Combined search for electroweak production of charginos and neutralinos in proton-proton collisions at $$ \sqrt{s}=13 $$ TeV

Journal of High Energy Physics, Mar 2018

The CMS collaboration, A. M. Sirunyan, A. Tumasyan, W. Adam, F. Ambrogi, E. Asilar, T. Bergauer, J. Brandstetter, E. Brondolin, M. Dragicevic, et al.

A PDF file should load here. If you do not see its contents the file may be temporarily unavailable at the journal website or you do not have a PDF plug-in installed and enabled in your browser.

Alternatively, you can download the file locally and open with any standalone PDF reader:

https://link.springer.com/content/pdf/10.1007%2FJHEP03%282018%29160.pdf

Combined search for electroweak production of charginos and neutralinos in proton-proton collisions at $$ \sqrt{s}=13 $$ TeV

Accepted: March at p s A statistical combination of several searches for the electroweak production of charginos and neutralinos is presented. All searches use proton-proton collision data at s = 13 TeV, recorded with the CMS detector at the LHC in 2016 and corresponding to an integrated luminosity of 35.9 fb 1. In addition to the combination of previous searches, a targeted analysis requiring three or more charged leptons (electrons or muons) is presented, focusing on the challenging scenario in which the di erence in mass between the two least massive neutralinos is approximately equal to the mass of the Z boson. The results are interpreted in simpli ed models of chargino-neutralino or neutralino pair production. For chargino-neutralino production, in the case when the lightest neutralino is massless, the combination yields an observed (expected) limit at the 95% con dence level on the chargino mass of up to 650 (570) GeV, improving upon the individual analysis limits by up to 40 GeV. If the mass di erence between the two least massive neutralinos is approximately equal to the mass of the Z boson in the chargino-neutralino model, the targeted search requiring three or more leptons obtains observed and expected exclusion limits of around 225 GeV on the second neutralino mass and 125 GeV on the lightest neutralino mass, improving the observed limit by about 60 GeV in both masses compared to the previous CMS result. In the neutralino pair production model, the combined observed (expected) exclusion limit on the neutralino mass extends up to 650{750 (550{750) GeV, depending on the branching fraction assumed. This extends the observed exclusion achieved in the individual analyses by up to 200 GeV. The combined result additionally excludes some intermediate gaps in the mass coverage of the individual analyses. Hadron-Hadron scattering (experiments); Supersymmetry - The CMS collaboration 1 Introduction 2 Signal models 3 The CMS detector 5 Individual searches 7 Interpretation 8 Summary The CMS collaboration 1 Introduction 4 Event reconstruction and Monte Carlo simulation Search for one lepton, two b jets, and pTmiss Search for two leptons consistent with a Z boson, jets, and pTmiss 5.6 Search for a H boson decaying to diphotons and pTmiss 6 Search for three light leptons consistent with WZ production and pmiss T uni cation of the gauge couplings at high energy scales [12, 13]. If R-parity [14] is conserved, the lightest SUSY particle (LSP) is stable and could be a potential dark matter candidate [15, 16]. This paper focuses on searches for electroweak production of SUSY particles, under the assumption that the strongly-coupled SUSY particles are too massive to be directly produced. The superpartners of the bosons from the SM SU(2) and U(1) gauge elds before electroweak symmetry breaking are denoted as the winos and bino, respectively. We consider SUSY models assuming two complex Higgs doublets, and the superpartners of the Higgs bosons are denoted as higgsinos. The bino, winos, and higgsinos form mass { 1 { eigenstates of two charginos ( one another. In this paper, we focus on the lightest neutralino ( e01), the next-to-lightest neutralino ( e02), and the lightest chargino ( e1 ). If the superpartners of the SM leptons, the sleptons, are much heavier than the charginos and neutralinos, decays of the charginos and neutralinos proceed through the W, Z, and Higgs bosons. The branching fractions of neutralinos to the Z and Higgs bosons depend on the mixing among the bino, winos, and e ) and four neutralinos ( e0) and in general can mix among higgsinos to form mass eigenstates. Searches performed at LEP exclude promptly-decaying charginos below a mass of 103.5 GeV [17]. At the LHC, several searches have been performed by the ATLAS [18{29] and CMS [30{43] Collaborations looking for direct production of charginos and neutralinos. integrated luminosity of 35.9 fb 1. 2 Signal models Given the various possible decay modes, a SUSY signal could simultaneously populate multiple nal states. This paper implements a statistical combination of the searches performed by CMS in refs. [38{43] covering several nal states to improve upon the sensitivity of the individual analyses, particularly in models where the neutralino has a nonzero branching fraction to both Z and Higgs bosons. In addition, we present an extension of a search selecting events with three or more charged leptons [38]. It targets the di cult region of phase space where the di erence in mass between the e20 and e10 is approximately equal to the Z boson mass, and the signal has similar kinematic properties to the dominant background of SM WZ production. All searches use a data sample of LHC proton-proton s = 13 TeV collected by the CMS experiment in 2016, corresponding to an Simpli ed models of SUSY [44{47] are used to interpret the combined search results presented below. In this paper, \H" refers to the 125 GeV scalar boson [48], interpreted as the lightest CP-even state of an extended Higgs sector. The H boson is expected to have SM-like properties if all of the other Higgs bosons are much heavier [49]. All signal models considered involve the production of two bosons (W, Z, or H) through SUSY decays, and we denote each model by the speci c bosons produced. The W, Z, and H bosons are always assumed to decay according to their SM branching fractions. The sleptons are always assumed to have much higher masses than the charginos and neutralinos such that they do not contribute to the interactions. The rst class of models assumes e1 e20 production. The e01 is assumed to be the LSP. The e1 always decays to the W boson and the e01, while the e02 can decay to either of the Z or H bosons plus the e01 . We consider three choices for the e02 decay: a branching fraction of 100% to Z e01 (WZ topology), of 100% to H e01 (WH topology), and of 50% to each of these two decays (mixed topology). This model is depicted in gure 1, showing the two possible decays. The production cross sections are computed in the limit of mass-degenerate winos e1 and e02, and light bino e01, with all other sparticles assumed to be heavy and decoupled. The second class of models assumes e10 e10 production. For bino- or wino-like neutralinos, the neutralino pair production cross section is very small, and thus we consider a speci c gauge-mediated SUSY breaking (GMSB) model with quasidegenerate higgsi{ 2 { χ0 e2 χ± e1 Z Z G e G e G e G e dFeicgauyrineg1t.oPeritohdeurc(tlieofnt)oaf Ze1beo20sownitahndthtehee1e10doecra(yriingghtt)oaaHWbobsoosnonanadndthtehee1LSP, e01, and the e02 0. and (left) both to Z bosons, (center) a Z and a H boson, or (right) both to H bosons. nos as next-to-lightest SUSY particles and an e ectively massless gravitino (Ge) as the LSP [50{52]. In the production of any two of these, e1 or e20 decays immediately to e1 0 and low-momentum particles that do not impact the analysis, e ectively yielding pair production of 0 0 . The e10 then decays to a Ge and either a Z or H boson, and we consider varying branching fractions from 100% decay into the Z boson to 100% decay into the H boson including intermediate values. The possible decays in this model are shown in gure 2. set to 1. The production cross sections for the GMSB scenario are computed in a limit of massdegenerate higgsino states e1 , e02, and e01, with all the other sparticles assumed to be heavy and decoupled. Following the convention of real mixing matrices and signed neutralino masses [53], we set the sign of the mass of e01 ( e02) to +1 ( 1). The lightest two neutralino states are de ned as symmetric (antisymmetric) combinations of higgsino states by setting the product of the elements Ni3 and Ni4 of the neutralino mixing matrix N to +0:5 ( 0:5) for i = 1 (2). The elements U12 and V12 of the chargino mixing matrices U and V are Cross section calculations to next-to-leading order (NLO) plus next-to-leadinglogarithmic (NLL) accuracy [54{59] in perturbative quantum chromodynamics (QCD) are used to normalize the signal samples for the results presented in sections 6 and 7. In this section, we present cross sections calculated to NLO accuracy [56] to demonstrate the dependence of the cross section values on assumptions made in decoupling other SUSY particles. The same qualitative conclusions also hold for the NLO+NLL calculations used in the nal results. { 3 { q q q q q q q g g g g g g g m~ = m~ = 0.3 TeV m~ = m~ = 0.5 TeV m~ = m~ = 1 TeV m~ = m~ = 2 TeV m~ = m~ = 5 TeV [n 10 o i t c 1 rC10−3 x eTV 1.2 e1 and e20 are assumed to be mass-degenerate winos. The various curves show di erent assumptions on the masses of the squarks and gluinos, as described in the legend. The green band shows the theoretical uncertainty in the cross section calculation, from the variation of renormalization and factorization scales as well as parton density functions, for the 100 TeV squark and gluino mass assumption. Figure 3 shows the NLO cross section for e1 e20 production at p s = 13 TeV assuming 0 e1 and e2 mass-degenerate winos . The various curves show di erent assumptions on the masses of squarks (qe) and gluinos (g), as described in the legend. The cross section depends e signi cantly on the masses of the strongly coupled particles until they reach masses of at least 10 TeV. For the range of e1 and e02 masses considered here, the reduction can make up to 90% in the cross section value. This is due to large destructive interference e ects from t-channel diagrams involving squark exchange. The cross section calculation used in the interpretations of the analysis results assumes a mass of 100 TeV for the squarks and gluinos 0 e1 to have them fully decoupled. The obtained results would be less stringent if lower masses e1 e1 , and were assumed for the squarks and gluinos. We performed the same study for e1 e20, e1 e10 e20 e10 production with the assumption of mass-degenerate higgsinos e1 , e2 0, and . The dependence of the production cross section on the decoupling mass assumption was found to be much smaller in the higgsino case, at most a few percent, and it is small compared to the uncertainty in the cross section calculation. 3 The CMS detector The central feature of the CMS apparatus is a superconducting solenoid, 13 m in length and 6 m in diameter, that provides an axial magnetic eld of 3.8 T. The bore of the solenoid is out tted with various particle detection systems. Charged-particle trajectories are measured by silicon pixel and strip trackers, covering 0 < < 2 in azimuth and j j < 2:5, { 4 { where the pseudorapidity is de ned as log[tan( =2)], with being the polar angle of the trajectory of the particle with respect to the clockwise beam direction. A crystal electromagnetic calorimeter (ECAL) and a brass and scintillator hadron calorimeter (HCAL) surround the tracking volume. The calorimeters provide energy and direction measurements of electrons, photons, and hadronic jets. Muons are measured in gas-ionization detectors embedded in the steel ux-return yoke outside the solenoid. The detector is nearly hermetic, allowing for energy balance measurements in the plane transverse to the clockwise beam direction. A two-tier trigger system selects the most interesting pp collision events for use in physics analysis. A more detailed description of the CMS detector, together with a de nition of the coordinate system used and the relevant kinematic variables, can be found in ref. [ 60 ]. 