Comparing transverse momentum balance of b jet pairs in pp and PbPb collisions at \( \sqrt{s_{\mathrm{NN}}}=5.02 \) TeV

Journal of High Energy Physics, Mar 2018

Abstract The transverse momentum balance of pairs of back-to-back b quark jets in PbPb and pp collisions recorded with the CMS detector at the LHC is reported. The center-of-mass energy in both collision systems is 5.02 TeV per nucleon pair. Compared to the pp collision baseline, b quark jets have a larger imbalance in the most central PbPb collisions, as expected from the jet quenching effect. The data are also compared to the corresponding measurement with inclusive dijets. In the most central collisions, the imbalance of b quark dijets is comparable to that of inclusive dijets. Open image in new window

A PDF file should load here. If you do not see its contents the file may be temporarily unavailable at the journal website or you do not have a PDF plug-in installed and enabled in your browser.

Alternatively, you can download the file locally and open with any standalone PDF reader:

https://link.springer.com/content/pdf/10.1007%2FJHEP03%282018%29181.pdf

Comparing transverse momentum balance of b jet pairs in pp and PbPb collisions at \( \sqrt{s_{\mathrm{NN}}}=5.02 \) TeV

Accepted: March Comparing transverse momentum balance of b jet Quark Gluon Plasma The transverse momentum balance of pairs of back-to-back b quark jets in PbPb and pp collisions recorded with the CMS detector at the LHC is reported. The center-of-mass energy in both collision systems is 5.02 TeV per nucleon pair. Compared to the pp collision baseline, b quark jets have a larger imbalance in the most central PbPb collisions, as expected from the jet quenching e ect. The data are also compared to the corresponding measurement with inclusive dijets. In the most central collisions, the imbalance of b quark dijets is comparable to that of inclusive dijets. Hadron-Hadron scattering (experiments); Heavy-ion collision; Jet physics - HJEP03(218) https://doi.org/10.1007/JHEP03(2018)181 1 Introduction 2 3 4 5 6 7 avor subprocess reweighting The CMS collaboration this phenomenon at the LHC was the transverse momentum (pT) balance of back-to-back jets [2{5]. Quenching imparts a net imbalance to dijets that exceeds the imbalance from QCD radiation in vacuum, as measured in pp collisions. This additional imbalance is expected based on the di erence of the in-medium path-length traversed by the two jets. However, jet-by-jet uctuation of the quenching may also play a role, and could even be dominant [6]. The dependence of quenching on the type of parton that initiates the jet may provide insight into the underlying dynamics. Such a dependence could arise directly from the interaction of the initiating parton with the medium. For example, radiative loss via gluon bremsstrahlung is expected to be larger for jets initiated by gluons than for those from quarks. Furthermore, for heavy quarks, radiation is expected to be suppressed in the direction of propagation [7]. A dependence could also arise less directly, via the medium interactions of subleading partons in the shower. For models in which quenching depends on the shower multiplicity, e.g., jewel [6, 8], the relatively larger average parton multiplicity of gluon-initiated jets would lead to a larger quenching e ect. In general, the type of parton that initiates the jet is di cult to determine experimentally. A notable exception are jets produced by the fragmentation of bottom quarks. The { 1 { corresponding b hadron may be identi ed, for example, by the presence of a soft lepton or a displaced vertex inside the jet. The latter strategy was pursued in the CMS measurement PbPb collisions at a nucleon-nucleon center of mass energy of p of the b quark jet (\b jet") spectra and the corresponding nuclear modi cation factor in sNN = 2:76 TeV [9]. However, there is a potential ambiguity in that measurement. Bottom quarks may be produced not only directly in the hard scattering, but also in the subsequent splitting of gluons into b quark pairs. Jets associated with b hadrons may contain a signi cant contribution from gluon splitting, both from gluons that participate directly in the hard scattering, as well as those that arise from nal-state radiation in the parton shower process. One way to suppress the contribution of gluon splitting, which tends to produce pairs using collisions recorded at p initiating partons. 2 The CMS detector of b quarks with a relatively small opening angle, is to look at pairs of b jets that are backto-back in azimuth. As shown in the appendix, this con guration enhances the contribution from primary b quarks, typically produced via the reaction gg ! bb. The pT balance of such b jets may then be compared with those of inclusive (i.e., nontagged) dijets. This paper presents the rst measurement of the pT balance of b jet pairs (\b dijets") in PbPb, inclusive dijets to search for a possible dependence of the pT balance on the species of the sNN = 5:02 TeV. The b dijet data are compared with that of The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal diameter, providing a magnetic eld of 3.8 T. Within the solenoid volume are a silicon pixel and strip tracker, a lead tungstate crystal electromagnetic calorimeter, and a brass and scintillator hadron calorimeter, each composed of a barrel and two endcap sections. Forward calorimeters extend the pseudorapidity coverage provided by the barrel and endcap detectors over the range of about 3 < < 5. Muons are detected in gas-ionization chambers embedded in the steel ux-return yoke outside the solenoid. A more detailed description of the CMS detector, together with a de nition of the coordinate system used and the relevant kinematic variables, can be found in ref. [10]. Events of interest are selected using a two-tiered trigger system [11]. The rst level, composed of custom hardware processors, uses information from the calorimeters and muon detectors. The second level, known as the high-level trigger, consists of a farm of processors running a version of the full event reconstruction software optimized for fast processing. 3 Event and object selection energy per nucleon pair of p This analysis is performed using PbPb and pp data recorded in 2015 at a center-of-mass sNN = 5:02 TeV. The PbPb and pp samples correspond to integrated luminosities of 404 b 1 and 25.8 pb 1, respectively. Events were selected using single-jet triggers in both pp and PbPb collisions. The jet triggers used in this analysis are fully e cient with respect to the o ine leading jet selection of pT > 100 GeV. For PbPb collisions, b tagging algorithms are applied at the high-level trigger to reduce the data volume. { 2 { This is achieved by performing a simpli ed version of the charged-particle tracking and vertex reconstruction in regions of the detector delineated by high-pT jets. The e ciency of the online b tagging with respect to the corresponding o ine algorithm is evaluated using single-jet triggers, and lies in the range of 70{90%, depending on collision centrality. To reject noncollision processes such as beam-gas interactions, events are required to have at least one reconstructed primary vertex and to deposit an energy of at least 3 GeV in at least 3 towers in each of the two forward calorimeters. The forward calorimeters are also used to estimate the collision centrality, evaluated as a percentile of the total inelastic hadronic cross section, with the most central event corresponding to a centrality of 0%. The anti-kT algorithm [12] is used to cluster jets from objects produced by the CMS particle- ow algorithm [13], which combines information from the various subdetector systems. A radius parameter of R = 0:4 is used. In PbPb collisions, the heavy ion background is subtracted event-by-event with an algorithm that is a variant of an iterative \noise/pedestal subtraction" technique [14]. The jet energy is calibrated as a function of the and pT following the procedure described in ref. [15]. The identi cation of b jets is achieved using the \combined secondary vertex" (CSV) discriminator. This algorithm takes as input a number of properties of the reconstructed secondary vertex (SV), such as its displacement, the number of associated tracks, and their invariant mass (with the assumption that the tracks are originated by charged pions). For events in which no SV is properly reconstructed, the displacement of selected tracks is used. Details of the b tagging algorithms, and tracking and vertexing in general, can be found in refs. [16] and [17], respectively. Simulated data samples produced with Geant4 [18] are used to evaluate the b tagging performance and derive various corrections. These samples are generated with pythia version 6.423 [19], tune Z2 [20]. To compare with PbPb data, pythia events are embedded in an underlying event produced with the hydjet generator, version 1.9 [21]. The performance of the CSV algorithm to identify b jet pairs o ine is shown in gure 1. The e ciency and purity are evaluated in simulation as a function of the b-tagging selection variable for pp and PbPb collisions for di erent centrality intervals. A tight selection on the CSV discriminator is applied in this analysis, as indicated in gure 1, leading to a purity in the range of 85{95% for b dijets, with an e ciency in the range of about 10{35%, depending on collision system and centrality. The degradation of the performance with increasing centrality corresponds to a larger mistagging rate for xed b tagging e ciency, as also observed in ref. [9]. These jets are mistagged primarily due to vertices from false track combinations. 