roma, Italy F. Thyssena S. Buontempoa, N. Cavalloa;c, S. Di Guidaa;d;12, F. Fabozzia;c, F. Fiengaa;b, A.O.M. Iorioa;b, W.A. Khana, L. Listaa, S. Meolaa;d;12, P. Paoluccia;12, C. Sciaccaa;b, INFN Sezione di Padova a, Universita di Padova b, Padova, Italy, Universita di Trento c, Trento, Italy P. Azzia, N. Bacchettaa, S. Badoera, M. Bellatoa, L. Benatoa;b, D. Biselloa;b, A. Bolettia;b, A. Carvalho Antunes De Oliveiraa;b, P. Checchiaa, M. Dall'Ossoa;b, P. De Castro Manzanoa, T. Dorigoa, U. Gasparinia;b, A. Gozzelinoa, S. Lacapraraa, P. Lujan, M. Margonia;b, A.T. Meneguzzoa;b, N. Pozzobona;b, P. Ronchesea;b, R. Rossina;b, F. Simonettoa;b, E. Torassaa, M. Zanettia;b, P. Zottoa;b, G. Zumerlea;b INFN Sezione di Pavia a, Universita di Pavia b, Pavia, Italy A. Braghieria, A. Magnania, P. Montagnaa;b, S.P. Rattia;b, V. Rea, M. Ressegottia;b, C. Riccardia;b, P. Salvinia, I. Vaia;b, P. Vituloa;b INFN Sezione di Perugia a, Universita di Perugia b, Perugia, Italy L. Alunni Solestizia;b, M. Biasinia;b, G.M. Bileia, C. Cecchia;b, D. Ciangottinia;b, L. Fanoa;b, P. Laricciaa;b, R. Leonardia;b, E. Manonia, G. Mantovania;b, V. Mariania;b, M. Menichellia, A. Rossia;b, A. Santocchiaa;b, D. Spigaa INFN Sezione di Pisa a, Universita di Pisa b, Scuola Normale Superiore di Pisa c, Pisa, Italy K. Androsova, P. Azzurria;12, G. Bagliesia, T. Boccalia, L. Borrello, R. Castaldia, M.A. Cioccia;b, R. Dell'Orsoa, G. Fedia, L. Gianninia;c, A. Giassia, M.T. Grippoa;26, F. Ligabuea;c, T. Lomtadzea, E. Mancaa;c, G. Mandorlia;c, L. Martinia;b, A. Messineoa;b, F. Pallaa, A. Rizzia;b, A. Savoy-Navarroa;28, P. Spagnoloa, R. Tenchinia, G. Tonellia;b, A. Venturia, P.G. Verdinia INFN Sezione di Roma a, Sapienza Universita di Roma b, Rome, Italy L. Baronea;b, F. Cavallaria, M. Cipriania;b, N. Dacia, D. Del Rea;b;12, E. Di Marcoa;b, M. Diemoza, S. Gellia;b, E. Longoa;b, F. Margarolia;b, B. Marzocchia;b, HJEP02(18)67 F. Santanastasioa;b INFN Sezione di Torino a, Universita di Torino b, Torino, Italy, Universita del Piemonte Orientale c, Novara, Italy N. Amapanea;b, R. Arcidiaconoa;c, S. Argiroa;b, M. Arneodoa;c, N. Bartosika, R. Bellana;b, C. Biinoa, N. Cartigliaa, F. Cennaa;b, M. Costaa;b, R. Covarellia;b, A. Deganoa;b, N. Demariaa, B. Kiania;b, C. Mariottia, S. Masellia, E. Migliorea;b, V. Monacoa;b, E. Monteila;b, M. Montenoa, M.M. Obertinoa;b, L. Pachera;b, N. Pastronea, M. Pelliccionia, G.L. Pinna Angionia;b, F. Raveraa;b, A. Romeroa;b, M. Ruspaa;c, R. Sacchia;b, K. Shchelinaa;b, V. Solaa, A. Solanoa;b, A. Staianoa, P. Traczyka;b INFN Sezione di Trieste a, Universita di Trieste b, Trieste, Italy S. Belfortea, M. Casarsaa, F. Cossuttia, G. Della Riccaa;b, A. Zanettia Kyungpook National University, Daegu, Korea D.H. Kim, G.N. Kim, M.S. Kim, J. Lee, S. Lee, S.W. Lee, C.S. Moon, Y.D. Oh, S. Sekmen, D.C. Son, Y.C. Yang Chonbuk National University, Jeonju, Korea A. Lee Chonnam National University, Institute for Universe and Elementary Particles, Kwangju, Korea H. Kim, D.H. Moon, G. Oh Hanyang University, Seoul, Korea J.A. Brochero Cifuentes, J. Goh, T.J. Kim Korea University, Seoul, Korea J. Lim, S.K. Park, Y. Roh Seoul National University, Seoul, Korea S.h. Seo, U.K. Yang, H.D. Yoo, G.B. Yu University of Seoul, Seoul, Korea M. Choi, H. Kim, J.H. Kim, J.S.H. Lee, I.C. Park Sungkyunkwan University, Suwon, Korea Y. Choi, C. Hwang, J. Lee, I. Yu Vilnius University, Vilnius, Lithuania V. Dudenas, A. Juodagalvis, J. Vaitkus S. Cho, S. Choi, Y. Go, D. Gyun, S. Ha, B. Hong, Y. Jo, Y. Kim, K. Lee, K.S. Lee, S. Lee, J. Almond, J. Kim, J.S. Kim, H. Lee, K. Lee, K. Nam, S.B. Oh, B.C. Radburn-Smith, National Centre for Particle Physics, Universiti Malaya, Kuala Lumpur, Malaysia M.N. Yusli, Z. Zolkapli I. Ahmed, Z.A. Ibrahim, M.A.B. Md Ali29, F. Mohamad Idris30, W.A.T. Wan Abdullah, HJEP02(18)67 Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico Reyes-Almanza, R, Ramirez-Sanchez, G., Duran-Osuna, M. C., H. Castilla-Valdez, E. De La Cruz-Burelo, I. Heredia-De La Cruz31, Rabadan-Trejo, R. I., R. Lopez-Fernandez, J. Mejia Guisao, A. Sanchez-Hernandez Universidad Iberoamericana, Mexico City, Mexico S. Carrillo Moreno, C. Oropeza Barrera, F. Vazquez