Pseudorapidity distributions of charged hadrons in proton-lead collisions at $$ \sqrt{s_{\mathrm{NN}}}=5.02 $$ and 8.16 TeV

Journal of High Energy Physics, Jan 2018

Abstract The pseudorapidity distributions of charged hadrons in proton-lead collisions at nucleon-nucleon center-of-mass energies \( \sqrt{s_{\mathrm{NN}}}=5.02 \) and 8.16 TeV are presented. The measurements are based on data samples collected by the CMS experiment at the LHC. The number of primary charged hadrons produced in non-single-diffractive proton-lead collisions is determined in the pseudorapidity range |ηlab| < 2.4. The charged-hadron multiplicity distributions are compared to the predictions from theoretical calculations and Monte Carlo event generators. In the center-of-mass pseudorapidity range |ηcm| < 0.5, the average charged-hadron multiplicity densities 〈dNch/dηcm〉|ηcm| < 0.5 are 17.31 ± 0.01 (stat) ± 0.59 (syst) and 20.10 ± 0.01 (stat) ± 0.85(syst) at \( \sqrt{s_{\mathrm{NN}}}=5.02 \) and 8.16 TeV, respectively. The particle densities per participant nucleon are compared to similar measurements in proton-proton, proton-nucleus, and nucleus-nucleus collisions. Open image in new window

A PDF file should load here. If you do not see its contents the file may be temporarily unavailable at the journal website or you do not have a PDF plug-in installed and enabled in your browser.

Alternatively, you can download the file locally and open with any standalone PDF reader:

https://link.springer.com/content/pdf/10.1007%2FJHEP01%282018%29045.pdf

Pseudorapidity distributions of charged hadrons in proton-lead collisions at $$ \sqrt{s_{\mathrm{NN}}}=5.02 $$ and 8.16 TeV

NN = Pseudorapidity distributions of charged hadrons in 0 The charged- The pseudorapidity distributions of charged hadrons in proton-lead collisions at nucleon-nucleon center-of-mass energies psNN = 5:02 and 8.16 TeV are presented. The measurements are based on data samples collected by the CMS experiment at the LHC. The number of primary charged hadrons produced in non-single-di ractive protonlead collisions is determined in the pseudorapidity range j labj < 2:4. hadron multiplicity distributions are compared to the predictions from theoretical calculations and Monte Carlo event generators. In the center-of-mass pseudorapidity range Hadron-Hadron scattering (experiments); Heavy-ion collision - 0:59 (syst) and 20:10 0:01 (stat) j cmj < 0:5, the average charged-hadron multiplicity densities hdNch=d cmi j cmj 0:85(syst) at psNN = 5:02 and < 0:5 are 8.16 TeV, respectively. The particle densities per participant nucleon are compared to similar measurements in proton-proton, proton-nucleus, and nucleus-nucleus collisions. 1 Introduction 2 3 4 5 6 parton distribution functions (PDFs) that can be observed in measurements of hadron [3{7] and jet [8{10] production. Such measurements also provide reference data for understanding the hot, dense medium produced in nucleus-nucleus (AA) collisions. At the CERN LHC energies, measurements of proton-nucleus (pA) collisions allow studies of the nuclear gluon distributions and parton shadowing e ects at very small values (10 4{10 6) of the Bjorken x variable [2, 11]. This provides a crucial test of current theoretical approaches for high-energy QCD [11{13], and yields important constraints on phenomenological models and event generators [14{17]. The number of primary charged hadrons, Nch, is commonly characterized by its pseudorapidity density, dNch=d . The pseudorapidity, , is de ned as ln[tan =2], where is the polar angle of the particle with respect to the beam axis. The center-of-mass energy dependence of dNch=d constrains the theoretical modeling of particle production arising from hard and soft QCD processes in high-energy hadronic interactions. In the presence of the quark-gluon plasma (QGP), the hot medium produced in AA collisions, modi cations of hadron production have been observed. Studying the energy dependence of the pseudorapidity density in di erent colliding systems (proton-proton (pp), pA, AA), for both total inelastic and non-single-di ractive (NSD) [18{20] collision processes, improves our understanding of these modi cations in the AA case by identifying nuclear e ects present in the initial state. Monte Carlo (MC) event generators, which reproduce the main characteristics { 1 { of experimental results from hadronic collisions at lower energies, can provide predictions for the energy dependence of hadron production using di erent implementations of QCD e ects [21]. In this paper, measurements of dNch=d lab (where the pseudorapidity is measured in the laboratory frame) in the range j labj < 2:4 are reported for NSD events in pPb collisions delivered by the LHC in 2016 at p s = 0:9{13 TeV [22{25] and in lead-lead collisions at p sNN = 5:02 and 8.16 TeV. Following earlier analyses in pp sNN = 2:76 TeV [26], Nch is restricted to \primary" charged hadrons, de ned to include prompt hadrons as well as decay products of all particles with proper decay length c < 1 cm, where is the proper lifetime of the particle and c is the velocity of light in vacuum. Contributions from sNN = 5:02 (8:16) TeV, the beam energies per nucleon were 4 (6.5) TeV and 1.58 (2.56) TeV for the proton and lead nucleus, respectively. Because the beam energies were asymmetric and the proton was going in the positive lab direction, massless particles emitted at midrapidity in the nucleon-nucleon center-of-mass, cm = 0, will be detected at lab = 0:465. Results are compared to predictions from the KLN model [11], as well as the Epos LHC (v3400) [ 17, 27 ], Hijing [14] (versions 1.3 [15] and 2.1 [12]), and DpmjetsNN dependence of dNch=d cm in the region cm 0 III [16] MC event generators. The p is also presented. 2 The CMS detector The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal diameter. Within the solenoid volume are a silicon pixel and strip tracker, a lead tungstate crystal electromagnetic calorimeter, and a brass and scintillator hadron calorimeter, each composed of a barrel and two endcap sections. The silicon tracker measures charged particles within the range j labj < 2:5. It consists of 1440 silicon pixel detector modules. The barrel region of the pixel detector consists of three layers, which are very close to the beam line. They are located at average radii of 4.3, 7.2, and 11.0 cm, and provide excellent position resolution with their 150 100 m pixels. The forward hadron (HF) calorimeter uses steel as an absorber and quartz bers as the sensitive material. It consists of two halves, each located 11.2 m from the interaction region, and together they provide coverage in the range 3:0 < j labj < 5:2. The beam pickup for timing (BPTX) devices were used to trigger the detector readout. They are located around the beam pipe at a distance of 175 m on either side of the interaction point (IP) and are designed to provide precise information on the LHC bunch structure and the timing of the incoming beams. Muons are detected in gas-ionization chambers embedded in the steel ux-return yoke outside the solenoid. A more detailed description of the CMS detector, together with a de nition of the coordinate system used and the relevant kinematic variables, can be found in ref. [28]. 3 Event selection The data used in this analysis were taken with the beam con guration in which the proton beam traveled in the negative pseudorapidity direction, and selected to contain collision { 2 { events recorded during low-intensity beam con gurations, with 0.3{0.6% proton-lead interaction probability per bunch crossing. The collision events are selected online by requiring a coincidence of signals from both BPTX devices, indicating the presence of both proton and lead ion bunches crossing the IP, and at least one energy deposit above the readout threshold of 3 GeV on either side of the HF. The o ine selection of NSD events is accomplished by requiring that at least one energy deposit greater than 3 GeV is found on each of the two sides of the HF and at least one reconstructed interaction vertex is found. A study of noncolliding bunches shows that these requirements are also su cient to reject all backgrounds not originating from pPb collisions. The probability to select events in the presence of a single (noncolliding) beam is found to be around 2 10 5 per bunch crossing, to be compared to the average number of collisions per bunch crossing of 4:5 Consequently, the contribution of background events from beam, beam halo, and cosmic passing the selection criteria is approximately 420 thousand and 3 million at p ray sources to the observed yields is negligible. The total number of pPb collision events sNN = 5:02 same event reconstruction chain as the collision data. 4 Data analysis In the presence of a magnetic eld, charged particles follow curved trajectories, perturbed mostly by multiple Coulomb scattering. The reconstructed pixel clusters (or \hits") alone are su cient to reconstruct vertices and tracks with high precision and purity. The analysis technique is based on tracklets, pairs of hits from two di erent layers, and relies on the fact that for a primary charged hadron, the di erences in pseudorapidity ( ) and azimuthal angle ( ) between the two hits are small. This method is sensitive to charged hadrons with transverse momenta pT as low as 40 MeV/c. The primary vertex reconstruction is based on pixel hits in the rst two layers of the detector, as in ref. [26]. In the rst step, a hit from the rst layer is selected and a matching hit from the second layer is sought. If the j j of the hits is smaller than 0.05 (optimized to maximize the vertex reconstruction e ciency), the z positions of the hits (with the z axis de ned to be parallel to the beam axis) are extrapolated linearly and projected onto the beam axis. This procedure is repeated for every hit in the rst layer, and the projected z positions are saved as vertex candidates. The primary vertex is determined in a second step. If the magnitude of the di erence between the z positions of any two vertex candidates is smaller than 0.12 cm, they are combined into a vertex cluster. The vertex cluster with the highest number of associated vertex candidates is selected as the primary vertex, and the nal vertex z position, zv, is given by the average z position of the associated vertex candidates. The typical resolution of zv is 0.02{0.04 cm, depending on the number of pixel hits. The vertex reconstruction e ciency is found to be high even { 3 { 10−3 c c c a a f f o o o n n F F F pPb sNN = 8.16 TeV Data EPOS LHC HIJING 1.3 pPb sNN = 8.16 TeV Data EPOS LHC HIJING 1.3 CMS it (b, c) distributions of hit pairs for tracklets in pPb collisions at 8.16 TeV (squares) and from MC simulations with the Epos and Hijing 1.3 generators (solid lines). The statistical uncertainties are smaller