4 Data analysis The pT balance of dijets is measured using the leading and subleading jets. This balance is quanti ed by the ratio of the subleading to leading jet pT, denoted xJ. Dijets are selected from the two highest pT jets within a window of j j < 1:5. The pT of the leading and the subleading jets are required to be above 100 and 40 GeV, respectively. This asymmetric pT selection is chosen to ensure sensitivity to quenching e ects. The subleading jet threshold of 40 GeV is chosen to keep the subleading jet- nding e ciency reasonably high, as will be { 3 { 0.9 0.8 pp PbPb, 30-100% PbPb, 10-30% angle with the selection of j j > 2 =3. The distributions in pp collisions for inclusive dijets and dijets for which both the leading and subleading jets are b tagged are shown in the left panel of gure 2. The b-tagged dijets show a more pronounced tail at small , which comes from a larger contribution of 3-jet topologies, as further discussed in the appendix. The distributions in central (0{10%) PbPb collisions are shown in the right panel of gure 2. For inclusive dijets, an increased contribution (compared to pp collisions) at small arises from pairs of jets that are not from the same nucleon-nucleon interaction. These combinatorial jet pairs tend to bias the xJ distribution towards low values, i.e., towards large imbalance. To subtract this contribution from the selected dijet pairs, we exploit the fact that such combinatorial pairs are uniform in , and subtract the contribution of pairs from a control region where combinatorial background dominates over the signal pairs. The region is chosen to be j j < =3, which is symmetric to the backto-back region with respect to the reaction plane, and thus receives the same contribution { 4 { CMS pp HJEP03(218) CMS inclusive dijets uncertainties, while the horizontal bars represent the bin widths. from elliptic ow. Higher order anisotropies are assumed to be negligible for this range in pT. Since combinatorial jets are unlikely to pass the b tagging selection, the near-angle contribution is smaller for b dijets than inclusive dijets. In addition to subtracting the combinatorial component, one also needs to correct for the contribution of signal pairs that are lost when there is a combinatorial jet of higher pT than the signal partner jet. To achieve this, an e ciency correction is derived, which is the inverse of the probability that a partner jet of a given pT was found, i.e., not obscured by a combinatorial jet of larger pT. This e ciency is again estimated from data using the smallangle control region, j j < =3. For a given centrality class, we obtain the spectrum of the highest transverse momentum (pTmax) partner jet in this region in each event. Assuming that all partner jets in this region are combinatorial, one can derive the probability that a signal partner jet is obscured, as a function of pT. This e ciency for detecting the signal partner jet is the cumulative distribution function of this pTmax spectrum: (pT) 1 N pT dpTmax dpTmax: The e ciency is obtained from a t to the data in ne bins of centrality, using the Gompertz function, f (pT) = exp[b exp(cpT)], where b and c are free parameters. The ts obtained are shown in gure 3. For each event, the values of b and c for the given centrality are obtained by linear interpolation. The function with these interpolated parameters is then evaluated at the pT of the subleading jet. Although the self-normalized quantities presented in this analysis do not depend on the absolute b tagging e ciency, the relative e ciency as a function of the pT and must { 5 { 0.5 40 CMS Centrality 0-2.5% centrality selections presented in this analysis. In order to probe for quenching or other nuclear e ects on the balance distributions, a baseline is constructed using pp data as a reference. Since the deterioration of the jet pT resolution with increasing collision centrality introduces an additional imbalance in the xJ distributions, a direct comparison of PbPb and pp measurements does not solely re ect the nuclear modi cations. This issue is addressed by smearing the transverse momentum of the jets in pp data by the amount that corresponds to the additional underlying event uctuations estimated from hydjet simulations that have been tuned to match the underlying event density in PbPb data. As in ref. [22], the jet pT resolution is parametrized according the following form, typical for calorimeter energy resolutions. q (pT)=pT = C2 + S2=pT + N 2=p2T (4.2) respectively. In PbPb collisions the S term has a slightly larger value of 1.0p In pp collisions, the constant (C) and stochastic (S) terms are 0.06 and 0.8p GeV, due to GeV, the underlying event subtraction. The noise parameter (N ) depends on collision centrality, according to N = 14:82 centrality (%)=5:40(GeV). This term is neglected in pp collisions. { 6 { HJEP03(218) Combinatorial subtraction Subleading jet nding Energy scale Jet resolution Total Combinatorial subtraction Subleading jet nding Tagging e ciency Signal mistagging Jet energy scale Jet resolution Total pp | | 10{30% 0.001 0.002 The sources of systematic uncertainties in hxJi for the inclusive dijet and b dijet measurements are summarized in table 1 and discussed directly below. Combinatorial jet pair subtraction. The systematic uncertainty in the combinatorial background subtraction in PbPb collisions is evaluated by varying the contribution of the near-angle control region. For inclusive dijets, where the near-angle region is dominated by combinatorial jets, the size of the contribution is varied by 30%, which is su cient to cover the nonclosure of the subtraction procedure in simulation (the di erence between the output of the analysis procedure and the generated input for the simulation). For b dijets, the number of jet pairs in the near-angle control region is reduced by the b tagging requirement, and is much less centrality-dependent than for inclusive dijets. Simulations based on hydjet embedding show that the dominant contribution in this region corresponds to signal jets from gluon splitting. We therefore use the entire yield in the near-angle region in pp data to estimate the systematic uncertainty in the subtraction procedure in PbPb data. Subleading jet nding e ciency. The uncertainty on the e ciency correction for nding the subleading jet is attributed to several e ects: a contribution of signal jets in the near-angle control region (j j < =3), the nite centrality binning used and the imperfect description of the Gompertz t function employed. The systematic uncertainty associated with these corrections is evaluated from the nonclosure in hydjet-embedded simulated samples. { 7 { The uncertainty on the (inclusive) jet energy scale in pp collisions is evaluated from in-situ studies to be 1% for the range used in this analysis [15, 22]. The same jet energy scale and uncertainty are found to apply to b jets, based on studies of Z ! bb. In-situ studies were also carried out in peripheral PbPb collisions in ref. [4], albeit with limited statistics. A 4% uncertainty is assigned to cover the observed di erence between data and simulation. The modi cation of jet fragmentation pattern due to quenching is also a source of systematic uncertainty on the jet energy scale that can be as large as 5% for the most central collisions [23, 24]. Finally, underlying event subtraction leads to an uncertainty in the jet energy scale of up to 2% for central collisions [4, 25]. To propagate the uncertainties to the xJ distributions, the correlation between the leading and subleading jet energy scales must be taken into account. For a given jet pair, the ratio xJ is insensitive to an overall shift of the jet energy scale by a multiplicative factor. Such a shift does, however, e ectively change the leading and subleading jet thresholds. The total correlated shift from the above mentioned sources was estimated to be as large as 6.5% in central events. For b dijets, there is an additional systematic uncertainty due to the bias of the b tagging on the jet energy scale, which was evaluated in simulation and found to be 1% in pp collisions and 2% in PbPb collisions. There is also a component of the systematic uncertainty that is uncorrelated between the leading and subleading jet. The subleading jet is also more sensitive to the underlying event subtraction systematics than the leading jet is. To be conservative, we applied the entire uncertainty of 2% to the subleading jet, independently of the leading jet. In addition, to cover the pT dependence of the modi cation of the fragmentation pattern due to quenching, the jet energy scale is shifted by a xed amount, up to 2 GeV in central events. the C and S parameters are varied by 0.02 and 0:2p Jet energy resolution. The uncertainly from the jet resolution is propagated by varying the resolution parametrization in eq. (4.2). The e ect on the xJ distribution is evaluated by applying these alternate smearing parametrizations to particle-level jets. In pp collisions, GeV, respectively. For PbPb collisions, in addition, the N term is varied by 2 GeV, which covers the di erence in underlying event between data and simulation, and the variation of the resolution within the wide centrality bins. Although the results are not unfolded for the resolution e ects, the uncertainty is fully included in the data points in order to correctly evaluate any theoretical models that fold in the resolution e ects for comparison. Tagging e ciency (b jets only). The tagging e ciency has a fairly at pT dependence, such that it has only a mild e ect on the observed mean xJ values (hxJi). The values of the corrections are varied by 50% as a conservative estimate of the systematic uncertainty in these corrections. This is su cient to cover possible di erences in data and simulation observed with studies of the b jet tagging e ciency in control samples in data [9, 16]. Mistagging (b jets only). The e ect of mistagging signal (i.e., not combinatorial) dijets where one or both jets is not associated with a b quark is evaluated by inverting the b tagging selection for both the leading and subleading jets, both independently and { 8 { 0.35 CMS atic uncertainties are shown as shaded boxes, while statistical uncertainties are shown as vertical lines. The data are compared to simulations performed using powheg and pythia, as described in the text. simultaneously. The systematic uncertainty associated with mistagging is based on the imbalance of the inverted selections, taking into account the purity of the b dijet selection in simulation, which is around 85{90%, depending slightly on centrality. 