Valencia Benemerita Universidad Autonoma de Puebla, Puebla, Mexico I. Pedraza, H.A. Salazar Ibarguen, C. Uribe Estrada Universidad Autonoma de San Luis Potos , San Luis Potos , Mexico A. Morelos Pineda University of Auckland, Auckland, New Zealand University of Canterbury, Christchurch, New Zealand National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan A. Ahmad, M. Ahmad, Q. Hassan, H.R. Hoorani, A. Saddique, M.A. Shah, M. Shoaib, National Centre for Nuclear Research, Swierk, Poland H. Bialkowska, M. Bluj, B. Boimska, T. Frueboes, M. Gorski, M. Kazana, K. Nawrocki, M. Szleper, P. Zalewski Warsaw, Poland Institute of Experimental Physics, Faculty of Physics, University of Warsaw, K. Bunkowski, A. Byszuk32, K. Doroba, A. Kalinowski, M. Konecki, J. Krolikowski, M. Misiura, M. Olszewski, A. Pyskir, M. Walczak Laboratorio de Instrumentac~ao e F sica Experimental de Part culas, Lisboa, Portugal P. Bargassa, C. Beir~ao Da Cruz E Silva, A. Di Francesco, P. Faccioli, B. Galinhas, M. Gallinaro, J. Hollar, N. Leonardo, L. Lloret Iglesias, M.V. Nemallapudi, J. Seixas, G. Strong, O. Toldaiev, D. Vadruccio, J. Varela Joint Institute for Nuclear Research, Dubna, Russia S. Afanasiev, P. Bunin, M. Gavrilenko, I. Golutvin, I. Gorbunov, A. Kamenev, V. Karjavin, A. Lanev, A. Malakhov, V. Matveev33;34, V. Palichik, V. Perelygin, S. Shmatov, S. Shulha, N. Skatchkov, V. Smirnov, N. Voytishin, A. Zarubin Petersburg Nuclear Physics Institute, Gatchina (St. Petersburg), Russia Y. Ivanov, V. Kim35, E. Kuznetsova36, P. Levchenko, V. Murzin, V. Oreshkin, I. Smirnov, V. Sulimov, L. Uvarov, S. Vavilov, A. Vorobyev Institute for Nuclear Research, Moscow, Russia Yu. Andreev, A. Dermenev, S. Gninenko, N. Golubev, A. Karneyeu, M. Kirsanov, N. Krasnikov, A. Pashenkov, D. Tlisov, A. Toropin Institute for Theoretical and Experimental Physics, Moscow, Russia V. Epshteyn, V. Gavrilov, N. Lychkovskaya, V. Popov, I. Pozdnyakov, G. Safronov, A. Spiridonov, A. Stepennov, M. Toms, E. Vlasov, A. Zhokin Moscow Institute of Physics and Technology, Moscow, Russia T. Aushev, A. Bylinkin34 National Research Nuclear University 'Moscow Engineering Physics Institute' (MEPhI), Moscow, Russia M. Chadeeva37, P. Parygin, D. Philippov, S. Polikarpov, E. Popova, V. Rusinov P.N. Lebedev Physical Institute, Moscow, Russia V. Andreev, M. Azarkin34, I. Dremin34, M. Kirakosyan34, A. Terkulov Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia A. Snigirev A. Baskakov, A. Belyaev, E. Boos, M. Dubinin38, L. Dudko, A. Ershov, A. Gribushin, V. Klyukhin, O. Kodolova, I. Lokhtin, I. Miagkov, S. Obraztsov, S. Petrushanko, V. Savrin, Novosibirsk State University (NSU), Novosibirsk, Russia V. Blinov39, Y.Skovpen39, D. Shtol39 State Research Center of Russian Federation, Institute for High Energy Physics, Protvino, Russia I. Azhgirey, I. Bayshev, S. Bitioukov, D. Elumakhov, V. Kachanov, A. Kalinin, D. Konstantinov, V. Petrov, R. Ryutin, A. Sobol, S. Troshin, N. Tyurin, A. Uzunian, A. Volkov University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia P. Adzic40, P. Cirkovic, D. Devetak, M. Dordevic, J. Milosevic, V. Rekovic Centro de Investigaciones Energeticas Medioambientales y Tecnologicas (CIEMAT), Madrid, Spain J. Alcaraz Maestre, M. Barrio Luna, M. Cerrada, N. Colino, B. De La Cruz, A. Delgado Peris, A. Escalante Del Valle, C. Fernandez Bedoya, J.P. Fernandez Ramos, J. Flix, M.C. Fouz, P. Garcia-Abia, O. Gonzalez Lopez, S. Goy Lopez, J.M. Hernandez, M.I. Josa, D. Moran, A. Perez-Calero Yzquierdo, J. Puerta Pelayo, A. Quintario Olmeda, I. Redondo, L. Romero, M.S. Soares, A. Alvarez Fernandez Universidad Autonoma de Madrid, Madrid, Spain C. Albajar, J.F. de Troconiz, M. Missiroli J. Cuevas, C. Erice, J. Fernandez Menendez, I. Gonzalez Caballero, J.R. Gonzalez Fernandez, E. Palencia Cortezon, S. Sanchez Cruz, P. Vischia, J.M. Vizan Garcia Instituto de F sica de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain I.J. Cabrillo, A. Calderon, B. Chazin Quero, E. Curras, J. Duarte Campderros, M. Fernandez, J. Garcia-Ferrero, G. Gomez, A. Lopez Virto, J. Marco, C. Martinez Rivero, P. Martinez Ruiz del Arbol, F. Matorras, J. Piedra