4 Event reconstruction and Monte Carlo simulation Event reconstruction is based on the particle- ow (PF) algorithm [61], which optimally combines information from the tracker, calorimeters, and muon systems to reconstruct and identify PF candidates, i.e., charged and neutral hadrons, photons, electrons, and muons. To select collision events, we require at least one reconstructed vertex. The reconstructed vertex with the largest value of summed physics-object p2T is taken to be the primary pp interaction vertex, where pT is the transverse momentum with respect to the beam axis. The physics objects are the objects returned by a jet nding algorithm [62, 63] applied to all charged tracks associated with the vertex, plus the corresponding associated missing transverse momentum. The missing transverse momentum vector, p~ miss, is de ned as the negative vector sum of the momenta of all reconstructed PF candidates projected onto the plane perpendicular to the proton beams. Its magnitude is referred to as pTmiss. Events with possible contributions from beam halo processes or anomalous noise in the calorimeters can T have large values of pTmiss and are rejected using dedicated lters [64]. Electron candidates are reconstructed starting from a cluster of energy deposits in the ECAL. The cluster is then matched to a reconstructed track. The electron selection is based on the shower shape, the ratio of energy measured in the HCAL to that measured in the ECAL, track-cluster matching, and consistency between the cluster energy and the track momentum [65]. Muon candidates are reconstructed by performing a global t that requires consistent hit patterns in the tracker and the muon system [66]. Photon candidates are reconstructed from a cluster of energy deposits in the ECAL, and they are required to pass criteria based on the shower shape and the ratio of energy measured in the HCAL to that measured in the ECAL [65]. Hadronically decaying tau lepton candidates ( h) are reconstructed from PF candidates with the \hadron-plus-strips" algorithm [67]. Electron, muon, photon, and h candidates are required to be isolated from other particles, and electron, muon, and h candidates must satisfy requirements on the transverse and longitudinal impact parameters relative to the primary vertex. PF candidates are clustered to form jets using the anti-kT clustering algorithm [62] with a distance parameter of 0.4, as implemented in the FastJet package [63]. Identi cation { 5 { of jets originating from b quarks (b jets) is performed with either the combined secondary vertex (CSVv2) algorithm [68] or the DeepCSV algorithm [69]. Data events are selected using a variety of triggers requiring the presence of electrons, muons, photons, jets, or pTmiss, depending on the nal state targeted in each analysis. Monte Carlo (MC) simulated samples are used in the various searches to estimate the background from some SM processes, to assess systematic uncertainties in prediction methods that rely on data, and to calculate the selection e ciency for signal models. Most SM background samples are produced with the MadGraph5 amc@nlo v2.2.2 or v2.3.3 generator [70] at leading order (LO) or NLO accuracy in perturbative QCD, including up to four additional partons in the matrix element calculations, depending on the process and calculation order. Other samples are produced with the powheg v2 [71, 72] generator without additional partons in the matrix element calculations. Standard model WZ production in particular is modeled with MadGraph5 amc@nlo v2.2.2 at NLO precision for the search described in section 6, which requires a precise description of initial-state radiation (ISR). In other cases, powheg v2 is used. The NNPDF3.0 LO or NLO [73] parton distribution functions (PDFs) are used in the event generation. Parton showering and fragmentation in all of these samples are performed using the pythia v8.212 [74] generator and the CUETP8M1 tune [75]. A double counting of the partons generated with MadGraph5 amc@nlo and those with pythia is removed using the MLM [76] and the FxFx [77] matching schemes, in the LO and NLO samples, respectively. Cross section calculations at NLO or next-to-NLO [70, 78{82] are used to normalize the simulated background samples. Signal samples are generated with MadGraph5 amc@nlo at LO precision, including up to two additional partons in the matrix element calculations. Cross section calculations to NLO plus NLL accuracy [55, 56, 83] are used to normalize the signal samples. For these samples we improve on the modeling of ISR, which a ects the total transverse momentum of the system of SUSY particles (pITSR), by reweighting the pITSR distribution in these events. This reweighting procedure is based on experimental studies of the pT of Z bosons [84]. The reweighting factors range between 1.18 (at pITSR = 125 GeV) and 0.78 (for pISR > 600 GeV). T We take the deviation from 1.0 as the systematic uncertainty in the reweighting procedure. For both signal and background events, additional simultaneous proton-proton interactions (pileup) are generated with pythia and superimposed on the hard collisions. The response of the CMS detector for SM background samples is simulated using a Geant4based model [85], while that for new physics signals is performed using the CMS fast simulation package [86]. All simulated events are processed with the same chain of reconstruction programs as used for collision data. Corrections are applied to simulated samples to account for di erences between the trigger, b tagging, and lepton and photon selection e ciencies measured in data and the Geant4 simulation. Additional di erences arising from the fast simulation modeling of selection e ciencies, as well as from the modeling of pTmiss, are corrected in the fast simulation and included in the systematic uncertainties considered. { 6 { HJEP03(218)6 Search Summary of all experimental searches considered in the combination (rows), and the signal topologies for which each search is used in the combined results (columns). The searches are described in sections 5.1 through 5.6 and section 6. The 3` search described in section 5.5 is used for all signal topologies except for WZ, where the reoptimized search strategy from section 6 is employed instead. 5 Individual searches The experimental searches included in the combination are brie y described here. Table 1 lists which searches are used to place exclusion limits for each of the topologies introduced in section 2. The selections for all searches were checked to be mutually exclusive, such that no events ful ll the signal region requirements for more than one search. No signi cant deviations from the SM predictions were observed in any of these searches. 5.1 Search for one lepton, two b jets, and pmiss T pmiss The \1` 2b" search [43], targeting the WH topology, selects events with exactly one charged lepton (e or ), exactly two b jets, and large pmiss. The invariant mass of the two b jets is required to be consistent with the mass of the H boson. Kinematic variables are used to suppress backgrounds, which predominantly come from dileptonic decays in tt production. T Two exclusive signal regions are de ned based on pmiss: 125 T T pmiss < 200 GeV and The SM backgrounds are predicted using MC simulation, with the predictions validated in data control regions distinct from the signal region. 5.2 Search for four b jets and pmiss T The \4b" search [41], targeting the HH topology, selects events with exactly four or ve jets, with at least two of them identi ed as b jets, large pmiss, and no charged leptons. In each event, the four jets with the highest b tagging discriminator scores are considered to form dijet H candidates. There are three possible groupings to make two pairs of jets. The grouping is selected to minimize the di erence between the invariant masses of the two dijet pairs, and the di erence in masses is required to be less than 40 GeV. The average invariant mass of the two pairs is then required to be consistent with the mass of the H T boson. Exclusive signal regions are de ned based on the number of b jets (three or at least four) and multiple bins in pmiss. The primary background to this search comes from semileptonic decays in tt production, with smaller contributions from W or Z production in association with jets and from QCD multijet production. The backgrounds are predicted using data control samples that require either exactly two b jets or an average dijet invariant T mass inconsistent with the H boson. { 7 { Search for two leptons consistent with a Z boson, jets, and pmiss The \2` on-Z" search [42], targeting the WZ, ZZ, and ZH topologies, selects events with exactly two opposite-sign, same- avor (OSSF) leptons (e+e or + ) consistent with the Z boson mass, at least two jets, and large pmiss. In the signal region targeting the WZ and ZZ topologies, two jets are required to have an invariant mass less than 110 GeV to be compatible with the W and Z boson masses, and events with b jets are rejected. To target the ZH topology, events are required to have two b jets with an invariant mass less than 150 GeV to be compatible with the H boson mass. Signal regions are de ned with multiple exclusive bins in pmiss. The backgrounds fall into three categories. First, avor symmetric backgrounds, such as tt production, yield e events at the same rate as e+e events combined, and they are predicted from a data control sample of e events. Second, events with a Z boson and mismeasured jets give instrumental pTmiss, and they are predicted from a data control sample of +jets events. Third, events with a Z boson and at least one prompt neutrino, arising from processes such as WZ, ZZ, and ttZ production, are estimated using simulation. 5.4 Search for two soft leptons and pmiss T T The \2` soft" search [39] selects events with exactly two low-pT leptons (e+e or + in the relevant selections), jets, and large pmiss. It targets the WZ topology where the mass di erence between e20 and e10 is small such that the W and Z bosons are o -shell, and the observable decay products have low momentum. The leptons are required to satisfy 5 < pT < 30 GeV and have an invariant mass in the range 4 < m`` < 50 GeV, strongly suppressing SM backgrounds while retaining good acceptance for compressed signal scenarios. Additional kinematic requirements are applied to further reduce backgrounds, and the relevant signal regions are binned in m`` and pmiss. The largest backgrounds arise from T Z= and tt production, as well as misidenti cation of nonprompt leptons. The rst two are predicted from simulation with constraints from data control regions, while the latter is predicted entirely using data. 5.5 Search for three or more leptons, and pmiss T T T The \ 3`" search [38] selects events with three or more leptons (e, , and up to two h) and large pmiss. Several exclusive categories are de ned based on the number of leptons, lepton avor and charge, the presence of an OSSF pair, and kinematic variables such as the invariant mass of the OSSF pair and pmiss. Events with a b jet are rejected to reduce the background from tt production. The various categories are designed to give this search sensitivity for a wide range of new physics models, including all of the topologies introduced in section 2. The best performance is seen in the WZ and ZZ models, while the lower branching fraction of the H boson to leptons reduces the sensitivity to other models. The SM backgrounds in this search vary across the categories, and the most important for the relevant regions in these interpretations are SM WZ and ZZ production, and events with misidenti ed nonprompt leptons. The former are predicted using simulation, which in case of WZ is validated in a set of dedicated control regions, while the latter are predicted entirely from data. { 8 { A further optimization of this analysis has been performed for the WZ topology in the case where the di erence in the masses of e20 and e10 is equal to the Z boson mass, focusing on a category selecting events with three light- avor leptons (e, ). This update is presented in section 6. Search for a H boson decaying to diphotons and pmiss )" search [40] selects events with two photons consistent with the H boson mass, along with jets and large pmiss. Events are categorized based on the pT of the T diphoton system, the expected resolution on the diphoton mass, the presence of two b jets compatible with the H or Z boson masses, and the razor kinematic variables [87, 88]. It exhibits sensitivity to the WH, ZH, and HH topologies. The background arises either from +jets or SM H boson production. The former is estimated using a t to the diphoton mass spectrum in a wider range than the signal window, while the latter is predicted using simulation. 