6 Results The pT balance, as quanti ed by the distribution of xJ, is presented for both inclusive and b dijets. Both sets of dijets use leading and subleading jet pT thresholds of 100 and 40 GeV, respectively, selected from jets in j j < 1:5. Figure 4 shows the distribution in pp collisions. The data are compared with simulations performed with pythia 6, which was found to give an adequate description of the dijet balance for inclusive jets. The agreement of pythia 6 with data is notably worse for b dijets, where the simulated distribution is broadened towards imbalanced jet pairs. This broad feature is not observed in the b dijet data, which instead shows an xJ distribution that resembles that of inclusive dijets. It was found that improved agreement could be obtained by reweighting the contributions of heavy- avor production processes in pythia 6, a procedure which is discussed in the appendix. The reweighted distribution is also shown in gure 4. Finally, the data are also compared to simulations based on next-to-leading order matrix elements, as encoded in the hvq package [26] of the powheg box [27] (v2) generator. Hadronization in the powheg method [28, 29] is performed by matching the matrix elements to parton showers, which in this case are generated with pythia 8.212 [30], tune CUETP8M1 [31]. The powheg + pythia 8 simulations are found to give a good description of the b dijet data. Figure 5 shows the xJ distributions for inclusive dijets and b dijets for three di erent centrality selections of PbPb collisions. Here the data are compared to the reference ob{ 9 { tained from pp data by smearing the pT of each jet according to a parametrization of the resolution for the given centrality class. Figure 6 shows the hxJi values from these distributions, as well as the di erence between the hxJi in PbPb and the smeared pp reference. The data are plotted as a function of the number of participants estimated from a Monte Carlo Glauber model [32, 33]. The number of participants is weighted by the number of collisions to account for the hard scattering bias within each bin. Both the inclusive dijet and b dijet data show a tendency towards increasing imbalance with increasing centrality. While the reference data also become more imbalanced because of resolution e ects, the magnitude of the e ect is clearly smaller. The e ect is understood to result from jet quenching, as observed in previous inclusive dijet results [3, 34]. For inclusive dijets, a clear quenching signal is observed already for the 30{100% centrality bin. For b dijets, on the other hand, the imbalance is compatible with the pp reference in the 30{100% bin. In the 10{30% bin, the b dijet data point lies between the inclusive dijet one and the pp reference, within two standard deviations of both. Only in the most central bin (0{10%) is the b dijet quenching signi cant at the level of about three standard deviations, with a value close to that observed for inclusive dijets. 7 Conclusions In this paper, transverse momentum (pT) correlations of b quark jet pairs (b dijets) have been measured in PbPb collisions for the rst time, and compared to results from pp collisions. In pp collisions, a similar pT balance distribution was observed for inclusive dijets and b dijets. For the latter case, powheg was found to give a better description than pythia 6 alone (without reweighting), suggesting that next-to-leading order e ects are important for the modeling of this observable. This should be taken into consideration for models of parton energy loss in nucleus-nucleus collisions, which often use leading order calculations or generators as input. In PbPb collisions the net pT imbalance was observed to be larger in the most central collisions for b dijets, as had already been observed for inclusive dijets. This e ect can be understood to originate from the energy loss of partons in the quark-gluon plasma. In the most central bin, the observed quenching e ect is of comparable magnitude for b dijets and for inclusive dijets, the latter of which contains a mixture of quark and gluon jets. Insofar as parton energy loss is thought to depend on the type of parton that initiates the parton shower, this measurement can place constraints on the underlying dynamics of the interaction of the parton with the quark-gluon plasma. Acknowledgments We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative sta s at CERN and at other CMS institutes for their contributions to the success of the CMS e ort. In addition, we gratefully acknowledge the computing centers and personnel of the Worldwide LHC Computing Grid for delivering so e ectively the computing infrastructure essential 0.350 C0M.1S0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.09.35 C0M.1S0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Systematic uncertainties are shown as shaded boxes, while statistical uncertainties are shown as vertical lines. The top, middle and bottom rows show the 0{10, 10{30 and 30{100% centrality selections, respectively. The data are compared to a reference obtained by smearing pp according to the jet resolution for the given centrality class, as described in the text. to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMWFW and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES and CSF (Croatia); RPF (Cyprus); SENESCYT (Ecuador); MoER, ERC IUT, and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NIH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); MSIP and NRF (Republic of Korea); LAS (Lithuania); MOE and UM (Malaysia); BUAP, CINVESTAV, CONACYT, LNS, SEP, and UASLP-FAI (Mexico); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS, RFBR and RAEP (Russia); MESTD (Serbia); SEIDI, CPAN, PCTI 0.74 0.72 pp 0-10% 10-30% 0-10% 25.8 pb-1(5.02 TeV pp) + 404 μb-1(5.02 TeV PbPb) 30-100% 10-30% 0.02 0-10% −00.02 bP P b centrality selections of PbPb collisions. The right panel shows the di erence in the hxJi values between PbPb and the smeared pp reference. Systematic uncertainties are shown as shaded boxes, while statistical uncertainties are shown as vertical lines. HJEP03(218) and FEDER (Spain); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter, IPST, STAR, and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU and SFFR (Ukraine); STFC (United Kingdom); DOE and NSF (U.S.A.). Individuals have received support from the Marie-Curie program and the European Research Council and Horizon 2020 Grant, contract No. 675440 (European Union); the Leventis Foundation; the A. P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy O ce; the Fonds pour la Formation a la Recherche dans l'Industrie et dans l'Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the F.R.S.-FNRS and FWO (Belgium) under the \Excellence of Science - EOS" - be.h project n. 30820817; the Ministry of Education, Youth and Sports (MEYS) of the Czech Republic; the Council of Science and Industrial Research, India; the HOMING PLUS program of the Foundation for Polish Science, co nanced from European Union, Regional Development Fund, the Mobility Plus program of the Ministry of Science and Higher Education, the National Science Center (Poland), contracts Harmonia 2014/14/M/ST2/00428, Opus 2014/13/B/ST2/02543, 2014/15/B/ST2/03998, and 2015/19/B/ST2/02861, Sonata-bis 2012/07/E/ST2/01406; the National Priorities Research Program by Qatar National Research Fund; the Programa Severo Ochoa del Principado de Asturias; the Thalis and Aristeia programs co nanced by EU-ESF and the Greek NSRF; the Rachadapisek Sompot Fund for Postdoctoral Fellowship, Chulalongkorn University and the Chulalongkorn Academic into Its 2nd Century Project Advancement Project (Thailand); the Welch Foundation, contract C-1845; and the Weston Havens Foundation (U.S.A.). 0.3 0.25 reweighting. Data are shown in solid points, while the stacked histograms show the contributions of di erent processes in pythia 6 (see text for details). The bottom set of panels show the di erence between data and simulation (MC). A Heavy avor subprocess reweighting Whereas tunes of pythia 6 used to compare to LHC data give a reasonable description of the dijet balance for inclusive jets (e.g., in ref. [34]), they fail to adequately describe the angular and pT correlations between b jet pairs for the kinematic range probed by this measurement, as shown in the xJ and distributions in gure 7. To understand the nature of this discrepancy simulated bb events are separated into three categories, depending on the number of outgoing b (or b) quarks in the 2 ! 2 hard scattering. In the avor creation process (denoted FCR), both of the outgoing particles are b quarks. The gluon fusion reaction (gg ! bb) dominates, with a small contribution from quark-antiquark annihilation (qq ! bb). In the avor excitation process (FEX) only one of the outgoing particles is b quark. In this case, a virtual gluon in one of the protons has split into a bb pair and one of the b quarks enters the hard scattering. In the process referred to here as gluon splitting (GSP), neither of the outgoing particles is a b quark. The parent may be a gluon that participates in the hard scattering or a gluon that appears elsewhere in the event, for example in a parton shower. The discrepancy of pythia 6 with the data is driven by the poor modeling of the FEX contribution, which tends to give b dijet pairs that are too asymmetric in pT. This discrepancy was already noted by the CDF Collaboration [35], and may be understood as follows. 10 1 φ Δ /dN10−1 d 1 10−3 57% 11% 0% 17% 27% 83% 26% 62% 17% Data 56% 37% 7% Simulation 46% 49% 5% to the jet pair categories, as well as the relative abundance of the three categories in data and simulation. Process Default Reweighted FCR FEX GSP 53% 33% 14% 70% 9% 21% The partner b quark in the FEX process is treated as initial-state radiation. The pythia 6 tunes require large initial-state radiation to describe TeV scale collider data. However, such tunes over-predict the probability that the partner b quark at mid-rapidity and enters the kinematic selections used in this analysis. While an improved modeling of this process can be achieved by softening the initial-state radiation, this would have an impact on other observables, in particular the overall dijet pT balance. Instead, the contribution of the three heavy- avor production modes are reweighted according to the following procedure. Three exclusive categories of events are de ned, using jets within j j < 1:5: The two highest pT jets are b-tagged and back-to-back (j 1;2j > 2 =3); The rst and third highest pT jet are b-tagged and back-to-back (j 1;3j > 2 =3); The rst and third highest pT jet are b-tagged and nearby (j 1;3j < =3). In simulation, these categories are found to be dominated by FCR, FEX, and GSP events, respectively. The contribution of each process in simulation is reweighted such that the relative abundance of these three categories of events are the same as in data. The relative contributions of the three heavy- avor production sub-processes to these categories are shown in table 2. Also shown in table 2 are the relative occurrences of the three categories in data and simulation. Finally, table 3 shows the relative contribution of the three production processes to selected b dijets before and after the reweighting. The contribution of the FCR process to the selected b dijet events is found to be at the level of 70% in pythia 6 after the reweighting procedure is applied. Figure 8 shows the improved agreement of the xJ and distributions between data and simulation after reweighting. HJEP03(218) CMS CMS GSP FEX FCR HJEP03(218) 10 1 φ ing. Data are shown in solid points, while the stacked histograms show the contributions of di erent processes in pythia 6 (see text for details). The bottom set of panels show the di erence between data and simulation (MC). Open Access. This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited. Phys. E 24 (2015) 1530014 [arXiv:1511.00790] [INSPIRE]. [2] ATLAS collaboration, Observation of a centrality-dependent dijet asymmetry in lead-lead collisions at psNN = 2:77 TeV with the ATLAS detector at the LHC, Phys. Rev. Lett. 105 (2010) 252303 [arXiv:1011.6182] [INSPIRE]. [3] CMS collaboration, Observation and studies of jet quenching in PbPb collisions at nucleon-nucleon center-of-mass energy = 2:76 TeV, Phys. Rev. C 84 (2011) 024906 [arXiv:1102.1957] [INSPIRE]. [4] CMS collaboration, Measurement of transverse momentum relative to dijet systems in PbPb and pp collisions at psNN = 2:76 TeV, JHEP 01 (2016) 006 [arXiv:1509.09029] [INSPIRE]. psNN = 2:76 TeV with the ATLAS detector, Phys. Lett. B 774 (2017) 379 [5] ATLAS collaboration, Measurement of jet pT correlations in Pb+Pb and pp collisions at [arXiv:1706.09363] [INSPIRE]. Phys. J. C 76 (2016) 288 [arXiv:1512.08107] [INSPIRE]. 