Gomez, T. Rodrigo, A. Ruiz-Jimeno, L. Scodellaro, N. Trevisani, I. Vila, R. Vilar Cortabitarte CERN, European Organization for Nuclear Research, Geneva, Switzerland D. Abbaneo, E. Au ray, P. Baillon, A.H. Ball, D. Barney, M. Bianco, P. Bloch, A. Bocci, C. Botta, T. Camporesi, R. Castello, M. Cepeda, G. Cerminara, E. Chapon, Y. Chen, D. d'Enterria, A. Dabrowski, V. Daponte, A. David, M. De Gruttola, A. De Roeck, M. Dobson, B. Dorney, T. du Pree, M. Dunser, N. Dupont, A. Elliott-Peisert, P. Everaerts, F. Fallavollita, G. Franzoni, J. Fulcher, W. Funk, D. Gigi, A. Gilbert, K. Gill, F. Glege, D. Gulhan, P. Harris, J. Hegeman, V. Innocente, P. Janot, O. Karacheban15, J. Kieseler, H. Kirschenmann, V. Knunz, A. Kornmayer12, M.J. Kortelainen, M. Krammer1, C. Lange, P. Lecoq, C. Lourenco, M.T. Lucchini, L. Malgeri, M. Mannelli, A. Martelli, F. Meijers, J.A. Merlin, S. Mersi, E. Meschi, P. Milenovic41, F. Moortgat, M. Mulders, H. Neugebauer, J. Ngadiuba, S. Orfanelli, L. Orsini, L. Pape, E. Perez, M. Peruzzi, A. Petrilli, G. Petrucciani, A. Pfei er, M. Pierini, A. Racz, T. Reis, G. Rolandi42, M. Rovere, H. Sakulin, C. Schafer, C. Schwick, M. Seidel, M. Selvaggi, A. Sharma, P. Silva, P. Sphicas43, A. Stakia, J. Steggemann, M. Stoye, M. Tosi, D. Treille, A. Triossi, A. Tsirou, V. Veckalns44, M. Verweij, W.D. Zeuner Paul Scherrer Institut, Villigen, Switzerland W. Bertly, L. Caminada45, K. Deiters, W. Erdmann, R. Horisberger, Q. Ingram, H.C. Kaestli, D. Kotlinski, U. Langenegger, T. Rohe, S.A. Wiederkehr ETH Zurich - Institute for Particle Physics and Astrophysics (IPA), Zurich, Switzerland L. Bani, P. Berger, L. Bianchini, B. Casal, G. Dissertori, M. Dittmar, M. Donega, C. Grab, C. Heidegger, D. Hits, J. Hoss, G. Kasieczka, T. Klijnsma, W. Lustermann, B. Mangano, M. Marionneau, M.T. Meinhard, D. Meister, F. Micheli, P. Musella, F. Nessi-Tedaldi, F. Pandol , J. Pata, F. Pauss, G. Perrin, L. Perrozzi, M. Quittnat, M. Reichmann, M. Schonenberger, L. Shchutska, V.R. Tavolaro, K. Theo latos, M.L. Vesterbacka Olsson, R. Wallny, D.H. Zhu Universitat Zurich, Zurich, Switzerland T.K. Aarrestad, C. Amsler46, M.F. Canelli, A. De Cosa, R. Del Burgo, S. Donato, C. Galloni, T. Hreus, B. Kilminster, D. Pinna, G. Rauco, P. Robmann, D. Salerno, C. Seitz, Y. Takahashi, A. Zucchetta National Central University, Chung-Li, Taiwan V. Candelise, T.H. Doan, Sh. Jain, R. Khurana, C.M. Kuo, W. Lin, A. Pozdnyakov, S.S. Yu National Taiwan University (NTU), Taipei, Taiwan Arun Kumar, P. Chang, Y. Chao, K.F. Chen, P.H. Chen, F. Fiori, W.-S. Hou, Y. Hsiung, Y.F. Liu, R.-S. Lu, E. Paganis, A. Psallidas, A. Steen, J.f. Tsai Chulalongkorn University, Faculty of Science, Department of Physics, Bangkok, Thailand Turkey B. Asavapibhop, K. Kovitanggoon, G. Singh, N. Srimanobhas Cukurova University, Physics Department, Science and Art Faculty, Adana, F. Boran, S. Cerci47, S. Damarseckin, Z.S. Demiroglu, C. Dozen, I. Dumanoglu, S. Girgis, G. Gokbulut, Y. Guler, I. Hos48, E.E. Kangal49, O. Kara, A. Kayis Topaksu, U. Kiminsu, M. Oglakci, G. Onengut50, K. Ozdemir51, D. Sunar Cerci47, B. Tali47, S. Turkcapar, I.S. Zorbakir, C. Zorbilmez Middle East Technical University, Physics Department, Ankara, Turkey B. Bilin, G. Karapinar52, K. Ocalan53, M. Yalvac, M. Zeyrek Bogazici University, Istanbul, Turkey E. Gulmez, M. Kaya54, O. Kaya55, S. Tekten, E.A. Yetkin56 Istanbul Technical University, Istanbul, Turkey M.N. Agaras, S. Atay, A. Cakir, K. Cankocak Institute for Scintillation Materials of National Academy of Science of Ukraine, Kharkov, Ukraine B. Grynyov Kharkov, Ukraine L. Levchuk National Scienti c Center, Kharkov Institute of Physics and Technology, University of Bristol, Bristol, United Kingdom R. Aggleton, F. Ball, L. Beck, J.J. Brooke, D. Burns, E. Clement, D. Cussans, O. Davignon, H. Flacher, J. Goldstein, M. Grimes, G.P. Heath, H.F. Heath, J. Jacob, L. Kreczko, C. Lucas, D.M. Newbold57, S. Paramesvaran, A. Poll, T. Sakuma, S. Seif El Nasr-storey, D. Smith, V.J. Smith Rutherford Appleton Laboratory, Didcot, United Kingdom K.W. Bell, A. Belyaev58, C. Brew, R.M. Brown, L. Calligaris, D. Cieri, D.J.A. Cockerill, J.A. Coughlan, K. Harder, S. Harper, E. Olaiya, D. Petyt, C.H. Shepherd-Themistocleous, A. Thea, I.R. Tomalin, T. Williams Imperial College, London, United Kingdom G. Auzinger, R. Bainbridge, J. Borg, S. Breeze, O. Buchmuller, A. Bundock, S. Casasso, M. Citron, D. Colling, L. Corpe, P. Dauncey, G. Davies, A. De Wit, M. Della Negra, R. Di A.