Search for natural supersymmetry in events with top quark pairs and photons in pp collisions at \( \sqrt{s}=8 \) TeV

Journal of High Energy Physics, Mar 2018

Abstract Results are presented from a search for natural gauge-mediated supersymmetry (SUSY) in a scenario in which the top squark is the lightest squark, the next-to-lightest SUSY particle is a bino-like neutralino, and the lightest SUSY particle is the gravitino. The strong production of top squark pairs can produce events with pairs of top quarks and neutralinos, with each bino-like neutralino decaying to a photon and a gravitino. The search is performed using a sample of pp collision data accumulated by the CMS experiment at \( \sqrt{s}=8 \) TeV, corresponding to an integrated luminosity of 19.7 fb−1. The final state consists of a lepton (electron or muon), jets, and one or two photons. The imbalance in transverse momentum in the events is compared with the expected spectrum from standard model processes. No excess event yield is observed beyond the expected background, and the result is interpreted in the context of a general model of gauge-mediated SUSY breaking that leads to exclusion of top squark masses below 650–730 GeV. Open image in new window

A PDF file should load here. If you do not see its contents the file may be temporarily unavailable at the journal website or you do not have a PDF plug-in installed and enabled in your browser.

Alternatively, you can download the file locally and open with any standalone PDF reader:

https://link.springer.com/content/pdf/10.1007%2FJHEP03%282018%29167.pdf

Search for natural supersymmetry in events with top quark pairs and photons in pp collisions at \( \sqrt{s}=8 \) TeV

HJE p s = 8 TeV quark pairs and photons in pp collisions at Physics Processes Results are presented from a search for natural gauge-mediated supersymmetry (SUSY) in a scenario in which the top squark is the lightest squark, the next-to-lightest SUSY particle is a bino-like neutralino, and the lightest SUSY particle is the gravitino. The strong production of top squark pairs can produce events with pairs of top quarks and neutralinos, with each bino-like neutralino decaying to a photon and a gravitino. The search is performed using a sample of pp collision data accumulated by the CMS experiment at s = 8 TeV, corresponding to an integrated luminosity of 19.7 fb 1. The nal state consists of a lepton (electron or muon), jets, and one or two photons. The imbalance in transverse momentum in the events is compared with the expected spectrum from standard model processes. No excess event yield is observed beyond the expected background, and the result is interpreted in the context of a general model of gauge-mediated SUSY breaking that leads to exclusion of top squark masses below 650{730 GeV. Hadron-Hadron scattering (experiments); Supersymmetry - The CMS collaboration 1 Introduction 2 3 4 5 6 Event selection and analysis strategy Results and interpretation Summary The CMS collaboration ing to an integrated luminosity of 19.7 fb 1 of pp collisions at p In this paper, we describe a search for light top squarks (et) in a data sample corresponds = 8 TeV. This search is motivated by models of gauge-mediated SUSY breaking (GMSB) [27{29] in which the neutralino ( e01) is the next-to-lightest sparticle (NLSP) and the gravitino (G~) is the lightest sparticle (LSP). The gravitino escapes undetected and contributes to missing transverse +pTmiss topology. This event topology is shown in the background estimates because of the exceedingly small cross section for such events in the SM. Two signal regions are de ned for both electron and muon channels, depending on the presence of one or two selected photons in the event. Control regions are similarly de ned, using photons that fail either the nominal isolation or shower-energy distribution requirements. The results of the analysis are evaluated by comparing the shapes of pTmiss distributions between the data and estimated backgrounds in the one- and two-photon signal regions. The results are interpreted for a range of top squark and neutralino masses in a general gauge-mediated (GGM) SUSY model framework [32{37]. 