519 (2001) 199 [hep-ph/0106202] [INSPIRE]. 063 [arXiv:0802.1189] [INSPIRE]. [13] CMS collaboration, Particle- ow reconstruction and global event description with the CMS detector, 2017 JINST 12 P10003 [arXiv:1706.04965] [INSPIRE]. [14] O. Kodolova, I. Vardanian, A. Nikitenko and A. Oulianov, The performance of the jet identi cation and reconstruction in heavy ions collisions with CMS detector, Eur. Phys. J. C 50 (2007) 117 [INSPIRE]. [15] CMS collaboration, Determination of jet energy calibration and transverse momentum resolution in CMS, 2011 JINST 6 P11002 [arXiv:1107.4277] [INSPIRE]. [16] CMS collaboration, Identi cation of b-quark jets with the CMS experiment, 2013 JINST 8 P04013 [arXiv:1211.4462] [INSPIRE]. [17] CMS collaboration, Description and performance of track and primary-vertex reconstruction with the CMS tracker, 2014 JINST 9 P10009 [arXiv:1405.6569] [INSPIRE]. [18] GEANT4 collaboration, S. Agostinelli et al., GEANT4: a simulation toolkit, Nucl. Instrum. Meth. A 506 (2003) 250 [INSPIRE]. (2006) 026 [hep-ph/0603175] [INSPIRE]. 2631 [arXiv:1110.5530] [INSPIRE]. [19] T. Sjostrand, S. Mrenna and P.Z. Skands, PYTHIA 6:4 physics and manual, JHEP 05 [20] R. Field, Min-bias and the underlying event at the LHC, Acta Phys. Polon. B 42 (2011) [21] I.P. Lokhtin and A.M. Snigirev, A model of jet quenching in ultrarelativistic heavy ion collisions and high-pT hadron spectra at RHIC, Eur. Phys. J. C 45 (2006) 211 [hep-ph/0506189] [INSPIRE]. [22] CMS collaboration, Jet energy scale and resolution in the CMS experiment in pp collisions at 8 TeV, 2017 JINST 12 P02014 [arXiv:1607.03663] [INSPIRE]. [23] CMS collaboration, Measurement of jet fragmentation into charged particles in pp and PbPb collisions at psNN = 2:76 TeV, JHEP 10 (2012) 087 [arXiv:1205.5872] [INSPIRE]. [24] CMS collaboration, Measurement of jet fragmentation in PbPb and pp collisions at psNN = 2:76 TeV, Phys. Rev. C 90 (2014) 024908 [arXiv:1406.0932] [INSPIRE]. at psNN = 2:76 TeV, JHEP 02 (2016) 156 [arXiv:1601.00079] [INSPIRE]. [25] CMS collaboration, Correlations between jets and charged particles in PbPb and pp collisions heavy avour hadroproduction, JHEP 09 (2007) 126 [arXiv:0707.3088] [INSPIRE]. calculations in shower Monte Carlo programs: the POWHEG BOX, JHEP 06 (2010) 043 [28] S. Frixione, P. Nason and C. Oleari, Matching NLO QCD computations with parton shower simulations: the POWHEG method, JHEP 11 (2007) 070 [arXiv:0709.2092] [INSPIRE]. [29] P. Nason, A new method for combining NLO QCD with shower Monte Carlo algorithms, JHEP 11 (2004) 040 [hep-ph/0409146] [INSPIRE]. [31] CMS collaboration, Event generator tunes obtained from underlying event and multiparton scattering measurements, Eur. Phys. J. C 76 (2016) 155 [arXiv:1512.00815] [INSPIRE]. [32] M.L. Miller, K. Reygers, S.J. Sanders and P. Steinberg, Glauber modeling in high energy nuclear collisions, Ann. Rev. Nucl. Part. Sci. 57 (2007) 205 [nucl-ex/0701025] [INSPIRE]. [33] PHOBOS collaboration, B. Alver et al., Importance of correlations and uctuations on the initial source eccentricity in high-energy nucleus-nucleus collisions, Phys. Rev. C 77 (2008) 014906 [arXiv:0711.3724] [INSPIRE]. [34] CMS collaboration, Jet momentum dependence of jet quenching in PbPb collisions at psNN = 2:76 TeV, Phys. Lett. B 712 (2012) 176 [arXiv:1202.5022] [INSPIRE]. [35] CDF collaboration, D. Acosta et al., Measurements of bb azimuthal production correlations in pp collisions at p s = 1:8 TeV, Phys. Rev. D 71 (2005) 092001 [hep-ex/0412006] [INSPIRE]. HJEP03(218) Yerevan Physics Institute, Yerevan, Armenia A.M. Sirunyan, A. Tumasyan Institut fur Hochenergiephysik, Wien, Austria W. Adam, F. Ambrogi, E. Asilar, T. Bergauer, J. Brandstetter, E. Brondolin, M. Dragicevic, J. Ero, A. Escalante Del Valle, M. Flechl, M. Friedl, R. Fruhwirth1, V.M. Ghete, J. Grossmann, J. Hrubec, M. Jeitler1, A. Konig, N. Krammer, I. Kratschmer, D. Liko, T. Madlener, I. Mikulec, E. Pree, N. Rad, H. Rohringer, J. Schieck1, R. Schofbeck, Institute for Nuclear Problems, Minsk, Belarus V. Chekhovsky, V. Mossolov, J. Suarez Gonzalez Universiteit Antwerpen, Antwerpen, Belgium H. Van Haevermaet, P. Van Mechelen, N. Van Remortel Vrije Universiteit Brussel, Brussel, Belgium E.A. De Wolf, D. Di Croce, X. Janssen, J. Lauwers, M. Pieters, M. Van De Klundert, S. Abu Zeid, F. Blekman, J. D'Hondt, I. De Bruyn, J. De Clercq, K. Deroover, G. Flouris, D. Lontkovskyi, S. Lowette, I. Marchesini, S. Moortgat, L. Moreels, Q. Python, K. Skovpen, S. Tavernier, W. Van Doninck, P. Van Mulders, I. Van Parijs Universite Libre de Bruxelles, Bruxelles, Belgium D. Beghin, B. Bilin, H. Brun, B. Clerbaux, G. De Lentdecker, H. Delannoy, B. Dorney, G. Fasanella, L. Favart, R. Goldouzian, A. Grebenyuk, A.K. Kalsi, T. Lenzi, J. Luetic, T. Seva, E. Starling, C. Vander Velde, P. Vanlaer, D. Vannerom, R. Yonamine Ghent University, Ghent, Belgium T. Cornelis, D. Dobur, A. Fagot, M. Gul, I. Khvastunov2, D. Poyraz, C. Roskas, D. Trocino, M. Tytgat, W. Verbeke, B. Vermassen, M. Vit, N. Zaganidis Universite Catholique de Louvain, Louvain-la-Neuve, Belgium H. Bakhshiansohi, O. Bondu, S. Brochet, G. Bruno, C. Caputo, A. Caudron, P. David, S. De Visscher, C. Delaere, M. Delcourt, B. Francois, A. Giammanco, G. Krintiras, V. Lemaitre, A. Magitteri, A. Mertens, M. Musich, K. Piotrzkowski, L. Quertenmont, A. Saggio, M. Vidal Marono, S. Wertz, J. Zobec Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil W.L. Alda Junior, F.L. Alves, G.A. Alves, L. Brito, G. Correia Silva, C. Hensel, A. Moraes, M.E. Pol, P. Rebello Teles Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil E. Belchior Batista Das Chagas, W. Carvalho, J. Chinellato3, E. Coelho, E.M. Da Costa, G.G. Da Silveira4, D. De Jesus Damiao, S. Fonseca De Souza, H. Malbouisson, M. Medina Jaime5, M. Melo De Almeida, C. Mora Herrera, L. Mundim, H. Nogima, L.J. Sanchez Rosas, A. Santoro, A. Sznajder, M. Thiel, E.J. Tonelli Manganote3, F. Torres Da Silva De Araujo, A. Vilela Pereira Brazil Universidade Estadual Paulista a, Universidade Federal do ABC b, S~ao Paulo, P.G. Mercadanteb, S.F. Novaesa, Sandra S. Padulaa, D. Romero Abadb, J.C. Ruiz Vargasa Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, So a, Bulgaria A. Aleksandrov, R. Hadjiiska, P. Iaydjiev, A. Marinov, M. Misheva, M. Rodozov, M. Shopova, G. Sultanov University of So a, So a, Bulgaria A. Dimitrov, L. Litov, B. Pavlov, P. Petkov Beihang University, Beijing, China W. Fang6, X. Gao6, L. Yuan Institute of High Energy Physics, Beijing, China M. Ahmad, J.G. Bian, G.M. Chen, H.S. Chen, M. Chen, Y. Chen, C.H. Jiang, D. Leggat, H. Liao, Z. Liu, F. Romeo, S.M. Shaheen, A. Spiezia, J. Tao, C. Wang, Z. Wang, E. Yazgan, H. Zhang, J. Zhao Beijing, China State Key Laboratory of Nuclear Physics and Technology, Peking University, Y. Ban, G. Chen, J. Li, Q. Li, S. Liu, Y. Mao, S.J. Qian, D. Wang, Z. Xu Tsinghua University, Beijing, China Y. Wang Universidad de Los Andes, Bogota, Colombia C. Avila, A. Cabrera, C.A. Carrillo Montoya, L.F. Chaparro Sierra, C. Florez, C.F. Gonzalez Hernandez, M.A. Segura Delgado University of Split, Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, Split, Croatia B. Courbon, N. Godinovic, D. Lelas, I. Puljak, P.M. Ribeiro Cipriano, T. Sculac University of Split, Faculty of Science, Split, Croatia Z. Antunovic, M. Kovac Institute Rudjer Boskovic, Zagreb, Croatia V. Brigljevic, D. Ferencek, K. Kadija, B. Mesic, A. Starodumov7, T. Susa University of Cyprus, Nicosia, Cyprus M.W. Ather, A. Attikis, G. Mavromanolakis, J. Mousa, C. Nicolaou, F. Ptochos, P.A. Razis, H. Rykaczewski Charles University, Prague, Czech Republic M. Finger8, M. Finger Jr.8 Universidad San Francisco de Quito, Quito, Ecuador E. Carrera Jarrin Academy of Scienti c Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt H. Abdalla9, M.A. Mahmoud10;11, Y. Mohammed10 National Institute of Chemical Physics and Biophysics, Tallinn, Estonia S. Bhowmik, R.K. Dewanjee, M. Kadastik, L. Perrini, M. Raidal, C. Veelken Department of Physics, University of Helsinki, Helsinki, Finland P. Eerola, H. Kirschenmann, J. Pekkanen, M. Voutilainen Helsinki Institute of Physics, Helsinki, Finland J. Havukainen, J.K. Heikkila, T. Jarvinen, V. Karimaki, R. Kinnunen, T. Lampen, K. Lassila-Perini, S. Laurila, S. Lehti, T. Linden, P. Luukka, T. Maenpaa, H. Siikonen, E. Tuominen, J. Tuominiemi T. Tuuva Lappeenranta University of Technology, Lappeenranta, Finland IRFU, CEA, Universite Paris-Saclay, Gif-sur-Yvette, France M. Besancon, F. Couderc, M. Dejardin, D. Denegri, J.L. Faure, F. Ferri, S. Ganjour, S. Ghosh, A. Givernaud, P. Gras, G. Hamel de Monchenault, P. Jarry, C. Leloup, E. Locci, M. Machet, J. Malcles, G. Negro, J. Rander, A. Rosowsky, M.O . Sahin, M. Titov Laboratoire Leprince-Ringuet, Ecole polytechnique, CNRS/IN2P3, Universite Paris-Saclay, Palaiseau, France A. Abdulsalam12, C. Amendola, I. Antropov, S. Ba oni, F. Beaudette, P. Busson, L. Cadamuro, C. Charlot, R. Granier de Cassagnac, M. Jo, I. Kucher, S. Lisniak, A. Lobanov, J. Martin Blanco, M. Nguyen, C. Ochando, G. Ortona, P. Paganini, P. Pigard, R. Salerno, J.B. Sauvan, Y. Sirois, A.G. Stahl Leiton, Y. Yilmaz, A. Zabi, A. Zghiche Universite de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France S. Gadrat J.-L. Agram13, J. Andrea, D. Bloch, J.-M. Brom, E.C. Chabert, C. Collard, E. Conte13, X. Coubez, F. Drouhin13, J.-C. Fontaine13, D. Gele, U. Goerlach, M. Jansova, P. Juillot, A.