6 Search for three light leptons consistent with WZ production and pmiss T The multilepton search described in section 5.5 contains a category selecting events with three light- avor leptons (e, ), two of which must form an OSSF pair. This nal state aims to provide sensitivity for a variety of SUSY models, including the WZ topology depicted in gure 1 (left). The dominant background in this search category is SM WZ production. Exclusion limits on the WZ topology were placed in ref. [38], and the sensitivity was found to be signi cantly reduced for me02 me01 In this case, SUSY signal is kinematically similar to the SM background. We present here a further optimization of the search for the WZ topology designed to target this challenging region of phase space. The search methodology remains the same as in ref. [38], but the mZ, referred to here as the \WZ corridor." event categorization has been updated as described below. We require events to have three light- avor leptons with two forming an OSSF pair. Events are categorized using the following kinematic variables: pmiss, the invariant mass m`` of the OSSF pair, and the transverse mass MT of the third lepton computed with respect to pmiss. Three bins in m`` are de ned to separate contributions from on- and T o -shell Z boson decays, and three bins are de ned in MT to separate the SM W boson T contribution. To improve the separation between signal and background in the WZ corridor, we exploit ISR by further categorizing the events in HT, the scalar pT sum of the jets with pT > 30 GeV. Due to the presence of the will tend to have more events at high values of pTmiss and MT than the SM background for e01 LSPs, signal model points in the WZ corridor at higher HT. This is demonstrated in the same value of HT, with the e ect becoming relevant at me01 gure 4, which shows the expected distributions mZ and more pronounced of pTmiss for background and two signal model points after requiring (left) HT < 100 GeV and (right) 200 GeV. The HT categorization is applied in the regions m`` < 75 GeV and 75 m`` < 105 GeV. The full set of search regions is summarized in table 2. { 9 { the signal points are given as (me02 =me01 ) in GeV. For larger values of HT, the shape di erence between signal and background becomes more pronounced due to the presence of e10 LSPs with The dominant background in this search is SM WZ production, which provides a signaT ture very similar to the signal process in the form of three isolated leptons and substantial pmiss due to the neutrino from the W boson decay. This background is estimated from simulation, while two control regions are used to assess the overall normalization and to validate the modeling of events at large values of pTmiss, MT, or both. Further backgrounds arise from misidenti cation of nonprompt leptons from processes like tt production, external and internal photon conversions, and rare SM processes such as triboson production, ttW, and ttZ. The contribution of the nonprompt lepton background is predicted using the \tight-to-loose" ratio method [89], which relies entirely on data. External and internal photon conversions as well as rare SM processes are predicted from simulation, and a dedicated data control region is used to constrain the normalization of the conversion background. and pmiss The SM WZ background normalization is constrained in a data control region requiring 75 m`` < 105 GeV, MT < 100 GeV, 35 < pmiss < 100 GeV, and HT < 100 GeV. The T fraction of selected background events arising from SM WZ production in this region is approximately 86%. The validation of the pmiss and MT shape modeling is done using a T data control sample enriched in W events, with the remainder of events coming mainly from W+jets production. A photon with pT > 40 GeV is required together with a lepton 50 GeV, corresponding to a leptonic W boson decay. The minimum photon pT threshold ensures that the photon does not arise from nal-state radiation. The motivation behind this selection is that the W boson MT distribution in both W and W+jets events is found to be consistent with that of SM WZ production. A systematic uncertainty is assigned to the signal region bins with high MT and pmiss based on the statistical precision T of this control region. m`` (GeV) MT (GeV) pmiss (GeV) HT < 100 GeV 100 HT < 200 GeV HT 200 GeV T 0{100 160 0{100 0{75 topology. Events must have three leptons (e, ) forming at least one OSSF pair and they are categorized in m``, MT, pmiss and HT. T inclusive while the upper bound is exclusive, e.g., 75 Where ranges of values are given, the lower bound is Distributions of key kinematic observables for the events entering the search regions are shown in gure 5 with two representative signal mass points included. The data agree with the prediction within systematic uncertainties, which are dominated at high MT and pmiss T by the WZ control region statistical precision as described above. This uncertainty is taken as correlated across signal region bins. The comparison between expected and observed yields in the search regions is shown in gure 6 and table 3. No signi cant deviations from the SM expectations are observed. The predicted background yields and uncertainties presented in this section are used as inputs to the likelihood t for interpretation, described in section 7. The interpretation of the results in the WZ topology at 95% con dence level (CL) is presented in gure 7. Compared to ref. [38], the expected lower mass limit in the WZ corridor has improved from around (m 0 ; m 0 ) = (200; 100) to around (225; 125) GeV, while the observed limit has improved by around 60 GeV in both mass values. The expected e2 e1 V D 1 3 2 1 0 ttX ttX Nonprompt e/µ Conversions E /s 103 102 10 1 V 105 CMS 50 100 150 200 250 300 350 ttX ttX HT(jet pT > 30 GeV) [GeV] left), the pmiss (upper right), the m`` of the OSSF pair (lower left), and the HT (lower right). T Distributions for two signal mass points in the WZ corridor are overlaid for illustration. The mass values for the signal points are given as (me02 =me01 ) in GeV. The bottom panel shows the ratio of observed data to predicted yields. The dark purple band shows the statistical uncertainty in the background prediction, while the light blue band shows the total uncertainty. has improved by a factor of 2. e2 e1 limit contour for signal points with m 0 m 0 > mZ has also improved by as much as 25 GeV due to the new selections. The upper limit on the e1 e20 production cross section The event selections listed in table 2 are used to replace the selections for category A E 103 102 10 1 10−1 3 2 1 r D CMS mℓ ℓ (GeV) HT (GeV) MT (GeV) 0 0 1 < 5 7 < 0 0 2 ≥ 0 0 0 0 2 1 < < 0 0 2 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 6 6 6 6 6 6 1 1 1 1 1 1 1 1 1 < < < ≥ ≥ ≥ 0 0 0 0 0 0 1 1 1 WZ ZZ/H VVV ttX 0 6 1 0 0 1 Data ∼χ±∼χ0→ WZ(200/100) points along the WZ corridor are overlaid for illustration. The mass values for the signal points are given as (me02 =me01 ) in GeV. The bottom panel shows the ratio of observed data to predicted yields. The dark purple band shows the statistical uncertainty in the background prediction, while the light blue band shows the total uncertainty. V e G [ it m i l p u 600 10−3 9 500 2 1 The 95% con dence level upper limit on the production cross section in the plane requiring three or more leptons as described in section 6. The thick solid black (dashed red) curve and me01 for the model of e1 e20 production with the WZ topology, using only the search represents the observed (expected) exclusion contour assuming the theory cross sections. The area below each curve is the excluded region. The thin dashed red lines indicate the 1 experiment uncertainty. The thin black lines show the e ect of the theoretical uncertainties ( 1 theory) on the signal cross section. The color scale shows the observed limit at 95% CL on the signal production cross section. m`` (GeV) MT (GeV) pmiss (GeV) T HT < 100 GeV 0{75 100{160 0{100 160 0{100 corresponds to the expected yield and its total uncertainty while the second number gives the observation. Where ranges of values are given for the selections, the lower bound is inclusive while the upper bound is exclusive, e.g., 75 in ref. [38] in the combination below with other analyses, when interpreting results in the models with either 100% or 50% branching fraction to the SUSY WZ topology. In this case, the systematic uncertainties in the background prediction are treated as being fully correlated with the other categories from ref. [38]. 7 Interpretation The results of the searches described in sections 5 and 6 are interpreted using the simpli ed models introduced in section 2. Cross section limits as a function of the SUSY particle masses are set using a modi ed frequentist approach, employing the CLs criterion and an asymptotic formulation [90{93]. The uncertainties in the signal e ciency and acceptance and in the background predictions are incorporated as nuisance parameters. The observed data yields in control regions are typically incorporated either by a simultaneous maximum likelihood t of the signal and control regions or through parameterization using the gamma function. Other nuisance parameters are implemented using lognormal functions, whose widths re ect the size of the systematic uncertainty, or as alternate shapes of the relevant distributions. Within each signal model, the experimental and theoretical uncertainties a ecting the signal prediction are treated as fully correlated for all analyses. The dominant uncertainties in the background predictions are not correlated among analyses as they tend to be either statistical in nature, arising from independent control regions, or uncertainties in the prediction methods, which are unique to each analysis. For each signal topology, the analyses with a check mark in table 1 are combined to place exclusion limits. The following sources of uncertainty in the signal acceptance and e ciency are assumed to be fully correlated among analyses: determination of the integrated luminosity, lepton identi cation and isolation e ciency, lepton e ciency modeling in fast simulation, b tagging e ciency, jet energy scale, modeling of pTmiss in fast simulation, modeling of ISR, simulation of pileup, and variations of the generator factorization and renormalization scales. Variations in the PDF set used are found to primarily a ect the signal acceptance by changing the pT distribution of the initially-produced sparticle pair, e1 e20 or e01 e01. This is already incorporated in the empirical uncertainty in the modeling of ISR as described in section 4, and we therefore do not apply a dedicated uncertainty in signal acceptance from PDF variations. All analyses also include the statistical uncertainty of the simulated signal samples, which is taken as being uncorrelated in every bin, and the uncertainty in the modeling of the trigger e ciency, which is also taken as uncorrelated given the di erent trigger requirements applied in each analysis. Some analyses have additional uncertainties beyond these, such as the uncertainty in the modeling of the diphoton mass resolution for the H( ) analysis, which are analysis-speci c and treated as being uncorrelated. in the plane of m For the models of e1 e20 production, 95% con dence level exclusion limits are presented and m 0 . Figure 8 shows the exclusion limits for the combination of e1 analyses for the WeZ1 topology, the WH topology, and the mixed topology with 50% branching fraction to each of the WZ and WH channels. Figure 9 shows the