2 The CMS detector The central feature of the CMS detector is a superconducting solenoid with an internal diameter of 6 m, providing a magnetic eld of 3.8 T. A silicon pixel and strip tracker, a lead tungstate crystal electromagnetic calorimeter (ECAL), and a brass and scintillator sampling hadron calorimeter (HCAL), each separated into central barrel and endcap sections, reside within the eld volume. Extensive forward calorimetry complements the coverage provided by the barrel and endcap detectors. The muon system, embedded in the steel return yoke outside of the solenoid, measures muons using drift tubes, cathode strip chambers, and resistive plate chambers. An energy resolution averaging approximately 1% is achieved for unconverted or lateconverting photons in the energy range of photons in the barrel section of ECAL. The remaining converted barrel photons have a resolution of about 1.3% up to a pseudorapidity of j j = 1, rising to about 2.5% at j j = 1:4 [38]. Only photons located in the barrel of the ECAL are considered in this analysis because of the superior energy resolution in the barrel compared to the endcap. { 2 { The rst level of the CMS trigger system, constructed using special hardware processors, provides information from the calorimeters and muon detectors to select the most interesting events in a xed time interval of less than 4 s. The high-level trigger processor farm further decreases the event rate from around 100 kHz to about 400 Hz before data storage. A more detailed description of the CMS detector, together with a de nition of the coordinate system and the kinematic variables, such as or the azimuthal angle (in radians), can be found in ref. [39]. 3 Object reconstruction All physics objects in the event (muons, electrons, photons, jets, and pmiss) are reconstructed using the particle- ow (PF) algorithm [40, 41]. Jets are formed by clustering PF candidates using the anti-kT algorithm [42], as implemented in FastJet toolkit [43], using a distance parameter of 0.5, and their momenta are corrected for e ects of multiple interactions in the same or neighboring bunch crossings (pileup). The pmiss of an event is de ned by the projection of the negative of the vector sum of the momenta of all reconstructed objects in the event onto the plane perpendicular to the proton beams. All PF candidates are used in the calculation of pTmiss. p ( Photons are reconstructed from energy clusters in the ECAL barrel (j j < 1:44), are required to be highly isolated from other objects, and to have transverse momentum pT > 20 GeV. The ratio of the energy deposited in the HCAL tower closest to the seed of the ECAL photon cluster to the energy in the photon cluster has to be less than ve percent. The photon shower is required to have a photon-like spatial distribution in its energy [38]. The isolation variable, de ned through the sum of the scalar values of pT of all PF candidates within a cone centered on the photon axis, in the plane of R = )2 + ( )2 = 0:3, is calculated without including the pT of the candidate photon. The isolation energy for charged hadrons is required to be <15 GeV, the neutral-hadron energy <3.5 GeV + 4% of the photon candidate pT, and the isolation energy from any other photons in the cone must be <13 GeV + 0.5% of the candidate photon pT. Pileup corrections depending on are applied to all calculated isolation variables. Electrons are reconstructed from clusters of deposited energy in the ECAL that are matched to a track in the silicon tracker [44]. Candidate electrons are required to have pT > 30 GeV, and to be within j j < 2:5, excluding the small transition region (1:44 < j j < 1:52) between the ECAL barrel and the endcaps. Electrons are required to be isolated, with the sum of the energy deposition within a cone of radius R = 0:3, excluding the electron, to correspond to < 10% of the momentum of the candidate electron. Muons are reconstructed from measurements in the muon system and compatible track segments in the silicon tracker [45]. Candidate muons are required to have pT > 30 GeV, be within j j < 2:1, and to have an isolation energy sum in a cone of radius R = 0:4, excluding the muon, of <12% of their pT. Looser lepton requirements are applied to identify extra leptons that are used to veto the dilepton tt nal states, as described in section 4. { 3 { HJEP03(218)67 The combined secondary vertex algorithm (CSV) [46, 47] is used to identify jets from b quarks. The CSV algorithm uses secondary vertices and track impact parameters to provide a discriminant separating b quark jets from charm, light quark, or gluon jets. The selection e ciency is about 70% for b quark jets and 20% for c quark jets. The rejection factor for lighter quark or gluon jets at this working point is about 2%. 