-C. Le Bihan, N. Tonon, P. Van Hove Centre de Calcul de l'Institut National de Physique Nucleaire et de Physique des Particules, CNRS/IN2P3, Villeurbanne, France Universite de Lyon, Universite Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucleaire de Lyon, Villeurbanne, France S. Beauceron, C. Bernet, G. Boudoul, N. Chanon, R. Chierici, D. Contardo, P. Depasse, H. El Mamouni, J. Fay, L. Finco, S. Gascon, M. Gouzevitch, G. Grenier, B. Ille, F. Lagarde, I.B. Laktineh, H. Lattaud, M. Lethuillier, L. Mirabito, A.L. Pequegnot, S. Perries, A. Popov14, V. Sordini, M. Vander Donckt, S. Viret, S. Zhang Georgian Technical University, Tbilisi, Georgia T. Toriashvili15 Z. Tsamalaidze8 Tbilisi State University, Tbilisi, Georgia RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany C. Autermann, L. Feld, M.K. Kiesel, K. Klein, M. Lipinski, M. Preuten, M.P. Rauch, C. Schomakers, J. Schulz, M. Teroerde, B. Wittmer, V. Zhukov14 RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany A. Albert, D. Duchardt, M. Endres, M. Erdmann, S. Erdweg, T. Esch, R. Fischer, A. Guth, T. Hebbeker, C. Heidemann, K. Hoepfner, S. Knutzen, M. Merschmeyer, A. Meyer, P. Millet, S. Mukherjee, T. Pook, M. Radziej, H. Reithler, M. Rieger, F. Scheuch, D. Teyssier, S. Thuer RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany G. Flugge, B. Kargoll, T. Kress, A. Kunsken, T. Muller, A. Nehrkorn, A. Nowack, C. Pistone, O. Pooth, A. Stahl16 Deutsches Elektronen-Synchrotron, Hamburg, Germany M. Aldaya Martin, T. Arndt, C. Asawatangtrakuldee, K. Beernaert, O. Behnke, U. Behrens, A. Bermudez Mart nez, A.A. Bin Anuar, K. Borras17, V. Botta, A. Campbell, P. Connor, C. Contreras-Campana, F. Costanza, V. Danilov, A. De Wit, C. Diez Pardos, D. Dom nguez Damiani, G. Eckerlin, D. Eckstein, T. Eichhorn, E. Eren, E. Gallo18, J. Garay Garcia, A. Geiser, J.M. Grados Luyando, A. Grohsjean, P. Gunnellini, M. Gutho , A. Harb, J. Hauk, M. Hempel19, H. Jung, M. Kasemann, J. Keaveney, C. Kleinwort, J. Knolle, I. Korol, D. Krucker, W. Lange, A. Lelek, T. Lenz, K. Lipka, W. Lohmann19, R. Mankel, I.-A. Melzer-Pellmann, A.B. Meyer, M. Meyer, M. Missiroli, G. Mittag, J. Mnich, A. Mussgiller, D. Pitzl, A. Raspereza, M. Savitskyi, P. Saxena, R. Shevchenko, N. Stefaniuk, H. Tholen, G.P. Van Onsem, R. Walsh, Y. Wen, K. Wichmann, C. Wissing, O. Zenaiev University of Hamburg, Hamburg, Germany R. Aggleton, S. Bein, V. Blobel, M. Centis Vignali, T. Dreyer, E. Garutti, D. Gonzalez, J. Haller, A. Hinzmann, M. Ho mann, A. Karavdina, G. Kasieczka, R. Klanner, R. Kogler, N. Kovalchuk, S. Kurz, D. Marconi, J. Multhaup, M. Niedziela, D. Nowatschin, T. Pei er, A. Perieanu, A. Reimers, C. Scharf, P. Schleper, A. Schmidt, S. Schumann, J. Schwandt, J. Sonneveld, H. Stadie, G. Steinbruck, F.M. Stober, M. Stover, D. Troendle, E. Usai, A. Vanhoefer, B. Vormwald Institut fur Experimentelle Teilchenphysik, Karlsruhe, Germany M. Akbiyik, C. Barth, M. Baselga, S. Baur, E. Butz, R. Caspart, T. Chwalek, F. Colombo, W. De Boer, A. Dierlamm, N. Faltermann, B. Freund, R. Friese, M. Gi els, M.A. Harrendorf, F. Hartmann16, S.M. Heindl, U. Husemann, F. Kassel16, S. Kudella, H. Mildner, M.U. Mozer, Th. Muller, M. Plagge, G. Quast, K. Rabbertz, M. Schroder, I. Shvetsov, G. Sieber, H.J. Simonis, R. Ulrich, S. Wayand, M. Weber, T. Weiler, S. Williamson, C. Wohrmann, R. Wolf Paraskevi, Greece Institute of Nuclear and Particle Physics (INPP), NCSR Demokritos, Aghia G. Anagnostou, G. Daskalakis, T. Geralis, A. Kyriakis, D. Loukas, I. Topsis-Giotis National and Kapodistrian University of Athens, Athens, Greece G. Karathanasis, S. Kesisoglou, A. Panagiotou, N. Saoulidou, E. Tziaferi National Technical University of Athens, Athens, Greece K. Kousouris, I. Papakrivopoulos University of Ioannina, Ioannina, Greece I. Evangelou, C. Foudas, P. Gianneios, P. Katsoulis, P. Kokkas, S. Mallios, N. Manthos, I. Papadopoulos, E. Paradas, J. Strologas, F.A. Triantis, D. Tsitsonis MTA-ELTE Lendulet CMS Particle and Nuclear Physics Group, Eotvos Lorand University, Budapest, Hungary M. Csanad, N. Filipovic, G. Pasztor, O. Suranyi, G.I. Veres20 Wigner Research Centre for Physics, Budapest, Hungary D. Horvath21, A. Hunyadi, F. Sikler, V. Veszpremi, G. Bencze, C. Hajdu, G. Vesztergombi20, T.A. Vami Institute of Nuclear Research ATOMKI, Debrecen, Hungary N. Beni, S. Czellar, J. Karancsi22, A. Makovec, J. Molnar, Z. Szillasi Institute of Physics, University of Debrecen, Debrecen, Hungary M. Bartok20, P. Raics, Z.L. Trocsanyi, B. Ujvari Indian Institute of Science (IISc), Bangalore, India S. Choudhury, J.R. Komaragiri National Institute of Science Education and Research, Bhubaneswar, India S. Bahinipati23, P. Mal, K. Mandal, A. Nayak24, D.K. Sahoo23, S.K. Swain Panjab University, Chandigarh, India S. Bansal, S.B. Beri, V. Bhatnagar, S. Chauhan, R. Chawla, N. Dhingra, R. Gupta, A. Kaur, M. Kaur, S. Kaur, R. Kumar, P. Kumari, M. Lohan, A. Mehta, S. Sharma, J.B. Singh, G. Walia University of Delhi, Delhi, India Ashok Kumar, Aashaq Shah, A. Bhardwaj, B.C. Choudhary, R.B. Garg, S. Keshri, A. Kumar, S. Malhotra, M. Naimuddin, K. Ranjan, R. Sharma Saha Institute of Nuclear Physics, HBNI, Kolkata, India R. Bhardwaj25, R. Bhattacharya, S. Bhattacharya, U. Bhawandeep25, D. Bhowmik, S. Dey, S. Dutt25, S. Dutta, S. Ghosh, N. Majumdar, K. Mondal, S. Mukhopadhyay, S. Nandan, A. Purohit, P.K. Rout, A. Roy, S. Roy Chowdhury, S. Sarkar, M. Sharan, B. Singh, S. Thakur25 Indian Institute of Technology Madras, Madras, India P.K. Behera Bhabha Atomic Research Centre, Mumbai, India R. Chudasama, D. Dutta, V. Jha, V. Kumar, A.K. Mohanty16, P.K. Netrakanti, L.M. Pant, P. Shukla, A. Topkar Tata Institute of Fundamental Research-A, Mumbai, India T. Aziz, S. Dugad, B. Mahakud, S. Mitra, G.B. Mohanty, N. Sur, B. Sutar Tata Institute of Fundamental Research-B, Mumbai, India S. Banerjee, S. Bhattacharya, S. Chatterjee, P. Das, M. Guchait, Sa. Jain, S. Kumar, M. Maity26, G. Majumder, K. Mazumdar, N. Sahoo, T. Sarkar26, N. Wickramage27 Indian Institute of Science Education and Research (IISER), Pune, India S. Chauhan, S. Dube, V. Hegde, A. Kapoor, K. Kothekar, S. Pandey, A. Rane, S. Sharma Institute for Research in Fundamental Sciences (IPM), Tehran, Iran S. Chenarani28, E. Eskandari Tadavani, S.M. Etesami28, M. Khakzad, M. Mohammadi Najafabadi, M. Naseri, S. Paktinat Mehdiabadi29, F. Rezaei Hosseinabadi, B. Safarzadeh30, M. Zeinali University College Dublin, Dublin, Ireland M. Felcini, M. Grunewald INFN Sezione di Bari a, Universita di Bari b, Politecnico di Bari c, Bari, Italy M. Abbresciaa;b, C. Calabriaa;b, A. Colaleoa, D. Creanzaa;c, L. Cristellaa;b, N. De Filippisa;c, M. De Palmaa;b, A. Di Florioa;b, F. Erricoa;b, L. Fiorea, A. Gelmia;b, G. Iasellia;c, S. Lezkia;b, G. Maggia;c, M. Maggia, B. Marangellia;b, G. Minielloa;b, S. Mya;b, S. Nuzzoa;b, A. Pompilia;b, G. Pugliesea;c, R. Radognaa, A. Ranieria, G. Selvaggia;b, A. Sharmaa, L. Silvestrisa;16, R. Vendittia, P. Verwilligena, G. Zitoa INFN Sezione di Bologna a, Universita di Bologna b, Bologna, Italy G. Abbiendia, C. Battilanaa;b, D. Bonacorsia;b, L. Borgonovia;b, S. Braibant-Giacomellia;b, R. Campaninia;b, P. Capiluppia;b, A. Castroa;b, F.R. Cavalloa, S.S. Chhibraa;b, G. Codispotia;b, M. Cu ania;b, G.M. Dallavallea, F. Fabbria, A. Fanfania;b, D. Fasanellaa;b, P. Giacomellia, C. Grandia, L. Guiduccia;b, F. Iemmi, S. Marcellinia, G. Masettia, A. Montanaria, F.L. Navarriaa;b, A. Perrottaa, A.M. Rossia;b, T. Rovellia;b, G.P. Sirolia;b, INFN Sezione di Catania a, Universita di Catania b, Catania, Italy S. Albergoa;b, S. Costaa;b, A. Di Mattiaa, F. Giordanoa;b, R. Potenzaa;b, A. Tricomia;b, INFN Sezione di Firenze a, Universita di Firenze b, Firenze, Italy G. Barbaglia, K. Chatterjeea;b, V. Ciullia;b, C. Civininia, R. D'Alessandroa;b, E. Focardia;b, G. Latino, P. Lenzia;b, M. Meschinia, S. Paolettia, L. Russoa;31, G. Sguazzonia, D. Stroma, N. Tosia C. Tuvea;b L. Viliania INFN Laboratori Nazionali di Frascati, Frascati, Italy L. Benussi, S. Bianco, F. Fabbri, D. Piccolo, F. Primavera16 INFN Sezione di Genova a, Universita di Genova b, Genova, Italy V. Calvellia;b, F. Ferroa, F. Raveraa;b, E. Robuttia, S. Tosia;b INFN Sezione di Milano-Bicocca a, Universita di Milano-Bicocca b, Milano, Italy Italy A. Benagliaa, A. Beschib, L. Brianzaa;b, F. Brivioa;b, V. Cirioloa;b;16, M.E. Dinardoa;b, S. Fiorendia;b, S. Gennaia, A. Ghezzia;b, P. Govonia;b, M. Malbertia;b, S. Malvezzia, R.A. Manzonia;b, D. Menascea, L. Moronia, M. Paganonia;b, K. Pauwelsa;b, D. Pedrinia, S. Pigazzinia;b;32, S. Ragazzia;b, T. Tabarelli de Fatisa;b INFN Sezione di Napoli a, Universita di Napoli 'Federico II' b, Napoli, Italy, Universita della Basilicata c, Potenza, Italy, Universita G. Marconi d, Roma, S. Buontempoa, N. Cavalloa;c, S. Di Guidaa;d;16, F. Fabozzia;c, F. Fiengaa;b, G. Galatia;b, A.O.M. Iorioa;b, W.A. Khana, L. Listaa, S. Meolaa;d;16, P. Paoluccia;16, C. Sciaccaa;b, F. Thyssena, E. Voevodinaa;b Trento c, Trento, Italy INFN Sezione di Padova a, Universita di Padova b, Padova, Italy, Universita di P. Azzia, N. Bacchettaa, L. Benatoa;b, D. Biselloa;b, A. Bolettia;b, R. Carlina;b, A. Carvalho Antunes De Oliveiraa;b, P. Checchiaa, M. Dall'Ossoa;b, P. De Castro Manzanoa, T. Dorigoa, U. Dossellia, F. Gasparinia;b, U. Gasparinia;b, A. Gozzelinoa, S. Lacapraraa, P. Lujan, M. Margonia;b, N. Pozzobona;b, P. Ronchesea;b, R. Rossina;b, F. Simonettoa;b, A. Tiko, E. Torassaa, M. Zanettia;b, P. Zottoa;b, G. Zumerlea;b INFN Sezione di Pavia a, Universita di Pavia b, Pavia, Italy A. Braghieria, A. Magnania, P. Montagnaa;b, S.P. Rattia;b, V. Rea, M. Ressegottia;b, C. Riccardia;b, P. Salvinia, I. Vaia;b, P. Vituloa;b INFN Sezione di Perugia a, Universita di Perugia b, Perugia, Italy L. Alunni Solestizia;b, M. Biasinia;b, G.M. Bileia, C. Cecchia;b, D. Ciangottinia;b, L. Fanoa;b, P. Laricciaa;b, R. Leonardia;b, E. Manonia, G. Mantovania;b, V. Mariania;b, M. Menichellia, A. Rossia;b, A. Santocchiaa;b, D. Spigaa INFN Sezione di Pisa a, Universita di Pisa b, Scuola Normale Superiore di Pisa c, Pisa, Italy K. Androsova, P. Azzurria;16, G. Bagliesia, L. Bianchinia, T. Boccalia, L. Borrello, R. Castaldia, M.A. Cioccia;b, R. Dell'Orsoa, G. Fedia, L. Gianninia;c, A. Giassia, M.T. Grippoa;31, F. Ligabuea;c, T. Lomtadzea, P.G. Verdinia HJEP03(218) INFN Sezione di Roma a, Sapienza Universita di Roma b, Rome, Italy L. Baronea;b, F. Cavallaria, M. Cipriania;b, N. Dacia, D. Del Rea;b, E. Di Marcoa;b, M. Diemoza, S. Gellia;b, E. Longoa;b, B. Marzocchia;b, P. Meridiania, G. Organtinia;b, F. Pandol a, R. Paramattia;b, F. Preiatoa;b, S. Rahatloua;b, C. Rovellia, F. Santanastasioa;b INFN Sezione di Torino a, Universita di Torino b, Torino, Italy, Universita del Piemonte Orientale c, Novara, Italy N. Amapanea;b, R. Arcidiaconoa;c, S. Argiroa;b, M. Arneodoa;c, N. Bartosika, R. Bellana;b, C. Biinoa, N. Cartigliaa, R. Castelloa;b, F. Cennaa;b, M. Costaa;b, R. Covarellia;b, A. Deganoa;b, N. Demariaa, B. Kiania;b, C. Mariottia, S. Masellia, E. Migliorea;b, V. Monacoa;b, E. Monteila;b, M. Montenoa, M.M. Obertinoa;b, L. Pachera;b, N. Pastronea, M. Pelliccionia, G.L. Pinna Angionia;b, A. Romeroa;b, M. Ruspaa;c, R. Sacchia;b, K. Shchelinaa;b, V. Solaa, A. Solanoa;b, A. Staianoa INFN Sezione di Trieste a, Universita di Trieste b, Trieste, Italy S. Belfortea, M. Casarsaa, F. Cossuttia, G. Della Riccaa;b, A. Zanettia Kyungpook National University D.H. Kim, G.N. Kim, M.S. Kim, J. Lee, S. Lee, S.W. Lee, C.S. Moon, Y.D. Oh, S. Sekmen, D.C. Son, Y.C. Yang Kwangju, Korea H. Kim, D.H. Moon, G. Oh Chonnam National University, Institute for Universe and Elementary Particles, Hanyang University, Seoul, Korea J.A. Brochero Cifuentes, J. Goh, T.J. Kim