than the marker sizes for all distributions shown. for low-multiplicity events with few pixel hits, with around 90 (100)% e ciency for events with 4 (10) hits in the rst layer. The tracklet reconstruction follows a separate algorithm from the vertex reconstruction. There is no requirement on the of the hits. Instead, a hit on a given layer is paired with the hit on another layer which is closest in (where is measured with respect to the primary vertex) and these two hits form a tracklet. No hit can be used more than once. No selection is applied on the hit quality or charge, such that the analysis is rather insensitive to the accuracy of the simulation of pixel cluster charge. Three di erent types of tracklets can be reconstructed, corresponding to di erent combinations of the three pixel detector layers: 1+2, 1+3, and 2+3. The reconstruction e ciency, acceptance, fraction of background hits, and sensitivity to particle pT is di erent for each type of tracklet. This serves as a consistency check for the analysis, and reduces systematic biases in the measurement. including most particles in the analysis, only tracklets with j j < 0:1 are considered \signal". In this kinematic region, there is good agreement between data and simulations with the Epos generator, indicating that the pT distributions of both hard and soft particles in data are described well by this MC generator. The Hijing generator, used in this analysis for systematic studies, gives a poorer description of the distributions, especially for . Tracklets corresponding to charged hadrons that originate from the primary vertex have small but nonzero due to the magnetic eld in the detector, while background tracklets from uncorrelated pixel hits form a roughly at spectrum over the entire range, as shown in gure 1(c), where the abscissa is extended to j j < 2. Hence, a sideband region de ned by 1 < j j < 2 is used to estimate the background fraction, which is then subtracted from the signal region (j j < 1) to obtain the uncorrected dNch=d lab [26]. The background estimation and subtraction is performed as a function of lab, zv, and tracklet multiplicity. Typical values of the estimated background fraction in the signal region in data increase with j labj from 10{25%. The lab range is restricted to j labj < 2:4 to avoid a large acceptance correction. { 4 { HJEP01(28)45 The nal results need to be corrected for contributions from decaying particles with c > 1 cm, particles created in secondary interactions, and prompt leptons. The contribution of these particles to dNch=d lab is removed using a correction factor found using MC simulations. In addition, corrections are needed to account for the selection, e ciency, and acceptance of reconstructed tracklets, as well as trigger and vertexing e ciencies. The acceptance factor includes the extrapolation down to pT = 0 GeV/c. Correction factors (with a typical total of <15%) are derived using the Epos event generator as a reference and are calculated as a function of lab, zv, and tracklet multiplicity, as was done in ref. [26]. To account for the di erences between data and MC in the pixel detector geometry and its alignment conditions, an additional correction is applied as a function of lab and zv. This correction is obtained by taking the ratio between data and simulation of the geometrical distribution of tracklets in ( lab, zv) intervals. The size of this correction ranges from 0 to 5%, where the largest correction factors are associated with the presence of inactive tracker modules. 4.1 Systematic uncertainties The systematic uncertainties in the nal results arise from several sources: detector misalignment, pixel hit reconstruction ine ciency, pixel cluster splitting, background modeling, selection of signal and sideband regions, parametrization of the correction factors, and the NSD event selection. For each source of uncertainty, that part of the analysis procedure is varied independently and the change is propagated to the nal results. The individual contributions are then summed in quadrature to give the total systematic uncertainty. To estimate the uncertainty from detector misalignment, each pixel hit is o set by a small distance corresponding to the uncertainty in the alignment of the pixel detectors. The e ects of pixel hit reconstruction ine ciency are studied by randomly excluding 0.5% of the pixel hits from the analysis. The 0.5% ine ciency value is determined by studying tracklets reconstructed from pixel hits in layers 1 and 3, and taking the double ratio in data and simulation of the fraction of tracklets that have no corresponding hit in layer 2. Pixel cluster splitting refers to the situation where the charge deposit in the pixel detector from a single charged particle is reconstructed as two separate pixel clusters. Its e ect on the measurement is estimated by randomly splitting pixel clusters with a probability of 1.2%, as determined by previous studies [22]. The contributions from the above three sources are all below 1%. The remaining uncertainties are associated with the MC correction factors. Additional pixel hits, randomly sampled from the hit distributions in data, are added such that the sidebands match between data and MC. The percentage of additional pixel hits needed is less than 5%. The variations observed compared to the nominal results are around 1.5{ 2.5%. The signal and sideband regions are also varied to j j < 1:5 and 1:5 < j j < 3:0, respectively. A variation of 0.6{1.5% is found as compared to the nominal setting, which is propagated as a systematic uncertainty. Di erent multiplicity variables are used to parametrize the correction factors, in addition to the background-subtracted tracklets variable used for the nominal results: number of tracklets (before background subtraction), number of pixel hits in the rst pixel layer used (layer 1 for tracklet type 1+2 and 1+3, and { 5 { Data and simulation MC Signal and sideband region selection corrections Choice of parametrization variable Detector misalignment Pixel hit reconstruction ine ciency Pixel cluster splitting Background modeling NSD selection Total uncertainty Uncertainty [%] layer 2 for tracklet type 2+3). The maximum deviation in each lab interval, 1.5{2.5%, is quoted as an uncertainty. An uncertainty is assigned for the selection of NSD events. The fraction of the single-di ractive events removed by the event selection, as determined from the Epos generator, is 16% when the tracklet multiplicity in the event is less than 10, and falls quickly to 0% with increasing tracklet multiplicity. This fraction is varied from 0% to twice the nominal value, and the maximum deviation from the nal results, 1.2%, is quoted as the uncertainty. A summary of the systematic uncertainties for the measurements at 5.02 and 8.16 TeV is shown in table 1. 5 Results Pseudorapidity density distributions of charged hadrons in the region j labj < 2:4 for NSD pPb collisions are shown in gure 2. The distributions shown are the average of the measured distributions from the three types of tracklets (1+2, 1+3, and 2+3), which are consistent with each other within 3%. A clear di erence in the particle densities between the lead ion ( lab < 0) and the proton ( lab > 0) beam directions is observed. The measured dNch=d lab distribution at 5.02 TeV agrees with the measurement by the ALICE Collaboration [30]. The multiplicities at 8.16 TeV are signi cantly higher than those at 5.02 TeV. calculations from the Hijing (versions 1.3 and 2.1), Epos LHC (v3400), and Dpmjet-III MC generators, and the KLN model. The Hijing and Epos generators were tuned to data from RHIC and the LHC, respectively. Calculations from Hijing 2.1, a two-component model that combines perturbative QCD descriptions of hard parton scatterings with a string excitation model for soft interactions, agree with the experimental data in the region 0:5 < lab < 1:5 when the nuclear modi cation of the initial parton distributions (shadowing) is included in the calculation. The Hijing 1.3 calculation overpredicts the particle density because it has an older implementation of the gluon shadowing e ects. The { 6 { in NSD pPb collisions at p sNN = 5:02 (open squares) and 8.16 TeV (full squares). The measurement at 5.02 TeV by the ALICE Collaboration [30] is shown as lled circles. The shaded boxes indicate the systematic uncertainties which, in the case of the CMS data, are correlated between the two beam energies. The proton beam goes in the positive lab direction. importance of shadowing can be assessed using the comparison of Hijing 2.1 simulations generated with and without this physics process included. The results are signi cantly higher than the data when shadowing is disabled. The KLN parton saturation model combines Glauber modeling of the collision geometry with a simple model for the unintegrated parton distributions that accounts for the existence of a saturation momentum scale [31, 32]. It describes the particle density accurately for j labj < 1 but overall shows a steeper increase of density versus lab than observed in the data, similar to what was observed in the comparisons to the PHOBOS deuteron-gold (dAu) data at 200 GeV [33] and ALICE data at 5.02 TeV [30]. The Dpmjet-III generator, commonly used in the description of cosmic ray, nucleon-nucleon, and nucleon-nucleus interactions, is based on the dual parton model [34], which generates soft hadronic interactions by considering the expansion of nonperturbative QCD in the limit where the number of color and avor states are large [35]. This generator is found to predict both a steeper increase versus lab and a higher particle density over the measured lab interval. The Epos generator, which is based on the Gribov-Regge theory and includes the e ect of collective hadronization in hadron-hadron scattering, was found to describe pp data up to 13 TeV [25], but underpredicts the observed dNch=d lab by a roughly constant factor over the entire measured range for pPb at 8.16 TeV. One of the main goals of the heavy ion studies is to understand hadron production in the extremely dense medium formed in AA collisions. One way to approach this goal is to consider a direct comparison between the charged-hadron multiplicity density in minimum { 7 { for NSD pPb collisions at 8.16 TeV (squares) compared to predictions from the MC event generators Epos LHC [ 17, 27 ] (v3400), Hijing [14] (versions 1.3 [15] and 2.1 [12]), and Dpmjet-III [16], as well as from the KLN model [11]. The shaded boxes around the data points indicate their systematic uncertainties. The proton beam goes in the positive lab direction. bias pp and pA collisions, reference systems for particle production in the absence of a QGP, and central AA collisions (the most extreme type of collisions with the highest particle multiplicities). The comparison is made by dividing dNch=d cm by the number of participating nucleons, Npart, determined by a Glauber model calculation [4, 36]. This normalization is the one assumed in two-component models (e.g. Hijing) for the bulk of the particle production. 