4 Event selection and analysis strategy Events are required to pass either a single-electron or single-muon trigger, requiring one isolated electron or muon with minimum pT of 27 or 24 GeV, respectively. In addition, the single-muon trigger requires the muon candidate to be within j j < 2:1. The trigger e ciency is approximately 100% using o ine cuts on pT of 30 GeV. Only one lepton and at least three jets with pT > 30 GeV and j j < 2:4 are required, with at least one of the three jets tagged as originating from a b quark. All objects are required to be separated from each other by at least R = 0:5. Events containing additional leptons satisfying less restrictive criteria of pT > 10 GeV, j j < 2:5, and isolation-energy sums with <20% of their pT, are rejected. After this preselection, events are separated into independent samples based on the number of candidate photons. Candidate photons are required to be separated from all jets by R > 0:7. Two signal regions are de ned, with SR1 containing one photon candidate, and SR2 at least two photon candidates. Photons that fail either the shower-energy distribution or charged-hadron isolation criteria are referred to as fake photons. These objects are predominantly jets with large electromagnetic uctuations in their hadronization and are used to de ne two control regions: CR1, containing one fake and no properly reconstructed photons, and CR2, containing two or more fake and no properly reconstructed photons. The control regions are de ned not to overlap with signal regions, to have very small acceptance for signal, and to greatly enhance the population of photon-like jets that contribute most of the estimated background in signal regions. The control regions also provide events that can be used to study the performance of the pTmiss simulation for poorly reconstructed photon-like objects in the signal region. The e ect on the pmiss resolution from these poorly reconstructed photon-like objects is found to be negligible compared to the e ect of pT resolutions in the T jets from the tt decays. The background expected in the signal regions is largely dominated by tt+jets and tt+ events, where many selected photons may originate from misreconstructed jets. These two processes are simulated in Monte Carlo (MC) using the leading-order (LO) MadGraph 5.1.3 [48] matrix element generator matched to pythia 6.426 [49] for parton showering and fragmentation. Simulated tt+ events are generated in a 2 ! 7 con guration (pp!bbjj` ). Approximately 0.6% of the simulated tt+jets events that contain a generator-level photon fall into the phase space of the tt+ sample, and are removed to avoid double counting these events. Most other backgrounds are simulated with MadGraph and matched to pythia, including W+jets or Z+jets, tt+W or tt+Z, W+ or Z+ , and diboson (ZZ, WZ, and WW) processes. Single top quark events are generated { 4 { MadGraph 5.1.3 powheg 1.0 pythia 6.42 tauola Z2* tune Geant4 CTEQ6M SuSpect 2.41 prospino 2.1 sdecay 1.2 Purpose (LO) Matrix element generator (NLO) Matrix element generator Parton showering and fragmentation Decay of leptons Modeling of underlying event Modeling of the CMS detector Parton distribution functions (PDF) Generation of GGM signal spectrum (NLO) Cross section calculation Decay tables for GGM particles All backgrounds except single top Single top quark backgrounds All backgrounds and signal Single top quark backgrounds All backgrounds and signal All backgrounds and signal All backgrounds and signal with the next-to-lowest-order (NLO) generator powheg 1.0 [50], modeling the decay of leptons with tauola [51]. The Z2* tune [52, 53] is used for the underlying event. All simulated backgrounds are processed using the full simulation of the response of the CMS detector using the Geant4 [54] package, and reconstructed under the same conditions as the data. These backgrounds are then normalized to the integrated luminosity of the data using their respective cross sections calculated at least at NLO. The CTEQ6M parton distribution functions (PDF) are used in the signal and background simulations [55]. A summary of the software used in the MC simulations of backgrounds is given in table 1. In the muon+jets channel, the background from Z+jets and Z+ events is very small T because of the low probablility for a muon to be misidenti ed as a photon. In the electron+jets channel, however, these processes contribute more to the