-M. Magnan, S. Malik, L. Mastrolorenzo, T. Matsushita, J. Nash, A. Nikitenko6, V. Palladino, M. Pesaresi, D.M. Raymond, A. Richards, A. Rose, E. Scott, C. Seez, A. Shtipliyski, S. Summers, A. Tapper, K. Uchida, M. Vazquez Acosta59, T. Virdee12, N. Wardle, D. Winterbottom, J. Wright, S.C. Zenz Brunel University, Uxbridge, United Kingdom J.E. Cole, P.R. Hobson, A. Khan, P. Kyberd, I.D. Reid, P. Symonds, L. Teodorescu, M. Turner Baylor University, Waco, U.S.A. A. Borzou, K. Call, J. Dittmann, K. Hatakeyama, H. Liu, N. Pastika, C. Smith Catholic University of America, Washington DC, U.S.A. R. Bartek, A. Dominguez The University of Alabama, Tuscaloosa, U.S.A. A. Buccilli, S.I. Cooper, C. Henderson, P. Rumerio, C. West Boston University, Boston, U.S.A. D. Arcaro, A. Avetisyan, T. Bose, D. Gastler, D. Rankin, C. Richardson, J. Rohlf, L. Sulak, D. Zou D. Yu Brown University, Providence, U.S.A. G. Benelli, D. Cutts, A. Garabedian, J. Hakala, U. Heintz, J.M. Hogan, K.H.M. Kwok, E. Laird, G. Landsberg, Z. Mao, M. Narain, J. Pazzini, S. Piperov, S. Sagir, R. Syarif, University of California, Davis, Davis, U.S.A. R. Band, C. Brainerd, D. Burns, M. Calderon De La Barca Sanchez, M. Chertok, J. Conway, R. Conway, P.T. Cox, R. Erbacher, C. Flores, G. Funk, M. Gardner, W. Ko, R. Lander, C. Mclean, M. Mulhearn, D. Pellett, J. Pilot, S. Shalhout, M. Shi, J. Smith, D. Stolp, K. Tos, M. Tripathi, Z. Wang University of California, Los Angeles, U.S.A. M. Bachtis, C. Bravo, R. Cousins, A. Dasgupta, A. Florent, J. Hauser, M. Ignatenko, N. Mccoll, S. Regnard, D. Saltzberg, C. Schnaible, V. Valuev University of California, Riverside, Riverside, U.S.A. E. Bouvier, K. Burt, R. Clare, J. Ellison, J.W. Gary, S.M.A. Ghiasi Shirazi, G. Hanson, J. Heilman, P. Jandir, E. Kennedy, F. Lacroix, O.R. Long, M. Olmedo Negrete, M.I. Paneva, A. Shrinivas, W. Si, L. Wang, H. Wei, S. Wimpenny, B. R. Yates University of California, San Diego, La Jolla, U.S.A. J.G. Branson, S. Cittolin, M. Derdzinski, R. Gerosa, B. Hashemi, A. Holzner, D. Klein, G. Kole, V. Krutelyov, J. Letts, I. Macneill, M. Masciovecchio, D. Olivito, S. Padhi, M. Pieri, M. Sani, V. Sharma, S. Simon, M. Tadel, A. Vartak, S. Wasserbaech60, J. Wood, F. Wurthwein, A. Yagil, G. Zevi Della Porta bara, U.S.A. N. Amin, R. Bhandari, J. Bradmiller-Feld, C. Campagnari, A. Dishaw, V. Dutta, M. Franco Sevilla, C. George, F. Golf, L. Gouskos, J. Gran, R. Heller, J. Incandela, S.D. Mullin, A. Ovcharova, H. Qu, J. Richman, D. Stuart, I. Suarez, J. Yoo California Institute of Technology, Pasadena, U.S.A. D. Anderson, J. Bendavid, A. Bornheim, J.M. Lawhorn, H.B. Newman, T. Nguyen, C. Pena, M. Spiropulu, J.R. Vlimant, S. Xie, Z. Zhang, R.Y. Zhu Carnegie Mellon University, Pittsburgh, U.S.A. M.B. Andrews, T. Ferguson, T. Mudholkar, M. Paulini, J. Russ, M. Sun, H. Vogel, I. Vorobiev, M. Weinberg University of Colorado Boulder, Boulder, U.S.A. J.P. Cumalat, W.T. Ford, F. Jensen, A. Johnson, M. Krohn, S. Leontsinis, T. Mulholland, K. Stenson, S.R. Wagner Cornell University, Ithaca, U.S.A. J. Alexander, J. Chaves, J. Chu, S. Dittmer, K. Mcdermott, N. Mirman, J.R. Patterson, A. Rinkevicius, A. Ryd, L. Skinnari, L. So , S.M. Tan, Z. Tao, J. Thom, J. Tucker, P. Wittich, M. Zientek Fermi National Accelerator Laboratory, Batavia, U.S.A. S. Abdullin, M. Albrow, M. Alyari, G. Apollinari, A. Apresyan, A. Apyan, S. Banerjee, L.A.T. Bauerdick, A. Beretvas, J. Berryhill, P.C. Bhat, G. Bollay, K. Burkett, J.N. Butler, A. Canepa, G.B. Cerati, H.W.K. Cheung, F. Chlebana, M. Cremonesi, J. Duarte, V.D. Elvira, J. Freeman, Z. Gecse, E. Gottschalk, L. Gray, D. Green, S. Grunendahl, O. Gutsche, R.M. Harris, S. Hasegawa, J. Hirschauer, Z. Hu, B. Jayatilaka, S. Jindariani, M. Johnson, U. Joshi, B. Klima, B. Kreis, S. Lammel, D. Lincoln, R. Lipton, M. Liu, T. Liu, R. Lopes De Sa, J. Lykken, K. Maeshima, N. Magini, J.M. Marra