17:31 In order to compare particle production in pPb collisions to that in symmetric collision systems such as pp or AA, the rapidity shift due to the asymmetric beam energies must be taken into account. The average charged-hadron multiplicity density at midrapidity in the center-of-mass frame, hdNch=d cmijj cmj<0:5, in pPb collisions is calculated by integrating the data in the interval lab < 0:965, corresponding to j cmj < 0:5 for massless particles. A correction is applied to account for the massless assumption entering the calculation of the pseudorapidity shift: 0.1 and 0.2% for the 5.02 TeV and 8.16 TeV analyses, respectively, as obtained from the Epos generator. The 1% variation in the results, obtained when this correction is evaluated from Hijing, is quoted as an additional uncertainty for the hdNch=d cmijj cmj<0:5 results. In the range j cmj < 0:5, values of various collision systems and event selections. The NSD pA results are found to be lower than those from central AA collisions [26, 37{50] (s0N:N158 dependence) and NSD pp collisions { 8 { pp (pp) NSD Central AA pA NSD CMS CMS ALICE ATLAS BRAHMS PHENIX STAR PHOBOS NA50 pPb CMS pPb ALICE dAu PHOBOS dAu PHENIX (Central) pA Inel. pPb E178 pAu NA35 CMS ALICE CDF UA5 UA1 STAR CMS ALICE UA5 PHOBOS ISR pp (pp) Inel. 10 The AA data points at p form as in refs. [46, 59]. ticipating nucleons (Npart) in pPb [30, 51], pAu [52], dAu [33, 48, 53] and central heavy ion collisions [26, 37{50], as well as NSD [22, 23, 50, 54{57] and inelastic [25, 37, 56, 58, 59] pp collisions. sNN = 2:76 TeV have been shifted horizontally for visibility. The dashed curves, included to guide the eye, correspond to a t to the data points using the same functional (s0N:N110 dependence) at similar center-of-mass energies, but coincide with the trend observed in inelastic pp collisions (s0N:N103 dependence). While the di erence between the NSD pp and pA results could be attributed to non-QGP nuclear e ects, the similarity between the NSD pA and total inelastic pp is yet to be understood. 6 Summary CMS experiment at the LHC in proton-lead collisions at p The pseudorapidity distributions of primary charged hadrons have been measured by the sNN = 5:02 and 8.16 TeV. Based on pairs of pixel clusters from two di erent layers of the barrel region of the CMS pixel detector, the distributions have been obtained for NSD pPb events at both collision energies. The measured dNch=d lab distribution at 5.02 TeV is consistent with published results by the ALICE Collaboration. At 8.16 TeV, the measured dNch=d lab distribution is higher than the predictions of Epos LHC, but signi cantly lower than the predictions from the Hijing 1.3 and Dpmjet-III event generators. At lab 0, the measured distributions are in good agreement with calculations from the KLN gluon saturation model and predictions from the Hijing 2.1 event generator with the e ects of gluon shadowing included. The charged-hadron multiplicity densities in the nucleon-nucleon center-of-mass frame, at p hdNch=d cmijj cmj<0:5, are 17:31 sNN = 5:02 and 8.16 TeV, respectively. When comparing the average charged-particle 0:01 (stat) 0:59 (syst) and 20:10 0:01 (stat) 0:85 (syst) { 9 { density per participant nucleon for pp, pA, and AA collisions as a function of collision energy, the pA results are found to be below those in central AA collisions and NSD pp collisions, but coincide with the trend seen in inelastic pp collisions. These results represent the rst measurement of hadron production at this new center-of-mass energy frontier in nuclear collisions, and provide constraints for the understanding of nonperturbative QCD e ects in high-energy nuclear collisions. Acknowledgments We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative sta s at CERN and at other CMS institutes for their contributions to the success of the CMS e ort. In addition, we gratefully acknowledge the computing centers and personnel of the Worldwide LHC Computing Grid for delivering so e ectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMWFW and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES and CSF (Croatia); RPF (Cyprus); SENESCYT (Ecuador); MoER, ERC IUT, and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NIH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); MSIP and NRF (Republic of Korea); LAS (Lithuania); MOE and UM (Malaysia); BUAP, CINVESTAV, CONACYT, LNS, SEP, and UASLP-FAI (Mexico); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS, RFBR and RAEP (Russia); MESTD (Serbia); SEIDI, CPAN, PCTI and FEDER (Spain); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter, IPST, STAR, and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU and SFFR (Ukraine); STFC (United Kingdom); DOE and NSF (U.S.A.). Individuals have received support from the Marie-Curie program and the European Research Council and Horizon 2020 Grant, contract No. 675440 (European Union); the Leventis Foundation; the A. P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy O ce; the Fonds pour la Formation a la Recherche dans l'Industrie et dans l'Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the Ministry of Education, Youth and Sports (MEYS) of the Czech Republic; the Council of Science and Industrial Research, India; the HOMING PLUS program of the Foundation for Polish Science, co nanced from European Union, Regional Development Fund, the Mobility Plus program of the Ministry of Science and Higher Education, the National Science Center (Poland), contracts Harmonia 2014/14/M/ST2/00428, Opus 2014/13/B/ST2/02543, 2014/15/B/ST2/03998, and 2015/19/B/ST2/02861, Sonata-bis 2012/07/E/ST2/01406; the National Priorities Research Program by Qatar National Research Fund; the Programa Severo Ochoa del Principado de Asturias; the Thalis and Aristeia programs co nanced by EU-ESF and the Greek NSRF; the Rachadapisek Sompot Fund for Postdoctoral Fellowship, Chulalongkorn University and the Chulalongkorn Academic into Its 2nd Century Project Advancement Project (Thailand); the Welch Foundation, contract C-1845; and the Weston Havens Foundation (U.S.A.). Open Access. This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited. Phys. Polon. B 8 (1977) 333 [INSPIRE]. [2] C.A. Salgado et al., Proton-nucleus collisions at the LHC: scienti c opportunities and requirements, J. Phys. G 39 (2012) 015010 [arXiv:1105.3919] [INSPIRE]. [3] CMS collaboration, Nuclear e ects on the transverse momentum spectra of charged particles in pPb collisions at psNN = 5:02 TeV, Eur. Phys. J. C 75 (2015) 237 [arXiv:1502.05387] at psNN = 5:02 TeV, JHEP 04 (2017) 039 [arXiv:1611.01664] [INSPIRE]. [4] CMS collaboration, Charged-particle nuclear modi cation factors in PbPb and pPb collisions [5] CMS collaboration, Study of B meson production in p+Pb collisions at psNN = 5:02 TeV using exclusive hadronic decays, Phys. Rev. Lett. 116 (2016) 032301 [arXiv:1508.06678] [6] ALICE collaboration, D-meson production in p-Pb collisions at psNN = 5:02 TeV and in pp s = 7 TeV, Phys. Rev. C 94 (2016) 054908 [arXiv:1605.07569] [INSPIRE]. [7] CMS collaboration, Measurement of prompt and nonprompt J= production in pp and pPb collisions at psNN = 5:02 TeV, Eur. Phys. J. C 77 (2017) 269 [arXiv:1702.01462] [8] CMS collaboration, Transverse momentum spectra of inclusive b jets in pPb collisions at psNN = 5:02 TeV, Phys. Lett. B 754 (2016) 59 [arXiv:1510.03373] [INSPIRE]. [9] CMS collaboration, Measurement of inclusive jet production and nuclear modi cations in pPb collisions at psNN = 5:02 TeV, Eur. Phys. J. C 76 (2016) 372 [arXiv:1601.02001] [arXiv:1401.4433] [INSPIRE]. [arXiv:1111.3031] [INSPIRE]. [10] CMS collaboration, Studies of dijet transverse momentum balance and pseudorapidity distributions in pPb collisions at psNN = 5:02 TeV, Eur. Phys. J. C 74 (2014) 2951 [11] A. Dumitru, D.E. Kharzeev, E.M. Levin and Y. Nara, Gluon saturation in pA collisions at the LHC: KLN model predictions for hadron multiplicities, Phys. Rev. C 85 (2012) 044920 [12] R. Xu, W.-T. Deng and X.-N. Wang, Nuclear modi cation of high-pT hadron spectra in p+A collisions at LHC, Phys. Rev. C 86 (2012) 051901 [arXiv:1204.1998] [INSPIRE]. [13] J.L. Albacete, A. Dumitru, H. Fujii and Y. Nara, CGC predictions for p + Pb collisions at the LHC, Nucl. Phys. A 897 (2013) 1 [arXiv:1209.2001] [INSPIRE]. [15] M. Gyulassy and X.-N. Wang, HIJING 1.0: A Monte Carlo program for parton and particle production in high-energy hadronic and nuclear collisions, Comput. Phys. Commun. 83 (1994) 307 [nucl-th/9502021] [INSPIRE]. [16] S. Roesler, R. Engel and J. Ranft, The Monte Carlo event generator DPMJET-III, in the proceedings of the Advanced Monte Carlo for radiation physics, particle transport simulation and applications conference (MC2000), October 23{26, Lisbon, Portugal (2000). collective hadronization with data measured at the CERN Large Hadron Collider, Phys. Rev. HJEP01(28)45 C 92 (2015) 034906 [arXiv:1306.0121] [INSPIRE]. [18] C. Halliwell et al., Energy dependence of the pseudorapidity distributions in proton-nucleus collisions between 50 GeV/c and 200 GeV/c., Phys. Rev. Lett. 39 (1977) 1499 [INSPIRE]. TeV, JHEP 01 (2011) 079 [arXiv:1011.5531] [INSPIRE]. LHC data on hadronic event generators for ultra-high energy cosmic-ray physics, Astropart. Phys. 35 (2011) 98 [arXiv:1101.5596] [INSPIRE]. [22] CMS collaboration, Transverse momentum and pseudorapidity distributions of charged s = 0:9 and 2:36 TeV, JHEP 02 (2010) 041 [arXiv:1002.0621] [23] CMS collaboration, Transverse-momentum and pseudorapidity distributions of charged s = 7 TeV, Phys. Rev. Lett. 105 (2010) 022002 hadrons in pp collisions at p hadrons in pp collisions at p [arXiv:1005.3299] [INSPIRE]. [24] CMS and TOTEM collaborations, Measurement of pseudorapidity distributions of charged particles in proton-proton collisions at p Eur. Phys. J. C 74 (2014) 3053 [arXiv:1405.0722] [INSPIRE]. s = 8 TeV by the CMS and TOTEM experiments, [25] CMS collaboration, Pseudorapidity distribution of charged hadrons in proton-proton collisions at p s = 13 TeV, Phys. Lett. B 751 (2015) 143 [arXiv:1507.05915] [INSPIRE]. [26] CMS collaboration, Dependence on pseudorapidity and centrality of charged hadron production in PbPb collisions at a nucleon-nucleon centre-of-mass energy of 2:76 TeV, JHEP 08 (2011) 141 [arXiv:1107.4800] [INSPIRE]. [27] K. Werner, F.