background, especially at low pmiss, because the probability for an electron to be misidenti ed as a photon is much greater. This electron misidenti cation rate can be determined from the size of the peak at the Z boson mass in the invariant mass distribution of electron-photon pairs in the electron+jets channel of SR1. This rate depends on an estimate of the number of selected Z bosons in the electron+jets channel, the accuracy of which can be improved through the implementation of a scale factor (SF ) extracted to normalize the Z+jets and Z+ MC events in both the electron and muon channels. The SF is measured imposing a dilepton selection similar to the one used in the SR1 selection, but altered to require two same- avor leptons rather than just a single lepton. Events with additional leptons are vetoed, and no photons are required. A t to the invariant mass of the dilepton system in data, using the Z+jets and Z+ MC events as the signal template and all other MC events as background templates, provides a normalization scale factor for both the Z+jets and Z+ MC events, labeled SFZ( ), in the electron and the muon channels. Once this rst SF is applied to correct the MC estimate of the number of Z bosons, the Z resonance in the SR1 electron+jets channel is used to obtain a second scale factor SFe! which corrects the misidenti cation of electrons as photons. A t to the invariant mass of the electron-photon system in SR1 data, with pmiss < 50 GeV, to limit the presence of signal, is performed using the Z+jets and Z+ MC events to determine their contributions. T Generator-level matching of reconstructed photons to generated electrons is applied to { 5 { e 1.38 channel, only the SFZ( ) scale factor is relevant. The rst uncertainties are statistical, obtained from uncertainties in the resultant ts. The second uncertainties correspond to di erences in the resulting scale factors, added in quadrature, that were obtained by allowing each systematic uncertainty to uctuate up and down by one standard deviation and re tting. increase the purity of the misidenti ed e mass template. To increase the statistics available for each template, the b tagging requirement is removed from the MC events and from the data sample, as the misidenti cation does not depend on the presence of a b jet. From the result of this t, a normalization SFe! is measured and applied to both the Z+jets and Z+ MC events in the electron-signal regions. A corresponding SF ! scale factor is not applied in the muon-signal regions, as the misidenti cation of muons as photons is negligible. The results of the ts for each of these scale factors are listed in table 2. Comparisons of the data and MC distributions are shown in gure 2 after the applying the scale factors of table 2. The nal ingredient needed to estimate the background is the relative compositions of photons and photon-like jets in the dominant tt+jets and tt+ backgrounds. As stated in the introdcution, no explicit tt+ sample is used in the background estimate because of the exceedingly small cross section for such events. The sources of two photon events in SR2 are largely the result of jets or electrons misidenti ed as photons as described above, or of initial or nal-state radiation as predicted by pythia. While the precise photon T purity in each signal region is important for absolute measurements, no di erence in the overall shape of simulated pmiss is found when altering the purity of selected photons. The maximum bin-by-bin di erence between the simulated pmiss of tt+jets and tt+ events is found to be 5%. When their relative normalizations are adjusted to the observed photon T T purity in data through a t to the photon isolation variable, the result is well contained within the statistical uncertainties in the pmiss distribution. The pmiss distribution in both signal regions is found to be insensitive to the source of selected photons in tt+jets and tt+ backgrounds, and, as such, no dedicated tt+ sample is required. To eliminate any dependence on the overall production rate of tt+ events, the normalizations of tt+jets and T tt+ backgrounds are allowed to oat freely in the calculations of upper limits, so that the interpretation of the results is based completely on the observed shapes of the distributions. T The control regions allow us to validate the prediction of the pTmiss background, as they contain less than 1% contamination from signal. Inverting the requirements on the photon