analysis with the best expected limit for each point in the plane for the same topologies. The on-Z dilepton analysis generally gives the best sensitivity for large values of search for three light- avor leptons provides the best sensitivity at intermediate values of m, including the region where m mZ, while the soft-dilepton analysis provides unique sensitivity to the smallest values of m. Figure 10 (left) shows the observed and expected limit contours for each of the individual analyses considered in the combination, e1 and gure 10 (right) shows the results from the combination for all three topologies conm sidered. For a massless LSP e10, the combined result gives an observed (expected) limit in of about 650 (570) GeV for the WZ topology, 480 (455) GeV for the WH topology, and 535 (440) GeV for the mixed topology. The combination also excludes intermediate mass values that were not excluded by individual analyses, including m values between 180 m = me02 me01 . The and 240 GeV for a massless LSP in the WH topology. For the models of e01 e01 production, the exclusion limits are presented in the plane of me01 and the branching fraction B( e01 ! HGe). The decay e1 ! ZGe is assumed to make up 0 the remainder of the branching fraction. Figure 11 shows the observed and expected limits e1 Observed ± 1 σtheory 300 200 100 0 100 50 0 200 100 0 200 400 5 9 ] b it m i l r e p p u m∼±=m∼0 [GeV] χ χ 2 (lower) the mixed topology with 50% branching fraction to each of WZ and WH. The thick solid e1 e20 production with (upper) the WZ topology, (middle) the WH topology, or black (dashed red) curve represents the observed (expected) exclusion contour assuming the theory cross sections. The area below each curve is the excluded region. The thin dashed red lines indicate the 1 experiment uncertainty. The thin black lines show the e ect of the theoretical uncertainties ( 1 theory) on the signal cross section. The color scale shows the observed limit at 95% CL on the e1 and me01 signal production cross section. e1 topology, and (lower) the mixed topology 50% branching fraction to each of WZ and WH. and me01 for the models of e1 e20 production with (upper) the WZ topology, (middle) the WH production (left) for the individual analyses and (right) for the combination of analyses. The decay e1 0 and me01 for the models of e1 e2 modes assumed for each contour are given in the legends. for the model of e10 e10 production. The area to the left of or below the solid (dashed) black curve represents the observed (expected) exclusion region. The green and yellow bands indicate the 1 and 2 uncertainties in the expected limit. The thin black lines show the e ect of the theoretical uncertainties ( 1 theory) on the signal cross section. from the combination in this plane. The expected mass exclusion limit varies between about 550 and 750 GeV, being least stringent around B( e01 ! HGe) = 0:4. The observed limit ranges between about 650 and 750 GeV, allowing us to exclude masses below 650 GeV independent of this branching fraction. Figure 12 shows the observed limits from each analysis separately compared with the combined result. Figure 13 shows the analysis with the best expected exclusion limit for the model of e01 e01 production for each individual analysis compared with the combination. For the 4b contour, the region above is excluded, while for all others, the region to the left is excluded. multilepton searches are competing at lower values of B(e01 ! HGe). The 4b search drives the exclusion at large values of B(e01 ! HGe) while the on-Z dilepton and and B(e10 ! HGe) for the model of e01 e01 production. for each point in the same plane. At higher values of m 0 , the searches for at least one hadronically decaying boson provide the best sensitivity, the 4b search when B( e01 ! HGe) is large and the on-Z dilepton search when it is smaller. At lower values of m 0 , below e1 around 200 GeV, the H( ) analysis is most sensitive when B( e01 ! HGe) is large, while the three or more lepton search is dominant when it is small. Figure 14 then shows the exclusion limits as a function of m 0 for three choices of B( e01 ! HGe): 0%, yielding the e1 ZZ topology; 100%, yielding the HH topology; and 50%, yielding a mix of events from the and missing transverse momentum in proton-proton collisions at p s = 13 TeV, [39] CMS collaboration, Search for new physics in events with two soft oppositely charged leptons arXiv:1801.01846 [INSPIRE]. razor variables at p events in proton-proton collisions at p [40] CMS collaboration, Search for supersymmetry with Higgs boson to diphoton decays using the s = 13 TeV, Phys. Lett. B 779 (2018) 166 [arXiv:1709.00384] [41] CMS collaboration, Search for Higgsino pair production in pp collisions at p s = 13 TeV in nal states with large missing transverse momentum and two Higgs bosons decaying via H ! bb, Phys. Rev. D 97 (2018) 032007 [arXiv:1709.04896] [INSPIRE]. [42] CMS collaboration, Search for new phenomena in nal states with two opposite-charge, same- avor leptons, jets and missing transverse momentum in pp collisions at p s = 13 TeV, [43] CMS collaboration, Search for electroweak production of charginos and neutralinos in WH s = 13 TeV, JHEP 11 (2017) 029 [arXiv:1706.09933] of the LHC pp collision data at p [arXiv:1606.02266] [INSPIRE]. [44] J. Alwall, P. Schuster and N. Toro, Simpli ed Models for a First Characterization of New Physics at the LHC, Phys. Rev. D 79 (2009) 075020 [arXiv:0810.3921] [INSPIRE]. [45] J. Alwall, M.-P. Le, M. Lisanti and J.G. Wacker, Model-Independent Jets plus Missing Energy Searches, Phys. Rev. D 79 (2009) 015005 [arXiv:0809.3264] [INSPIRE]. [46] LHC New Physics Working Group collaboration, D. Alves, Simpli ed Models for LHC New Physics Searches, J. Phys. G 39 (2012) 105005 [arXiv:1105.2838] [INSPIRE]. [47] CMS collaboration, Interpretation of Searches for Supersymmetry with simpli ed Models, Phys. Rev. D 88 (2013) 052017 [arXiv:1301.2175] [INSPIRE]. [48] ATLAS, CMS collaboration, G. Aad et al., Measurements of the Higgs boson production and decay rates and constraints on its couplings from a combined ATLAS and CMS analysis s = 7 and 8 TeV, JHEP 08 (2016) 045 [49] S.P. Martin, A Supersymmetry primer, hep-ph/9709356 [INSPIRE]. [50] K.T. Matchev and S.D. Thomas, Higgs and Z boson signatures of supersymmetry, Phys. Rev. D 62 (2000) 077702 [hep-ph/9908482] [INSPIRE]. Tevatron, JHEP 05 (2010) 105 [arXiv:0911.4130] [INSPIRE]. [51] P. Meade, M. Reece and D. Shih, Prompt decays of general neutralino NLSPs at the [52] J.T. Ruderman and D. Shih, General neutralino NLSPs at the early LHC, JHEP 08 (2012) 159 [arXiv:1103.6083] [INSPIRE]. [53] P.Z. Skands et al., SUSY Les Houches accord: Interfacing SUSY spectrum calculators, decay packages and event generators, JHEP 07 (2004) 036 [hep-ph/0311123] [INSPIRE]. [54] W. Beenakker, M. Klasen, M. Kramer, T. Plehn, M. Spira and P.M. Zerwas, Production of charginos/neutralinos and sleptons at hadron colliders, Phys. Rev. Lett. 83 (1999) 3780 [Erratum ibid. 100 (2008) 029901] [hep-ph/9906298] [INSPIRE]. [55] B. Fuks, M. Klasen, D.R. Lamprea and M. Rothering, Gaugino production in proton-proton collisions at a center-of-mass energy of 8 TeV, JHEP 10 (2012) 081 [arXiv:1207.2159] [56] B. Fuks, M. Klasen, D.R. Lamprea and M. Rothering, Precision predictions for electroweak superpartner production at hadron colliders with Resummino, Eur. Phys. J. C 73 (2013) [INSPIRE]. [61] CMS collaboration, Particle- ow reconstruction and global event description with the CMS detector, 2017 JINST 12 P10003 [arXiv:1706.04965] [INSPIRE]. 063 [arXiv:0802.1189] [INSPIRE]. in pp data at p Detector in Proton-Proton Collisions at p [arXiv:1502.02701] [INSPIRE]. [64] CMS collaboration, Performance of the CMS missing transverse momentum reconstruction s = 8 TeV, 2015 JINST 10 P02006 [arXiv:1411.0511] [INSPIRE]. [65] CMS collaboration, Performance of Electron Reconstruction and Selection with the CMS s = 8 TeV, 2015 JINST 10 P06005 p s = 7 TeV, 2012 JINST 7 P10002 [arXiv:1206.4071] [INSPIRE]. [66] CMS collaboration, Performance of CMS muon reconstruction in pp collision events at [67] CMS collaboration, Reconstruction and identi cation of lepton decays to hadrons and at CMS, 2016 JINST 11 P01019 [arXiv:1510.07488] [INSPIRE]. [68] CMS collaboration, Identi cation of heavy- avour jets with the CMS detector in pp collisions at 13 TeV, Submitted to: JINST (2017) [arXiv:1712.07158] [INSPIRE]. [69] D. Guest, J. Collado, P. Baldi, S.-C. Hsu, G. Urban and D. Whiteson, Jet Flavor Classi cation in High-Energy Physics with Deep Neural Networks, Phys. Rev. D 94 (2016) 112002 [arXiv:1607.08633] [INSPIRE]. [70] J. Alwall et al., The automated computation of tree-level and next-to-leading order di erential cross sections and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE]. [71] T. Melia, P. Nason, R. Rontsch and G. Zanderighi, W +W , WZ and ZZ production in the POWHEG BOX, JHEP 11 (2011) 078 [arXiv:1107.5051] [INSPIRE]. [72] P. Nason and G. Zanderighi, W +W , W Z and ZZ production in the POWHEG-BOX-V2, Eur. Phys. J. C 74 (2014) 2702 [arXiv:1311.1365] [INSPIRE]. [73] NNPDF collaboration, R.D. Ball et al., Parton distributions for the LHC Run II, JHEP 04 (2015) 040 [arXiv:1410.8849] [INSPIRE]. [74] T. Sjostrand, S. Mrenna and P.Z. Skands, A brief introduction to PYTHIA 8.1, Comput. Phys. Commun. 178 (2008) 852 [arXiv:0710.3820] [INSPIRE]. [75] CMS collaboration, Event generator tunes obtained from underlying event and multiparton scattering measurements, Eur. Phys. J. C 76 (2016) 155 [arXiv:1512.00815] [INSPIRE]. [76] J. Alwall et al., Comparative study of various algorithms for the merging of parton showers and matrix elements in hadronic collisions, Eur. Phys. J. C 53 (2008) 473 p collisions at p HJEP03(218)6 Comput. Phys. Commun. 184 (2013) 208 [arXiv:1201.5896] [INSPIRE]. [82] M. Czakon and A. Mitov, Top++: a program for the calculation of the top-pair cross-section at hadron colliders, Comput. Phys. Commun. 185 (2014) 2930 [arXiv:1112.5675] [INSPIRE]. [83] C. Borschensky et al., Squark and gluino production cross sections in pp collisions at s = 13, 14, 33 and 100 TeV, Eur. Phys. J. C 74 (2014) 3174 [arXiv:1407.5066] [INSPIRE]. [84] CMS collaboration, Search for top-squark pair production in the single-lepton nal state in pp collisions at p s = 8 TeV, Eur. Phys. J. C 73 (2013) 2677 [arXiv:1308.1586] [INSPIRE]. [85] GEANT4 collaboration, S. Agostinelli et al., GEANT4: a simulation toolkit, Nucl. Instrum. [86] S. Abdullin et al., The fast simulation of the CMS detector at LHC, J. Phys. Conf. Ser. 331 [87] CMS collaboration, Inclusive search for supersymmetry using the razor variables in pp s = 7 TeV, Phys. Rev. Lett. 111 (2013) 081802 [arXiv:1212.6961] [INSPIRE]. [88] CMS collaboration, Search for supersymmetry with razor variables in pp collisions at s = 7 TeV, Phys. Rev. D 90 (2014) 112001 [arXiv:1405.3961] [INSPIRE]. [89] CMS collaboration, Search for new physics in same-sign dilepton events in proton-proton s = 13 TeV, Eur. Phys. J. C 76 (2016) 439 [arXiv:1605.03171] [INSPIRE]. [90] T. Junk, Con dence level computation for combining searches with small statistics, Nucl. Instrum. Meth. A 434 (1999) 435 [hep-ex/9902006] [INSPIRE]. [91] A.L. Read, Presentation of search results: The CLs technique, J. Phys. G 28 (2002) 2693 [92] G. Cowan, K. Cranmer, E. Gross and O. Vitells, Asymptotic formulae for likelihood-based tests of new physics, Eur. Phys. J. C 71 (2011) 1554 [Erratum ibid. C 73 (2013) 2501] [arXiv:1007.1727] [INSPIRE]. summer 2011, ATL-PHYS-PUB-2011-011 (2011). [93] ATLAS and CMS collaborations, Procedure for the LHC Higgs boson search combination in Yerevan Physics Institute, Yerevan, Armenia A.M. Sirunyan, A. Tumasyan Institut fur Hochenergiephysik, Wien, Austria W. Adam, F. Ambrogi, E. Asilar, T. Bergauer, J. Brandstetter, E. Brondolin, M. Dragicevic, J. Ero, M. Flechl, M. Friedl, R. Fruhwirth1, V.M. Ghete, J. Grossmann, J. Hrubec, M. Jeitler1, A. Konig, N. Krammer, I. Kratschmer, D. Liko, T. Madlener, I. Mikulec, E. Pree, N. Rad, H. Rohringer, J. Schieck1, R. Schofbeck, M. Spanring, D. Spitzbart, W. Waltenberger, J. Wittmann, C.