no, S. Maruyama, D. Mason, P. McBride, P. Merkel, S. Mrenna, S. Nahn, V. O'Dell, K. Pedro, O. Prokofyev, G. Rakness, L. Ristori, B. Schneider, E. Sexton-Kennedy, A. Soha, W.J. Spalding, L. Spiegel, S. Stoynev, J. Strait, N. Strobbe, L. Taylor, S. Tkaczyk, N.V. Tran, L. Uplegger, E.W. Vaandering, C. Vernieri, M. Verzocchi, R. Vidal, M. Wang, H.A. Weber, A. Whitbeck University of Florida, Gainesville, U.S.A. D. Acosta, P. Avery, P. Bortignon, D. Bourilkov, A. Brinkerho , A. Carnes, M. Carver, D. Curry, R.D. Field, I.K. Furic, J. Konigsberg, A. Korytov, K. Kotov, P. Ma, K. Matchev, H. Mei, G. Mitselmakher, D. Rank, D. Sperka, N. Terentyev, L. Thomas, J. Wang, S. Wang, J. Yelton Florida International University, Miami, U.S.A. Y.R. Joshi, S. Linn, P. Markowitz, J.L. Rodriguez Florida State University, Tallahassee, U.S.A. A. Ackert, T. Adams, A. Askew, S. Hagopian, V. Hagopian, K.F. Johnson, T. Kolberg, G. Martinez, T. Perry, H. Prosper, A. Saha, A. Santra, V. Sharma, R. Yohay Florida Institute of Technology, Melbourne, U.S.A. M.M. Baarmand, V. Bhopatkar, S. Colafranceschi, M. Hohlmann, D. Noonan, T. Roy, F. Yumiceva University of Illinois at Chicago (UIC), Chicago, U.S.A. M.R. Adams, L. Apanasevich, D. Berry, R.R. Betts, R. Cavanaugh, X. Chen, O. Evdokimov, C.E. Gerber, D.A. Hangal, D.J. Hofman, K. Jung, J. Kamin, I.D. Sandoval Gonzalez, M.B. Tonjes, H. Trauger, N. Varelas, H. Wang, Z. Wu, J. Zhang The University of Iowa, Iowa City, U.S.A. B. Bilki61, W. Clarida, K. Dilsiz62, S. Durgut, R.P. Gandrajula, M. Haytmyradov, V. Khristenko, J.-P. Merlo, H. Mermerkaya63, A. Mestvirishvili, A. Moeller, J. Nachtman, H. Ogul64, Y. Onel, F. Ozok65, A. Penzo, C. Snyder, E. Tiras, J. Wetzel, K. Yi Johns Hopkins University, Baltimore, U.S.A. B. Blumenfeld, A. Cocoros, N. Eminizer, D. Fehling, L. Feng, A.V. Gritsan, P. Maksimovic, J. Roskes, U. Sarica, M. Swartz, M. Xiao, C. You The University of Kansas, Lawrence, U.S.A. A. Al-bataineh, P. Baringer, A. Bean, S. Boren, J. Bowen, J. Castle, S. Khalil, A. Kropivnitskaya, D. Majumder, W. Mcbrayer, M. Murray, C. Royon, S. Sanders, E. Schmitz, J.D. Tapia Takaki, Q. Wang Kansas State University, Manhattan, U.S.A. A. Ivanov, K. Kaadze, Y. Maravin, A. Mohammadi, L.K. Saini, N. Skhirtladze, S. Toda Lawrence Livermore National Laboratory, Livermore, U.S.A. F. Rebassoo, D. Wright University of Maryland, College Park, U.S.A. C. Anelli, A. Baden, O. Baron, A. Belloni, B. Calvert, S.C. Eno, C. Ferraioli, N.J. Hadley, S. Jabeen, G.Y. Jeng, R.G. Kellogg, J. Kunkle, A.C. Mignerey, F. Ricci-Tam, Y.H. Shin, A. Skuja, S.C. Tonwar Massachusetts Institute of Technology, Cambridge, U.S.A. D. Abercrombie, B. Allen, V. Azzolini, R. Barbieri, A. Baty, R. Bi, S. Brandt, W. Busza, I.A. Cali, M. D'Alfonso, Z. Demiragli, G. Gomez Ceballos, M. Goncharov, D. Hsu, Y. Iiyama, G.M. Innocenti, M. Klute, D. Kovalskyi, Y.S. Lai, Y.-J. Lee, A. Levin, P.D. Luckey, B. Maier, A.C. Marini, C. Mcginn, C. Mironov, S. Narayanan, X. Niu, C. Paus, C. Roland, G. Roland, J. Salfeld-Nebgen, G.S.F. Stephans, K. Tatar, D. Velicanu, J. Wang, T.W. Wang, B. Wyslouch University of Minnesota, Minneapolis, U.S.A. A.C. Benvenuti, R.M. Chatterjee, A. Evans, P. Hansen, S. Kalafut, Y. Kubota, Z. Lesko, J. Mans, S. Nourbakhsh, N. Ruckstuhl, R. Rusack, J. Turkewitz University of Mississippi, Oxford, U.S.A. J.G. Acosta, S. Oliveros E. Avdeeva, K. Bloom, D.R. Claes, C. Fangmeier, R. Gonzalez Suarez, R. Kamalieddin, I. Kravchenko, J. Monroy, J.E. Siado, G.R. Snow, B. Stieger State University of New York at Bu alo, Bu alo, U.S.A. J. Dolen, A. Godshalk, C. Harrington, I. Iashvili, D. Nguyen, A. Parker, S. Rappoccio, B. Roozbahani Northeastern University, Boston, U.S.A. moto, R. Teixeira De Lima, D. Trocino, D. Wood Northwestern University, Evanston, U.S.A. G. Alverson, E. Barberis, A. Hortiangtham, A. Massironi, D.M. Morse, D. Nash, T. OriS. Bhattacharya, O. Charaf, K.A. Hahn, N. Mucia, N. Odell, B. Pollack, M.H. Schmitt, K. Sung, M. Trovato, M. Velasco University of Notre Dame, Notre Dame, U.S.A. N. Dev, M. Hildreth, K. Hurtado Anampa, C. Jessop, D.J. Karmgard, N. Kellams, K. Lannon, N. Loukas, N. Marinelli, F. Meng, C. Mueller, Y. Musienko33, M. Planer, A. Reinsvold, R. Ruchti, G. Smith, S. Taroni, M. Wayne, M. Wolf, A. Woodard