shower selection or on charged-hadron isolation, the CR1 and CR2 regions can contain the same tt systems as the signal regions, but with greatly enhanced contributions from misidenti ed jets compared to the photon content in each sample. The observed data and predicted background pmiss are shown in gure 3 for each control region. { 6 { 19.7 fb-1 (8 TeV) ee+bjj Data Z(γ) + jets Other backgrounds 104 CMS V e G 0 1 / .d1.5 D 20 V e G 0 1 / .d1.5 D 20 .d1.5 160 m 180 eγ [GeV] and (middle pane) for the muon channels. The lower pane shows the result of the t of me SR1 electron data (without the b tag requirement) to determine SFe! . The mass spectra are shown post- t after the application of the derived scale factors. The ratio of data to the total background is included in the lower panel of each plot. Uncertainties include the quadratic sum of all statistical and systematic components. { 7 { eV102 G / /B 1 D 0 0 CMS WW, WZ, ZZ, W+gamma, and Z+gamma. the modeling of pmiss, and is applied bin-by-bin in the signal region. The KolmogorovSmirnov test [56] result of 0.66 between data and simulation for CR2 is attributable to the very small number of events in data and, therefore, CR2 is not used to determine an uncertainty for the signal region SR2. The CR1 results are therefore used for both SR1 and SR2. An additional systematic uncertainty in SR1 is obtained using the bin-bybin fractional di erences (1 CR1=SR1) of CR1 and SR1 pmiss shapes. A nal systematic T this accounts for a 10{20% systematic uncertainty from di erences between the data and the CR1 MC pmiss shapes, a 1{8% systematic uncertainty in SR1 due to the di erence between CR1 and SR1 pmiss shapes, and a 10{50% systematic uncertainty (the 50% value applies only in the highest bin of pmiss) in SR2, based on the di erence SR1 and SR2 5 Results and interpretation For any given background or signal process, contributions from systematic uncertainties affecting pTmiss are treated simultaneously and are assumed to be completely uncorrelated. All backgrounds are simulated using MC generated events and assigned systematic uncertainties based on integrated luminosity uncertainties, PDF and scale uncertainties, corrections for the number of pileup events, and jet energy scale and resolution (JES and JER). Estimated uncertainties on trigger e ciency and object selections are derived from the systematic uncertainties in MC scale factors. These include trigger e ciencies, b tagging [46, 47] as well as electron [44], muon [45], and photon identi cation [38]. The systematic uncertainties are summarized in table 3. The observed data are compared to the SM background estimates as a function of pTmiss in each signal region, as shown in gure 4. No signi cant deviation is observed between data and the background prediction. The nal results are summarized in table 4. To demonstated what a GGM signal would look like compared to the data, an example of a GGM spectrum is generated with FastSim [57] using pythia 6 and SuSpect 2.41 [58], using the decay tables from sdecay 1.2 [59] and NLO cross sections calculated with prospino 2.1 [60]. We scan over the parameters M1 (U(1)Y ), gaugino (bino) mass and MtR in the SLHA les [61]. The other input parameters of GGM such as M2 (SU(2)L), gaugino (wino) mass) and MdR, etc. are decoupled. As a result sdecay + SuSpect produce neutralino and top squark masses that are similar to the settings of M1 and MtR, and the rest of the particles masses are in the TeV range. The GGM signal is shown superimposed on the data and background MC in gure 4. e The mass of the top squark (mt) is chosen to range from 360 to 910 GeV. The neutralino is assumed for simplicity to be 100% bino-like, decaying 100% to a photon plus a gravitino. The neutralino mass (me01 ) is chosen to range from 150 to 725 GeV and the gravitino mass is 1 GeV. Signal points are evaluated in 25 GeV steps in both me01 and m e and in 50 GeV steps for higher masses. All other SUSY particles (squarks, gluinos, and CMS 19.7 fb-1 (8 TeV) e or μ + b + jj + γ Data vE 1 10−1 10−2 10−3 /B 1 photons. Each bin is normalized by its bin width. gauginos) are decoupled by setting their masses to very large values so that the only relevant process is the production of top squark pairs that decay to bino-like NLSPs. The mass b jets limits the sensitivity in this mass range. region where m t e me01 < mt is not considered, as the requirement for high-pT leptons and No signi cant excess of events is