-M. Liu and T. Pierog, Parton ladder splitting and the rapidity dependence of transverse momentum spectra in deuteron-gold collisions at RHIC, Phys. Rev. C 74 (2006) 044902 [hep-ph/0506232] [INSPIRE]. [28] CMS collaboration, The CMS experiment at the CERN LHC, 2008 JINST 3 S08004 Instrum. Meth. A 506 (2003) 250 [INSPIRE]. [29] GEANT4 collaboration, S. Agostinelli et al., GEANT4 | a simulation toolkit, Nucl. [30] ALICE collaboration, Pseudorapidity density of charged particles in p + Pb collisions at psNN = 5:02 TeV, Phys. Rev. Lett. 110 (2013) 032301 [arXiv:1210.3615] [INSPIRE]. [INSPIRE]. 236 (1994) 225 [INSPIRE]. 365 [INSPIRE]. [31] D. Kharzeev and E. Levin, Manifestations of high density QCD in the rst RHIC data, Phys. Lett. B 523 (2001) 79 [nucl-th/0108006] [INSPIRE]. [32] D. Kharzeev, E. Levin and M. Nardi, The onset of classical QCD dynamics in relativistic heavy ion collisions, Phys. Rev. C 71 (2005) 054903 [hep-ph/0111315] [INSPIRE]. [33] PHOBOS collaboration, B.B. Back et al., Pseudorapidity distribution of charged particles in d + Au collisions at psNN = 200 GeV, Phys. Rev. Lett. 93 (2004) 082301 [nucl-ex/0311009] HJEP01(28)45 [nucl-ex/0012008] [INSPIRE]. central Au+Au collisions at p 3100 [hep-ex/0007036] [INSPIRE]. [nucl-ex/0106006] [INSPIRE]. [36] M.L. Miller, K. Reygers, S.J. Sanders and P. Steinberg, Glauber modeling in high energy nuclear collisions, Ann. Rev. Nucl. Part. Sci. 57 (2007) 205 [nucl-ex/0701025] [INSPIRE]. [37] PHOBOS collaboration, B. Alver et al., Phobos results on charged particle multiplicity and pseudorapidity distributions in Au+Au, Cu+Cu, d+Au and p+p collisions at ultra-relativistic energies, Phys. Rev. C 83 (2011) 024913 [arXiv:1011.1940] [INSPIRE]. [38] NA50 collaboration, M.C. Abreu et al., Scaling of charged particle multiplicity in Pb Pb collisions at SPS energies, Phys. Lett. B 530 (2002) 43 [INSPIRE]. [39] STAR collaboration, C. Adler et al., Multiplicity distribution and spectra of negatively charged hadrons in Au+Au collisions at psNN = 130 GeV, Phys. Rev. Lett. 87 (2001) 112303 [nucl-ex/0106004] [INSPIRE]. [40] BRAHMS collaboration, I.G. Bearden et al., Charged particle densities from Au+Au collisions at psNN = 130 GeV, Phys. Lett. B 523 (2001) 227 [nucl-ex/0108016] [INSPIRE]. [41] BRAHMS collaboration, I.G. Bearden et al., Pseudorapidity distributions of charged particles from Au+Au collisions at the maximum RHIC energy, Phys. Rev. Lett. 88 (2002) 202301 [nucl-ex/0112001] [INSPIRE]. [42] PHENIX collaboration, K. Adcox et al., Centrality dependence of charged particle multiplicity in Au-Au collisions at psNN = 130 GeV, Phys. Rev. Lett. 86 (2001) 3500 [43] PHOBOS collaboration, B.B. Back et al., Charged particle multiplicity near mid-rapidity in s = 56 A/GeV and 130 A/GeV, Phys. Rev. Lett. 85 (2000) [44] PHOBOS collaboration, B.B. Back et al., Charged particle pseudorapidity density distributions from Au+Au collisions at psNN = 130 GeV, Phys. Rev. Lett. 87 (2001) 102303 [45] B.B. Back et al., The Signi cance of the fragmentation region in ultrarelativistic heavy ion collisions, Phys. Rev. Lett. 91 (2003) 052303 [nucl-ex/0210015] [INSPIRE]. [46] ALICE collaboration, Charged-particle multiplicity density at mid-rapidity in central PbPb collisions at psNN = 2:76 TeV, Phys. Rev. Lett. 105 (2010) 252301 [arXiv:1011.3916] [47] ATLAS collaboration, Measurement of the centrality dependence of the charged particle pseudorapidity distribution in lead-lead collisions at psNN = 2:76 TeV with the ATLAS detector, Phys. Lett. B 710 (2012) 363 [arXiv:1108.6027] [INSPIRE]. [48] PHENIX collaboration, A. Adare et al., Transverse energy production and charged-particle 93 (2016) 024901 [arXiv:1509.06727] [INSPIRE]. [49] STAR collaboration, B.I. Abelev et al., Identi ed particle production, azimuthal anisotropy and interferometry measurements in Au+Au collisions at psNN = 9:2 GeV, Phys. Rev. C 81 (2010) 024911 [arXiv:0909.4131] [INSPIRE]. [50] STAR collaboration, B.I. Abelev et al., Systematic measurements of identi ed particle spectra in pp, d+Au and Au+Au collisions from STAR, Phys. Rev. C 79 (2009) 034909 [arXiv:0808.2041] [INSPIRE]. [51] J.E. Elias et al., An experimental study of multiparticle production in hadron-nucleus interactions at high-energy, Phys. Rev. D 22 (1980) 13 [INSPIRE]. p p [hep-ex/9711001] [INSPIRE]. [53] PHENIX collaboration, C. Aidala et al., Measurements of azimuthal anisotropy and charged-particle multiplicity in d+Au collisions at psNN = 200, 62:4, 39 and 19:6 GeV, Phys. Rev. C 96 (2017) 064905 [arXiv:1708.06983] [INSPIRE]. [54] UA1 collaboration, C. Albajar et al., A study of the general characteristics of pp collisions at s = 0:2 TeV to 0:9 TeV, Nucl. Phys. B 335 (1990) 261 [INSPIRE]. [55] UA5 collaboration, K. Alpgard et al., Particle multiplicities in pp interactions at s = 540 GeV, Phys. Lett. 121B (1983) 209 [INSPIRE]. [56] UA5 collaboration, G.J. Alner et al., Scaling of pseudorapidity distributions at c.m. energies up to 0:9 TeV, Z. Phys. C 33 (1986) 1 [INSPIRE]. [57] CDF collaboration, F. Abe et al., Pseudorapidity distributions of charged particles produced in pp interactions at p s = 630 GeV and 1800 GeV, Phys. Rev. D 41 (1990) 2330 [INSPIRE]. [58] Aachen-CERN-Heidelberg-Munich collaboration, W. Thome et al., Charged particle multiplicity distributions in pp collisions at ISR energies, Nucl. Phys. B 129 (1977) 365 [59] ALICE collaboration, Charged-particle multiplicity measurement in proton-proton collisions s = 0:9 and 2:36 TeV with ALICE at LHC, Eur. Phys. J. C 68 (2010) 89 Yerevan Physics Institute, Yerevan, Armenia A.M. Sirunyan, A. Tumasyan Institut fur Hochenergiephysik, Wien, Austria W. Adam, F. Ambrogi, E. Asilar, T. Bergauer, J. Brandstetter, E. Brondolin, M. Dragicevic, J. Ero, M. Flechl, M. Friedl, R. Fruhwirth1, V.M. Ghete, J. Grossmann, J. Hrubec, M. Jeitler1, A. Konig, N. Krammer, I. Kratschmer, D. Liko, T. Madlener, I. Mikulec, E. Pree, N. Rad, H. Rohringer, J. Schieck1, R. Schofbeck, M. Spanring, D. Spitzbart, W. Waltenberger, J. Wittmann, C.-E. Wulz1, M. Zarucki Institute for Nuclear Problems, Minsk, Belarus V. Chekhovsky, V. Mossolov, J. Suarez Gonzalez Universiteit Antwerpen, Antwerpen, Belgium Haevermaet, P. Van Mechelen, N. Van Remortel Vrije Universiteit Brussel, Brussel, Belgium E.A. De Wolf, D. Di Croce, X. Janssen, J. Lauwers, M. Van De Klundert, H. Van S. Abu Zeid, F. Blekman, J. D'Hondt, I. De Bruyn, J. De Clercq, K. Deroover, G. Flouris, D. Lontkovskyi, S. Lowette, S. Moortgat, L. Moreels, Q. Python, K. Skovpen, S. Tavernier, W. Van Doninck, P. Van Mulders, I. Van Parijs Universite Libre de Bruxelles, Bruxelles, Belgium D. Beghin, H. Brun, B. Clerbaux, G. De Lentdecker, H. Delannoy, B. Dorney, G. Fasanella, L. Favart, R. Goldouzian, A. Grebenyuk, G. Karapostoli, T. Lenzi, J. Luetic, T. Maerschalk, A. Marinov, T. Seva, E. Starling, C. Vander Velde, P. Vanlaer, D. Vannerom, R. Yonamine, F. Zenoni, F. Zhang2 Ghent University, Ghent, Belgium C. Roskas, S. Salva, M. Tytgat, W. Verbeke, N. Zaganidis Universite Catholique de Louvain, Louvain-la-Neuve, Belgium H. Bakhshiansohi, O. Bondu, S. Brochet, G. Bruno, C. Caputo, A. Caudron, P. David, S. De Visscher, C. Delaere, M. Delcourt, B. Francois, A. Giammanco, M. Komm, G. Krintiras, V. Lemaitre, A. Magitteri, A. Mertens, M. Musich, K. Piotrzkowski, L. Quertenmont, A. Saggio, M. Vidal Marono, S. Wertz, J. Zobec Universite de Mons, Mons, Belgium N. Beliy Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil W.L. Alda Junior, F.L. Alves, G.A. Alves, L. Brito, M. Correa Martins Junior, C. Hensel, A. Moraes, M.E. Pol, P. Rebello Teles Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil E. Belchior Batista Das Chagas, W. Carvalho, J. Chinellato4, E. Coelho, E.M. Da Costa, G.G. Da Silveira5, D. De Jesus Damiao, S. Fonseca De Souza, L.M. Huertas Guativa, H. Malbouisson, M. Melo De Almeida, C. Mora Herrera, L. Mundim, H. Nogima, L.J. Sanchez Rosas, A. Santoro, A. Sznajder, M. Thiel, E.J. Tonelli Manganote4, F. Torres Da Silva De Araujo, A. Vilela Pereira Universidade Estadual Paulista a, Universidade Federal do ABC b, S~ao Paulo, Brazil S. Ahujaa, Sciences tanov C.A. Bernardesa, T.R. Fernandez Perez Tomeia, E.M. Gregoresb, P.G. Mercadanteb, S.F. Novaesa, Sandra S. Padulaa, D. Romero Abadb, J.C. Ruiz Vargasa Institute for Nuclear Research and Nuclear Energy of Bulgaria Academy of A. Aleksandrov, R. Hadjiiska, P. Iaydjiev, M. Misheva, M. Rodozov, M. Shopova, G. SulUniversity of So a, So a, Bulgaria A. Dimitrov, I. Glushkov, L. Litov, B. Pavlov, P. Petkov Beihang University, Beijing, China W. Fang6, X. Gao6, L. Yuan Institute of High Energy Physics, Beijing, China M. Ahmad, J.G. Bian, G.M. Chen, H.S. Chen, M. Chen, Y. Chen, C.H. Jiang, D. Leggat, H. Liao, Z. Liu, F. Romeo, S.M. Shaheen, A. Spiezia, J. Tao, C. Wang, Z. Wang, E. Yazgan, H. Zhang, S. Zhang, J. Zhao State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China Y. Ban, G. Chen, Q. Li, S. Liu, Y. Mao, S.J. Qian, D. Wang, Z. Xu Universidad de Los Andes, Bogota, Colombia C. Avila, A. Cabrera, L.F. Chaparro Sierra, C. Florez, C.F. Gonzalez Hernandez, J.D. Ruiz Alvarez, M.A. Segura Delgado University of Split, Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, Split, Croatia B. Courbon, N. Godinovic, D. Lelas, I. Puljak, P.M. Ribeiro Cipriano, T. Sculac University of Split, Faculty of Science, Split, Croatia Z. Antunovic, M. Kovac Institute Rudjer Boskovic, Zagreb, Croatia V. Brigljevic, D. Ferencek, K. Kadija, B. Mesic, A. Starodumov7, T. Susa University of Cyprus, Nicosia, Cyprus M.W. Ather, A. Attikis, G. Mavromanolakis, J. Mousa, C. Nicolaou, F. Ptochos, P.A. Razis, H. Rykaczewski Charles University, Prague, Czech Republic M. Finger8, M. Finger Jr.8 Universidad San Francisco de Quito, Quito, Ecuador E. Carrera Jarrin Academy of Scienti c Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt A.A. Abdelalim9;10, Y. Mohammed11, E. Salama12;13 National Institute of Chemical Physics and Biophysics, Tallinn, Estonia R.K. Dewanjee, M. Kadastik, L. Perrini, M. Raidal, A. Tiko, C. Veelken Department of Physics, University of Helsinki, Helsinki, Finland P. Eerola, H. Kirschenmann, J. Pekkanen, M. Voutilainen Helsinki Institute of Physics, Helsinki, Finland J. Havukainen, J.K. Heikkila, T. Jarvinen, V. Karimaki, R. Kinnunen, T. Lampen, K. Lassila-Perini, S. Laurila, S. Lehti, T. Linden, P. Luukka, H. Siikonen, E. Tuominen, J. Tuominiemi J. Talvitie, T. Tuuva Lappeenranta University of Technology, Lappeenranta, Finland France S. Gadrat IRFU, CEA, Universite Paris-Saclay, Gif-sur-Yvette, France M. Besancon, F. Couderc, M. Dejardin, D. Denegri, J.L. Faure, F. Ferri, S. Ganjour, S. Ghosh, A. Givernaud, P. Gras, G. Hamel de Monchenault, P. Jarry, I. Kucher, C. Leloup, E. Locci, M. Machet, J. Malcles, G. Negro, J. Rander, A. Rosowsky, M.O . Sahin, M. Titov Laboratoire Leprince-Ringuet, Ecole polytechnique, CNRS/IN2P3, Universite Paris-Saclay, Palaiseau, France A. Abdulsalam, C. Amendola, I. Antropov, S. Ba oni, F. Beaudette, P. Busson, L. Cadamuro, C. Charlot, R. Granier de Cassagnac, M. Jo, S. Lisniak, A. Lobanov, J. Martin Blanco, M. Nguyen, C. Ochando, G. Ortona, P. Paganini, P. Pigard, R. Salerno, J.B. Sauvan, Y. Sirois, A.G. Stahl Leiton, T. Strebler, Y. Yilmaz, A. Zabi, A. Zghiche Universite de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, J.