Korea University, Seoul, Korea J. Lim, S.K. Park, Y. Roh Seoul National University, Seoul, Korea S.h. Seo, U.K. Yang, H.D. Yoo, G.B. Yu University of Seoul, Seoul, Korea H. Kim, J.H. Kim, J.S.H. Lee, I.C. Park Sungkyunkwan University, Suwon, Korea Y. Choi, C. Hwang, J. Lee, I. Yu Vilnius University, Vilnius, Lithuania V. Dudenas, A. Juodagalvis, J. Vaitkus S. Cho, S. Choi, Y. Go, D. Gyun, S. Ha, B. Hong, Y. Jo, Y. Kim, K. Lee, K.S. Lee, S. Lee, J. Almond, J. Kim, J.S. Kim, H. Lee, K. Lee, K. Nam, S.B. Oh, B.C. Radburn-Smith, National Centre for Particle Physics, Universiti Malaya, Kuala Lumpur, Malaysia M.N. Yusli, Z. Zolkapli I. Ahmed, Z.A. Ibrahim, M.A.B. Md Ali33, F. Mohamad Idris34, W.A.T. Wan Abdullah, HJEP03(218) Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico Reyes-Almanza, R, Ramirez-Sanchez, G., Duran-Osuna, M. C., H. Castilla-Valdez, E. De La Cruz-Burelo, I. Heredia-De La Cruz35, Rabadan-Trejo, R. I., R. Lopez-Fernandez, J. Mejia Guisao, A. Sanchez-Hernandez Universidad Iberoamericana, Mexico City, Mexico S. Carrillo Moreno, C. Oropeza Barrera, F. Vazquez Valencia Benemerita Universidad Autonoma de Puebla, Puebla, Mexico J. Eysermans, I. Pedraza, H.A. Salazar Ibarguen, C. Uribe Estrada Universidad Autonoma de San Luis Potos , San Luis Potos , Mexico A. Morelos Pineda University of Auckland, Auckland, New Zealand University of Canterbury, Christchurch, New Zealand National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan A. Ahmad, M. Ahmad, Q. Hassan, H.R. Hoorani, A. Saddique, M.A. Shah, M. Shoaib, National Centre for Nuclear Research, Swierk, Poland H. Bialkowska, M. Bluj, B. Boimska, T. Frueboes, M. Gorski, M. Kazana, K. Nawrocki, M. Szleper, P. Traczyk, P. Zalewski Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland K. Bunkowski, A. Byszuk36, K. Doroba, A. Kalinowski, M. Konecki, J. Krolikowski, M. Misiura, M. Olszewski, A. Pyskir, M. Walczak Laboratorio de Instrumentac~ao e F sica Experimental de Part culas, Lisboa, Portugal P. Bargassa, C. Beir~ao Da Cruz E Silva, A. Di Francesco, P. Faccioli, B. Galinhas, M. Gallinaro, J. Hollar, N. Leonardo, L. Lloret Iglesias, M.V. Nemallapudi, J. Seixas, G. Strong, O. Toldaiev, D. Vadruccio, J. Varela Joint Institute for Nuclear Research, Dubna, Russia S. Afanasiev, P. Bunin, M. Gavrilenko, I. Golutvin, I. Gorbunov, A. Kamenev, V. Karjavin, A. Lanev, A. Malakhov, V. Matveev37;38, P. Moisenz, V. Palichik, V. Perelygin, S. Shmatov, S. Shulha, N. Skatchkov, V. Smirnov, N. Voytishin, A. Zarubin Petersburg Nuclear Physics Institute, Gatchina (St. Petersburg), Russia Y. Ivanov, V. Kim39, E. Kuznetsova40, P. Levchenko, V. Murzin, V. Oreshkin, I. Smirnov, D. Sosnov, V. Sulimov, L. Uvarov, S. Vavilov, A. Vorobyev Institute for Nuclear Research, Moscow, Russia Yu. Andreev, A. Dermenev, S. Gninenko, N. Golubev, A. Karneyeu, M. Kirsanov, N. Krasnikov, A. Pashenkov, D. Tlisov, A. Toropin Institute for Theoretical and Experimental Physics, Moscow, Russia V. Epshteyn, V. Gavrilov, N. Lychkovskaya, V. Popov, I. Pozdnyakov, G. Safronov, A. Spiridonov, A. Stepennov, V. Stolin, M. Toms, E. Vlasov, A. Zhokin Moscow Institute of Physics and Technology, Moscow, Russia T. Aushev, A. Bylinkin38 National Research Nuclear University 'Moscow Engineering Physics Institute' (MEPhI), Moscow, Russia R. Chistov41, M. Danilov41, P. Parygin, D. Philippov, S. Polikarpov, E. Tarkovskii P.N. Lebedev Physical Institute, Moscow, Russia V. Andreev, M. Azarkin38, I. Dremin38, M. Kirakosyan38, S.V. Rusakov, A. Terkulov Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia I. Vardanyan A. Baskakov, A. Belyaev, E. Boos, A. Demiyanov, A. Ershov, A. Gribushin, O. Kodolova, V. Korotkikh, I. Lokhtin, I. Miagkov, S. Obraztsov, S. Petrushanko, V. Savrin, A. Snigirev, Novosibirsk State University (NSU), Novosibirsk, Russia V. Blinov42, D. Shtol42, Y. Skovpen42 State Research Center of Russian Federation, Institute for High Energy Physics of NRC &quot;Kurchatov Institute&quot;, Protvino, Russia I. Azhgirey, I. Bayshev, S. Bitioukov, D. Elumakhov, A. Godizov, V. Kachanov, A. Kalinin, D. Konstantinov, P. Mandrik, V. Petrov, R. Ryutin, A. Sobol, S. Troshin, N. Tyurin, A. Uzunian, A. Volkov A. Babaev National Research Tomsk Polytechnic University, Tomsk, Russia University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia P. Adzic43, P. Cirkovic, D. Devetak, M. Dordevic, J. Milosevic Centro de Investigaciones Energeticas Medioambientales y Tecnologicas (CIEMAT), Madrid, Spain J. Alcaraz Maestre, I. Bachiller, M. Barrio Luna, M. Cerrada, N. Colino, B. De La Cruz, A. Delgado Peris, C. Fernandez Bedoya, J.P. Fernandez Ramos, J. Flix, M.C. Fouz, O. Gonzalez Lopez, S. Goy Lopez, J.M. Hernandez, M.I. Josa, D. Moran, A. Perez-Calero Yzquierdo, J. Puerta Pelayo, I. Redondo, L. Romero, M.S. Soares, A. Triossi, A. Alvarez Fernandez Universidad Autonoma de Madrid, Madrid, Spain C. Albajar, J.F. de Troconiz Universidad de Oviedo, Oviedo, Spain J. Cuevas, C. Erice, J. Fernandez Menendez, S. Folgueras, I. Gonzalez Caballero, J.R. Gonzalez Fernandez, E. Palencia Cortezon, S. Sanchez Cruz, P. Vischia, J.M. Vizan Garcia Santander, Spain Instituto de F sica de Cantabria (IFCA), CSIC-Universidad de Cantabria, I.J. Cabrillo, A. Calderon, B. Chazin Quero, J. Duarte Campderros, M. Fernandez, P.J. Fernandez Manteca, J. Garcia-Ferrero, A. Garc a Alonso, G. Gomez, A. Lopez Virto, J. Marco, C. Martinez Rivero, P. Martinez Ruiz del Arbol, F. Matorras, J. Piedra Gomez, C. Prieels, T. Rodrigo, A. Ruiz-Jimeno, L. Scodellaro, N. Trevisani, I. Vila, R. Vilar Cortabitarte CERN, European Organization for Nuclear Research, Geneva, Switzerland D. Abbaneo, B. Akgun, E. Au ray, P. Baillon, A.H. Ball, D. Barney, J. Bendavid, M. Bianco, A. Bocci, C. Botta, T. Camporesi, M. Cepeda, G. Cerminara, E. Chapon, Y. Chen, D. d'Enterria, A. Dabrowski, V. Daponte, A. David, M. De Gruttola, A. De Roeck, N. Deelen, M. Dobson, T. du Pree, M. Dunser, N. Dupont, A. Elliott-Peisert, P. Everaerts, F. Fallavollita44, G. Franzoni, J. Fulcher, W. Funk, D. Gigi, A. Gilbert, K. Gill, F. Glege, D. Gulhan, J. Hegeman, V. Innocente, A. Jafari, P. Janot, O. Karacheban19, J. Kieseler, V. Knunz, A. Kornmayer, M. Krammer1, C. Lange, P. Lecoq, C. Lourenco, M.T. Lucchini, L. Malgeri, M. Mannelli, A. Martelli, F. Meijers, J.A. Merlin, S. Mersi, E. Meschi, P. Milenovic45, F. Moortgat, M. Mulders, H. Neugebauer, J. Ngadiuba, S. Orfanelli, L. Orsini, F. Pantaleo16, L. Pape, E. Perez, M. Peruzzi, A. Petrilli, G. Petrucciani, A. Pfei er, M. Pierini, F.M. Pitters, D. Rabady, A. Racz, T. Reis, G. Rolandi46, M. Rovere, H. Sakulin, C. Schafer, C. Schwick, M. Seidel, M. Selvaggi, A. Sharma, P. Silva, P. Sphicas47, A. Stakia, J. Steggemann, M. Stoye, M. Tosi, D. Treille, A. Tsirou, V. Veckalns48, M. Verweij, W.D. Zeuner Paul Scherrer Institut, Villigen, Switzerland W. Bertly, L. Caminada49, K. Deiters, W. Erdmann, R. Horisberger, Q. Ingram, H.C. Kaestli, D. Kotlinski, U. Langenegger, T. Rohe, S.A. Wiederkehr ETH Zurich - Institute for Particle Physics and Astrophysics (IPA), Zurich, Switzerland M. Backhaus, L. Bani, P. Berger, B. Casal, N. Chernyavskaya, G. Dissertori, M. Dittmar, M. Donega, C. Dorfer, C. Grab, C. Heidegger, D. Hits, J. Hoss, T. Klijnsma, W. Lustermann, M. Marionneau, M.T. Meinhard, D. Meister, F. Micheli, P. Musella, F. NessiTedaldi, J. Pata, F. Pauss, G. Perrin, L. Perrozzi, M. Quittnat, M. Reichmann, D. Ruini, D.A. Sanz Becerra, M. Schonenberger, L. Shchutska, V.R. Tavolaro, K. Theo latos, M.L. Vesterbacka Olsson, R. Wallny, D.H. Zhu Universitat Zurich, Zurich, Switzerland T.K. Aarrestad, C. Amsler50, D. Brzhechko, M.F. Canelli, A. De Cosa, R. Del Burgo, S. Donato, C. Galloni, T. Hreus, B. Kilminster, I. Neutelings, D. Pinna, G. Rauco, P. Robmann, D. Salerno, K. Schweiger, C. Seitz, Y. Takahashi, A. Zucchetta National Central University, Chung-Li, Taiwan V. Candelise, Y.H. Chang, K.y. Cheng, T.H. Doan, Sh. Jain, R. Khurana, C.M. Kuo, W. Lin, A. Pozdnyakov, S.S. Yu National Taiwan University (NTU), Taipei, Taiwan Arun Kumar, P. Chang, Y. Chao, K.F. Chen, P.H. Chen, F. Fiori, W.-S. Hou, Y. Hsiung, Y.F. Liu, R.-S. Lu, E. Paganis, A. Psallidas, A. Steen, J.f. Tsai Chulalongkorn University, Faculty of Science, Department of Physics, Bangkok, Thailand Turkey B. Asavapibhop, K. Kovitanggoon, G. Singh, N. Srimanobhas Cukurova University, Physics Department, Science and Art Faculty, Adana, A. Bat, F. Boran, S. Cerci51, S. Damarseckin, Z.S. Demiroglu, C. Dozen, I. Dumanoglu, S. Girgis, G. Gokbulut, Y. Guler, I. Hos52, E.E. Kangal53, O. Kara, A. Kayis Topaksu, U. Kiminsu, M. Oglakci, G. Onengut, K. Ozdemir54, D. Sunar Cerci51, U.G. Tok, H. Topakli55, S. Turkcapar, I.S. Zorbakir, C. Zorbilmez Middle East Technical University, Physics Department, Ankara, Turkey G. Karapinar56, K. Ocalan57, M. Yalvac, M. Zeyrek Bogazici University, Istanbul, Turkey E. Gulmez, M. Kaya58, O. Kaya59, S. Tekten, E.A. Yetkin60 Istanbul Technical University, Istanbul, Turkey M.N. Agaras, S. Atay, A. Cakir, K. Cankocak, Y. Komurcu Institute for Scintillation Materials of National Academy of Science of Ukraine, Kharkov, Ukraine B. Grynyov Kharkov, Ukraine L. Levchuk National Scienti c Center, Kharkov Institute of Physics and Technology, University of Bristol, Bristol, United Kingdom F. Ball, L. Beck, J.J. Brooke, D. Burns, E. Clement, D. Cussans, O. Davignon, H. Flacher, J. Goldstein, G.P. Heath, H.F. Heath, L. Kreczko, D.M. Newbold61, S. Paramesvaran, T. Sakuma, S. Seif El Nasr-storey, D. Smith, V.J. Smith Rutherford Appleton Laboratory, Didcot, United Kingdom A. Belyaev62, C. Brew, R.M. Brown, D. Cieri, D.J.A. Cockerill, J.A. Coughlan, K. Harder, S. Harper, J. Linacre, E. Olaiya, D. Petyt, C.H. Shepherd-Themistocleous, A. Thea, I.R. Tomalin, T. Williams, W.J. Womersley Imperial College, London, United Kingdom G. Auzinger, R. Bainbridge, P. Bloch, J. Borg, S. Breeze, O. Buchmuller, A. Bundock, S. Casasso, D. Colling, L. Corpe, P. Dauncey, G. Davies, M. Della Negra, R. Di Maria, A. Elwood, Y. Haddad, G. Hall, G. Iles, T. James, M. Komm, R. Lane, C. Laner, L. Lyons, A.