observed beyond the SM expectation, and 95% condence level (CL) upper limits are placed on the cross sections by combining the results of all four search regions (electron SR1, muon SR1, electron SR2, and muon SR2) using the CLs criterion [62{64]. The test statistic is constructed as the product of likelihood ratios in bins of pTmiss. Systematic uncertainties are included as nuisance parameters in the signal Source Integrated luminosity Lepton ID/trigger Photon ID Pileup JES/JER b tagging PDFs Renormalization and factorization scales Control region discrepancy SR1/CR1 shape di erences SR2/SR1 shape di erences SUSY cross sections W or Z + jets the control region. In the calculation of the upper limits, the normalizations of the tt+jets and tt+ backgrounds are allowed to oat freely in the t. Check marks indicate the uncertainties that a ect the shape of pTmiss. statistical and the second is systematic. Expectations from two GGM signal model points are included, for which (460, 175) refers to m 460 GeV and me01 = 175 GeV, and similarly for (560, 325). The rst group of uncertainties is e t = T and background pmiss shapes. Systematic uncertainties a ecting only the normalization of signal or background processes are modeled through log-normal distributions, taken as the probability density functions in their associated nuisance parameters. Fluctuations in the shape of pTmiss distributions determine both upward and downward systematic uncertainties. A single 100% nuisance parameter is introduced with a log-uniform probability density function for its normalization to allow the tt and tt+ normalizations to oat freely in the upper-limit calculation. Statistical uncertainties resulting from the limited number of MC events are also included as nuisance parameters, as prescribed in ref. [65]. Shapes Uncertainty (%) 64 35 6 1.1 116 1.0 388 411 6 1.9 19.7 fb-1(8 TeV) e or μ + b + jj + γ(γ) p p → ~t~t, ~t→ t + ∼χ01 , ∼χ01 → γ + G~ Observed UL 600 800 V e 0 1 V e G 0 1 0 m∼χ1 m~t m~t < 0 m∼χ1 m~t 0 m∼χ1 400 < m t p p u L m C % 5 9 section at 95% CL in the met{me01 plane. The expected and observed upper limits are shown in gure 5. The observed upper limits are slightly less stringent than the expected limits. Observed and expected exclusion contours are also determined and shown in gure 6 with exclusion of top squark mass below 650 to 730 GeV corresponding to neutralino masses of 500 and 150 GeV, respectively. These exclusions are obtained using the 1 theoretical excursion from the observed exclusion mean. G 0 m∼χ1 m t 19.7 fb-1 (8 TeV) e or μ + b + jj + γ(γ) p p → ~t ~t, ~t → t + ∼χ01 , ∼χ01 → γ + G~ Observed ± 1σtheory Expected ± 1σexperiment 600 800 plane, and their ranges of uncertainties given by the contours at the 68% CL. The region to the left of the contour for mt-me01 < mt is excluded by this analysis. e 6 Summary We have presented a search for natural gauge-mediated supersymmetry breaking in events with a top quark pair and one or two photons. No signi cant deviation is found in the distribution of the missing transverse momentum between data and expected SM backgrounds that would indicate the presence of new physics. Upper limits on signal cross sections are calculated for a range of top squark and bino masses. Top squark masses between 650 to 730 GeV are excluded at the 95% CL corresponding to the neutralino mass range of 500 to 150 GeV, respectively. These top squark mass points are obtained using the 1 theoretical excursion from the observed exclusion mean. These results set the most stringent exclusions on top squark masses in gauge-mediated supersymmetric model considered here. Acknowledgments We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative sta s at CERN and at other CMS institutes for their contributions to the success of the CMS e ort. In addition, we gratefully acknowledge the computing centers and personnel of the Worldwide LHC Computing Grid for delivering so e ectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMWFW and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES and CSF (Croatia); RPF (Cyprus); SENESCYT (Ecuador); MoER, ERC IUT, and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NIH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); MSIP and NRF (Republic of Korea); LAS (Lithuania); MOE and UM (Malaysia); BUAP, CINVESTAV, CONACYT, LNS, SEP, and UASLP-FAI (Mexico); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS, RFBR and RAEP (Russia); MESTD (Serbia); SEIDI, CPAN, PCTI and FEDER (Spain); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter, IPST, STAR, and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU and SFFR (Ukraine); STFC (United Kingdom); DOE and NSF (U.S.A.). Individuals have received support from the Marie-Curie program and the European Research Council and Horizon 2020 Grant, contract No. 675440 (European Union); the Leventis Foundation; the A. P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy O ce; the Fonds pour la Formation a la Recherche dans l'Industrie et dans l'Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the Ministry of Education, Youth and Sports (MEYS) of the Czech Republic; the Council of Science and Industrial Research, India; the HOMING PLUS program of the Foundation for Polish Science, co nanced from European Union, Regional Development Fund, the Mobility Plus program of the Ministry of Science and Higher Education, the National Science Center (Poland), contracts Harmonia 2014/14/M/ST2/00428, Opus 2014/13/B/ST2/02543, 2014/15/B/ST2/03998, and 2015/19/B/ST2/02861, Sonata-bis 2012/07/E/ST2/01406; the National Priorities Research Program by Qatar National Research Fund; the Programa Clar n-COFUND del Principado de Asturias; the Thalis and Aristeia programs co nanced by EU-ESF and the Greek NSRF; the Rachadapisek Sompot Fund for Postdoctoral Fellowship, Chulalongkorn University and the Chulalongkorn Academic into Its 2nd Century Project Advancement Project (Thailand); and the Welch Foundation, contract C-1845. Open Access. This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited. (1974) 39 [INSPIRE]. 438 [INSPIRE]. [1] J. Wess and B. Zumino, Supergauge transformations in four-dimensions, Nucl. Phys. B 70 [2] Yu. A. Golfand and E.P. Likhtman, Extension of the algebra of Poincare group generators and violation of p invariance, JETP Lett. 13 (1971) 323 [INSPIRE]. [3] D.V. Volkov and V.P. Akulov, Possible universal neutrino interaction, JETP Lett. 16 (1972) Phys. Rev. Lett. 49 (1982) 970 [INSPIRE]. HJEP03(218)67 breaking, Phys. Rev. D 27 (1983) 2359 [INSPIRE]. Sci. Ser. B 59 (1980) 135. (1981) 575 [INSPIRE]. (1981) 150 [INSPIRE]. [16] ATLAS collaboration, Observation of a new particle in the search for the standard model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE]. [17] CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235]. [18] ATLAS and CMS collaboration, Combined measurement of the Higgs boson mass in pp collisions at p (2015) 191803 [arXiv:1503.07589] [INSPIRE]. s = 7 and 8 TeV with the ATLAS and CMS experiments, Phys. Rev. Lett. 114 [19] J. Barnard, B. Farmer, T. Gherghetta and M. White, Natural gauge mediation with a bino NLSP at the LHC, Phys. Rev. Lett. 109 (2012) 241801 [arXiv:1208.6062] [INSPIRE]. [20] Y. Kats, P. Meade, M. Reece and D. Shih, The status of GMSB after 1/fb at the LHC, JHEP 02 (2012) 115 [arXiv:1110.6444] [INSPIRE]. [21] CMS collaboration, Searches for pair production of third-generation squarks in p s = 13 TeV pp collisions, Eur. Phys. J. C 77 (2017) 327 [arXiv:1612.03877] [INSPIRE]. [22] CMS collaboration, Search for top squark and higgsino production using diphoton Higgs boson decays, Phys. Rev. Lett. 112 (2014) 161802 [arXiv:1312.3310] [INSPIRE]. [23] CMS collaboration, Search for top-squark pairs decaying into Higgs or Z bosons in pp collisions at p s = 8 TeV, Phys. Lett. B 736 (2014) 371 [arXiv:1405.3886] [INSPIRE]. [24] ATLAS collaboration, Search for supersymmetry in events with photons, bottom quarks and missing transverse momentum in proton{proton collisions at a centre-of-mass energy of 7 TeV with the ATLAS detector, Phys. Lett. B 719 (2013) 261 [arXiv:1211.1167] [INSPIRE]. [25] ATLAS collaboration, Search for photonic signatures of gauge-mediated supersymmetry in 8 TeV pp collisions with the ATLAS detector, Phys. Rev. D 92 (2015) 072001 [26] ATLAS collaboration, Search for top squarks in nal states with one isolated lepton, jets and missing transverse momentum in p Phys. Rev. D 94 (2016) 052009 [arXiv:1606.03903] [INSPIRE]. s = 13 TeV pp collisions with the ATLAS detector, [27] M. Dine and W. Fischler, A phenomenological model of particle physics based on [28] C.R. Nappi and B.A. Ovrut, Supersymmetric extension of the SU(3) SU(2) U(1) model, (2009) 143 [arXiv:0801.3278] [INSPIRE]. (2009) 016 [arXiv:0812.3668] [INSPIRE]. [33] M. Buican, P. Meade, N. Seiberg and D. Shih, Exploring general gauge mediation, JHEP 03 supersymmetry, Phys. Lett. 110 (1982) 227. Phys. Lett. 113B (1982) 175 [INSPIRE]. 