The Ohio State University, Columbus, U.S.A. J. Alimena, L. Antonelli, B. Bylsma, L.S. Durkin, S. Flowers, B. Francis, A. Hart, C. Hill, W. Ji, B. Liu, W. Luo, D. Puigh, B.L. Winer, H.W. Wulsin Princeton University, Princeton, U.S.A. S. Cooperstein, O. Driga, P. Elmer, J. Hardenbrook, P. Hebda, S. Higginbotham, D. Lange, J. Luo, D. Marlow, K. Mei, I. Ojalvo, J. Olsen, C. Palmer, P. Piroue, D. Stickland, C. Tully University of Puerto Rico, Mayaguez, U.S.A. S. Malik, S. Norberg Purdue University, West Lafayette, U.S.A. A. Barker, V.E. Barnes, S. Das, S. Folgueras, L. Gutay, M.K. Jha, M. Jones, A.W. Jung, A. Khatiwada, D.H. Miller, N. Neumeister, C.C. Peng, J.F. Schulte, J. Sun, F. Wang, W. Xie Purdue University Northwest, Hammond, U.S.A. T. Cheng, N. Parashar, J. Stupak Rice University, Houston, U.S.A. A. Adair, B. Akgun, Z. Chen, K.M. Ecklund, F.J.M. Geurts, M. Guilbaud, W. Li, B. Michlin, M. Northup, B.P. Padley, J. Roberts, J. Rorie, Z. Tu, J. Zabel University of Rochester, Rochester, U.S.A. A. Bodek, P. de Barbaro, R. Demina, Y.t. Duh, T. Ferbel, M. Galanti, A. Garcia-Bellido, J. Han, O. Hindrichs, A. Khukhunaishvili, K.H. Lo, P. Tan, M. Verzetti The Rockefeller University, New York, U.S.A. R. Ciesielski, K. Goulianos, C. Mesropian Rutgers, The State University of New Jersey, Piscataway, U.S.A. A. Agapitos, J.P. Chou, Y. Gershtein, T.A. Gomez Espinosa, E. Halkiadakis, M. Heindl, E. Hughes, S. Kaplan, R. Kunnawalkam Elayavalli, S. Kyriacou, A. Lath, R. Montalvo, K. Nash, M. Osherson, H. Saka, S. Salur, S. Schnetzer, D. She eld, S. Somalwar, R. Stone, S. Thomas, P. Thomassen, M. Walker University of Tennessee, Knoxville, U.S.A. A.G. Delannoy, M. Foerster, J. Heideman, G. Riley, K. Rose, S. Spanier, K. Thapa Texas A&M University, College Station, U.S.A. O. Bouhali66, A. Castaneda Hernandez66, A. Celik, M. Dalchenko, M. De Mattia, A. Delgado, S. Dildick, R. Eusebi, J. Gilmore, T. Huang, T. Kamon67, R. Mueller, Y. Pakhotin, R. Patel, A. Perlo , L. Pernie, D. Rathjens, A. Safonov, A. Tatarinov, K.A. Ulmer Texas Tech University, Lubbock, U.S.A. N. Akchurin, J. Damgov, F. De Guio, P.R. Dudero, J. Faulkner, E. Gurpinar, S. Kunori, K. Lamichhane, S.W. Lee, T. Libeiro, T. Peltola, S. Undleeb, I. Volobouev, Z. Wang Vanderbilt University, Nashville, U.S.A. S. Greene, A. Gurrola, R. Janjam, W. Johns, C. Maguire, A. Melo, H. Ni, K. Padeken, P. Sheldon, S. Tuo, J. Velkovska, Q. Xu University of Virginia, Charlottesville, U.S.A. M.W. Arenton, P. Barria, B. Cox, R. Hirosky, M. Joyce, A. Ledovskoy, H. Li, C. Neu, T. Sinthuprasith, Y. Wang, E. Wolfe, F. Xia Wayne State University, Detroit, U.S.A. R. Harr, P.E. Karchin, J. Sturdy, S. Zaleski University of Wisconsin - Madison, Madison, WI, U.S.A. M. Brodski, J. Buchanan, C. Caillol, S. Dasu, L. Dodd, S. Duric, B. Gomber, M. Grothe, M. Herndon, A. Herve, U. Hussain, P. Klabbers, A. Lanaro, A. Levine, K. Long, R. Loveless, G.A. Pierro, G. Polese, T. Ruggles, A. Savin, N. Smith, W.H. Smith, D. Taylor, N. Woods y: Deceased China 1: Also at Vienna University of Technology, Vienna, Austria 2: Also at State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, 3: Also at Universidade Estadual de Campinas, Campinas, Brazil 4: Also at Universidade Federal de Pelotas, Pelotas, Brazil 5: Also at Universite Libre de Bruxelles, Bruxelles, Belgium 6: Also at Institute for Theoretical and Experimental Physics, Moscow, Russia 7: Also at Joint Institute for Nuclear Research, Dubna, Russia 8: Now at Cairo University, Cairo, Egypt 9: Also at Zewail City of Science and Technology, Zewail, Egypt 10: Also at Universite de Haute Alsace, Mulhouse, France 11: Also at Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia 13: Also at RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany 14: Also at University of Hamburg, Hamburg, Germany 15: Also at Brandenburg University of Technology, Cottbus, Germany 16: Also at MTA-ELTE Lendulet CMS Particle and Nuclear Physics Group, Eotvos Lorand University, Budapest, Hungary 17: Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary 18: Also at Institute of