-E. Wulz1, M. Zarucki HJEP03(218)6 Institute for Nuclear Problems, Minsk, Belarus V. Chekhovsky, V. Mossolov, J. Suarez Gonzalez Universiteit Antwerpen, Antwerpen, Belgium Haevermaet, P. Van Mechelen, N. Van Remortel Vrije Universiteit Brussel, Brussel, Belgium E.A. De Wolf, D. Di Croce, X. Janssen, J. Lauwers, M. Van De Klundert, H. Van S. Abu Zeid, F. Blekman, J. D'Hondt, I. De Bruyn, J. De Clercq, K. Deroover, G. Flouris, D. Lontkovskyi, S. Lowette, I. Marchesini, S. Moortgat, L. Moreels, Q. Python, K. Skovpen, S. Tavernier, W. Van Doninck, P. Van Mulders, I. Van Parijs Universite Libre de Bruxelles, Bruxelles, Belgium D. Beghin, H. Brun, B. Clerbaux, G. De Lentdecker, H. Delannoy, B. Dorney, G. Fasanella, L. Favart, R. Goldouzian, A. Grebenyuk, T. Lenzi, J. Luetic, T. Maerschalk, A. Marinov, T. Seva, E. Starling, C. Vander Velde, P. Vanlaer, D. Vannerom, R. Yonamine, F. Zenoni, F. Zhang2 Ghent University, Ghent, Belgium A. Cimmino, T. Cornelis, D. Dobur, A. Fagot, M. Gul, I. Khvastunov3, D. Poyraz, C. Roskas, S. Salva, M. Tytgat, W. Verbeke, N. Zaganidis Universite Catholique de Louvain, Louvain-la-Neuve, Belgium H. Bakhshiansohi, O. Bondu, S. Brochet, G. Bruno, C. Caputo, A. Caudron, P. David, S. De Visscher, C. Delaere, M. Delcourt, B. Francois, A. Giammanco, M. Komm, G. Krintiras, V. Lemaitre, A. Magitteri, A. Mertens, M. Musich, K. Piotrzkowski, L. Quertenmont, A. Saggio, M. Vidal Marono, S. Wertz, J. Zobec Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil W.L. Alda Junior, F.L. Alves, G.A. Alves, L. Brito, M. Correa Martins Junior, C. Hensel, A. Moraes, M.E. Pol, P. Rebello Teles Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil E. Belchior Batista Das Chagas, W. Carvalho, J. Chinellato4, E. Coelho, E.M. Da Costa, G.G. Da Silveira5, D. De Jesus Damiao, S. Fonseca De Souza, L.M. Huertas Guativa, H. Malbouisson, M. Melo De Almeida, C. Mora Herrera, L. Mundim, H. Nogima, L.J. Sanchez Rosas, A. Santoro, A. Sznajder, M. Thiel, E.J. Tonelli Manganote4, F. Torres Da Silva De Araujo, A. Vilela Pereira Universidade Estadual Paulista a, Universidade Federal do ABC b, S~ao Paulo, Brazil S. Ahujaa, C.A. Bernardesa, T.R. Fernandez Perez Tomeia, E.M. Gregoresb, P.G. Mercadanteb, S.F. Novaesa, Sandra S. Padulaa, D. Romero Abadb, J.C. Ruiz Vargasa Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, So a, Bulgaria A. Aleksandrov, R. Hadjiiska, P. Iaydjiev, M. Misheva, M. Rodozov, M. Shopova, G. SulUniversity of So a, So a, Bulgaria A. Dimitrov, L. Litov, B. Pavlov, P. Petkov Beihang University, Beijing, China W. Fang6, X. Gao6, L. Yuan Institute of High Energy Physics, Beijing, China M. Ahmad, J.G. Bian, G.M. Chen, H.S. Chen, M. Chen, Y. Chen, C.H. Jiang, D. Leggat, H. Liao, Z. Liu, F. Romeo, S.M. Shaheen, A. Spiezia, J. Tao, C. Wang, Z. Wang, E. Yazgan, H. Zhang, S. Zhang, J. Zhao Beijing, China State Key Laboratory of Nuclear Physics and Technology, Peking University, Y. Ban, G. Chen, Q. Li, S. Liu, Y. Mao, S.J. Qian, D. Wang, Z. Xu Universidad de Los Andes, Bogota, Colombia C. Avila, A. Cabrera, C.A. Carrillo Montoya, L.F. Chaparro Sierra, C. Florez, C.F. Gonzalez Hernandez, J.D. Ruiz Alvarez, M.A. Segura Delgado University of Split, Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, Split, Croatia B. Courbon, N. Godinovic, D. Lelas, I. Puljak, P.M. Ribeiro Cipriano, T. Sculac University of Split, Faculty of Science, Split, Croatia Z. Antunovic, M. Kovac Institute Rudjer Boskovic, Zagreb, Croatia V. Brigljevic, D. Ferencek, K. Kadija, B. Mesic, A. Starodumov7, T. Susa University of Cyprus, Nicosia, Cyprus M.W. Ather, A. Attikis, G. Mavromanolakis, J. Mousa, C. Nicolaou, F. Ptochos, P.A. Razis, H. Rykaczewski Charles University, Prague, Czech Republic M. Finger8, M. Finger Jr.8 Universidad San Francisco de Quito, Quito, Ecuador E. Carrera Jarrin Academy of Scienti c Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt A.A. Abdelalim9;10, Y. Mohammed11, E. Salama12;13 National Institute of Chemical Physics and Biophysics, Tallinn, Estonia R.K. Dewanjee, M. Kadastik, L. Perrini, M. Raidal, A. Tiko, C. Veelken Department of Physics, University of Helsinki, Helsinki, Finland P. Eerola, H. Kirschenmann, J. Pekkanen, M. Voutilainen Helsinki Institute of Physics, Helsinki, Finland J. Havukainen, J.K. Heikkila, T. Jarvinen, V. Karimaki, R. Kinnunen, T. Lampen, K. Lassila-Perini, S. Laurila, S. Lehti, T. Linden, P. Luukka, H. Siikonen, E. Tuominen, HJEP03(218)6 J. Tuominiemi T. Tuuva Lappeenranta University of Technology, Lappeenranta, Finland IRFU, CEA, Universite Paris-Saclay, Gif-sur-Yvette, France M. Besancon, F. Couderc, M. Dejardin, D. Denegri, J.L. Faure, F. Ferri, S. Ganjour, S. Ghosh, P. Gras, G. Hamel de Monchenault, P. Jarry, I. Kucher, C. Leloup, E. Locci, M. Machet, J. Malcles, G. Negro, J. Rander, A. Rosowsky, M.O . Sahin, M. Titov Laboratoire Leprince-Ringuet, Ecole polytechnique, CNRS/IN2P3, Universite Paris-Saclay, Palaiseau, France A. Abdulsalam, C. Amendola, I. Antropov, S. Ba oni, F. Beaudette, P. Busson, L. Cadamuro, C. Charlot, R. Granier de Cassagnac, M. Jo, S. Lisniak, A. Lobanov, J. Martin Blanco, M. Nguyen, C. Ochando, G. Ortona, P. Paganini, P. Pigard, R. Salerno, J.B. Sauvan, Y. Sirois, A.G. Stahl Leiton, T. Strebler, Y. Yilmaz, A. Zabi, A. Zghiche Universite de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France S. Gadrat J.-L. Agram14, J. Andrea, D. Bloch, J.-M. Brom, M. Buttignol, E.C. Chabert, N. Chanon, C. Collard, E. Conte14, X. Coubez, J.-C. Fontaine14, D. Gele, U. Goerlach, M. Jansova, A.-C. Le Bihan, N. Tonon, P. Van Hove Centre de Calcul de l'Institut National de Physique Nucleaire et de Physique des Particules, CNRS/IN2P3, Villeurbanne, France Universite de Lyon, Universite Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucleaire de Lyon, Villeurbanne, France S. Beauceron, C. Bernet, G. Boudoul, R. Chierici, D. Contardo, P. Depasse, H. El Mamouni, J. Fay, L. Finco, S. Gascon, M. Gouzevitch, G. Grenier, B. Ille, F. Lagarde, I.B. Laktineh, M. Lethuillier, L. Mirabito, A.L. Pequegnot, S. Perries, A. Popov15, V. Sordini, M. Vander Donckt, S. Viret A. Khvedelidze8 Georgian Technical University, Tbilisi, Georgia Tbilisi State University, Tbilisi, Georgia Z. Tsamalaidze8 RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany C. Autermann, L. Feld, M.K. Kiesel, K. Klein, M. Lipinski, M. Preuten, C. Schomakers, J. Schulz, V. Zhukov15 RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany A. Albert, E. Dietz-Laursonn, D. Duchardt, M. Endres, M. Erdmann, S. Erdweg, T. Esch, R. Fischer, A. Guth, M. Hamer, T. Hebbeker, C. Heidemann, K. Hoepfner, S. Knutzen, M. Merschmeyer, A. Meyer, P. Millet, S. Mukherjee, T. Pook, M. Radziej, H. Reithler, M. Rieger, F. Scheuch, D. Teyssier, S. Thuer RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany G. Flugge, B. Kargoll, T. Kress, A. Kunsken, T. Muller, A. Nehrkorn, A. Nowack, C. Pistone, O. Pooth, A. Stahl16 Deutsches Elektronen-Synchrotron, Hamburg, Germany M. Aldaya Martin, T. Arndt, C. Asawatangtrakuldee, K. Beernaert, O. Behnke, U. Behrens, A. Bermudez Mart nez, A.A. Bin Anuar, K. Borras17, V. Botta, A. Campbell, P. Connor, C. Contreras-Campana, F. Costanza, C. Diez Pardos, G. Eckerlin, D. Eckstein, T. Eichhorn, E. Eren, E. Gallo18, J. Garay Garcia, A. Geiser, J.M. Grados Luyando, A. Grohsjean, P. Gunnellini, M. Gutho , A. Harb, J. Hauk, M. Hempel19, H. Jung, M. Kasemann, J. Keaveney, C. Kleinwort, I. Korol, D. Krucker, W. Lange, A. Lelek, T. Lenz, J. Leonard, K. Lipka, W. Lohmann19, R. Mankel, I.-A. Melzer-Pellmann, A.B. Meyer, G. Mittag, J. Mnich, A. Mussgiller, E. Ntomari, D. Pitzl, A. Raspereza, M. Savitskyi, P. Saxena, R. Shevchenko, S. Spannagel, N. Stefaniuk, G.P. Van Onsem, R. Walsh, Y. Wen, K. Wichmann, C. Wissing, O. Zenaiev University of Hamburg, Hamburg, Germany R. Aggleton, S. Bein, V. Blobel, M. Centis Vignali, T. Dreyer, E. Garutti, D. Gonzalez, J. Haller, A. Hinzmann, M. Ho mann, A. Karavdina, R. Klanner, R. Kogler, N. Kovalchuk, S. Kurz, T. Lapsien, D. Marconi, M. Meyer, M. Niedziela, D. Nowatschin, F. Pantaleo16, T. Pei er, A. Perieanu, C. Scharf, P. Schleper, A. Schmidt, S. Schumann, J. Schwandt, J. Sonneveld, H. Stadie, G. Steinbruck, F.M. Stober, M. Stover, H. Tholen, D. Troendle, E. Usai, A. Vanhoefer, B. Vormwald Institut fur Experimentelle Kernphysik, Karlsruhe, Germany M. Akbiyik, C. Barth, M. Baselga, S. Baur, E. Butz, R. Caspart, T. Chwalek, F. Colombo, W. De Boer, A. Dierlamm, N. Faltermann, B. Freund, R. Friese, M. Gi els, M.A. Harrendorf, F. Hartmann16, S.M. Heindl, U. Husemann, F. Kassel16, S. Kudella, H. Mildner, M.U. Mozer, Th. Muller, M. Plagge, G. Quast, K. Rabbertz, M. Schroder, I. Shvetsov, G. Sieber, H.J. Simonis, R. Ulrich, S. Wayand, M. Weber, T. Weiler, S. Williamson, C. Wohrmann, R. Wolf Institute of Nuclear and Particle Physics (INPP), NCSR Demokritos, Aghia Paraskevi, Greece G. Anagnostou, G. Daskalakis, T. Geralis, A. Kyriakis, D. Loukas, I. Topsis-Giotis National and Kapodistrian University of Athens, Athens, Greece G. Karathanasis, S. Kesisoglou, A. Panagiotou, N. Saoulidou National Technical University of Athens, Athens, Greece K. Kousouris University of Ioannina, Ioannina, Greece I. Evangelou, C. Foudas, P. Kokkas, S. Mallios, N. Manthos, I. Papadopoulos, E. Paradas, J. Strologas, F.A. Triantis MTA-ELTE Lendulet CMS Particle and Nuclear Physics Group, Eotvos Lorand University, Budapest, Hungary M. Csanad, N. Filipovic, G. Pasztor, O. Suranyi, G.I. Veres20 Wigner Research Centre for Physics, Budapest, Hungary G. Bencze, C. Hajdu, D. Horvath21, A. Hunyadi, F. Sikler, V. Veszpremi Institute of Nuclear Research ATOMKI, Debrecen, Hungary N. Beni, S. Czellar, J. Karancsi22, A. Makovec, J. Molnar, Z. Szillasi Institute of Physics, University of Debrecen, Debrecen, Hungary M. Bartok20, P. Raics, Z.L. Trocsanyi, B. Ujvari Indian Institute of Science (IISc), Bangalore, India S. Choudhury, J.R. Komaragiri National Institute of Science Education and Research, Bhubaneswar, India S. Bahinipati23, S. Bhowmik, P. Mal, K. Mandal, A. Nayak24, D.K. Sahoo23, N. Sahoo, S.K. Swain Panjab University, Chandigarh, India S. Bansal, S.B. Beri, V. Bhatnagar, R. Chawla, N. Dhingra, A.K. Kalsi, A. Kaur, M. Kaur, S. Kaur, R. Kumar, P. Kumari, A. Mehta, J.B. Singh, G. Walia University of Delhi, Delhi, India Ashok Kumar, Aashaq Shah, A. Bhardwaj, S. Chauhan, B.C. Choudhary, R.B. Garg, S. Keshri, A. Kumar, S. Malhotra, M. Naimuddin, K. Ranjan, R. Sharma Saha Institute of Nuclear Physics, HBNI, Kolkata, India R. Bhardwaj, R. Bhattacharya, S. Bhattacharya, U. Bhawandeep, S. Dey, S. Dutt, S. Dutta, S. Ghosh, N. Majumdar, A. Modak, K. Mondal, S. Mukhopadhyay, S. Nandan, A. Purohit, A. Roy, S. Roy Chowdhury, S. Sarkar, M. Sharan, S. Thakur Indian Institute of Technology Madras, Madras, India P.K. Behera Bhabha Atomic Research Centre, Mumbai, India R. Chudasama, D. Dutta, V. Jha, V. Kumar, A.K. Mohanty16, P.K. Netrakanti, L.M. Pant, P. Shukla, A. Topkar Tata Institute of Fundamental Research-A, Mumbai, India T. Aziz, S. Dugad, B. Mahakud, S. Mitra, G.B. Mohanty, N. Sur, B. Sutar Tata Institute of Fundamental Research-B, Mumbai, India S. Banerjee, S. Bhattacharya, S. Chatterjee, P. Das, M. Guchait, Sa. Jain, S. Kumar, M. Maity25, G. Majumder, K. Mazumdar, T. Sarkar25, N. Wickramage26 HJEP03(218)6 Indian Institute of Science Education and Research (IISER), Pune, India S. Chauhan, S. Dube, V. Hegde, A. Kapoor, K. Kothekar, S. Pandey, A. Rane, S. Sharma Institute for Research in Fundamental Sciences (IPM), Tehran, Iran S. Chenarani27, E. Eskandari Tadavani, S.M. Etesami27, M. Khakzad, M. Mohammadi Najafabadi, M. Naseri, S. Paktinat Mehdiabadi28, F. Rezaei Hosseinabadi, B. Safarzadeh29, M. Zeinali University College Dublin, Dublin, Ireland M. Felcini, M. Grunewald INFN Sezione di Bari a, Universita di Bari b, Politecnico di Bari c, Bari, Italy M. Abbresciaa;b, C. Calabriaa;b, A. Colaleoa, D. Creanzaa;c, L. Cristellaa;b, N. De Filippisa;c, M. De Palmaa;b, F. Erricoa;b, L. Fiorea, G. Iasellia;c, S. Lezkia;b, G. Maggia;c, M. Maggia, G. Minielloa;b, S. Mya;b, S. Nuzzoa;b, A. Pompilia;b, G. Pugliesea;c, R. Radognaa, A. Ranieria, G. Selvaggia;b, A. Sharmaa, L. Silvestrisa;16, R. Vendittia, P. Verwilligena INFN Sezione di Bologna a, Universita di Bologna b, Bologna, Italy