-L. Agram14, J. Andrea, D. Bloch, J.-M. Brom, M. Buttignol, E.C. Chabert, N. Chanon, C. Collard, E. Conte14, X. Coubez, J.-C. Fontaine14, D. Gele, U. Goerlach, M. Jansova, A.-C. Le Bihan, N. Tonon, P. Van Hove Centre de Calcul de l'Institut National de Physique Nucleaire et de Physique des Particules, CNRS/IN2P3, Villeurbanne, France Universite de Lyon, Universite Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucleaire de Lyon, Villeurbanne, France S. Beauceron, C. Bernet, G. Boudoul, R. Chierici, D. Contardo, P. Depasse, H. El Mamouni, J. Fay, L. Finco, S. Gascon, M. Gouzevitch, G. Grenier, B. Ille, F. Lagarde, I.B. Laktineh, M. Lethuillier, L. Mirabito, A.L. Pequegnot, S. Perries, A. Popov15, V. Sordini, M. Vander Donckt, S. Viret T. Toriashvili16 Z. Tsamalaidze8 Georgian Technical University, Tbilisi, Georgia Tbilisi State University, Tbilisi, Georgia RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany C. Autermann, L. Feld, M.K. Kiesel, K. Klein, M. Lipinski, M. Preuten, C. Schomakers, J. Schulz, V. Zhukov15 RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany A. Albert, E. Dietz-Laursonn, D. Duchardt, M. Endres, M. Erdmann, S. Erdweg, T. Esch, R. Fischer, A. Guth, M. Hamer, T. Hebbeker, C. Heidemann, K. Hoepfner, S. Knutzen, M. Merschmeyer, A. Meyer, P. Millet, S. Mukherjee, T. Pook, M. Radziej, H. Reithler, M. Rieger, F. Scheuch, D. Teyssier, S. Thuer RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany G. Flugge, B. Kargoll, T. Kress, A. Kunsken, T. Muller, A. Nehrkorn, A. Nowack, C. Pistone, O. Pooth, A. Stahl17 Deutsches Elektronen-Synchrotron, Hamburg, Germany M. Aldaya Martin, T. Arndt, C. Asawatangtrakuldee, K. Beernaert, O. Behnke, U. Behrens, A. Bermudez Mart nez, A.A. Bin Anuar, K. Borras18, V. Botta, A. Campbell, P. Connor, C. Contreras-Campana, F. Costanza, C. Diez Pardos, G. Eckerlin, D. Eckstein, T. Eichhorn, E. Eren, E. Gallo19, J. Garay Garcia, A. Geiser, A. Gizhko, J.M. Grados Luyando, A. Grohsjean, P. Gunnellini, M. Gutho , A. Harb, J. Hauk, M. Hempel20, H. Jung, A. Kalogeropoulos, M. Kasemann, J. Keaveney, C. Kleinwort, I. Korol, D. Krucker, W. Lange, A. Lelek, T. Lenz, J. Leonard, K. Lipka, W. Lohmann20, R. Mankel, I.-A. Melzer-Pellmann, A.B. Meyer, G. Mittag, J. Mnich, A. Mussgiller, E. Ntomari, D. Pitzl, A. Raspereza, M. Savitskyi, P. Saxena, R. Shevchenko, S. Spannagel, N. Stefaniuk, G.P. Van Onsem, R. Walsh, Y. Wen, K. Wichmann, C. Wissing, O. Zenaiev University of Hamburg, Hamburg, Germany R. Aggleton, S. Bein, V. Blobel, M. Centis Vignali, T. Dreyer, E. Garutti, D. Gonzalez, J. Haller, A. Hinzmann, M. Ho mann, A. Karavdina, R. Klanner, R. Kogler, N. Kovalchuk, S. Kurz, T. Lapsien, I. Marchesini, D. Marconi, M. Meyer, M. Niedziela, D. Nowatschin, F. Pantaleo17, T. Pei er, A. Perieanu, C. Scharf, P. Schleper, A. Schmidt, S. Schumann, J. Schwandt, J. Sonneveld, H. Stadie, G. Steinbruck, F.M. Stober, M. Stover, H. Tholen, D. Troendle, E. Usai, A. Vanhoefer, B. Vormwald Institut fur Experimentelle Kernphysik, Karlsruhe, Germany M. Akbiyik, C. Barth, M. Baselga, S. Baur, E. Butz, R. Caspart, T. Chwalek, F. Colombo, W. De Boer, A. Dierlamm, N. Faltermann, B. Freund, R. Friese, M. Gi els, M.A. Harrendorf, F. Hartmann17, S.M. Heindl, U. Husemann, F. Kassel17, S. Kudella, H. Mildner, M.U. Mozer, Th. Muller, M. Plagge, G. Quast, K. Rabbertz, M. Schroder, I. Shvetsov, G. Sieber, H.J. Simonis, R. Ulrich, S. Wayand, M. Weber, T. Weiler, S. Williamson, C. Wohrmann, R. Wolf Paraskevi, Greece Institute of Nuclear and Particle Physics (INPP), NCSR Demokritos, Aghia G. Anagnostou, G. Daskalakis, T. Geralis, A. Kyriakis, D. Loukas, I. Topsis-Giotis National and Kapodistrian University of Athens, Athens, Greece G. Karathanasis, S. Kesisoglou, A. Panagiotou, N. Saoulidou National Technical University of Athens, Athens, Greece K. Kousouris University of Ioannina, Ioannina, Greece I. Evangelou, C. Foudas, P. Kokkas, S. Mallios, N. Manthos, I. Papadopoulos, E. Paradas, J. Strologas, F.A. Triantis MTA-ELTE Lendulet CMS Particle and Nuclear Physics Group, Eotvos Lorand University, Budapest, Hungary M. Csanad, N. Filipovic, G. Pasztor, O. Suranyi, G.I. Veres21 Wigner Research Centre for Physics, Budapest, Hungary G. Bencze, C. Hajdu, D. Horvath22, A. Hunyadi, F. Sikler, V. Veszpremi Institute of Nuclear Research ATOMKI, Debrecen, Hungary N. Beni, S. Czellar, J. Karancsi23, A. Makovec, J. Molnar, Z. Szillasi Institute of Physics, University of Debrecen, Debrecen, Hungary M. Bartok21, P. Raics, Z.L. Trocsanyi, B. Ujvari Indian Institute of Science (IISc), Bangalore, India S. Choudhury, J.R. Komaragiri National Institute of Science Education and Research, Bhubaneswar, India S. Bahinipati24, S. Bhowmik, P. Mal, K. Mandal, A. Nayak25, D.K. Sahoo24, N. Sahoo, S.K. Swain Panjab University, Chandigarh, India S. Bansal, S.B. Beri, V. Bhatnagar, R. Chawla, N. Dhingra, A.K. Kalsi, A. Kaur, M. Kaur, S. Kaur, R. Kumar, P. Kumari, A. Mehta, J.B. Singh, G. Walia University of Delhi, Delhi, India Ashok Kumar, Aashaq Shah, A. Bhardwaj, S. Chauhan, B.C. Choudhary, R.B. Garg, S. Keshri, A. Kumar, S. Malhotra, M. Naimuddin, K. Ranjan, R. Sharma Saha Institute of Nuclear Physics, HBNI, Kolkata, India R. Bhardwaj, R. Bhattacharya, S. Bhattacharya, U. Bhawandeep, S. Dey, S. Dutt, S. Dutta, S. Ghosh, N. Majumdar, A. Modak, K. Mondal, S. Mukhopadhyay, S. Nandan, A. Purohit, A. Roy, S. Roy Chowdhury, S. Sarkar, M. Sharan, S. Thakur Indian Institute of Technology Madras, Madras, India P.K. Behera Bhabha Atomic Research Centre, Mumbai, India R. Chudasama, D. Dutta, V. Jha, V. Kumar, A.K. Mohanty17, P.K. Netrakanti, L.M. Pant, HJEP01(28)45 P. Shukla, A. Topkar Tata Institute of Fundamental Research-A, Mumbai, India T. Aziz, S. Dugad, B. Mahakud, S. Mitra, G.B. Mohanty, N. Sur, B. Sutar Tata Institute of Fundamental Research-B, Mumbai, India S. Banerjee, S. Bhattacharya, S. Chatterjee, P. Das, M. Guchait, Sa. Jain, S. Kumar, M. Maity26, G. Majumder, K. Mazumdar, T. Sarkar26, N. Wickramage27 Indian Institute of Science Education and Research (IISER), Pune, India S. Chauhan, S. Dube, V. Hegde, A. Kapoor, K. Kothekar, S. Pandey, A. Rane, S. Sharma Institute for Research in Fundamental Sciences (IPM), Tehran, Iran S. Chenarani28, E. Eskandari Tadavani, S.M. Etesami28, M. Khakzad, M. Mohammadi Najafabadi, M. Naseri, S. Paktinat Mehdiabadi29, F. Rezaei Hosseinabadi, B. Safarzadeh30, M. Zeinali University College Dublin, Dublin, Ireland M. Felcini, M. Grunewald INFN Sezione di Bari a, Universita di Bari b, Politecnico di Bari c, Bari, Italy M. Abbresciaa;b, C. Calabriaa;b, A. Colaleoa, D. Creanzaa;c, L. Cristellaa;b, N. De Filippisa;c, M. De Palmaa;b, F. Erricoa;b, L. Fiorea, G. Iasellia;c, S. Lezkia;b, G. Maggia;c, M. Maggia, G. Minielloa;b, S. Mya;b, S. Nuzzoa;b, A. Pompilia;b, G. Pugliesea;c, R. Radognaa, A. Ranieria, G. Selvaggia;b, A. Sharmaa, L. Silvestrisa;17, R. Vendittia, P. Verwilligena INFN Sezione di Bologna a, Universita di Bologna b, Bologna, Italy G. Abbiendia, C. Battilanaa;b, D. Bonacorsia;b, L. Borgonovia;b, S. Braibant-Giacomellia;b, R. Campaninia;b, P. Capiluppia;b, A. Castroa;b, F.R. Cavalloa, S.S. Chhibraa, G. Codispotia;b, M. Cu ania;b, G.M. Dallavallea, F. Fabbria, A. Fanfania;b, D. Fasanellaa;b, P. Giacomellia, C. Grandia, L. Guiduccia;b, S. Marcellinia, G. Masettia, A. Montanaria, F.L. Navarriaa;b, A. Perrottaa, A.M. Rossia;b, T. Rovellia;b, G.P. Sirolia;b, N. Tosia INFN Sezione di Catania a, Universita di Catania b, Catania, Italy S. Albergoa;b, S. Costaa;b, A. Di Mattiaa, F. Giordanoa;b, R. Potenzaa;b, A. Tricomia;b, C. Tuvea;b INFN Sezione di Firenze a, Universita di Firenze b, Firenze, Italy G. Barbaglia, K. Chatterjeea;b, V. Ciullia;b, C. Civininia, R. D'Alessandroa;b, E. Focardia;b, P. Lenzia;b, M. Meschinia, S. Paolettia, L. Russoa;31, G. Sguazzonia, D. Stroma, L. Viliania;b;17 INFN Laboratori Nazionali di Frascati, Frascati, Italy L. Benussi, S. Bianco, F. Fabbri, D. Piccolo, F. Primavera17 INFN Sezione di Genova a, Universita di Genova b, Genova, Italy V. Calvellia;b, F. Ferroa, E. Robuttia, S. Tosia;b INFN Sezione di Milano-Bicocca a, Universita di Milano-Bicocca b, Milano, Italy A. Benagliaa, A. Beschi, L. Brianzaa;b, F. Brivioa;b, V. Cirioloa;b, M.E. Dinardoa;b, S. Fiorendia;b, S. Gennaia, A. Ghezzia;b, P. Govonia;b, M. Malbertia;b, S. Malvezzia, R.A. Manzonia;b, D. Menascea, L. Moronia, M. Paganonia;b, K. Pauwelsa;b, D. Pedrinia, S. Pigazzinia;b;32, S. Ragazzia;b, N. Redaellia, T. Tabarelli de Fatisa;b INFN Sezione di Napoli a, Universita di Napoli 'Federico II' b, Napoli, Italy, Universita della Basilicata c, Potenza, Italy, Universita G. Marconi d, Roma, Italy F. Thyssena S. Buontempoa, N. Cavalloa;c, S. Di Guidaa;d;17, F. Fabozzia;c, F. Fiengaa;b, A.O.M. Iorioa;b, W.A. Khana, L. Listaa, S. Meolaa;d;17, P. Paoluccia;17, C. Sciaccaa;b, INFN Sezione di Padova a, Universita di Padova b, Padova, Italy, Universita di Trento c, Trento, Italy P. Azzia, N. Bacchettaa, L. Benatoa;b, D. Biselloa;b, A. Bolettia;b, R. Carlina;b, A. Carvalho Antunes De Oliveiraa;b, P. Checchiaa, P. De Castro Manzanoa, T. Dorigoa, U. Dossellia, F. Gasparinia;b, U. Gasparinia;b, A. Gozzelinoa, S. Lacapraraa, M. Margonia;b, A.T. Meneguzzoa;b, N. Pozzobona;b, P. Ronchesea;b, R. Rossina;b, F. Simonettoa;b, E. Torassaa, M. Zanettia;b, P. Zottoa;b, G. Zumerlea;b INFN Sezione di Pavia a, Universita di Pavia b, Pavia, Italy A. Braghieria, A. Magnania, P. Montagnaa;b, S.P. Rattia;b, V. Rea, M. Ressegottia;b, C. Riccardia;b, P. Salvinia, I. Vaia;b, P. Vituloa;b INFN Sezione di Perugia a, Universita di Perugia b, Perugia, Italy L. Alunni Solestizia;b, M. Biasinia;b, G.M. Bileia, C. Cecchia;b, D. Ciangottinia;b, L. Fanoa;b, P. Laricciaa;b, R. Leonardia;b, E. Manonia, G. Mantovania;b, V. Mariania;b, M. Menichellia, A. Rossia;b, A. Santocchiaa;b, D. Spigaa INFN Sezione di Pisa a, Universita di Pisa b, Scuola Normale Superiore di Pisa c, Pisa, Italy K. Androsova, P. Azzurria;17, G. Bagliesia, T. Boccalia, L. Borrello, R. Castaldia, M.A. Cioccia;b, R. Dell'Orsoa, G. Fedia, L. Gianninia;c, A. Giassia, M.T. Grippoa;31, F. Ligabuea;c, T. Lomtadzea, E. Mancaa;c, G. Mandorlia;c, A. Messineoa;b, F. Pallaa, P.G. Verdinia INFN Sezione di Roma a, Sapienza Universita di Roma b, Rome, Italy L. Baronea;b, F. Cavallaria, M. Cipriania;b, N. Dacia, D. Del Rea;b;17, E. Di Marcoa;b, M. Diemoza, S. Gellia;b, E. Longoa;b, F. Margarolia;b, B. Marzocchia;b, P. Meridiania, G. Organtinia;b, R. Paramattia;b, F. Preiatoa;b, S. Rahatloua;b, C. Rovellia, F. Santanastasioa;b INFN Sezione di Torino a, Universita di Torino b, Torino, Italy, Universita del Piemonte Orientale c, Novara, Italy