Physics, University of Debrecen, Debrecen, Hungary 19: Also at Indian Institute of Technology Bhubaneswar, Bhubaneswar, India 20: Also at Institute of Physics, Bhubaneswar, India 21: Also at University of Visva-Bharati, Santiniketan, India 22: Also at University of Ruhuna, Matara, Sri Lanka 23: Also at Isfahan University of Technology, Isfahan, Iran 24: Also at Yazd University, Yazd, Iran 25: Also at Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran 26: Also at Universita degli Studi di Siena, Siena, Italy 27: Also at INFN Sezione di Milano-Bicocca; Universita di Milano-Bicocca, Milano, Italy 28: Also at Purdue University, West Lafayette, U.S.A. 29: Also at International Islamic University of Malaysia, Kuala Lumpur, Malaysia 30: Also at Malaysian Nuclear Agency, MOSTI, Kajang, Malaysia 31: Also at Consejo Nacional de Ciencia y Tecnolog a, Mexico city, Mexico 32: Also at Warsaw University of Technology, Institute of Electronic Systems, Warsaw, Poland 33: Also at Institute for Nuclear Research, Moscow, Russia 34: Now at National Research Nuclear University 'Moscow 35: Also at St. Petersburg State Polytechnical University, St. Petersburg, Russia 36: Also at University of Florida, Gainesville, U.S.A. 37: Also at P.N. Lebedev Physical Institute, Moscow, Russia 38: Also at California Institute of Technology, Pasadena, U.S.A. 39: Also at Budker Institute of Nuclear Physics, Novosibirsk, Russia 40: Also at Faculty of Physics, University of Belgrade, Belgrade, Serbia 41: Also at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia 42: Also at Scuola Normale e Sezione dell'INFN, Pisa, Italy 43: Also at National and Kapodistrian University of Athens, Athens, Greece 44: Also at Riga Technical University, Riga, Latvia 45: Also at Universitat Zurich, Zurich, Switzerland 46: Also at Stefan Meyer Institute for Subatomic Physics (SMI), Vienna, Austria 47: Also at Adiyaman University, Adiyaman, Turkey 48: Also at Istanbul Aydin University, Istanbul, Turkey 49: Also at Mersin University, Mersin, Turkey 50: Also at Cag University, Mersin, Turkey 51: Also at Piri Reis University, Istanbul, Turkey 52: Also at Izmir Institute of Technology, Izmir, Turkey 53: Also at Necmettin Erbakan University, Konya, Turkey 54: Also at Marmara University, Istanbul, Turkey 55: Also at Kafkas University, Kars, Turkey 57: Also at Rutherford Appleton Laboratory, Didcot, United Kingdom 58: Also at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom 59: Also at Instituto de Astrof sica de Canarias, La Laguna, Spain 60: Also at Utah Valley University, Orem, U.S.A. 61: Also at Beykent University, Istanbul, Turkey 62: Also at Bingol University, Bingol, Turkey 63: Also at Erzincan University, Erzincan, Turkey 64: Also at Sinop University, Sinop, Turkey 65: Also at Mimar Sinan University, Istanbul, Istanbul, Turkey 66: Also at Texas A&M University at Qatar, Doha, Qatar 67: Also at Kyungpook National University, Daegu, Korea tsne 100 50 p ta 0 .5 / 1 0 tsne 150 100 50 red 1 .52 p ta 0 .5 /


This is a preview of a remote PDF: https://link.springer.com/content/pdf/10.1007%2FJHEP02%282018%29067.pdf

The CMS collaboration, A. M. Sirunyan, A. Tumasyan, W. Adam, F. Ambrogi, E. Asilar, T. Bergauer, J. Brandstetter, E. Brondolin, M. Dragicevic, J. Erö, M. Flechl, M. Friedl, R. Frühwirth, V. M. Ghete, J. Grossmann, J. Hrubec, M. Jeitler, A. König, N. Krammer, I. Krätschmer, D. Liko, T. Madlener, I. Mikulec, E. Pree, D. Rabady, N. Rad, H. Rohringer, J. Schieck, R. Schöfbeck, M. Spanring, D. Spitzbart, W. Waltenberger, J. Wittmann, C.