G. Abbiendia, C. Battilanaa;b, D. Bonacorsia;b, L. Borgonovia;b, S. Braibant-Giacomellia;b, R. Campaninia;b, P. Capiluppia;b, A. Castroa;b, F.R. Cavalloa, S.S. Chhibraa, G. Codispotia;b, M. Cu ania;b, G.M. Dallavallea, F. Fabbria, A. Fanfania;b, D. Fasanellaa;b, P. Giacomellia, C. Grandia, L. Guiduccia;b, S. Marcellinia, G. Masettia, A. Montanaria, F.L. Navarriaa;b, A. Perrottaa, A.M. Rossia;b, T. Rovellia;b, G.P. Sirolia;b, N. Tosia INFN Sezione di Catania a, Universita di Catania b, Catania, Italy S. Albergoa;b, S. Costaa;b, A. Di Mattiaa, F. Giordanoa;b, R. Potenzaa;b, A. Tricomia;b, C. Tuvea;b L. Viliania;b;16 INFN Sezione di Firenze a, Universita di Firenze b, Firenze, Italy G. Barbaglia, K. Chatterjeea;b, V. Ciullia;b, C. Civininia, R. D'Alessandroa;b, E. Focardia;b, P. Lenzia;b, M. Meschinia, S. Paolettia, L. Russoa;30, G. Sguazzonia, D. Stroma, INFN Laboratori Nazionali di Frascati, Frascati, Italy L. Benussi, S. Bianco, F. Fabbri, D. Piccolo, F. Primavera16 INFN Sezione di Genova a, Universita di Genova b, Genova, Italy V. Calvellia;b, F. Ferroa, E. Robuttia, S. Tosia;b INFN Sezione di Milano-Bicocca a, Universita di Milano-Bicocca b, Milano, Italy A. Benagliaa, A. Beschib, L. Brianzaa;b, F. Brivioa;b, V. Cirioloa;b;16, M.E. Dinardoa;b, S. Fiorendia;b, S. Gennaia, A. Ghezzia;b, P. Govonia;b, M. Malbertia;b, S. Malvezzia, R.A. Manzonia;b, D. Menascea, L. Moronia, M. Paganonia;b, K. Pauwelsa;b, D. Pedrinia, S. Pigazzinia;b;31, S. Ragazzia;b, T. Tabarelli de Fatisa;b INFN Sezione di Napoli a, Universita di Napoli 'Federico II' b, Napoli, Italy, Universita della Basilicata c, Potenza, Italy, Universita G. Marconi d, Roma, F. Thyssena INFN Sezione di Padova a, Universita di Padova b, Padova, Italy, Universita di Trento c, Trento, Italy P. Azzia, N. Bacchettaa, L. Benatoa;b, D. Biselloa;b, A. Bolettia;b, R. Carlina;b, A. Carvalho Antunes De Oliveiraa;b, P. Checchiaa, P. De Castro Manzanoa, T. Dorigoa, U. Dossellia, F. Gasparinia;b, U. Gasparinia;b, A. Gozzelinoa, S. Lacapraraa, M. Margonia;b, A.T. Meneguzzoa;b, N. Pozzobona;b, P. Ronchesea;b, R. Rossina;b, F. Simonettoa;b, E. Torassaa, M. Zanettia;b, P. Zottoa;b, G. Zumerlea;b INFN Sezione di Pavia a, Universita di Pavia b, Pavia, Italy A. Braghieria, A. Magnania, P. Montagnaa;b, S.P. Rattia;b, V. Rea, M. Ressegottia;b, C. Riccardia;b, P. Salvinia, I. Vaia;b, P. Vituloa;b INFN Sezione di Perugia a, Universita di Perugia b, Perugia, Italy L. Alunni Solestizia;b, M. Biasinia;b, G.M. Bileia, C. Cecchia;b, D. Ciangottinia;b, L. Fanoa;b, P. Laricciaa;b, R. Leonardia;b, E. Manonia, G. Mantovania;b, V. Mariania;b, M. Menichellia, A. Rossia;b, A. Santocchiaa;b, D. Spigaa INFN Sezione di Pisa a, Universita di Pisa b, Scuola Normale Superiore di Pisa c, Pisa, Italy K. Androsova, P. Azzurria;16, G. Bagliesia, T. Boccalia, L. Borrello, R. Castaldia, M.A. Cioccia;b, R. Dell'Orsoa, G. Fedia, L. Gianninia;c, A. Giassia, M.T. Grippoa;30, F. Ligabuea;c, T. Lomtadzea, E. Mancaa;c, G. Mandorlia;c, A. Messineoa;b, F. Pallaa, A. Rizzia;b, A. Savoy-Navarroa;32, P. Spagnoloa, R. Tenchinia, G. Tonellia;b, A. Venturia, P.G. Verdinia INFN Sezione di Roma a, Sapienza Universita di Roma b, Rome, Italy L. Baronea;b, F. Cavallaria, M. Cipriania;b, N. Dacia, Del Rea;b, E. Di Marcoa;b, M. Diemoza, S. Gellia;b, E. Longoa;b, F. Margarolia;b, B. Marzocchia;b, P. Meridiania, G. Organtinia;b, R. Paramattia;b, F. Preiatoa;b, S. Rahatloua;b, C. Rovellia, F. Santanastasioa;b INFN Sezione di Torino a, Universita di Torino b, Torino, Italy, Universita del Piemonte Orientale c, Novara, Italy N. Amapanea;b, R. Arcidiaconoa;c, S. Argiroa;b, M. Arneodoa;c, N. Bartosika, R. Bellana;b, C. Biinoa, N. Cartigliaa, F. Cennaa;b, M. Costaa;b, R. Covarellia;b, A. Deganoa;b, N. Demariaa, B. Kiania;b, C. Mariottia, S. Masellia, E. Migliorea;b, V. Monacoa;b, E. Monteila;b, M. Montenoa, M.M. Obertinoa;b, L. Pachera;b, N. Pastronea, M. Pelliccionia, G.L. Pinna Angionia;b, F. Raveraa;b, A. Romeroa;b, M. Ruspaa;c, R. Sacchia;b, K. Shchelinaa;b, V. Solaa, A. Solanoa;b, A. Staianoa, P. Traczyka;b INFN Sezione di Trieste a, Universita di Trieste b, Trieste, Italy S. Belfortea, M. Casarsaa, F. Cossuttia, G. Della Riccaa;b, A. Zanettia Kyungpook National University, Daegu, Korea D.H. Kim, G.N. Kim, M.S. Kim, J. Lee, S. Lee, S.W. Lee, C.S. Moon, Y.D. Oh, S. Sekmen, D.C. Son, Y.C. Yang Chonbuk National University, Jeonju, Korea A. Lee Chonnam National University, Institute for Universe and Elementary Particles, H. Kim, D.H. Moon, G. Oh Hanyang University, Seoul, Korea J.A. Brochero Cifuentes, J. Goh, T.J. Kim Korea University, Seoul, Korea J. Lim, S.K. Park, Y. Roh Seoul National University, Seoul, Korea S.h. Seo, U.K. Yang, H.D. Yoo, G.B. Yu University of Seoul, Seoul, Korea H. Kim, J.H. Kim, J.S.H. Lee, I.C. Park Sungkyunkwan University, Suwon, Korea Y. Choi, C. Hwang, J. Lee, I. Yu Vilnius University, Vilnius, Lithuania V. Dudenas, A. Juodagalvis, J. Vaitkus S. Cho, S. Choi, Y. Go, D. Gyun, S. Ha, B. Hong, Y. Jo, Y. Kim, K. Lee, K.S. Lee, S. Lee, J. Almond, J. Kim, J.S. Kim, H. Lee, K. Lee, K. Nam, S.B. Oh, B.C. Radburn-Smith, National Centre for Particle Physics, Universiti Malaya, Kuala Lumpur, Malaysia M.N. Yusli, Z. Zolkapli I. Ahmed, Z.A. Ibrahim, M.A.B. Md Ali33, F. Mohamad Idris34, W.A.T. Wan Abdullah, Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico Reyes-Almanza, R, Ramirez-Sanchez, G., Duran-Osuna, M. C., H. Castilla-Valdez, E. De La Cruz-Burelo, I. Heredia-De La Cruz35, Rabadan-Trejo, R. I., R. Lopez-Fernandez, J. Mejia Guisao, A. Sanchez-Hernandez Universidad Iberoamericana, Mexico City, Mexico S. Carrillo Moreno, C. Oropeza Barrera, F. Vazquez Valencia Benemerita Universidad Autonoma de Puebla, Puebla, Mexico J. Eysermans, I. Pedraza, H.A. Salazar Ibarguen, C. Uribe Estrada Universidad Autonoma de San Luis Potos , San Luis Potos , Mexico A. Morelos Pineda University of Auckland, Auckland, New Zealand University of Canterbury, Christchurch, New Zealand National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan A. Ahmad, M. Ahmad, Q. Hassan, H.R. Hoorani, A. Saddique, M.A. Shah, M. Shoaib, National Centre for Nuclear Research, Swierk, Poland H. Bialkowska, M. Bluj, B. Boimska, T. Frueboes, M. Gorski, M. Kazana, K. Nawrocki, M. Szleper, P. Zalewski Warsaw, Poland Institute of Experimental Physics, Faculty of Physics, University of Warsaw, K. Bunkowski, A. Byszuk36, K. Doroba, A. Kalinowski, M. Konecki, J. Krolikowski, M. Misiura, M. Olszewski, A. Pyskir, M. Walczak Laboratorio de Instrumentac~ao e F sica Experimental de Part culas, Lisboa, Portugal P. Bargassa, C. Beir~ao Da Cruz E Silva, A. Di Francesco, P. Faccioli, B. Galinhas, M. Gallinaro, J. Hollar, N. Leonardo, L. Lloret Iglesias, M.V. Nemallapudi, J. Seixas, G. Strong, O. Toldaiev, D. Vadruccio, J. Varela Joint Institute for Nuclear Research, Dubna, Russia S. Afanasiev, V. Alexakhin, P. Bunin, M. Gavrilenko, A. Golunov, I. Golutvin, N. Gorbounov, V. Karjavin, A. Lanev, A. Malakhov, V. Matveev37;38, V. Palichik, V. Perelygin, M. Savina, S. Shmatov, N. Skatchkov, V. Smirnov, A. Zarubin Petersburg Nuclear Physics Institute, Gatchina (St. Petersburg), Russia Y. Ivanov, V. Kim39, E. Kuznetsova40, P. Levchenko, V. Murzin, V. Oreshkin, I. Smirnov, V. Sulimov, L. Uvarov, S. Vavilov, A. Vorobyev Institute for Nuclear Research, Moscow, Russia Yu. Andreev, A. Dermenev, S. Gninenko, N. Golubev, A. Karneyeu, M. Kirsanov, N. Krasnikov, A. Pashenkov, D. Tlisov, A. Toropin Institute for Theoretical and Experimental Physics, Moscow, Russia V. Epshteyn, V. Gavrilov, N. Lychkovskaya, V. Popov, I. Pozdnyakov, G. Safronov, A. Spiridonov, A. Stepennov, M. Toms, E. Vlasov, A. Zhokin Moscow Institute of Physics and Technology, Moscow, Russia T. Aushev, A. Bylinkin38 National Research Nuclear University 'Moscow Engineering Physics Institute' (MEPhI), Moscow, Russia R. Chistov41, M. Danilov41, P. Parygin, D. Philippov, S. Polikarpov, E. Tarkovskii P.N. Lebedev Physical Institute, Moscow, Russia V. Andreev, M. Azarkin38, I. Dremin38, M. Kirakosyan38, A. Terkulov Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia A. Snigirev A. Baskakov, A. Belyaev, E. Boos, M. Dubinin42, L. Dudko, A. Ershov, A. Gribushin, V. Klyukhin, O. Kodolova, I. Lokhtin, I. Miagkov, S. Obraztsov, S. Petrushanko, V. Savrin, Novosibirsk State University (NSU), Novosibirsk, Russia V. Blinov43, D. Shtol43, Y. Skovpen43 State Research Center of Russian Federation, Institute for High Energy Physics of NRC &quot;Kurchatov Institute&quot;, Protvino, Russia I. Azhgirey, I. Bayshev, S. Bitioukov, D. Elumakhov, V. Kachanov, A. Kalinin, D. Konstantinov, P. Mandrik, V. Petrov, R. Ryutin, A. Sobol, S. Troshin, N. Tyurin, A. Uzunian, A. Volkov University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia P. Adzic44, P. Cirkovic, D. Devetak, M. Dordevic, J. Milosevic, V. Rekovic Centro de Investigaciones Energeticas Medioambientales y Tecnologicas (CIEMAT), Madrid, Spain J. Alcaraz Maestre, M. Barrio Luna, M. Cerrada, N. Colino, B. De La Cruz, A. Delgado Peris, A. Escalante Del Valle, C. Fernandez Bedoya, J.P. Fernandez Ramos, J. Flix, M.C. Fouz, O. Gonzalez Lopez, S. Goy Lopez, J.M. Hernandez, M.I. Josa, D. Moran, A. Perez-Calero Yzquierdo, J. Puerta Pelayo, A. Quintario Olmeda, I. Redondo, L. Romero, M.S. Soares, A. Alvarez Fernandez Universidad Autonoma de Madrid, Madrid, Spain C. Albajar, J.F. de Troconiz, M. Missiroli J. Cuevas, C. Erice, J. Fernandez Menendez, I. Gonzalez Caballero, J.R. Gonzalez Fernandez, E. Palencia Cortezon, S. Sanchez Cruz, P. Vischia, J.M. Vizan Garcia Instituto de F sica de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain I.J. Cabrillo, A. Calderon, B. Chazin Quero, E. Curras, J. Duarte Campderros, M. Fernandez, J. Garcia-Ferrero, G. Gomez, A. Lopez Virto, J. Marco, C. Martinez Rivero, P. Martinez Ruiz del Arbol, F. Matorras, J. Piedra Gomez, T. Rodrigo, A. Ruiz-Jimeno, L. Scodellaro, N. Trevisani, I. Vila, R. Vilar Cortabitarte CERN, European Organization for Nuclear Research, Geneva, Switzerland D. Abbaneo, B. Akgun, E. Au ray, P. Baillon, A.H. Ball, D. Barney, J. Bendavid, M. Bianco, P. Bloch, A. Bocci, C. Botta, T. Camporesi, R. Castello, M. Cepeda, G. Cerminara, E. Chapon, Y. Chen, D. d'Enterria, A. Dabrowski, V. Daponte, A. David, M. De Gruttola, A. De Roeck, N. Deelen, M. Dobson, T. du Pree, M. Dunser, N. Dupont, A. Elliott-Peisert, P. Everaerts, F. Fallavollita, G. Franzoni, J. Fulcher, W. Funk, D. Gigi, A. Gilbert, K. Gill, F. Glege, D. Gulhan, P. Harris, J. Hegeman, V. Innocente, A. Jafari, P. Janot, O. Karacheban19, J. Kieseler, V. Knunz, A. Kornmayer, M.J. Kortelainen, M. Krammer1, C. Lange, P. Lecoq, C. Lourenco, M.T. Lucchini, L. Malgeri, M. Mannelli, A. Martelli, F. Meijers, J.A. Merlin, S. Mersi, E. Meschi, P. Milenovic45, F. Moortgat, M. Mulders, H. Neugebauer, J. Ngadiuba, S. Orfanelli, L. Orsini, L. Pape, E. Perez, M. Peruzzi, A. Petrilli, G. Petrucciani, A. Pfei er, M. Pierini, D. Rabady, A. Racz, T. Reis, G. Rolandi46, M. Rovere, H. Sakulin, C. Schafer, C. Schwick, M. Seidel, M. Selvaggi, A. Sharma, P. Silva, P. Sphicas47, A. Stakia, J. Steggemann, M. Stoye, M. Tosi, D. Treille, A. Triossi, A. Tsirou, V. Veckalns48, M. Verweij, W.D. Zeuner Paul Scherrer Institut, Villigen, Switzerland W. Bertly, L. Caminada49, K. Deiters, W. Erdmann, R. Horisberger, Q. Ingram, H.C. Kaestli, D. Kotlinski, U. Langenegger, T. Rohe, S.A. Wiederkehr ETH Zurich - Institute for Particle Physics and Astrophysics (IPA), Zurich, Switzerland M. Backhaus, L. Bani, P. Berger, L. Bianchini, B. Casal, G. Dissertori, M. Dittmar, M. Donega, C. Dorfer, C. Grab, C. Heidegger, D. Hits, J. Hoss, G. Kasieczka, T. Klijnsma, W. Lustermann, B. Mangano, M. Marionneau, M.T. Meinhard, D. Meister, F. Micheli, P. Musella, F. Nessi-Tedaldi, F. Pandol , J. Pata, F. Pauss, G. Perrin, L. Perrozzi, M. Quittnat, M. Reichmann, D.A. Sanz Becerra, M. Schonenberger, L. Shchutska, V.R. Tavolaro, K. Theo latos, M.L. Vesterbacka Olsson, R. Wallny, D.H. Zhu Universitat Zurich, Zurich, Switzerland T.K. Aarrestad, C. Amsler50, M.F. Canelli, A. De Cosa, R. Del Burgo, S. Donato, C. Galloni, T. Hreus, B. Kilminster, D. Pinna, G. Rauco, P. Robmann, D. Salerno, K. Schweiger, C. Seitz, Y. Takahashi, A. Zucchetta National Central University, Chung-Li, Taiwan V. Candelise, T.H. Doan, Sh. Jain, R. Khurana, C.M. Kuo, W. Lin, A. Pozdnyakov, S.S. Yu National Taiwan University (NTU), Taipei, Taiwan Arun Kumar, P. Chang, Y. Chao, K.F. Chen, P.H. Chen, F. Fiori, W.