N. Amapanea;b, R. Arcidiaconoa;c, S. Argiroa;b, M. Arneodoa;c, N. Bartosika, R. Bellana;b, C. Biinoa, N. Cartigliaa, F. Cennaa;b, M. Costaa;b, R. Covarellia;b, A. Deganoa;b, N. Demariaa, B. Kiania;b, C. Mariottia, S. Masellia, E. Migliorea;b, V. Monacoa;b, E. Monteila;b, M. Montenoa, M.M. Obertinoa;b, L. Pachera;b, N. Pastronea, M. Pelliccionia, G.L. Pinna Angionia;b, F. Raveraa;b, A. Romeroa;b, M. Ruspaa;c, R. Sacchia;b, K. Shchelinaa;b, V. Solaa, A. Solanoa;b, A. Staianoa, P. Traczyka;b INFN Sezione di Trieste a, Universita di Trieste b, Trieste, Italy S. Belfortea, M. Casarsaa, F. Cossuttia, G. Della Riccaa;b, A. Zanettia Kyungpook National University, Daegu, Korea D.H. Kim, G.N. Kim, M.S. Kim, J. Lee, S. Lee, S.W. Lee, C.S. Moon, Y.D. Oh, S. Sekmen, D.C. Son, Y.C. Yang Chonbuk National University, Jeonju, Korea A. Lee Chonnam National University, Institute for Universe and Elementary Particles, H. Kim, D.H. Moon, G. Oh Hanyang University, Seoul, Korea J.A. Brochero Cifuentes, J. Goh, T.J. Kim Korea University, Seoul, Korea J. Lim, S.K. Park, Y. Roh Seoul National University, Seoul, Korea S.h. Seo, U.K. Yang, H.D. Yoo, G.B. Yu University of Seoul, Seoul, Korea M. Choi, H. Kim, J.H. Kim, J.S.H. Lee, I.C. Park Sungkyunkwan University, Suwon, Korea Y. Choi, C. Hwang, J. Lee, I. Yu S. Cho, S. Choi, Y. Go, D. Gyun, S. Ha, B. Hong, Y. Jo, Y. Kim, K. Lee, K.S. Lee, S. Lee, J. Almond, J. Kim, J.S. Kim, H. Lee, K. Lee, K. Nam, S.B. Oh, B.C. Radburn-Smith, Vilnius University, Vilnius, Lithuania V. Dudenas, A. Juodagalvis, J. Vaitkus National Centre for Particle Physics, Universiti Malaya, Kuala Lumpur, Malaysia M.N. Yusli, Z. Zolkapli I. Ahmed, Z.A. Ibrahim, M.A.B. Md Ali34, F. Mohamad Idris35, W.A.T. Wan Abdullah, Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico Reyes-Almanza, R, Ramirez-Sanchez, G., Duran-Osuna, M. C., H. Castilla-Valdez, E. De La Cruz-Burelo, I. Heredia-De La Cruz36, Rabadan-Trejo, R. I., R. Lopez-Fernandez, J. Mejia Guisao, A. Sanchez-Hernandez Universidad Iberoamericana, Mexico City, Mexico S. Carrillo Moreno, C. Oropeza Barrera, F. Vazquez Valencia Benemerita Universidad Autonoma de Puebla, Puebla, Mexico I. Pedraza, H.A. Salazar Ibarguen, C. Uribe Estrada Universidad Autonoma de San Luis Potos , San Luis Potos , Mexico A. Morelos Pineda University of Auckland, Auckland, New Zealand University of Canterbury, Christchurch, New Zealand D. Krofcheck P.H. Butler M. Waqas National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan A. Ahmad, M. Ahmad, Q. Hassan, H.R. Hoorani, A. Saddique, M.A. Shah, M. Shoaib, National Centre for Nuclear Research, Swierk, Poland H. Bialkowska, M. Bluj, B. Boimska, T. Frueboes, M. Gorski, M. Kazana, K. Nawrocki, M. Szleper, P. Zalewski Warsaw, Poland Institute of Experimental Physics, Faculty of Physics, University of Warsaw, K. Bunkowski, A. Byszuk37, K. Doroba, A. Kalinowski, M. Konecki, J. Krolikowski, M. Misiura, M. Olszewski, A. Pyskir, M. Walczak Laboratorio de Instrumentac~ao e F sica Experimental de Part culas, Lisboa, Portugal P. Bargassa, C. Beir~ao Da Cruz E Silva, A. Di Francesco, P. Faccioli, B. Galinhas, M. Gallinaro, J. Hollar, N. Leonardo, L. Lloret Iglesias, M.V. Nemallapudi, J. Seixas, G. Strong, O. Toldaiev, D. Vadruccio, J. Varela Joint Institute for Nuclear Research, Dubna, Russia S. Afanasiev, P. Bunin, M. Gavrilenko, I. Golutvin, I. Gorbunov, A. Kamenev, V. Karjavin, A. Lanev, A. Malakhov, V. Matveev38;39, V. Palichik, V. Perelygin, S. Shmatov, S. Shulha, N. Skatchkov, V. Smirnov, N. Voytishin, A. Zarubin Petersburg Nuclear Physics Institute, Gatchina (St. Petersburg), Russia Y. Ivanov, V. Kim40, E. Kuznetsova41, P. Levchenko, V. Murzin, V. Oreshkin, I. Smirnov, V. Sulimov, L. Uvarov, S. Vavilov, A. Vorobyev Institute for Nuclear Research, Moscow, Russia Yu. Andreev, A. Dermenev, S. Gninenko, N. Golubev, A. Karneyeu, M. Kirsanov, N. Krasnikov, A. Pashenkov, D. Tlisov, A. Toropin Institute for Theoretical and Experimental Physics, Moscow, Russia V. Epshteyn, V. Gavrilov, N. Lychkovskaya, V. Popov, I. Pozdnyakov, G. Safronov, A. Spiridonov, A. Stepennov, M. Toms, E. Vlasov, A. Zhokin Moscow Institute of Physics and Technology, Moscow, Russia T. Aushev, A. Bylinkin39 National Research Nuclear University 'Moscow Engineering Physics Institute' (MEPhI), Moscow, Russia M. Chadeeva42, P. Parygin, D. Philippov, S. Polikarpov, E. Popova, V. Rusinov P.N. Lebedev Physical Institute, Moscow, Russia V. Andreev, M. Azarkin39, I. Dremin39, M. Kirakosyan39, A. Terkulov Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia I. Vardanyan A. Baskakov, A. Belyaev, E. Boos, A. Demiyanov, A. Ershov, A. Gribushin, O. Kodolova, V. Korotkikh, I. Lokhtin, I. Miagkov, S. Obraztsov, S. Petrushanko, V. Savrin, A. Snigirev, Novosibirsk State University (NSU), Novosibirsk, Russia V. Blinov43, Y.Skovpen43, D. Shtol43 State Research Center of Russian Federation, Institute for High Energy Physics, Protvino, Russia I. Azhgirey, I. Bayshev, S. Bitioukov, D. Elumakhov, V. Kachanov, A. Kalinin, D. Konstantinov, P. Mandrik, V. Petrov, R. Ryutin, A. Sobol, S. Troshin, N. Tyurin, A. Uzunian, A. Volkov University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia P. Adzic44, P. Cirkovic, D. Devetak, M. Dordevic, J. Milosevic, V. Rekovic HJEP01(28)45 Centro de Investigaciones Energeticas Medioambientales y nologicas (CIEMAT), Madrid, Spain J. Alcaraz Maestre, M. Barrio Luna, M. Cerrada, N. Colino, B. De La Cruz, A. Delgado Peris, A. Escalante Del Valle, C. Fernandez Bedoya, J.P. Fernandez Ramos, J. Flix, M.C. Fouz, O. Gonzalez Lopez, S. Goy Lopez, J.M. Hernandez, M.I. Josa, D. Moran, A. Perez-Calero Yzquierdo, J. Puerta Pelayo, A. Quintario Olmeda, I. Redondo, L. Romero, M.S. Soares, A. Alvarez Fernandez Universidad Autonoma de Madrid, Madrid, Spain C. Albajar, J.F. de Troconiz, M. Missiroli Universidad de Oviedo, Oviedo, Spain J. Cuevas, C. Erice, J. Fernandez Menendez, I. Gonzalez Caballero, J.R. Gonzalez Fernandez, E. Palencia Cortezon, S. Sanchez Cruz, P. Vischia, J.M. Vizan Garcia Instituto de F sica de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain I.J. Cabrillo, A. Calderon, B. Chazin Quero, E. Curras, J. Duarte Campderros, M. Fernandez, J. Garcia-Ferrero, G. Gomez, A. Lopez Virto, J. Marco, C. Martinez Rivero, P. Martinez Ruiz del Arbol, F. Matorras, J. Piedra Gomez, T. Rodrigo, A. Ruiz-Jimeno, L. Scodellaro, N. Trevisani, I. Vila, R. Vilar Cortabitarte CERN, European Organization for Nuclear Research, Geneva, Switzerland D. Abbaneo, B. Akgun, E. Au ray, P. Baillon, A.H. Ball, D. Barney, J. Bendavid, M. Bianco, P. Bloch, A. Bocci, C. Botta, T. Camporesi, R. Castello, M. Cepeda, G. Cerminara, E. Chapon, Y. Chen, D. d'Enterria, A. Dabrowski, V. Daponte, A. David, M. De Gruttola, A. De Roeck, N. Deelen, M. Dobson, T. du Pree, M. Dunser, N. Dupont, A. Elliott-Peisert, P. Everaerts, F. Fallavollita, G. Franzoni, J. Fulcher, W. Funk, D. Gigi, A. Gilbert, K. Gill, F. Glege, D. Gulhan, P. Harris, J. Hegeman, V. Innocente, A. Jafari, P. Janot, O. Karacheban20, J. Kieseler, V. Knunz, A. Kornmayer, M.J. Kortelainen, M. Krammer1, C. Lange, P. Lecoq, C. Lourenco, M.T. Lucchini, L. Malgeri, M. Mannelli, A. Martelli, F. Meijers, J.A. Merlin, S. Mersi, E. Meschi, P. Milenovic45, F. Moortgat, M. Mulders, H. Neugebauer, J. Ngadiuba, S. Orfanelli, L. Orsini, L. Pape, E. Perez, M. Peruzzi, A. Petrilli, G. Petrucciani, A. Pfei er, M. Pierini, D. Rabady, A. Racz, T. Reis, G. Rolandi46, M. Rovere, H. Sakulin, C. Schafer, C. Schwick, M. Seidel, M. Selvaggi, A. Sharma, P. Silva, P. Sphicas47, A. Stakia, J. Steggemann, M. Stoye, M. Tosi, D. Treille, A. Triossi, A. Tsirou, V. Veckalns48, M. Verweij, W.D. Zeuner Paul Scherrer Institut, Villigen, Switzerland W. Bertly, L. Caminada49, K. Deiters, W. Erdmann, R. Horisberger, Q. Ingram, H.C. Kaestli, D. Kotlinski, U. Langenegger, T. Rohe, S.A. Wiederkehr ETH Zurich - Institute for Particle Physics and Astrophysics (IPA), Zurich, Switzerland M. Backhaus, L. Bani, P. Berger, L. Bianchini, B. Casal, G. Dissertori, M. Dittmar, M. Donega, C. Dorfer, C. Grab, C. Heidegger, D. Hits, J. Hoss, G. Kasieczka, T. Klijnsma, P. Musella, F. Nessi-Tedaldi, F. Pandol , J. Pata, F. Pauss, G. Perrin, L. Perrozzi, M. Quittnat, M. Reichmann, D.A. Sanz Becerra, M. Schonenberger, L. Shchutska, V.R. Tavolaro, K. Theo latos, M.L. Vesterbacka Olsson, R. Wallny, D.H. Zhu Universitat Zurich, Zurich, Switzerland T.K. Aarrestad, C. Amsler50, M.F. Canelli, A. De Cosa, R. Del Burgo, S. Donato, C. Galloni, T. Hreus, B. Kilminster, D. Pinna, G. Rauco, P. Robmann, D. Salerno, K. Schweiger, C. Seitz, Y. Takahashi, A. Zucchetta National Central University, Chung-Li, Taiwan V. Candelise, T.H. Doan, Sh. Jain, R. Khurana, C.M. Kuo, W. Lin, A. Pozdnyakov, S.S. Yu National Taiwan University (NTU), Taipei, Taiwan Arun Kumar, P. Chang, Y. Chao, K.F. Chen, P.H. Chen, F. Fiori, W.-S. Hou, Y. Hsiung, Y.F. Liu, R.-S. Lu, E. Paganis, A. Psallidas, A. Steen, J.f. Tsai Chulalongkorn University, Faculty of Science, Department of Physics, Bangkok, Thailand Turkey B. Asavapibhop, K. Kovitanggoon, G. Singh, N. Srimanobhas Cukurova University, Physics Department, Science and Art Faculty, Adana, M.N. Bakirci51, A. Bat, F. Boran, S. Damarseckin, Z.S. Demiroglu, C. Dozen, S. Girgis, G. Gokbulut, Y. Guler, I. Hos52, E.E. Kangal53, O. Kara, U. Kiminsu, M. Oglakci, G. Onengut54, K. Ozdemir55, S. Ozturk51, A. Polatoz, B. Tali56, U.G. Tok, H. Topakli51, S. Turkcapar, I.S. Zorbakir, C. Zorbilmez Middle East Technical University, Physics Department, Ankara, Turkey B. Bilin, G. Karapinar57, K. Ocalan58, M. Yalvac, M. Zeyrek Bogazici University, Istanbul, Turkey E. Gulmez, M. Kaya59, O. Kaya60, S. Tekten, E.A. Yetkin61 Istanbul Technical University, Istanbul, Turkey M.N. Agaras, S. Atay, A. Cakir, K. Cankocak Institute for Scintillation Materials of National Academy of Science of Ukraine, Kharkov, Ukraine B. Grynyov Kharkov, Ukraine L. Levchuk National Scienti c Center, Kharkov Institute of Physics and Technology, University of Bristol, Bristol, United Kingdom F. Ball, L. Beck, J.J. Brooke, D. Burns, E. Clement, D. Cussans, O. Davignon, H. Flacher, J. Goldstein, G.P. Heath, H.F. Heath, L. Kreczko, D.M. Newbold62, S. Paramesvaran, T. Sakuma, S. Seif El Nasr-storey, D. Smith, V.J. Smith Rutherford Appleton Laboratory, Didcot, United Kingdom A. Belyaev63, C. Brew, R.M. Brown, L. Calligaris, D. Cieri, D.J.A. Cockerill, J.A. Coughlan, K. Harder, S. Harper, E. Olaiya, D. Petyt, C.H. Shepherd-Themistocleous, A. Thea, I.R. Tomalin, T. Williams Imperial College, London, United Kingdom G. Auzinger, R. Bainbridge, J. Borg, S. Breeze, O. Buchmuller, A. Bundock, S. Casasso, M. Citron, D. Colling, L. Corpe, P. Dauncey, G. Davies, A. De Wit, M. Della Negra, R. Di Maria, A. Elwood, Y. Haddad, G. Hall, G. Iles, T. James, R. Lane, C. Laner, L. Lyons, A.