-E. Wulz, M. Zarucki, V. Chekhovsky, V. Mossolov, J. Suarez Gonzalez, E. A. De Wolf, D. Di Croce, X. Janssen, J. Lauwers, M. Van De Klundert, H. Van Haevermaet, P. Van Mechelen, N. Van Remortel, S. Abu Zeid, F. Blekman, J. D’Hondt, I. De Bruyn, J. De Clercq, K. Deroover, G. Flouris, D. Lontkovskyi, S. Lowette, S. Moortgat, L. Moreels, Q. Python, K. Skovpen, S. Tavernier, W. Van Doninck, P. Van Mulders, I. Van Parijs, D. Beghin, H. Brun, B. Clerbaux, G. De Lentdecker, H. Delannoy, G. Fasanella, L. Favart, R. Goldouzian, A. Grebenyuk, G. Karapostoli, T. Lenzi, J. Luetic, T. Maerschalk, A. Marinov, A. Randle-conde, T. Seva, C. Vander Velde, P. Vanlaer, D. Vannerom, R. Yonamine, F. Zenoni, F. Zhang, A. Cimmino, T. Cornelis, D. Dobur, A. Fagot, M. Gul, I. Khvastunov, D. Poyraz, C. Roskas, S. Salva, M. Tytgat, W. Verbeke, N. Zaganidis, H. Bakhshiansohi, O. Bondu, S. Brochet, G. Bruno, C. Caputo, A. Caudron, S. De Visscher, C. Delaere, M. Delcourt, B. Francois, A. Giammanco, A. Jafari, M. Komm, G. Krintiras, V. Lemaitre, A. Magitteri, A. Mertens, M. Musich, K. Piotrzkowski, L. Quertenmont, M. Vidal Marono, S. Wertz, N. Beliy, W. L. Aldá Júnior, F. L. Alves, G. A. Alves, L. Brito, M. Correa Martins Junior, C. Hensel, A. Moraes, M. E. Pol, P. Rebello Teles, E. Belchior Batista Das Chagas, W. Carvalho, J. Chinellato, A. Custódio, E. M. Da Costa, G. G. Da Silveira, D. De Jesus Damiao, S. Fonseca De Souza, L. M. Huertas Guativa, H. Malbouisson, M. Melo De Almeida, C. Mora Herrera, L. Mundim, H. Nogima, A. Santoro, A. Sznajder, E. J. Tonelli Manganote, F. Torres Da Silva De Araujo, A. Vilela Pereira, S. Ahuja, C. A. Bernardes, T. R. Fernandez Perez Tomei, E. M. Gregores, P. G. Mercadante, S. F. Novaes, Sandra S. Padula, D. Romero Abad, J. C. Ruiz Vargas, A. Aleksandrov, R. Hadjiiska, P. Iaydjiev, M. Misheva, M. Rodozov, M. Shopova, S. Stoykova, G. Sultanov, A. Dimitrov, I. Glushkov, L. Litov, B. Pavlov, P. Petkov, W. Fang, X. Gao, M. Ahmad, J. G. Bian, G. M. Chen, H. S. Chen, M. Chen, Y. Chen, C. H. Jiang, D. Leggat, H. Liao, Z. Liu, F. Romeo, S. M. Shaheen, A. Spiezia, J. Tao, C. Wang, Z. Wang, E. Yazgan, H. Zhang, S. Zhang, J. Zhao, Y. Ban, G. Chen, Q. Li, S. Liu, Y. Mao, S. J. Qian, D. Wang, Z. Xu, C. Avila, A. Cabrera, L. F. Chaparro Sierra, C. Florez, C. F. González Hernández, J. D. Ruiz Alvarez, B. Courbon, N. Godinovic, D. Lelas, I. Puljak, P. M. Ribeiro Cipriano, T. Sculac, Z. Antunovic, M. Kovac, V. Brigljevic, D. Ferencek, K. Kadija, B. Mesic, A. Starodumov, T. Susa, M. W. Ather, A. Attikis, G. Mavromanolakis, J. Mousa, C. Nicolaou, F. Ptochos, P. A. Razis, H. Rykaczewski, M. Finger, M. Finger, E. Carrera Jarrin, A. Ellithi Kamel, S. Khalil, A. Mohamed, R. K. Dewanjee, M. Kadastik, L. Perrini, M. Raidal, A. Tiko, C. Veelken, P. Eerola, J. Pekkanen, M. Voutilainen, J. Härkönen, T. Järvinen, V. Karimäki, R. Kinnunen, T. Lampén, K. Lassila-Perini, S. Lehti, T. Lindén, P. Luukka, E. Tuominen, J. Tuominiemi, E. Tuovinen, J. Talvitie, T. Tuuva, M. Besancon, F. Couderc, M. Dejardin, D. Denegri, J. L. Faure, F. Ferri, S. Ganjour, S. Ghosh, A. Givernaud, P. Gras, G. Hamel de Monchenault, P. Jarry, I. Kucher, E. Locci, M. Machet, J. Malcles, G. Negro, J. Rander, A. Rosowsky, M. Ö. Sahin, M. Titov, A. Abdulsalam, C. Amendola, I. Antropov, S. Baffioni, F. Beaudette, P. Busson, L. Cadamuro, C. Charlot, R. Granier de Cassagnac, M. Jo, S. Lisniak, A. Lobanov, J. Martin Blanco, M. Nguyen, C. Ochando, G. Ortona, P. Paganini, P. Pigard, R. Salerno, J. B. Sauvan, Y. Sirois, A. G. Stahl Leiton, T. Strebler, Y. Yilmaz, A. Zabi, A. Zghiche, J.-L. Agram, J. Andrea, D. Bloch, J.-M. Brom, M. Buttignol, E. C. Chabert, N. Chanon, C. Collard, E. Conte, X. Coubez, J.-C. Fontaine, D. Gelé, U. Goerlach, M. Jansová, A.-C. Le Bihan, N. Tonon, P. Van Hove, S. Gadrat, S. Beauceron, C. Bernet, G. Boudoul, R. Chierici, D. Contardo, P. Depasse, H. El Mamouni, J. Fay, L. Finco, S. Gascon, M. Gouzevitch, G. Grenier, B. Ille, F. Lagarde, I. B. Laktineh, M. Lethuillier, L. Mirabito, A. L. Pequegnot, S. Perries, A. Popov, V. Sordini, M. Vander Donckt, S. Viret, A. Khvedelidze, Z. Tsamalaidze, C. Autermann, L. Feld, M. K. Kiesel, K. Klein, M. Lipinski, M. Preuten, C. Schomakers, J. Schulz, T. Verlage, V. Zhukov, A. Albert, E. Dietz-Laursonn, D. Duchardt, M. Endres, M. Erdmann, S. Erdweg, T. Esch, R. Fischer, A. Güth, M. Hamer, T. Hebbeker, C. Heidemann, K. Hoepfner, S. Knutzen, M. Merschmeyer, A. Meyer, P. Millet, S. Mukherjee, T. Pook, M. Radziej, H. Reithler, M. Rieger, F. Scheuch, D. Teyssier, S. Thüer, G. Flügge. Search for supersymmetry in events with at least three electrons or muons, jets, and missing transverse momentum in proton-proton collisions at $$ \sqrt{s}=13 $$ TeV, Journal of High Energy Physics, 2018, 67, DOI: 10.1007/JHEP02(2018)067