-M. Magnan, S. Malik, L. Mastrolorenzo, T. Matsushita, J. Nash63, A. Nikitenko7, V. Palladino, M. Pesaresi, A. Richards, A. Rose, E. Scott, C. Seez, A. Shtipliyski, T. Strebler, S. Summers, A. Tapper, K. Uchida, M. Vazquez Acosta64, T. Virdee16, N. Wardle, D. Winterbottom, J. Wright, S.C. Zenz Brunel University, Uxbridge, United Kingdom J.E. Cole, P.R. Hobson, A. Khan, P. Kyberd, A. Morton, I.D. Reid, L. Teodorescu, S. Zahid Baylor University, Waco, U.S.A. A. Borzou, K. Call, J. Dittmann, K. Hatakeyama, H. Liu, N. Pastika, C. Smith Catholic University of America, Washington DC, U.S.A. R. Bartek, A. Dominguez The University of Alabama, Tuscaloosa, U.S.A. A. Buccilli, S.I. Cooper, C. Henderson, P. Rumerio, C. West Boston University, Boston, U.S.A. D. Arcaro, A. Avetisyan, T. Bose, D. Gastler, D. Rankin, C. Richardson, J. Rohlf, L. Sulak, D. Zou Brown University, Providence, U.S.A. G. Benelli, D. Cutts, M. Hadley, J. Hakala, U. Heintz, J.M. Hogan65, K.H.M. Kwok, E. Laird, G. Landsberg, J. Lee, Z. Mao, M. Narain, J. Pazzini, S. Piperov, S. Sagir, R. Syarif, D. Yu University of California, Davis, Davis, U.S.A. R. Band, C. Brainerd, R. Breedon, D. Burns, M. Calderon De La Barca Sanchez, M. Chertok, J. Conway, R. Conway, P.T. Cox, R. Erbacher, C. Flores, G. Funk, W. Ko, R. Lander, C. Mclean, M. Mulhearn, D. Pellett, J. Pilot, S. Shalhout, M. Shi, J. Smith, D. Stolp, D. Taylor, K. Tos, M. Tripathi, Z. Wang, F. Zhang University of California, Los Angeles, U.S.A. M. Bachtis, C. Bravo, R. Cousins, A. Dasgupta, A. Florent, J. Hauser, M. Ignatenko, N. Mccoll, S. Regnard, D. Saltzberg, C. Schnaible, V. Valuev University of California, Riverside, Riverside, U.S.A. E. Bouvier, K. Burt, R. Clare, J. Ellison, J.W. Gary, S.M.A. Ghiasi Shirazi, G. Hanson, G. Karapostoli, E. Kennedy, F. Lacroix, O.R. Long, M. Olmedo Negrete, M.I. Paneva, W. Si, L. Wang, H. Wei, S. Wimpenny, B. R. Yates HJEP03(218) J.G. Branson, S. Cittolin, M. Derdzinski, R. Gerosa, D. Gilbert, B. Hashemi, A. Holzner, D. Klein, G. Kole, V. Krutelyov, J. Letts, M. Masciovecchio, D. Olivito, S. Padhi, M. Pieri, M. Sani, V. Sharma, S. Simon, M. Tadel, A. Vartak, S. Wasserbaech66, J. Wood, F. Wurthwein, A. Yagil, G. Zevi Della Porta University of California, Santa Barbara - Department of Physics, Santa Barbara, U.S.A. N. Amin, R. Bhandari, J. Bradmiller-Feld, C. Campagnari, M. Citron, A. Dishaw, V. Dutta, M. Franco Sevilla, L. Gouskos, R. Heller, J. Incandela, A. Ovcharova, H. Qu, J. Richman, D. Stuart, I. Suarez, J. Yoo California Institute of Technology, Pasadena, U.S.A. D. Anderson, A. Bornheim, J. Bunn, J.M. Lawhorn, H.B. Newman, T. Q. Nguyen, C. Pena, M. Spiropulu, J.R. Vlimant, R. Wilkinson, S. Xie, Z. Zhang, R.Y. Zhu Carnegie Mellon University, Pittsburgh, U.S.A. M.B. Andrews, T. Ferguson, T. Mudholkar, M. Paulini, J. Russ, M. Sun, H. Vogel, I. Vorobiev, M. Weinberg University of Colorado Boulder, Boulder, U.S.A. J.P. Cumalat, W.T. Ford, F. Jensen, A. Johnson, M. Krohn, S. Leontsinis, E. MacDonald, T. Mulholland, K. Stenson, K.A. Ulmer, S.R. Wagner Cornell University, Ithaca, U.S.A. J. Alexander, J. Chaves, Y. Cheng, J. Chu, A. Datta, K. Mcdermott, N. Mirman, J.R. Patterson, D. Quach, A. Rinkevicius, A. Ryd, L. Skinnari, L. So , S.M. Tan, Z. Tao, J. Thom, J. Tucker, P. Wittich, M. Zientek Fermi National Accelerator Laboratory, Batavia, U.S.A. S. Abdullin, M. Albrow, M. Alyari, G. Apollinari, A. Apresyan, A. Apyan, S. Banerjee, L.A.T. Bauerdick, A. Beretvas, J. Berryhill, P.C. Bhat, G. Bollay, K. Burkett, J.N. Butler, A. Canepa, G.B. Cerati, H.W.K. Cheung, F. Chlebana, M. Cremonesi, J. Duarte, V.D. Elvira, J. Freeman, Z. Gecse, E. Gottschalk, L. Gray, D. Green, S. Grunendahl, O. Gutsche, J. Hanlon, R.M. Harris, S. Hasegawa, J. Hirschauer, Z. Hu, B. Jayatilaka, S. Jindariani, M. Johnson, U. Joshi, B. Klima, M.J. Kortelainen, B. Kreis, S. Lammel, D. Lincoln, R. Lipton, M. Liu, T. Liu, R. Lopes De Sa, J. Lykken, K. Maeshima, N. Magini, J.M. Marra no, D. Mason, P. McBride, P. Merkel, S. Mrenna, S. Nahn, V. O'Dell, K. Pedro, O. Prokofyev, G. Rakness, L. Ristori, A. Savoy-Navarro67, B. Schneider, E. Sexton-Kennedy, A. Soha, W.J. Spalding, L. Spiegel, S. Stoynev, J. Strait, N. Strobbe, L. Taylor, S. Tkaczyk, N.V. Tran, L. Uplegger, E.W. Vaandering, C. Vernieri, M. Verzocchi, R. Vidal, M. Wang, H.A. Weber, A. Whitbeck, W. Wu University of Florida, Gainesville, U.S.A. D. Acosta, P. Avery, P. Bortignon, D. Bourilkov, A. Brinkerho , A. Carnes, M. Carver, D. Curry, R.D. Field, I.K. Furic, S.V. Gleyzer, B.M. Joshi, J. Konigsberg, A. Korytov, K. Kotov, P. Ma, K. Matchev, H. Mei, G. Mitselmakher, K. Shi, D. Sperka, N. Terentyev, L. Thomas, J. Wang, S. Wang, J. Yelton Florida International University, Miami, U.S.A. Y.R. Joshi, S. Linn, P. Markowitz, J.L. Rodriguez Florida State University, Tallahassee, U.S.A. A. Ackert, T. Adams, A. Askew, S. Hagopian, V. Hagopian, K.F. Johnson, T. Kolberg, G. Martinez, T. Perry, H. Prosper, A. Saha, A. Santra, V. Sharma, R. Yohay Florida Institute of Technology, Melbourne, U.S.A. M.M. Baarmand, V. Bhopatkar, S. Colafranceschi, M. Hohlmann, D. Noonan, T. Roy, HJEP03(218) F. Yumiceva University of Illinois at Chicago (UIC), Chicago, U.S.A. M.R. Adams, L. Apanasevich, D. Berry, R.R. Betts, R. Cavanaugh, X. Chen, S. Dittmer, O. Evdokimov, C.E. Gerber, D.A. Hangal, D.J. Hofman, K. Jung, J. Kamin, I.D. Sandoval Gonzalez, M.B. Tonjes, N. Varelas, H. Wang, Z. Wu, J. Zhang The University of Iowa, Iowa City, U.S.A. B. Bilki68, W. Clarida, K. Dilsiz69, S. Durgut, R.P. Gandrajula, M. Haytmyradov, V. Khristenko, J.-P. Merlo, H. Mermerkaya70, A. Mestvirishvili, A. Moeller, J. Nachtman, H. Ogul71, Y. Onel, F. Ozok72, A. Penzo, C. Snyder, E. Tiras, J. Wetzel, K. Yi Johns Hopkins University, Baltimore, U.S.A. B. Blumenfeld, A. Cocoros, N. Eminizer, D. Fehling, L. Feng, A.V. Gritsan, P. Maksimovic, J. Roskes, U. Sarica, M. Swartz, M. Xiao, C. You The University of Kansas, Lawrence, U.S.A. A. Al-bataineh, P. Baringer, A. Bean, S. Boren, J. Bowen, J. Castle, S. Khalil, A. Kropivnitskaya, D. Majumder, W. Mcbrayer, M. Murray, C. Rogan, C. Royon, S. Sanders, E. Schmitz, J.D. Tapia Takaki, Q. Wang Kansas State University, Manhattan, U.S.A. A. Ivanov, K. Kaadze, Y. Maravin, A. Modak, A. Mohammadi, L.K. Saini, N. Skhirtladze Lawrence Livermore National Laboratory, Livermore, U.S.A. F. Rebassoo, D. Wright University of Maryland, College Park, U.S.A. A. Baden, O. Baron, A. Belloni, S.C. Eno, Y. Feng, C. Ferraioli, N.J. Hadley, S. Jabeen, G.Y. Jeng, R.G. Kellogg, J. Kunkle, A.C. Mignerey, F. Ricci-Tam, Y.H. Shin, A. Skuja, S.C. Tonwar Massachusetts Institute of Technology, Cambridge, U.S.A. D. Abercrombie, B. Allen, V. Azzolini, R. Barbieri, A. Baty, G. Bauer, R. Bi, S. Brandt, W. Busza, I.A. Cali, M. D'Alfonso, Z. Demiragli, G. Gomez Ceballos, M. Goncharov, P. Harris, D. Hsu, M. Hu, Y. Iiyama, G.M. Innocenti, M. Klute, D. Kovalskyi, Y.-J. Lee, A. Levin, P.D. Luckey, B. Maier, A.C. Marini, C. Mcginn, C. Mironov, S. Narayanan, X. Niu, C. Paus, C. Roland, G. Roland, G.S.F. Stephans, K. Sumorok, K. Tatar, D. Velicanu, J. Wang, T.W. Wang, B. Wyslouch, S. Zhaozhong University of Minnesota, Minneapolis, U.S.A. A.C. Benvenuti, R.M. Chatterjee, A. Evans, P. Hansen, S. Kalafut, Y. Kubota, Z. Lesko, J. Mans, S. Nourbakhsh, N. Ruckstuhl, R. Rusack, J. Turkewitz, M.A. Wadud University of Mississippi, Oxford, U.S.A. J.G. Acosta, S. Oliveros University of Nebraska-Lincoln, Lincoln, U.S.A. E. Avdeeva, K. Bloom, D.R. Claes, C. Fangmeier, F. Golf, R. Gonzalez Suarez, R. Kamalieddin, I. Kravchenko, J. Monroy, J.E. Siado, G.R. Snow, B. Stieger State University of New York at Bu alo, Bu alo, U.S.A. A. Godshalk, C. Harrington, I. Iashvili, D. Nguyen, A. Parker, S. Rappoccio, B. Roozbahani Northeastern University, Boston, U.S.A. G. Alverson, E. Barberis, C. Freer, A. Hortiangtham, A. Massironi, D.M. Morse, T. Orimoto, R. Teixeira De Lima, T. Wamorkar, B. Wang, A. Wisecarver, D. Wood Northwestern University, Evanston, U.S.A. S. Bhattacharya, O. Charaf, K.A. Hahn, N. Mucia, N. Odell, M.H. Schmitt, K. Sung, M. Trovato, M. Velasco University of Notre Dame, Notre Dame, U.S.A. R. Bucci, N. Dev, M. Hildreth, K. Hurtado Anampa, C. Jessop, D.J. Karmgard, N. Kellams, K. Lannon, W. Li, N. Loukas, N. Marinelli, F. Meng, C. Mueller, Y. Musienko37, M. Planer, A. Reinsvold, R. Ruchti, P. Siddireddy, G. Smith, S. Taroni, M. Wayne, A. Wightman, M. Wolf, A. Woodard The Ohio State University, Columbus, U.S.A. W. Ji, T.Y. Ling, W. Luo, B.L. Winer, H.W. Wulsin Princeton University, Princeton, U.S.A. J. Alimena, L. Antonelli, B. Bylsma, L.S. Durkin, S. Flowers, B. Francis, A. Hart, C. Hill, S. Cooperstein, O. Driga, P. Elmer, J. Hardenbrook, P. Hebda, S. Higginbotham, A. Kalogeropoulos, D. Lange, J. Luo, D. Marlow, K. Mei, I. Ojalvo, J. Olsen, C. Palmer, P. Piroue, J. Salfeld-Nebgen, D. Stickland, C. Tully University of Puerto Rico, Mayaguez, U.S.A. S. Malik, S. Norberg Purdue University, West Lafayette, U.S.A. A. Barker, V.E. Barnes, S. Das, L. Gutay, M. Jones, A.W. Jung, A. Khatiwada, D.H. Miller, N. Neumeister, C.C. Peng, H. Qiu, J.F. Schulte, J. Sun, F. Wang, R. Xiao, W. Xie Purdue University Northwest, Hammond, U.S.A. T. Cheng, J. Dolen, N. Parashar Rice University, Houston, U.S.A. Z. Chen, K.M. Ecklund, S. Freed, F.J.M. Geurts, M. Guilbaud, M. Kilpatrick, W. Li, B. Michlin, B.P. Padley, J. Roberts, J. Rorie, W. Shi, Z. Tu, J. Zabel, A. Zhang University of Rochester, Rochester, U.S.A. A. Bodek, P. de Barbaro, R. Demina, Y.t. Duh, T. Ferbel, M. Galanti, A. Garcia-Bellido, J. Han, O. Hindrichs, A. Khukhunaishvili, K.H. Lo, P. Tan, M. Verzetti The Rockefeller University, New York, U.S.A. R. Ciesielski, K. Goulianos, C. Mesropian Rutgers, The State University of New Jersey, Piscataway, U.S.A. A. Agapitos, J.P. Chou, Y. Gershtein, T.A. Gomez Espinosa, E. Halkiadakis, M. Heindl, E. Hughes, S. Kaplan, R. Kunnawalkam Elayavalli, S. Kyriacou, A. Lath, R. Montalvo, K. Nash, M. Osherson, H. Saka, S. Salur, S. Schnetzer, D. She eld, S. Somalwar, R. Stone, S. Thomas, P. Thomassen, M. Walker University of Tennessee, Knoxville, U.S.A. A.G. Delannoy, J. Heideman, G. Riley, K. Rose, S. Spanier, K. Thapa Texas A&M University, College Station, U.S.A. O. Bouhali73, A. Castaneda Hernandez73, A. Celik, M. Dalchenko, M. De Mattia, A. Delgado, S. Dildick, R. Eusebi, J. Gilmore, T. Huang, T. Kamon74, R. Mueller, Y. Pakhotin, R. Patel, A. Perlo , L. Pernie, D. Rathjens, A. Safonov, A. Tatarinov Texas Tech University, Lubbock, U.S.A. N. Akchurin, J. Damgov, F. De Guio, P.R. Dudero, J. Faulkner, E. Gurpinar, S. Kunori, K. Lamichhane, S.W. Lee, T. Mengke, S. Muthumuni, T. Peltola, S. Undleeb, I. Volobouev, Z. Wang Vanderbilt University, Nashville, U.S.A. S. Greene, A. Gurrola, R. Janjam, W. Johns, C. Maguire, A. Melo, H. Ni, K. Padeken, J.D. Ruiz Alvarez, P. Sheldon, S. Tuo, J. Velkovska, Q. Xu University of Virginia, Charlottesville, U.S.A. M.W. Arenton, P. Barria, B. Cox, R. Hirosky, M. Joyce, A. Ledovskoy, H. Li, C. Neu, T. Sinthuprasith, Y. Wang, E. Wolfe, F. Xia Wayne State University, Detroit, U.S.A. R. Harr, P.E. Karchin, N. Poudyal, J. Sturdy, P. Thapa, S. Zaleski University of Wisconsin - Madison, Madison, WI, U.S.A. M. Brodski, J. Buchanan, C. Caillol, D. Carlsmith, S. Dasu, L. Dodd, S. Duric, B. Gomber, M. Grothe, M. Herndon, A. Herve, U. Hussain, P. Klabbers, A. Lanaro, A. Levine, K. Long, R. Loveless, V. Rekovic, T. Ruggles, A. Savin, N. Smith, W.H. Smith, N. Woods y: Deceased 1: Also at Vienna University of Technology, Vienna, Austria 3: Also at Universidade Estadual de Campinas, Campinas, Brazil 4: Also at Federal University of Rio Grande do Sul, Porto