-S. Hou, Y. Hsiung, Y.F. Liu, R.-S. Lu, E. Paganis, A. Psallidas, A. Steen, J.f. Tsai Chulalongkorn University, Faculty of Science, Department of Physics, Bangkok, Thailand Turkey B. Asavapibhop, K. Kovitanggoon, G. Singh, N. Srimanobhas Cukurova University, Physics Department, Science and Art Faculty, Adana, HJEP03(218)6 M.N. Bakirci51, A. Bat, F. Boran, S. Damarseckin, Z.S. Demiroglu, C. Dozen, E. Eskut, S. Girgis, G. Gokbulut, Y. Guler, I. Hos52, E.E. Kangal53, O. Kara, U. Kiminsu, M. Oglakci, G. Onengut54, K. Ozdemir55, S. Ozturk51, A. Polatoz, D. Sunar Cerci56, U.G. Tok, S. Turkcapar, I.S. Zorbakir, C. Zorbilmez Middle East Technical University, Physics Department, Ankara, Turkey B. Bilin, G. Karapinar57, K. Ocalan58, M. Yalvac, M. Zeyrek Bogazici University, Istanbul, Turkey E. Gulmez, M. Kaya59, O. Kaya60, S. Tekten, E.A. Yetkin61 Istanbul Technical University, Istanbul, Turkey M.N. Agaras, S. Atay, A. Cakir, K. Cankocak, I. Koseoglu Institute for Scintillation Materials of National Academy of Science of Ukraine, Kharkov, Ukraine B. Grynyov Kharkov, Ukraine L. Levchuk National Scienti c Center, Kharkov Institute of Physics and Technology, University of Bristol, Bristol, U.K. F. Ball, L. Beck, J.J. Brooke, D. Burns, E. Clement, D. Cussans, O. Davignon, H. Flacher, J. Goldstein, G.P. Heath, H.F. Heath, L. Kreczko, D.M. Newbold62, S. Paramesvaran, T. Sakuma, S. Seif El Nasr-storey, D. Smith, V.J. Smith Rutherford Appleton Laboratory, Didcot, U.K. K.W. Bell, A. Belyaev63, C. Brew, R.M. Brown, L. Calligaris, D. Cieri, D.J.A. Cockerill, J.A. Coughlan, K. Harder, S. Harper, J. Linacre, E. Olaiya, D. Petyt, C.H. ShepherdThemistocleous, A. Thea, I.R. Tomalin, T. Williams Imperial College, London, U.K. G. Auzinger, R. Bainbridge, J. Borg, S. Breeze, O. Buchmuller, A. Bundock, S. Casasso, M. Citron, D. Colling, L. Corpe, P. Dauncey, G. Davies, A. De Wit, M. Della Negra, R. Di Maria, A. Elwood, Y. Haddad, G. Hall, G. Iles, T. James, R. Lane, C. Laner, L. Lyons, A.-M. Magnan, S. Malik, L. Mastrolorenzo, T. Matsushita, J. Nash, A. Nikitenko7, V. Palladino, M. Pesaresi, D.M. Raymond, A. Richards, A. Rose, E. Scott, C. Seez, A. Shtipliyski, S. Summers, A. Tapper, K. Uchida, M. Vazquez Acosta64, T. Virdee16, N. Wardle, D. Winterbottom, J. Wright, S.C. Zenz Brunel University, Uxbridge, U.K. J.E. Cole, P.R. Hobson, A. Khan, P. Kyberd, I.D. Reid, L. Teodorescu, M. Turner, S. Zahid Baylor University, Waco, U.S.A. A. Borzou, K. Call, J. Dittmann, K. Hatakeyama, H. Liu, N. Pastika, C. Smith Catholic University of America, Washington DC, U.S.A. R. Bartek, A. Dominguez The University of Alabama, Tuscaloosa, U.S.A. A. Buccilli, S.I. Cooper, C. Henderson, P. Rumerio, C. West Boston University, Boston, U.S.A. D. Arcaro, A. Avetisyan, T. Bose, D. Gastler, D. Rankin, C. Richardson, J. Rohlf, L. Sulak, D. Zou Brown University, Providence, U.S.A. G. Benelli, D. Cutts, A. Garabedian, M. Hadley, J. Hakala, U. Heintz, J.M. Hogan, K.H.M. Kwok, E. Laird, G. Landsberg, J. Lee, Z. Mao, M. Narain, J. Pazzini, S. Piperov, S. Sagir, R. Syarif, D. Yu University of California, Davis, Davis, U.S.A. R. Band, C. Brainerd, R. Breedon, D. Burns, M. Calderon De La Barca Sanchez, M. Chertok, J. Conway, R. Conway, P.T. Cox, R. Erbacher, C. Flores, G. Funk, W. Ko, R. Lander, C. Mclean, M. Mulhearn, D. Pellett, J. Pilot, S. Shalhout, M. Shi, J. Smith, D. Stolp, K. Tos, M. Tripathi, Z. Wang University of California, Los Angeles, U.S.A. M. Bachtis, C. Bravo, R. Cousins, A. Dasgupta, A. Florent, J. Hauser, M. Ignatenko, N. Mccoll, S. Regnard, D. Saltzberg, C. Schnaible, V. Valuev University of California, Riverside, Riverside, U.S.A. E. Bouvier, K. Burt, R. Clare, J. Ellison, J.W. Gary, S.M.A. Ghiasi Shirazi, G. Hanson, J. Heilman, G. Karapostoli, E. Kennedy, F. Lacroix, O.R. Long, M. Olmedo Negrete, M.I. Paneva, W. Si, L. Wang, H. Wei, S. Wimpenny, B. R. Yates University of California, San Diego, La Jolla, U.S.A. J.G. Branson, S. Cittolin, M. Derdzinski, R. Gerosa, D. Gilbert, B. Hashemi, A. Holzner, D. Klein, G. Kole, V. Krutelyov, J. Letts, I. Macneill, M. Masciovecchio, D. Olivito, S. Padhi, M. Pieri, M. Sani, V. Sharma, S. Simon, M. Tadel, A. Vartak, S. Wasserbaech65, J. Wood, F. Wurthwein, A. Yagil, G. Zevi Della Porta University of California, Santa Barbara - Department of Physics, Santa Barbara, U.S.A. N. Amin, R. Bhandari, J. Bradmiller-Feld, C. Campagnari, A. Dishaw, V. Dutta, M. Franco Sevilla, F. Golf, L. Gouskos, R. Heller, J. Incandela, A. Ovcharova, H. Qu, J. Richman, D. Stuart, I. Suarez, J. Yoo California Institute of Technology, Pasadena, U.S.A. D. Anderson, A. Bornheim, J.M. Lawhorn, H.B. Newman, T. Nguyen, C. Pena, M. Spiropulu, J.R. Vlimant, S. Xie, Z. Zhang, R.Y. Zhu Carnegie Mellon University, Pittsburgh, U.S.A. I. Vorobiev, M. Weinberg University of Colorado Boulder, Boulder, U.S.A. M.B. Andrews, T. Ferguson, T. Mudholkar, M. Paulini, J. Russ, M. Sun, H. Vogel, J.P. Cumalat, W.T. Ford, F. Jensen, A. Johnson, M. Krohn, S. Leontsinis, T. Mulholland, K. Stenson, S.R. Wagner Cornell University, Ithaca, U.S.A. J. Alexander, J. Chaves, J. Chu, S. Dittmer, K. Mcdermott, N. Mirman, J.R. Patterson, D. Quach, A. Rinkevicius, A. Ryd, L. Skinnari, L. So , S.M. Tan, Z. Tao, J. Thom, J. Tucker, P. Wittich, M. Zientek Fermi National Accelerator Laboratory, Batavia, U.S.A. S. Abdullin, M. Albrow, M. Alyari, G. Apollinari, A. Apresyan, A. Apyan, S. Banerjee, L.A.T. Bauerdick, A. Beretvas, J. Berryhill, P.C. Bhat, G. Bollay, K. Burkett, J.N. Butler, A. Canepa, G.B. Cerati, H.W.K. Cheung, F. Chlebana, M. Cremonesi, J. Duarte, V.D. Elvira, J. Freeman, Z. Gecse, E. Gottschalk, L. Gray, D. Green, S. Grunendahl, O. Gutsche, R.M. Harris, S. Hasegawa, J. Hirschauer, Z. Hu, B. Jayatilaka, S. Jindariani, M. Johnson, U. Joshi, B. Klima, B. Kreis, S. Lammel, D. Lincoln, R. Lipton, M. Liu, T. Liu, R. Lopes De Sa, J. Lykken, K. Maeshima, N. Magini, J.M. Marra no, D. Mason, P. McBride, P. Merkel, S. Mrenna, S. Nahn, V. O'Dell, K. Pedro, O. Prokofyev, G. Rakness, L. Ristori, B. Schneider, E. Sexton-Kennedy, A. Soha, W.J. Spalding, L. Spiegel, S. Stoynev, J. Strait, N. Strobbe, L. Taylor, S. Tkaczyk, N.V. Tran, L. Uplegger, E.W. Vaandering, C. Vernieri, M. Verzocchi, R. Vidal, M. Wang, H.A. Weber, A. Whitbeck University of Florida, Gainesville, U.S.A. D. Acosta, P. Avery, P. Bortignon, D. Bourilkov, A. Brinkerho , A. Carnes, M. Carver, D. Curry, R.D. Field, I.K. Furic, S.V. Gleyzer, B.M. Joshi, J. Konigsberg, A. Korytov, K. Kotov, P. Ma, K. Matchev, H. Mei, G. Mitselmakher, D. Rank, K. Shi, D. Sperka, N. Terentyev, L. Thomas, J. Wang, S. Wang, J. Yelton Florida International University, Miami, U.S.A. Y.R. Joshi, S. Linn, P. Markowitz, J.L. Rodriguez Florida State University, Tallahassee, U.S.A. A. Ackert, T. Adams, A. Askew, S. Hagopian, V. Hagopian, K.F. Johnson, T. Kolberg, G. Martinez, T. Perry, H. Prosper, A. Saha, A. Santra, V. Sharma, R. Yohay M.M. Baarmand, V. Bhopatkar, S. Colafranceschi, M. Hohlmann, D. Noonan, T. Roy, F. Yumiceva University of Illinois at Chicago (UIC), Chicago, U.S.A. M.R. Adams, L. Apanasevich, D. Berry, R.R. Betts, R. Cavanaugh, X. Chen, O. Evdokimov, C.E. Gerber, D.A. Hangal, D.J. Hofman, K. Jung, J. Kamin, I.D. Sandoval Gonzalez, M.B. Tonjes, H. Trauger, N. Varelas, H. Wang, Z. Wu, J. Zhang The University of Iowa, Iowa City, U.S.A. B. Bilki66, W. Clarida, K. Dilsiz67, S. Durgut, R.P. Gandrajula, M. Haytmyradov, V. Khristenko, J.-P. Merlo, H. Mermerkaya68, A. Mestvirishvili, A. Moeller, J. Nachtman, H. Ogul69, Y. Onel, F. Ozok70, A. Penzo, C. Snyder, E. Tiras, J. Wetzel, K. Yi Johns Hopkins University, Baltimore, U.S.A. B. Blumenfeld, A. Cocoros, N. Eminizer, D. Fehling, L. Feng, A.V. Gritsan, P. Maksimovic, J. Roskes, U. Sarica, M. Swartz, M. Xiao, C. You The University of Kansas, Lawrence, U.S.A. A. Al-bataineh, P. Baringer, A. Bean, S. Boren, J. Bowen, J. Castle, S. Khalil, A. Kropivnitskaya, D. Majumder, W. Mcbrayer, M. Murray, C. Royon, S. Sanders, E. Schmitz, J.D. Tapia Takaki, Q. Wang Kansas State University, Manhattan, U.S.A. A. Ivanov, K. Kaadze, Y. Maravin, A. Mohammadi, L.K. Saini, N. Skhirtladze, S. Toda Lawrence Livermore National Laboratory, Livermore, U.S.A. F. Rebassoo, D. Wright University of Maryland, College Park, U.S.A. C. Anelli, A. Baden, O. Baron, A. Belloni, S.C. Eno, Y. Feng, C. Ferraioli, N.J. Hadley, S. Jabeen, G.Y. Jeng, R.G. Kellogg, J. Kunkle, A.C. Mignerey, F. Ricci-Tam, Y.H. Shin, A. Skuja, S.C. Tonwar Massachusetts Institute of Technology, Cambridge, U.S.A. D. Abercrombie, B. Allen, V. Azzolini, R. Barbieri, A. Baty, R. Bi, S. Brandt, W. Busza, I.A. Cali, M. D'Alfonso, Z. Demiragli, G. Gomez Ceballos, M. Goncharov, D. Hsu, M. Hu, Y. Iiyama, G.M. Innocenti, M. Klute, D. Kovalskyi, Y.S. Lai, Y.-J. Lee, A. Levin, P.D. Luckey, B. Maier, A.C. Marini, C. Mcginn, C. Mironov, S. Narayanan, X. Niu, C. Paus, C. Roland, G. Roland, J. Salfeld-Nebgen, G.S.F. Stephans, K. Tatar, D. Velicanu, J. Wang, T.W. Wang, B. Wyslouch University of Minnesota, Minneapolis, U.S.A. A.C. Benvenuti, R.M. Chatterjee, A. Evans, P. Hansen, J. Hiltbrand, S. Kalafut, Y. Kubota, Z. Lesko, J. Mans, S. Nourbakhsh, N. Ruckstuhl, R. Rusack, J. Turkewitz, M.A. Wadud University of Mississippi, Oxford, U.S.A. J.G. Acosta, S. Oliveros E. Avdeeva, K. Bloom, D.R. Claes, C. Fangmeier, R. Gonzalez Suarez, R. Kamalieddin, I. Kravchenko, J. Monroy, J.E. Siado, G.R. Snow, B. Stieger State University of New York at Bu alo, Bu alo, U.S.A. J. Dolen, A. Godshalk, C. Harrington, I. Iashvili, D. Nguyen, A. Parker, S. Rappoccio, B. Roozbahani Northeastern University, Boston, U.S.A. R. Teixeira De Lima, D. Trocino, D. Wood Northwestern University, Evanston, U.S.A. G. Alverson, E. Barberis, A. Hortiangtham, A. Massironi, D.M. Morse, T. Orimoto, S. Bhattacharya, O. Charaf, K.A. Hahn, N. Mucia, N. Odell, M.H. Schmitt, K. Sung, M. Trovato, M. Velasco University of Notre Dame, Notre Dame, U.S.A. N. Dev, M. Hildreth, K. Hurtado Anampa, C. Jessop, D.J. Karmgard, N. Kellams, K. Lannon, W. Li, N. Loukas, N. Marinelli, F. Meng, C. Mueller, Y. Musienko37, M. Planer, A. Reinsvold, R. Ruchti, P. Siddireddy, G. Smith, S. Taroni, M. Wayne, A. Wightman, M. Wolf, A. Woodard The Ohio State University, Columbus, U.S.A. W. Ji, B. Liu, W. Luo, B.L. Winer, H.W. Wulsin Princeton University, Princeton, U.S.A. J. Alimena, L. Antonelli, B. Bylsma, L.S. Durkin, S. Flowers, B. Francis, A. Hart, C. Hill, S. Cooperstein, O. Driga, P. Elmer, J. Hardenbrook, P. Hebda, S. Higginbotham, A. Kalogeropoulos, D. Lange, J. Luo, D. Marlow, K. Mei, I. Ojalvo, J. Olsen, C. Palmer, P. Piroue, D. Stickland, C. Tully University of Puerto Rico, Mayaguez, U.S.A. S. Malik, S. Norberg Purdue University, West Lafayette, U.S.A. A. Barker, V.E. Barnes, S. Das, S. Folgueras, L. Gutay, M.K. Jha, M. Jones, A.W. Jung, A. Khatiwada, D.H. Miller, N. Neumeister, C.C. Peng, H. Qiu, J.F. Schulte, J. Sun, F. Wang, W. Xie Purdue University Northwest, Hammond, U.S.A. T. Cheng, N. Parashar, J. Stupak Rice University, Houston, U.S.A. A. Adair, Z. Chen, K.M. Ecklund, S. Freed, F.J.M. Geurts, M. Guilbaud, M. Kilpatrick, W. Li, B. Michlin, M. Northup, B.P. Padley, J. Roberts, J. Rorie, W. Shi, Z. Tu, J. Zabel, A. Zhang University of Rochester, Rochester, U.S.A. A. Bodek, P. de Barbaro, R. Demina, Y.t. Duh, T. Ferbel, M. Galanti, A. Garcia-Bellido, J. Han, O. Hindrichs, A. Khukhunaishvili, K.H. Lo, P. Tan, M. Verzetti The Rockefeller University, New York, U.S.A. R. Ciesielski, K. Goulianos, C. Mesropian Rutgers, The State University of New Jersey, Piscataway, U.S.A. A. Agapitos, J.P. Chou, Y. Gershtein, T.A. Gomez Espinosa, E. Halkiadakis, M. Heindl, E. Hughes, S. Kaplan, R. Kunnawalkam Elayavalli, S. Kyriacou, A. Lath, R. Montalvo, K. Nash, M. Osherson, H. Saka, S. Salur, S. Schnetzer, D. She eld, S. Somalwar, R. Stone, S. Thomas, P. Thomassen, M. Walker University of Tennessee, Knoxville, U.S.A. A.G. Delannoy, M. Foerster, J. Heideman, G. Riley, K. Rose, S. Spanier, K. Thapa Texas A&M University, College