-M. Magnan, S. Malik, L. Mastrolorenzo, T. Matsushita, J. Nash, A. Nikitenko7, V. Palladino, M. Pesaresi, D.M. Raymond, A. Richards, A. Rose, E. Scott, C. Seez, A. Shtipliyski, S. Summers, A. Tapper, K. Uchida, M. Vazquez Acosta64, T. Virdee17, N. Wardle, D. Winterbottom, J. Wright, S.C. Zenz Brunel University, Uxbridge, United Kingdom J.E. Cole, P.R. Hobson, A. Khan, P. Kyberd, I.D. Reid, P. Symonds, L. Teodorescu, M. Turner, S. Zahid Baylor University, Waco, U.S.A. A. Borzou, K. Call, J. Dittmann, K. Hatakeyama, H. Liu, N. Pastika, C. Smith Catholic University of America, Washington DC, U.S.A. R. Bartek, A. Dominguez The University of Alabama, Tuscaloosa, U.S.A. A. Buccilli, S.I. Cooper, C. Henderson, P. Rumerio, C. West Boston University, Boston, U.S.A. D. Arcaro, A. Avetisyan, T. Bose, D. Gastler, D. Rankin, C. Richardson, J. Rohlf, L. Sulak, D. Zou Brown University, Providence, U.S.A. G. Benelli, D. Cutts, A. Garabedian, M. Hadley, J. Hakala, U. Heintz, J.M. Hogan, K.H.M. Kwok, E. Laird, G. Landsberg, J. Lee, Z. Mao, M. Narain, J. Pazzini, S. Piperov, S. Sagir, R. Syarif, D. Yu University of California, Davis, Davis, U.S.A. R. Band, C. Brainerd, D. Burns, M. Calderon De La Barca Sanchez, M. Chertok, J. Conway, R. Conway, P.T. Cox, R. Erbacher, C. Flores, G. Funk, M. Gardner, W. Ko, R. Lander, C. Mclean, M. Mulhearn, D. Pellett, J. Pilot, S. Shalhout, M. Shi, J. Smith, D. Stolp, K. Tos, M. Tripathi, Z. Wang University of California, Los Angeles, U.S.A. M. Bachtis, C. Bravo, R. Cousins, A. Dasgupta, A. Florent, J. Hauser, M. Ignatenko, N. Mccoll, S. Regnard, D. Saltzberg, C. Schnaible, V. Valuev HJEP01(28)45 E. Bouvier, K. Burt, R. Clare, J. Ellison, J.W. Gary, S.M.A. Ghiasi Shirazi, G. Hanson, J. Heilman, E. Kennedy, F. Lacroix, O.R. Long, M. Olmedo Negrete, M.I. Paneva, W. Si, L. Wang, H. Wei, S. Wimpenny, B. R. Yates University of California, San Diego, La Jolla, U.S.A. J.G. Branson, S. Cittolin, M. Derdzinski, R. Gerosa, D. Gilbert, B. Hashemi, A. Holzner, D. Klein, G. Kole, V. Krutelyov, J. Letts, I. Macneill, M. Masciovecchio, D. Olivito, S. Padhi, M. Pieri, M. Sani, V. Sharma, S. Simon, M. Tadel, A. Vartak, S. Wasserbaech65, J. Wood, F. Wurthwein, A. Yagil, G. Zevi Della Porta University of California, Santa Barbara - Department of Physics, Santa Barbara, U.S.A. N. Amin, R. Bhandari, J. Bradmiller-Feld, C. Campagnari, A. Dishaw, V. Dutta, M. Franco Sevilla, C. George, F. Golf, L. Gouskos, J. Gran, R. Heller, J. Incandela, A. Ovcharova, H. Qu, J. Richman, D. Stuart, I. Suarez, J. Yoo California Institute of Technology, Pasadena, U.S.A. D. Anderson, A. Bornheim, J.M. Lawhorn, H.B. Newman, T. Nguyen, C. Pena, M. Spiropulu, J.R. Vlimant, S. Xie, Z. Zhang, R.Y. Zhu Carnegie Mellon University, Pittsburgh, U.S.A. M.B. Andrews, T. Ferguson, T. Mudholkar, M. Paulini, J. Russ, M. Sun, H. Vogel, I. Vorobiev, M. Weinberg University of Colorado Boulder, Boulder, U.S.A. J.P. Cumalat, W.T. Ford, F. Jensen, A. Johnson, M. Krohn, S. Leontsinis, T. Mulholland, K. Stenson, S.R. Wagner Cornell University, Ithaca, U.S.A. J. Alexander, J. Chaves, J. Chu, S. Dittmer, K. Mcdermott, N. Mirman, J.R. Patterson, D. Quach, A. Rinkevicius, A. Ryd, L. Skinnari, L. So , S.M. Tan, Z. Tao, J. Thom, J. Tucker, P. Wittich, M. Zientek Fermi National Accelerator Laboratory, Batavia, U.S.A. S. Abdullin, M. Albrow, M. Alyari, G. Apollinari, A. Apresyan, A. Apyan, S. Banerjee, L.A.T. Bauerdick, A. Beretvas, J. Berryhill, P.C. Bhat, G. Bollay, K. Burkett, J.N. Butler, A. Canepa, G.B. Cerati, H.W.K. Cheung, F. Chlebana, M. Cremonesi, J. Duarte, V.D. Elvira, J. Freeman, Z. Gecse, E. Gottschalk, L. Gray, D. Green, S. Grunendahl, O. Gutsche, R.M. Harris, S. Hasegawa, J. Hirschauer, Z. Hu, B. Jayatilaka, S. Jindariani, M. Johnson, U. Joshi, B. Klima, B. Kreis, S. Lammel, D. Lincoln, R. Lipton, M. Liu, T. Liu, R. Lopes De Sa, J. Lykken, K. Maeshima, N. Magini, J.M. Marra no, D. Mason, P. McBride, P. Merkel, S. Mrenna, S. Nahn, V. O'Dell, K. Pedro, O. Prokofyev, G. Rakness, L. Ristori, B. Schneider, E. Sexton-Kennedy, A. Soha, W.J. Spalding, L. Spiegel, S. Stoynev, J. Strait, N. Strobbe, L. Taylor, S. Tkaczyk, N.V. Tran, L. Uplegger, E.W. Vaandering, C. Vernieri, M. Verzocchi, R. Vidal, M. Wang, H.A. Weber, A. Whitbeck D. Acosta, P. Avery, P. Bortignon, D. Bourilkov, A. Brinkerho , A. Carnes, M. Carver, D. Curry, R.D. Field, I.K. Furic, S.V. Gleyzer, B.M. Joshi, J. Konigsberg, A. Korytov, K. Kotov, P. Ma, K. Matchev, H. Mei, G. Mitselmakher, D. Rank, K. Shi, D. Sperka, N. Terentyev, L. Thomas, J. Wang, S. Wang, J. Yelton Florida International University, Miami, U.S.A. Y.R. Joshi, S. Linn, P. Markowitz, J.L. Rodriguez Florida State University, Tallahassee, U.S.A. A. Ackert, T. Adams, A. Askew, S. Hagopian, V. Hagopian, K.F. Johnson, T. Kolberg, G. Martinez, T. Perry, H. Prosper, A. Saha, A. Santra, V. Sharma, R. Yohay Florida Institute of Technology, Melbourne, U.S.A. M.M. Baarmand, V. Bhopatkar, S. Colafranceschi, M. Hohlmann, D. Noonan, T. Roy, F. Yumiceva University of Illinois at Chicago (UIC), Chicago, U.S.A. M.R. Adams, L. Apanasevich, D. Berry, R.R. Betts, R. Cavanaugh, X. Chen, O. Evdokimov, C.E. Gerber, D.A. Hangal, D.J. Hofman, K. Jung, J. Kamin, I.D. Sandoval Gonzalez, M.B. Tonjes, H. Trauger, N. Varelas, H. Wang, Z. Wu, J. Zhang The University of Iowa, Iowa City, U.S.A. B. Bilki66, W. Clarida, K. Dilsiz67, S. Durgut, R.P. Gandrajula, M. Haytmyradov, V. Khristenko, J.-P. Merlo, H. Mermerkaya68, A. Mestvirishvili, A. Moeller, J. Nachtman, H. Ogul69, Y. Onel, F. Ozok70, A. Penzo, C. Snyder, E. Tiras, J. Wetzel, K. Yi Johns Hopkins University, Baltimore, U.S.A. B. Blumenfeld, A. Cocoros, N. Eminizer, D. Fehling, L. Feng, A.V. Gritsan, P. Maksimovic, J. Roskes, U. Sarica, M. Swartz, M. Xiao, C. You The University of Kansas, Lawrence, U.S.A. A. Al-bataineh, P. Baringer, A. Bean, S. Boren, J. Bowen, J. Castle, S. Khalil, A. Kropivnitskaya, D. Majumder, W. Mcbrayer, M. Murray, C. Royon, S. Sanders, E. Schmitz, J.D. Tapia Takaki, Q. Wang Kansas State University, Manhattan, U.S.A. A. Ivanov, K. Kaadze, Y. Maravin, A. Mohammadi, L.K. Saini, N. Skhirtladze, S. Toda Lawrence Livermore National Laboratory, Livermore, U.S.A. F. Rebassoo, D. Wright University of Maryland, College Park, U.S.A. C. Anelli, A. Baden, O. Baron, A. Belloni, B. Calvert, S.C. Eno, Y. Feng, C. Ferraioli, N.J. Hadley, S. Jabeen, G.Y. Jeng, R.G. Kellogg, J. Kunkle, A.C. Mignerey, F. Ricci-Tam, Y.H. Shin, A. Skuja, S.C. Tonwar Massachusetts Institute of Technology, Cambridge, U.S.A. D. Abercrombie, B. Allen, V. Azzolini, R. Barbieri, A. Baty, R. Bi, S. Brandt, W. Busza, I.A. Cali, M. D'Alfonso, Z. Demiragli, G. Gomez Ceballos, M. Goncharov, D. Hsu, M. Hu, Y. Iiyama, G.M. Innocenti, M. Klute, D. Kovalskyi, Y.S. Lai, Y.-J. Lee, A. Levin, P.D. Luckey, B. Maier, A.C. Marini, C. Mcginn, C. Mironov, S. Narayanan, X. Niu, C. Paus, C. Roland, G. Roland, J. Salfeld-Nebgen, G.S.F. Stephans, K. Tatar, D. Velicanu, J. Wang, T.W. Wang, B. Wyslouch University of Minnesota, Minneapolis, U.S.A. A.C. Benvenuti, R.M. Chatterjee, A. Evans, P. Hansen, J. Hiltbrand, S. Kalafut, Y. Kubota, Z. Lesko, J. Mans, S. Nourbakhsh, N. Ruckstuhl, R. Rusack, J. Turkewitz, M.A. Wadud University of Mississippi, Oxford, U.S.A. J.G. Acosta, S. Oliveros University of Nebraska-Lincoln, Lincoln, U.S.A. E. Avdeeva, K. Bloom, D.R. Claes, C. Fangmeier, R. Gonzalez Suarez, R. Kamalieddin, I. Kravchenko, J. Monroy, J.E. Siado, G.R. Snow, B. Stieger State University of New York at Bu alo, Bu alo, U.S.A. J. Dolen, A. Godshalk, C. Harrington, I. Iashvili, D. Nguyen, A. Parker, S. Rappoccio, B. Roozbahani Northeastern University, Boston, U.S.A. R. Teixeira De Lima, D. Trocino, D. Wood Northwestern University, Evanston, U.S.A. G. Alverson, E. Barberis, A. Hortiangtham, A. Massironi, D.M. Morse, T. Orimoto, S. Bhattacharya, O. Charaf, K.A. Hahn, N. Mucia, N. Odell, B. Pollack, M.H. Schmitt, K. Sung, M. Trovato, M. Velasco University of Notre Dame, Notre Dame, U.S.A. N. Dev, M. Hildreth, K. Hurtado Anampa, C. Jessop, D.J. Karmgard, N. Kellams, K. Lannon, N. Loukas, N. Marinelli, F. Meng, C. Mueller, Y. Musienko38, M. Planer, A. Reinsvold, R. Ruchti, G. Smith, S. Taroni, M. Wayne, M. Wolf, A. Woodard The Ohio State University, Columbus, U.S.A. J. Alimena, L. Antonelli, B. Bylsma, L.S. Durkin, S. Flowers, B. Francis, A. Hart, C. Hill, W. Ji, B. Liu, W. Luo, B.L. Winer, H.W. Wulsin Princeton University, Princeton, U.S.A. S. Cooperstein, O. Driga, P. Elmer, J. Hardenbrook, P. Hebda, S. Higginbotham, D. Lange, J. Luo, D. Marlow, K. Mei, I. Ojalvo, J. Olsen, C. Palmer, P. Piroue, D. Stickland, C. Tully University of Puerto Rico, Mayaguez, U.S.A. S. Malik, S. Norberg Purdue University, West Lafayette, U.S.A. A. Barker, V.E. Barnes, S. Das, S. Folgueras, L. Gutay, M.K. Jha, M. Jones, A.W. Jung, A. Khatiwada, D.H. Miller, N. Neumeister, C.C. Peng, H. Qiu, J.F. Schulte, J. Sun, F. Wang, W. Xie Purdue University Northwest, Hammond, U.S.A. T. Cheng, N. Parashar, J. Stupak Rice University, Houston, U.S.A. A. Adair, Z. Chen, K.M. Ecklund, S. Freed, F.J.M. Geurts, M. Guilbaud, M. Kilpatrick, W. Li, B. Michlin, M. Northup, B.P. Padley, J. Roberts, J. Rorie, W. Shi, Z. Tu, J. Zabel, University of Rochester, Rochester, U.S.A. A. Bodek, P. de Barbaro, R. Demina, Y.t. Duh, T. Ferbel, M. Galanti, A. Garcia-Bellido, J. Han, O. Hindrichs, A. Khukhunaishvili, K.H. Lo, P. Tan, M. Verzetti The Rockefeller University, New York, U.S.A. R. Ciesielski, K. Goulianos, C. Mesropian Rutgers, The State University of New Jersey, Piscataway, U.S.A. A. Agapitos, J.P. Chou, Y. Gershtein, T.A. Gomez Espinosa, E. Halkiadakis, M. Heindl, E. Hughes, S. Kaplan, R. Kunnawalkam Elayavalli, S. Kyriacou, A. Lath, R. Montalvo, K. Nash, M. Osherson, H. Saka, S. Salur, S. Schnetzer, D. She eld, S. Somalwar, R. Stone, S. Thomas, P. Thomassen, M. Walker University of Tennessee, Knoxville, U.S.A. A.G. Delannoy, M. Foerster, J. Heideman, G. Riley, K. Rose, S. Spanier, K. Thapa Texas A&M University, College Station, U.S.A. O. Bouhali71, A. Castaneda Hernandez71, A. Celik, M. Dalchenko, M. De Mattia, A. Delgado, S. Dildick, R. Eusebi, J. Gilmore, T. Huang, T. Kamon72, R. Mueller, Y. Pakhotin, R. Patel, A. Perlo , L. Pernie, D. Rathjens, A. Safonov, A. Tatarinov, K.A. Ulmer Texas Tech University, Lubbock, U.S.A. N. Akchurin, J. Damgov, F. De Guio, P.R. Dudero, J. Faulkner, E. Gurpinar, S. Kunori, K. Lamichhane, S.W. Lee, T. Libeiro, T. Mengke, S. Muthumuni, T. Peltola, S. Undleeb, I. Volobouev, Z. Wang Vanderbilt University, Nashville, U.S.A. P. Sheldon, S. Tuo, J. Velkovska, Q. Xu University of Virginia, Charlottesville, U.S.A. S. Greene, A. Gurrola, R. Janjam, W. Johns, C. Maguire, A. Melo, H. Ni, K. Padeken, M.W. Arenton, P. Barria, B. Cox, R. Hirosky, M. Joyce, A. Ledovskoy, H. Li, C. Neu, T. Sinthuprasith, Y. Wang, E. Wolfe, F. Xia Wayne State