Alegre, Brazil 5: Also at Universidade Federal de Pelotas, Pelotas, Brazil 6: Also at Universite Libre de Bruxelles, Bruxelles, Belgium 7: Also at Institute for Theoretical and Experimental Physics, Moscow, Russia 8: Also at Joint Institute for Nuclear Research, Dubna, Russia 9: Also at Cairo University, Cairo, Egypt 10: Also at Fayoum University, El-Fayoum, Egypt 11: Now at British University in Egypt, Cairo, Egypt 12: Also at Department of Physics, King Abdulaziz University, Jeddah, Saudi Arabia 13: Also at Universite de Haute Alsace, Mulhouse, France 14: Also at Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia 15: Also at Tbilisi State University, Tbilisi, Georgia 16: Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland 17: Also at RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany 18: Also at University of Hamburg, Hamburg, Germany 19: Also at Brandenburg University of Technology, Cottbus, Germany 20: Also at MTA-ELTE Lendulet CMS Particle and Nuclear Physics Group, Eotvos Lorand University, Budapest, Hungary 21: Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary 22: Also at Institute of Physics, University of Debrecen, Debrecen, Hungary 23: Also at Indian Institute of Technology Bhubaneswar, Bhubaneswar, India 24: Also at Institute of Physics, Bhubaneswar, India 25: Also at Shoolini University, Solan, India 26: Also at University of Visva-Bharati, Santiniketan, India 27: Also at University of Ruhuna, Matara, Sri Lanka 28: Also at Isfahan University of Technology, Isfahan, Iran 29: Also at Yazd University, Yazd, Iran 30: Also at Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran 31: Also at Universita degli Studi di Siena, Siena, Italy 32: Also at INFN Sezione di Milano-Bicocca; Universita di Milano-Bicocca, Milano, Italy 33: Also at International Islamic University of Malaysia, Kuala Lumpur, Malaysia 34: Also at Malaysian Nuclear Agency, MOSTI, Kajang, Malaysia 35: Also at Consejo Nacional de Ciencia y Tecnolog a, Mexico city, Mexico 36: Also at Warsaw University of Technology, Institute of Electronic Systems, Warsaw, Poland 37: Also at Institute for Nuclear Research, Moscow, Russia 38: Now at National Research Nuclear University 'Moscow 39: Also at St. Petersburg State Polytechnical University, St. Petersburg, Russia 40: Also at University of Florida, Gainesville, U.S.A. 41: Also at P.N. Lebedev Physical Institute, Moscow, Russia 42: Also at Budker Institute of Nuclear Physics, Novosibirsk, Russia 43: Also at Faculty of Physics, University of Belgrade, Belgrade, Serbia 44: Also at INFN Sezione di Pavia; Universita di Pavia, Pavia, Italy 45: Also at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, 46: Also at Scuola Normale e Sezione dell'INFN, Pisa, Italy 47: Also at National and Kapodistrian University of Athens, Athens, Greece 48: Also at Riga Technical University, Riga, Latvia 49: Also at Universitat Zurich, Zurich, Switzerland 50: Also at Stefan Meyer Institute for Subatomic Physics (SMI), Vienna, Austria 51: Also at Adiyaman University, Adiyaman, Turkey 52: Also at Istanbul Aydin University, Istanbul, Turkey 53: Also at Mersin University, Mersin, Turkey 54: Also at Piri Reis University, Istanbul, Turkey 55: Also at Gaziosmanpasa University, Tokat, Turkey 56: Also at Izmir Institute of Technology, Izmir, Turkey 57: Also at Necmettin Erbakan University, Konya, Turkey 58: Also at Marmara University, Istanbul, Turkey 59: Also at Kafkas University, Kars, Turkey 60: Also at Istanbul Bilgi University, Istanbul, Turkey 61: Also at Rutherford Appleton Laboratory, Didcot, United Kingdom 62: Also at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom 63: Also at Monash University, Faculty of Science, Clayton, Australia 64: Also at Instituto de Astrof sica de Canarias, La Laguna, Spain 65: Also at Bethel University, ST. PAUL, U.S.A. 66: Also at Utah Valley University, Orem, U.S.A. 67: Also at Purdue University, West Lafayette, U.S.A. 68: Also at Beykent University, Istanbul, Turkey 69: Also at Bingol University, Bingol, Turkey 70: Also at Erzincan University, Erzincan, Turkey 71: Also at Sinop University, Sinop, Turkey 72: Also at Mimar Sinan University, Istanbul, Istanbul, Turkey 73: Also at Texas A&M University at Qatar, Doha, Qatar 74: Also at Kyungpook National University, Daegu, Korea [1] G.-Y. Qin and X.-N. Wang , Jet quenching in high-energy heavy-ion collisions, Int . J. Mod. [6] J.G. Milhano and K.C. Zapp, Origins of the di-jet asymmetry in heavy ion collisions , Eur. [7] Y.L. Dokshitzer and D.E. Kharzeev , Heavy quark colorimetry of QCD matter , Phys. Lett. B [8] K. Zapp , G. Ingelman, J. Rathsman , J. Stachel and U.A. Wiedemann , A Monte Carlo model for `jet quenching' , Eur. Phys. J. C 60 ( 2009 ) 617 [arXiv: 0804 .3568] [INSPIRE]. [9] CMS collaboration, Evidence of b-jet quenching in PbPb collisions at psNN = 2:76 TeV, Phys . Rev. Lett . 113 ( 2014 ) 132301 [Erratum ibid . 115 ( 2015 ) 029903] [arXiv: 1312 .4198] [10] CMS collaboration, The CMS experiment at the CERN LHC, 2008 JINST 3 S08004 [11] CMS collaboration, The CMS trigger system , 2017 JINST 12 P01020 [arXiv:1609 .02366] [12] M. Cacciari , G.P. Salam and G. Soyez, The anti-kt jet clustering algorithm , JHEP 04 ( 2008 ) [26] S. Frixione , P. Nason and G. Ridol , A positive-weight next-to-leading-order Monte Carlo for [27] S. Alioli , P. Nason , C. Oleari and E. Re , A general framework for implementing NLO [30] T . Sjostrand, S. Mrenna and P.Z. Skands , A brief introduction to PYTHIA 8:1 , Comput . Phys. Commun . 178 ( 2008 ) 852 [arXiv: 0710 .3820] [INSPIRE].


This is a preview of a remote PDF: https://link.springer.com/content/pdf/10.1007%2FJHEP03%282018%29181.pdf

The CMS collaboration, A. M. Sirunyan, A. Tumasyan, W. Adam, F. Ambrogi, E. Asilar, T. Bergauer, J. Brandstetter, E. Brondolin, M. Dragicevic, J. Erö, A. Escalante Del Valle, M. Flechl, M. Friedl, R. Frühwirth, V. M. Ghete, J. Grossmann, J. Hrubec, M. Jeitler, A. König, N. Krammer, I. Krätschmer, D. Liko, T. Madlener, I. Mikulec, E. Pree, N. Rad, H. Rohringer, J. Schieck, R. Schöfbeck, M. Spanring, D. Spitzbart, A. Taurok, W. Waltenberger, J. Wittmann, C.-E. Wulz, M. Zarucki, V. Chekhovsky, V. Mossolov, J. Suarez Gonzalez, E. A. De Wolf, D. Di Croce, X. Janssen, J. Lauwers, M. Pieters, M. Van De Klundert, H. Van Haevermaet, P. Van Mechelen, N. Van Remortel, S. Abu Zeid, F. Blekman, J. D’Hondt, I. De Bruyn, J. De Clercq, K. Deroover, G. Flouris, D. Lontkovskyi, S. Lowette, I. Marchesini, S. Moortgat, L. Moreels, Q. Python, K. Skovpen, S. Tavernier, W. Van Doninck, P. Van Mulders, I. Van Parijs, D. Beghin, B. Bilin, H. Brun, B. Clerbaux, G. De Lentdecker, H. Delannoy, B. Dorney, G. Fasanella, L. Favart, R. Goldouzian, A. Grebenyuk, A. K. Kalsi, T. Lenzi, J. Luetic, T. Seva, E. Starling, C. Vander Velde, P. Vanlaer, D. Vannerom, R. Yonamine, T. Cornelis, D. Dobur, A. Fagot, M. Gul, I. Khvastunov, D. Poyraz, C. Roskas, D. Trocino, M. Tytgat, W. Verbeke, B. Vermassen, M. Vit, N. Zaganidis, H. Bakhshiansohi, O. Bondu, S. Brochet, G. Bruno, C. Caputo, A. Caudron, P. David, S. De Visscher, C. Delaere, M. Delcourt, B. Francois, A. Giammanco, G. Krintiras, V. Lemaitre, A. Magitteri, A. Mertens, M. Musich, K. Piotrzkowski, L. Quertenmont, A. Saggio, M. Vidal Marono, S. Wertz, J. Zobec, W. L. Aldá Júnior, F. L. Alves, G. A. Alves, L. Brito, G. Correia Silva, C. Hensel, A. Moraes, M. E. Pol, P. Rebello Teles, E. Belchior Batista Das Chagas, W. Carvalho, J. Chinellato, E. Coelho, E. M. Da Costa, G. G. Da Silveira, D. De Jesus Damiao, S. Fonseca De Souza, H. Malbouisson, M. Medina Jaime, M. Melo De Almeida, C. Mora Herrera, L. Mundim, H. Nogima, L. J. Sanchez Rosas, A. Santoro, A. Sznajder, M. Thiel, E. J. Tonelli Manganote, F. Torres Da Silva De Araujo, A. Vilela Pereira, S. Ahuja, C. A. Bernardes, L. Calligaris, T. R. Fernandez Perez Tomei, E. M. Gregores, P. G. Mercadante, S. F. Novaes, Sandra S. Padula, D. Romero Abad, J. C. Ruiz Vargas, A. Aleksandrov, R. Hadjiiska, P. Iaydjiev, A. Marinov, M. Misheva, M. Rodozov, M. Shopova, G. Sultanov, A. Dimitrov, L. Litov, B. Pavlov, P. Petkov, W. Fang, X. Gao, L. Yuan, M. Ahmad, J. G. Bian, G. M. Chen, H. S. Chen, M. Chen, Y. Chen, C. H. Jiang, D. Leggat, H. Liao, Z. Liu, F. Romeo, S. M. Shaheen, A. Spiezia, J. Tao, C. Wang, Z. Wang, E. Yazgan, H. Zhang, J. Zhao, Y. Ban, G. Chen, J. Li, Q. Li, S. Liu, Y. Mao, S. J. Qian, D. Wang, Z. Xu, Y. Wang, C. Avila, A. Cabrera, C. A. Carrillo Montoya, L. F. Chaparro Sierra, C. Florez, C. F. González Hernández, M. A. Segura Delgado, B. Courbon, N. Godinovic, D. Lelas, I. Puljak, P. M. Ribeiro Cipriano, T. Sculac, Z. Antunovic, M. Kovac, V. Brigljevic, D. Ferencek, K. Kadija, B. Mesic, A. Starodumov, T. Susa, M. W. Ather, A. Attikis, G. Mavromanolakis, J. Mousa, C. Nicolaou, F. Ptochos, P. A. Razis, H. Rykaczewski, M. Finger, M. Finger, E. Carrera Jarrin, H. Abdalla, M. A. Mahmoud, Y. Mohammed, S. Bhowmik, R. K. Dewanjee, M. Kadastik, L. Perrini, M. Raidal, C. Veelken, P. Eerola, H. Kirschenmann, J. Pekkanen, M. Voutilainen, J. Havukainen, J. K. Heikkilä, T. Järvinen, V. Karimäki, R. Kinnunen, T. Lampén, K. Lassila-Perini, S. Laurila, S. Lehti, T. Lindén, P. Luukka, T. Mäenpää, H. Siikonen, E. Tuominen, J. Tuominiemi, T. Tuuva, M. Besancon, F. Couderc, M. Dejardin, D. Denegri, J. L. Faure, F. Ferri, S. Ganjour, S. Ghosh, A. Givernaud, P. Gras, G. Hamel de Monchenault, P. Jarry, C. Leloup, E. Locci, M. Machet, J. Malcles, G. Negro, J. Rander, A. Rosowsky, M. Ö. Sahin, M. Titov, A. Abdulsalam, C. Amendola, I. Antropov, S. Baffioni, F. Beaudette, P. Busson, L. Cadamuro, C. Charlot, R. Granier de Cassagnac, M. Jo, I. Kucher, S. Lisniak, A. Lobanov, J. Martin Blanco, M. Nguyen, C. Ochando, G. Ortona, P. Paganini, P. Pigard, R. Salerno, J. B. Sauvan, Y. Sirois, A. G. Stahl Leiton, Y. Yilmaz, A. Zabi, A. Zghiche, J.-L. Agram, J. Andrea, D. Bloch, J.-M. Brom, E. C. Chabert, C. Collard, E. Conte, X. Coubez, F. Drouhin, J.-C. Fontaine, D. Gelé, U. Goerlach, M. Jansová, P. Juillot, A.-C. Le Bihan, N. Tonon, P. Van Hove, S. Gadrat, S. Beauceron, C. Bernet, G. Boudoul, N. Chanon, R. Chierici, D. Contardo, P. Depasse, H. El Mamouni, J. Fay, L. Finco, S. Gascon, M. Gouzevitch, G. Grenier, B. Ille, F. Lagarde, I. B. Laktineh, H. Lattaud, M. Lethuillier, L. Mirabito, A. L. Pequegnot, S. Perries, A. Popov, V. Sordini, M. Vander Donckt, S. Viret, S. Zhang, T. Toriashvili, Z. Tsamalaidze, C. Autermann, L. Feld, M. K. Kiesel, K. Klein, M. Lipinski, M. Preuten, M. P. Rauch, C. Schomakers, J. Schulz, M. Teroerde, B. Wittmer, V. Zhukov, A. Albert, D. Duchardt, M. Endres, M. Erdmann, S. Erdweg, T. Esch, R. Fischer, A. Güth, T. Hebbeker, C. Heidemann, K. Hoepfner. Comparing transverse momentum balance of b jet pairs in pp and PbPb collisions at \( \sqrt{s_{\mathrm{NN}}}=5.02 \) TeV, Journal of High Energy Physics, 2018, 181, DOI: 10.1007/JHEP03(2018)181