Station, U.S.A. O. Bouhali71, A. Castaneda Hernandez71, A. Celik, M. Dalchenko, M. De Mattia, A. Delgado, S. Dildick, R. Eusebi, J. Gilmore, T. Huang, T. Kamon72, R. Mueller, Y. Pakhotin, R. Patel, A. Perlo , L. Pernie, D. Rathjens, A. Safonov, A. Tatarinov, K.A. Ulmer Texas Tech University, Lubbock, U.S.A. N. Akchurin, J. Damgov, F. De Guio, P.R. Dudero, J. Faulkner, E. Gurpinar, S. Kunori, K. Lamichhane, S.W. Lee, T. Libeiro, T. Mengke, S. Muthumuni, T. Peltola, S. Undleeb, I. Volobouev, Z. Wang Vanderbilt University, Nashville, U.S.A. S. Greene, A. Gurrola, R. Janjam, W. Johns, C. Maguire, A. Melo, H. Ni, K. Padeken, P. Sheldon, S. Tuo, J. Velkovska, Q. Xu University of Virginia, Charlottesville, U.S.A. M.W. Arenton, P. Barria, B. Cox, R. Hirosky, M. Joyce, A. Ledovskoy, H. Li, C. Neu, T. Sinthuprasith, Y. Wang, E. Wolfe, F. Xia Wayne State University, Detroit, U.S.A. R. Harr, P.E. Karchin, N. Poudyal, J. Sturdy, P. Thapa, S. Zaleski University of Wisconsin - Madison, Madison, WI, U.S.A. M. Brodski, J. Buchanan, C. Caillol, S. Dasu, L. Dodd, S. Duric, B. Gomber, M. Grothe, M. Herndon, A. Herve, U. Hussain, P. Klabbers, A. Lanaro, A. Levine, K. Long, R. Loveless, T. Ruggles, A. Savin, N. Smith, W.H. Smith, D. Taylor, N. Woods y: Deceased Beijing, China 1: Also at Vienna University of Technology, Vienna, Austria 2: Also at State Key Laboratory of Nuclear Physics and Technology, Peking University, 3: Also at IRFU, CEA, Universite Paris-Saclay, Gif-sur-Yvette, France 4: Also at Universidade Estadual de Campinas, Campinas, Brazil 6: Also at Universite Libre de Bruxelles, Bruxelles, Belgium 7: Also at Institute for Theoretical and Experimental Physics, Moscow, Russia 8: Also at Joint Institute for Nuclear Research, Dubna, Russia 9: Also at Helwan University, Cairo, Egypt 10: Now at Zewail City of Science and Technology, Zewail, Egypt 11: Now at Fayoum University, El-Fayoum, Egypt 12: Also at British University in Egypt, Cairo, Egypt 13: Now at Ain Shams University, Cairo, Egypt 14: Also at Universite de Haute Alsace, Mulhouse, France 15: Also at Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia 16: Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland 17: Also at RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany 18: Also at University of Hamburg, Hamburg, Germany 19: Also at Brandenburg University of Technology, Cottbus, Germany 20: Also at MTA-ELTE Lendulet CMS Particle and Nuclear Physics Group, Eotvos Lorand University, Budapest, Hungary 21: Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary 22: Also at Institute of Physics, University of Debrecen, Debrecen, Hungary 23: Also at Indian Institute of Technology Bhubaneswar, Bhubaneswar, India 24: Also at Institute of Physics, Bhubaneswar, India 25: Also at University of Visva-Bharati, Santiniketan, India 26: Also at University of Ruhuna, Matara, Sri Lanka 27: Also at Isfahan University of Technology, Isfahan, Iran 28: Also at Yazd University, Yazd, Iran 29: Also at Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran 30: Also at Universita degli Studi di Siena, Siena, Italy 31: Also at INFN Sezione di Milano-Bicocca; Universita di Milano-Bicocca, Milano, Italy 32: Also at Purdue University, West Lafayette, U.S.A. 33: Also at International Islamic University of Malaysia, Kuala Lumpur, Malaysia 34: Also at Malaysian Nuclear Agency, MOSTI, Kajang, Malaysia 35: Also at Consejo Nacional de Ciencia y Tecnolog a, Mexico city, Mexico 36: Also at Warsaw University of Technology, Institute of Electronic Systems, Warsaw, Poland 37: Also at Institute for Nuclear Research, Moscow, Russia 38: Now at National Research Nuclear University 'Moscow 39: Also at St. Petersburg State Polytechnical University, St. Petersburg, Russia 40: Also at University of Florida, Gainesville, U.S.A. 41: Also at P.N. Lebedev Physical Institute, Moscow, Russia 42: Also at California Institute of Technology, Pasadena, U.S.A. 43: Also at Budker Institute of Nuclear Physics, Novosibirsk, Russia 44: Also at Faculty of Physics, University of Belgrade, Belgrade, Serbia 45: Also at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia 46: Also at Scuola Normale e Sezione dell'INFN, Pisa, Italy 47: Also at National and Kapodistrian University of Athens, Athens, Greece 50: Also at Stefan Meyer Institute for Subatomic Physics (SMI), Vienna, Austria 51: Also at Gaziosmanpasa University, Tokat, Turkey 52: Also at Istanbul Aydin University, Istanbul, Turkey 53: Also at Mersin University, Mersin, Turkey 54: Also at Cag University, Mersin, Turkey 55: Also at Piri Reis University, Istanbul, Turkey 56: Also at Adiyaman University, Adiyaman, Turkey 57: Also at Izmir Institute of Technology, Izmir, Turkey 58: Also at Necmettin Erbakan University, Konya, Turkey 59: Also at Marmara University, Istanbul, Turkey 60: Also at Kafkas University, Kars, Turkey 61: Also at Istanbul Bilgi University, Istanbul, Turkey 62: Also at Rutherford Appleton Laboratory, Didcot, U.K. 63: Also at School of Physics and Astronomy, University of Southampton, Southampton, U.K. 64: Also at Instituto de Astrof sica de Canarias, La Laguna, Spain 65: Also at Utah Valley University, Orem, U.S.A. 66: Also at Beykent University, Istanbul, Turkey 67: Also at Bingol University, Bingol, Turkey 68: Also at Erzincan University, Erzincan, Turkey 69: Also at Sinop University, Sinop, Turkey 70: Also at Mimar Sinan University, Istanbul, Istanbul, Turkey 71: Also at Texas A&M University at Qatar, Doha, Qatar 72: Also at Kyungpook National University, Daegu, Koreae [57] G. Bozzi , B. Fuks and M. Klasen , Joint resummation for slepton pair production at hadron colliders , Nucl. Phys. B 794 ( 2008 ) 46 [arXiv: 0709 .3057] [INSPIRE]. [58] G. Bozzi , B. Fuks and M. Klasen , Threshold resummation for slepton-pair production at hadron colliders , Nucl. Phys. B 777 ( 2007 ) 157 [ hep -ph/0701202] [INSPIRE]. [59] G. Bozzi , B. Fuks and M. Klasen , Transverse-momentum resummation for slepton-pair production at the CERN LHC , Phys. Rev. D 74 ( 2006 ) 015001 [ hep -ph/0603074] [INSPIRE]. [60] CMS collaboration , The CMS experiment at the CERN LHC , 2008 JINST 3 S08004 [62] M. Cacciari , G.P. Salam and G. Soyez, The anti-kt jet clustering algorithm , JHEP 04 ( 2008 ) [63] M. Cacciari , G.P. Salam and G. Soyez, FastJet user manual , Eur. Phys. J. C 72 ( 2012 ) 1896 [77] R. Frederix and S. Frixione , Merging meets matching in MC@NLO , JHEP 12 ( 2012 ) 061 [78] S. Alioli , P. Nason , C. Oleari and E. Re, NLO single-top production matched with shower in POWHEG: s- and t-channel contributions , JHEP 09 ( 2009 ) 111 [Erratum ibid . 1002 ( 2010 ) [79] E. Re , Single-top Wt-channel production matched with parton showers using the POWHEG method , Eur. Phys. J. C 71 ( 2011 ) 1547 [arXiv: 1009 .2450] [INSPIRE]. [80] R. Gavin , Y. Li , F. Petriello and S. Quackenbush , FEWZ 2 . 0: A code for hadronic Z production at next-to-next-to-leading order , Comput. Phys. Commun . 182 ( 2011 ) 2388


This is a preview of a remote PDF: https://link.springer.com/content/pdf/10.1007%2FJHEP03%282018%29160.pdf

The CMS collaboration, A. M. Sirunyan, A. Tumasyan, W. Adam, F. Ambrogi, E. Asilar, T. Bergauer, J. Brandstetter, E. Brondolin, M. Dragicevic, J. Erö, M. Flechl, M. Friedl, R. Frühwirth, V. M. Ghete, J. Grossmann, J. Hrubec, M. Jeitler, A. König, N. Krammer, I. Krätschmer, D. Liko, T. Madlener, I. Mikulec, E. Pree, N. Rad, H. Rohringer, J. Schieck, R. Schöfbeck, M. Spanring, D. Spitzbart, W. Waltenberger, J. Wittmann, C.-E. Wulz, M. Zarucki, V. Chekhovsky, V. Mossolov, J. Suarez Gonzalez, E. A. De Wolf, D. Di Croce, X. Janssen, J. Lauwers, M. Van De Klundert, H. Van Haevermaet, P. Van Mechelen, N. Van Remortel, S. Abu Zeid, F. Blekman, J. D’Hondt, I. De Bruyn, J. De Clercq, K. Deroover, G. Flouris, D. Lontkovskyi, S. Lowette, I. Marchesini, S. Moortgat, L. Moreels, Q. Python, K. Skovpen, S. Tavernier, W. Van Doninck, P. Van Mulders, I. Van Parijs, D. Beghin, H. Brun, B. Clerbaux, G. De Lentdecker, H. Delannoy, B. Dorney, G. Fasanella, L. Favart, R. Goldouzian, A. Grebenyuk, T. Lenzi, J. Luetic, T. Maerschalk, A. Marinov, T. Seva, E. Starling, C. Vander Velde, P. Vanlaer, D. Vannerom, R. Yonamine, F. Zenoni, F. Zhang, A. Cimmino, T. Cornelis, D. Dobur, A. Fagot, M. Gul, I. Khvastunov, D. Poyraz, C. Roskas, S. Salva, M. Tytgat, W. Verbeke, N. Zaganidis, H. Bakhshiansohi, O. Bondu, S. Brochet, G. Bruno, C. Caputo, A. Caudron, P. David, S. De Visscher, C. Delaere, M. Delcourt, B. Francois, A. Giammanco, M. Komm, G. Krintiras, V. Lemaitre, A. Magitteri, A. Mertens, M. Musich, K. Piotrzkowski, L. Quertenmont, A. Saggio, M. Vidal Marono, S. Wertz, J. Zobec, W. L. Aldá Júnior, F. L. Alves, G. A. Alves, L. Brito, M. Correa Martins Junior, C. Hensel, A. Moraes, M. E. Pol, P. Rebello Teles, E. Belchior Batista Das Chagas, W. Carvalho, J. Chinellato, E. Coelho, E. M. Da Costa, G. G. Da Silveira, D. De Jesus Damiao, S. Fonseca De Souza, L. M. Huertas Guativa, H. Malbouisson, M. Melo De Almeida, C. Mora Herrera, L. Mundim, H. Nogima, L. J. Sanchez Rosas, A. Santoro, A. Sznajder, M. Thiel, E. J. Tonelli Manganote, F. Torres Da Silva De Araujo, A. Vilela Pereira, S. Ahuja, C. A. Bernardes, T. R. Fernandez Perez Tomei, E. M. Gregores, P. G. Mercadante, S. F. Novaes, Sandra S. Padula, D. Romero Abad, J. C. Ruiz Vargas, A. Aleksandrov, R. Hadjiiska, P. Iaydjiev, M. Misheva, M. Rodozov, M. Shopova, G. Sultanov, A. Dimitrov, L. Litov, B. Pavlov, P. Petkov, W. Fang, X. Gao, L. Yuan, M. Ahmad, J. G. Bian, G. M. Chen, H. S. Chen, M. Chen, Y. Chen, C. H. Jiang, D. Leggat, H. Liao, Z. Liu, F. Romeo, S. M. Shaheen, A. Spiezia, J. Tao, C. Wang, Z. Wang, E. Yazgan, H. Zhang, S. Zhang, J. Zhao, Y. Ban, G. Chen, Q. Li, S. Liu, Y. Mao, S. J. Qian, D. Wang, Z. Xu, C. Avila, A. Cabrera, C. A. Carrillo Montoya, L. F. Chaparro Sierra, C. Florez, C. F. González Hernández, J. D. Ruiz Alvarez, M. A. Segura Delgado, B. Courbon, N. Godinovic, D. Lelas, I. Puljak, P. M. Ribeiro Cipriano, T. Sculac, Z. Antunovic, M. Kovac, V. Brigljevic, D. Ferencek, K. Kadija, B. Mesic, A. Starodumov, T. Susa, M. W. Ather, A. Attikis, G. Mavromanolakis, J. Mousa, C. Nicolaou, F. Ptochos, P. A. Razis, H. Rykaczewski, M. Finger, M. Finger, E. Carrera Jarrin, A. A. Abdelalim, Y. Mohammed, E. Salama, R. K. Dewanjee, M. Kadastik, L. Perrini, M. Raidal, A. Tiko, C. Veelken, P. Eerola, H. Kirschenmann, J. Pekkanen, M. Voutilainen, J. Havukainen, J. K. Heikkilä, T. Järvinen, V. Karimäki, R. Kinnunen, T. Lampén, K. Lassila-Perini, S. Laurila, S. Lehti, T. Lindén, P. Luukka, H. Siikonen, E. Tuominen, J. Tuominiemi, T. Tuuva, M. Besancon, F. Couderc, M. Dejardin, D. Denegri, J. L. Faure, F. Ferri, S. Ganjour, S. Ghosh, P. Gras, G. Hamel de Monchenault, P. Jarry, I. Kucher, C. Leloup, E. Locci, M. Machet, J. Malcles, G. Negro, J. Rander, A. Rosowsky, M. Ö. Sahin, M. Titov, A. Abdulsalam, C. Amendola, I. Antropov, S. Baffioni, F. Beaudette, P. Busson, L. Cadamuro, C. Charlot, R. Granier de Cassagnac, M. Jo, S. Lisniak, A. Lobanov, J. Martin Blanco, M. Nguyen, C. Ochando, G. Ortona, P. Paganini, P. Pigard, R. Salerno, J. B. Sauvan, Y. Sirois, A. G. Stahl Leiton, T. Strebler, Y. Yilmaz, A. Zabi, A. Zghiche, J.-L. Agram, J. Andrea, D. Bloch, J.-M. Brom, M. Buttignol, E. C. Chabert, N. Chanon, C. Collard, E. Conte, X. Coubez, J.-C. Fontaine, D. Gelé, U. Goerlach, M. Jansová, A.-C. Le Bihan, N. Tonon, P. Van Hove, S. Gadrat, S. Beauceron, C. Bernet, G. Boudoul, R. Chierici, D. Contardo, P. Depasse, H. El Mamouni, J. Fay, L. Finco, S. Gascon, M. Gouzevitch, G. Grenier, B. Ille, F. Lagarde, I. B. Laktineh, M. Lethuillier, L. Mirabito, A. L. Pequegnot, S. Perries, A. Popov, V. Sordini, M. Vander Donckt, S. Viret, A. Khvedelidze, Z. Tsamalaidze, C. Autermann, L. Feld, M. K. Kiesel, K. Klein, M. Lipinski, M. Preuten, C. Schomakers, J. Schulz, V. Zhukov, A. Albert, E. Dietz-Laursonn, D. Duchardt, M. Endres, M. Erdmann, S. Erdweg, T. Esch, R. Fischer, A. Güth, M. Hamer, T. Hebbeker, C. Heidemann, K. Hoepfner, S. Knutzen, M. Merschmeyer, A. Meyer, P. Millet, S. Mukherjee, T. Pook. Combined search for electroweak production of charginos and neutralinos in proton-proton collisions at $$ \sqrt{s}=13 $$ TeV, Journal of High Energy Physics, 2018, 160, DOI: 10.1007/JHEP03(2018)160