University, Detroit, U.S.A. R. Harr, P.E. Karchin, N. Poudyal, J. Sturdy, P. Thapa, S. Zaleski M. Herndon, A. Herve, U. Hussain, P. Klabbers, A. Lanaro, A. Levine, K. Long, R. Loveless, G. Polese, T. Ruggles, A. Savin, N. Smith, W.H. Smith, D. Taylor, N. Woods y : Deceased China 1: Also at Vienna University of Technology, Vienna, Austria 2: Also at State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, 3: Also at IRFU, CEA, Universite Paris-Saclay, Gif-sur-Yvette, France 4: Also at Universidade Estadual de Campinas, Campinas, Brazil 5: Also at Universidade Federal de Pelotas, Pelotas, Brazil 6: Also at Universite Libre de Bruxelles, Bruxelles, Belgium 7: Also at Institute for Theoretical and Experimental Physics, Moscow, Russia 8: Also at Joint Institute for Nuclear Research, Dubna, Russia 9: Also at Helwan University, Cairo, Egypt 10: Now at Zewail City of Science and Technology, Zewail, Egypt 11: Now at Fayoum University, El-Fayoum, Egypt 12: Also at British University in Egypt, Cairo, Egypt 13: Now at Ain Shams University, Cairo, Egypt 14: Also at Universite de Haute Alsace, Mulhouse, France Moscow, Russia 15: Also at Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, 16: Also at Tbilisi State University, Tbilisi, Georgia 17: Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland 18: Also at RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany 19: Also at University of Hamburg, Hamburg, Germany 20: Also at Brandenburg University of Technology, Cottbus, Germany 21: Also at MTA-ELTE Lendulet CMS Particle and Nuclear Physics Group, Eotvos Lorand University, Budapest, Hungary 22: Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary 23: Also at Institute of Physics, University of Debrecen, Debrecen, Hungary 24: Also at Indian Institute of Technology Bhubaneswar, Bhubaneswar, India 25: Also at Institute of Physics, Bhubaneswar, India 26: Also at University of Visva-Bharati, Santiniketan, India 27: Also at University of Ruhuna, Matara, Sri Lanka 28: Also at Isfahan University of Technology, Isfahan, Iran 29: Also at Yazd University, Yazd, Iran 30: Also at Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran 31: Also at Universita degli Studi di Siena, Siena, Italy 32: Also at INFN Sezione di Milano-Bicocca; Universita di Milano-Bicocca, Milano, Italy 33: Also at Purdue University, West Lafayette, U.S.A. 34: Also at International Islamic University of Malaysia, Kuala Lumpur, Malaysia 35: Also at Malaysian Nuclear Agency, MOSTI, Kajang, Malaysia 36: Also at Consejo Nacional de Ciencia y Tecnolog a, Mexico city, Mexico 37: Also at Warsaw University of Technology, Institute of Electronic Systems, Warsaw, Poland 39: Now at National Research Nuclear University 'Moscow 40: Also at St. Petersburg State Polytechnical University, St. Petersburg, Russia 41: Also at University of Florida, Gainesville, U.S.A. 42: Also at P.N. Lebedev Physical Institute, Moscow, Russia 43: Also at Budker Institute of Nuclear Physics, Novosibirsk, Russia 44: Also at Faculty of Physics, University of Belgrade, Belgrade, Serbia 45: Also at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia 46: Also at Scuola Normale e Sezione dell'INFN, Pisa, Italy 47: Also at National and Kapodistrian University of Athens, Athens, Greece 48: Also at Riga Technical University, Riga, Latvia 49: Also at Universitat Zurich, Zurich, Switzerland 50: Also at Stefan Meyer Institute for Subatomic Physics (SMI), Vienna, Austria 51: Also at Gaziosmanpasa University, Tokat, Turkey 52: Also at Istanbul Aydin University, Istanbul, Turkey 53: Also at Mersin University, Mersin, Turkey 54: Also at Cag University, Mersin, Turkey 55: Also at Piri Reis University, Istanbul, Turkey 56: Also at Adiyaman University, Adiyaman, Turkey 57: Also at Izmir Institute of Technology, Izmir, Turkey 58: Also at Necmettin Erbakan University, Konya, Turkey 59: Also at Marmara University, Istanbul, Turkey 60: Also at Kafkas University, Kars, Turkey 61: Also at Istanbul Bilgi University, Istanbul, Turkey 62: Also at Rutherford Appleton Laboratory, Didcot, United Kingdom 63: Also at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom 64: Also at Instituto de Astrof sica de Canarias, La Laguna, Spain 65: Also at Utah Valley University, Orem, U.S.A. 66: Also at Beykent University, Istanbul, Turkey 67: Also at Bingol University, Bingol, Turkey 68: Also at Erzincan University, Erzincan, Turkey 69: Also at Sinop University, Sinop, Turkey 70: Also at Mimar Sinan University, Istanbul, Istanbul, Turkey 71: Also at Texas A&M University at Qatar, Doha, Qatar 72: Also at Kyungpook National University, Daegu, Korea [1] W. Busza , Review of experimental data on hadron-nucleus collisions at high-energies, Acta pp, pA and AA collisions , Phys. Rev. D 44 ( 1991 ) 3501 [INSPIRE]. [17] T. Pierog , I. Karpenko , J.M. Katzy , E. Yatsenko and K. Werner , EPOS LHC: test of [19] W. Kittel and E.A. De Wolf , Soft multihadron dynamics, World Scienti c, Singapore ( 2005 ). [20] CMS collaboration, Charged particle multiplicities in pp interactions at ps = 0: 9 , 2 :36 and 7 [21] D. d'Enterria , R. Engel , T. Pierog , S. Ostapchenko and K. Werner , Constraints from the rst [34] A. Capella , U. Sukhatme , C.-I. Tan and J. Tran Thanh Van , Dual parton model , Phys. Rept . [35] G. Veneziano , Regge intercepts and unitarity in planar dual models , Nucl. Phys. B 74 ( 1974 ) [52] NA35 collaboration, T. Alber et al., Charged particle production in proton, deuteron, oxygen and sulphur nucleus collisions at 200 GeV per nucleon , Eur. Phys. J. C 2 ( 1998 ) 643 Madison, Madison, WI, U.S.A.


This is a preview of a remote PDF: https://link.springer.com/content/pdf/10.1007%2FJHEP01%282018%29045.pdf

The CMS collaboration, A. M. Sirunyan, A. Tumasyan, W. Adam, F. Ambrogi, E. Asilar, T. Bergauer, J. Brandstetter, E. Brondolin, M. Drag-icevic, J. Erö, M. Flechl, M. Friedl, R. Frühwirth, V. M. Ghete, J. Grossmann, J. Hrubec, M. Jeitler, A. König, N. Krammer, I. Krätschmer, D. Liko, T. Madlener, I. Mikulec, E. Pree, N. Rad, H. Rohringer, J. Schieck, R. Schöfbeck, M. Spanring, D. Spitzbart, W. Waltenberger, J. Wittmann, C.-E. Wulz, M. Zarucki, V. Chekhovsky, V. Mossolov, J. Suarez Gonzalez, E. A. De Wolf, D. Di Croce, X. Janssen, J. Lauwers, M. Van De Klundert, H. Van Haevermaet, P. Van Mechelen, N. Van Remortel, S. Abu Zeid, F. Blekman, J. D’Hondt, I. De Bruyn, J. De Clercq, K. Deroover, G. Flouris, D. Lontkovskyi, S. Lowette, S. Moortgat, L. Moreels, Q. Python, K. Skovpen, S. Tavernier, W. Van Doninck, P. Van Mulders, I. Van Parijs, D. Beghin, H. Brun, B. Clerbaux, G. De Lentdecker, H. Delannoy, B. Dorney, G. Fasanella, L. Favart, R. Goldouzian, A. Grebenyuk, G. Karapostoli, T. Lenzi, J. Luetic, T. Maerschalk, A. Marinov, T. Seva, E. Starling, C. Vander Velde, P. Vanlaer, D. Vannerom, R. Yonamine, F. Zenoni, F. Zhang, A. Cimmino, T. Cornelis, D. Dobur, A. Fagot, M. Gul, I. Khvastunov, D. Poyraz, C. Roskas, S. Salva, M. Tytgat, W. Verbeke, N. Zaganidis, H. Bakhshiansohi, O. Bondu, S. Brochet, G. Bruno, C. Caputo, A. Caudron, P. David, S. De Visscher, C. Delaere, M. Delcourt, B. Francois, A. Giammanco, M. Komm, G. Krintiras, V. Lemaitre, A. Magitteri, A. Mertens, M. Musich, K. Piotrzkowski, L. Quertenmont, A. Saggio, M. Vidal Marono, S. Wertz, J. Zobec, N. Beliy, W. L. Aldá Júnior, F. L. Alves, G. A. Alves, L. Brito, M. Correa Martins Junior, C. Hensel, A. Moraes, M. E. Pol, P. Rebello Teles, E. Belchior Batista Das Chagas, W. Carvalho, J. Chinellato, E. Coelho, E. M. Da Costa, G. G. Da Silveira, D. De Jesus Damiao, S. Fonseca De Souza, L. M. Huertas Guativa, H. Malbouisson, M. Melo De Almeida, C. Mora Herrera, L. Mundim, H. Nogima, L. J. Sanchez Rosas, A. Santoro, A. Sznajder, M. Thiel, E. J. Tonelli Manganote, F. Torres Da Silva De Araujo, A. Vilela Pereira, S. Ahuja, C. A. Bernardes, T. R. Fernandez Perez Tomei, E. M. Gregores, P. G. Mercadante, S. F. Novaes, Sandra S. Padula, D. Romero Abad, J. C. Ruiz Vargas, A. Aleksandrov, R. Hadjiiska, P. Iaydjiev, M. Misheva, M. Rodozov, M. Shopova, G. Sultanov, A. Dimitrov, I. Glushkov, L. Litov, B. Pavlov, P. Petkov, W. Fang, X. Gao, L. Yuan, M. Ahmad, J. G. Bian, G. M. Chen, H. S. Chen, M. Chen, Y. Chen, C. H. Jiang, D. Leggat, H. Liao, Z. Liu, F. Romeo, S. M. Shaheen, A. Spiezia, J. Tao, C. Wang, Z. Wang, E. Yazgan, H. Zhang, S. Zhang, J. Zhao, Y. Ban, G. Chen, Q. Li, S. Liu, Y. Mao, S. J. Qian, D. Wang, Z. Xu, C. Avila, A. Cabrera, L. F. Chaparro Sierra, C. Florez, C. F. González Hernández, J. D. Ruiz Alvarez, M. A. Segura Delgado, B. Courbon, N. Godinovic, D. Lelas, I. Puljak, P. M. Ribeiro Cipriano, T. Sculac, Z. Antunovic, M. Kovac, V. Brigljevic, D. Ferencek, K. Kadija, B. Mesic, A. Starodumov, T. Susa, M. W. Ather, A. Attikis, G. Mavromanolakis, J. Mousa, C. Nicolaou, F. Ptochos, P. A. Razis, H. Rykaczewski, M. Finger, M. Finger, E. Carrera Jarrin, A. A. Abdelalim, Y. Mohammed, E. Salama, R. K. Dewanjee, M. Kadastik, L. Perrini, M. Raidal, A. Tiko, C. Veelken, P. Eerola, H. Kirschenmann, J. Pekkanen, M. Voutilainen, J. Havukainen, J. K. Heikkilä, T. Järvinen, V. Karimäki, R. Kinnunen, T. Lampén, K. Lassila-Perini, S. Laurila, S. Lehti, T. Lindén, P. Luukka, H. Siikonen, E. Tuominen, J. Tuominiemi, J. Talvitie, T. Tuuva, M. Besancon, F. Couderc, M. Dejardin, D. Denegri, J. L. Faure, F. Ferri, S. Ganjour, S. Ghosh, A. Givernaud, P. Gras, G. Hamel de Monchenault, P. Jarry, I. Kucher, C. Leloup, E. Locci, M. Machet, J. Malcles, G. Negro, J. Rander, A. Rosowsky, M. Ö. Sahin, M. Titov, A. Abdulsalam, C. Amendola, I. Antropov, S. Baffioni, F. Beaudette, P. Busson, L. Cadamuro, C. Charlot, R. Granier de Cassagnac, M. Jo, S. Lisniak, A. Lobanov, J. Martin Blanco, M. Nguyen, C. Ochando, G. Ortona, P. Paganini, P. Pigard, R. Salerno, J. B. Sauvan, Y. Sirois, A. G. Stahl Leiton, T. Strebler, Y. Yilmaz, A. Zabi, A. Zghiche, J.-L. Agram, J. Andrea, D. Bloch, J.-M. Brom, M. Buttignol, E. C. Chabert, N. Chanon, C. Collard, E. Conte, X. Coubez, J.-C. Fontaine, D. Gelé, U. Goerlach, M. Jansová, A.-C. Le Bihan, N. Tonon, P. Van Hove, S. Gadrat, S. Beauceron, C. Bernet, G. Boudoul, R. Chierici, D. Contardo, P. Depasse, H. El Mamouni, J. Fay, L. Finco, S. Gascon, M. Gouzevitch, G. Grenier, B. Ille, F. Lagarde, I. B. Laktineh, M. Lethuillier, L. Mirabito, A. L. Pequegnot, S. Perries, A. Popov, V. Sordini, M. Vander Donckt, S. Viret, T. Toriashvili, Z. Tsamalaidze, C. Autermann, L. Feld, M. K. Kiesel, K. Klein, M. Lipinski, M. Preuten, C. Schomakers, J. Schulz, V. Zhukov, A. Albert, E. Dietz-Laursonn, D. Duchardt, M. Endres, M. Erdmann, S. Erdweg, T. Esch, R. Fischer, A. Güth, M. Hamer, T. Hebbeker, C. Heidemann, K. Hoepfner, S. Knutzen, M. Merschmeyer, A. Meyer, P. Millet. Pseudorapidity distributions of charged hadrons in proton-lead collisions at $$ \sqrt{s_{\mathrm{NN}}}=5.02 $$ and 8.16 TeV, Journal of High Energy Physics, 2018, 45, DOI: 10.1007/JHEP01(2018)045