207 (1982) 96 [INSPIRE]. [hep-ph/0406039] [INSPIRE]. mediation, JHEP 12 (2009) 001 [arXiv:0910.2674] [INSPIRE]. [35] J.T. Ruderman and D. Shih, General neutralino NLSPs at the early LHC, JHEP 08 (2012) 159 [arXiv:1103.6083] [INSPIRE]. [36] Y. Kats and M.J. Strassler, Probing colored particles with photons, leptons and jets, JHEP 11 (2012) 097 [Erratum ibid. 07 (2016) 009] [arXiv:1204.1119] [INSPIRE]. [37] P. Grajek, A. Mariotti and D. Redigolo, Phenomenology of general gauge mediation in light of a 125 GeV Higgs, JHEP 07 (2013) 109 [arXiv:1303.0870] [INSPIRE]. [38] CMS collaboration, Performance of photon reconstruction and identi cation with the CMS s = 8 TeV, 2015 JINST 10 P08010 detector in proton-proton collisions at p [arXiv:1502.02702] [INSPIRE]. [39] CMS collaboration, The CMS experiment at the CERN LHC, 2008 JINST 3 S08004 [40] CMS collaboration, Particle- ow reconstruction and global event description with the CMS detector, 2017 JINST 12 P10003 [arXiv:1706.04965] [INSPIRE]. jet events from pp collisions at 7 TeV, CMS-PAS-PFT-10-002 (2010). [41] CMS collaboration, Commissioning of the particle- ow reconstruction in minimum-bias and [42] M. Cacciari, G.P. Salam and G. Soyez, The anti-kt jet clustering algorithm, JHEP 04 (2008) 063 [arXiv:0802.1189] [INSPIRE]. p p [arXiv:1111.6097] [INSPIRE]. [44] CMS collaboration, Performance of electron reconstruction and selection with the CMS detector in proton-proton collisons at p(s) = 8 TeV, 2006 JINST 10 P06005. [45] CMS collaboration, Performance of CMS muon reconstruction in pp collision events at s = 7 TeV, 2012 JINST 7 P10002 [arXiv:1206.4071] [INSPIRE]. [46] CMS collaboration, Identi cation of b-quarks jets with the CMS experiment, CMS-PAS-BTV-12-001 (2012). [47] CMS collaboration, Performance of b tagging at ps = 8 TeV in multijet, tt and boosted simulations: the POWHEG method, JHEP 11 (2007) 070 [arXiv:0709.2092] [INSPIRE]. [51] Z. Was, TAUOLA the library for tau lepton decay and KKMC/KORALB/KORALZ/: : : status report, Nucl. Phys. Proc. Suppl. 98 (2001) 96 [hep-ph/0011305] [INSPIRE]. [52] CMS collaboration, Study of the underlying event at forward rapidity in pp collisions at s = 0:9, 2:76 and 7 TeV, JHEP 04 (2013) 072 [arXiv:1302.2394] [INSPIRE]. [53] CMS collaboration, Event generator tunes obtained from underlying event and multiparton scattering measurements, Eur. Phys. J. C 76 (2016) 155 [arXiv:1512.00815] [INSPIRE]. [54] GEANT4 collaboration, S. Agostinelli et al., GEANT4 | a simulation toolkit, Nucl. Instrum. Meth. A 506 (2003) 250 [INSPIRE]. analysis, JHEP 07 (2002) 012 [hep-ph/0201195] [INSPIRE]. [55] J. Pumplin et al., New generation of parton distributions with uncertainties from global QCD [56] N. Smirnov, Table for estimating the goodness of t of empirical distributions, Ann. Math. Statist. 19 (1948) 279. (2011) 032049. [hep-ph/0211331] [INSPIRE]. [57] S. Abdullin et al., The fast simulation of the CMS detector at LHC, J. Phys. Conf. Ser. 331 [58] A. Djouadi, J.-L. Kneur and G. Moultaka, SuSpect: a Fortran code for the supersymmetric and Higgs particle spectrum in the MSSM, Comput. Phys. Commun. 176 (2007) 426 [59] M. Muhlleitner, A. Djouadi and Y. Mambrini, SDECAY: a Fortran code for the decays of the supersymmetric particles in the MSSM, Comput. Phys. Commun. 168 (2005) 46 [hep-ph/0311167] [INSPIRE]. [60] W. Beenakker, R. Hopker and M. Spira, PROSPINO: a program for the production of supersymmetric particles in next-to-leading order QCD, hep-ph/9611232 [INSPIRE]. [61] B.C. Allanach et al., SUSY Les Houches accord 2, Comput. Phys. Commun. 180 (2009) 8 [arXiv:0801.0045] [INSPIRE]. [62] T. Junk, Con dence level computation for combining searches with small statistics, Nucl. Instrum. Meth. A 434 (1999) 435 [hep-ex/9902226]. [INSPIRE]. Commun. 77 (1993) 219 [INSPIRE]. Yerevan Physics Institute, Yerevan, Armenia A.M. Sirunyan, A. Tumasyan Institut fur Hochenergiephysik, Wien, Austria W. Adam, E. Asilar, T. Bergauer, J. Brandstetter, E. Brondolin, M. Dragicevic, J. Ero, M. Jeitler1, A. Konig, I. Kratschmer, D. Liko, T. Matsushita, I. Mikulec, D. Rabady, N. Rad, B. Rahbaran, H. Rohringer, J. Schieck1, J. Strauss, W. Waltenberger, C.-E. Wulz1 Institute for Nuclear Problems, Minsk, Belarus O. Dvornikov, V. Makarenko, V. Mossolov, J. Suarez Gonzalez, V. Zykunov National Centre for Particle and High Energy Physics, Minsk, Belarus N. Shumeiko Universiteit Antwerpen, Antwerpen, Belgium S. Alderweireldt, E.A. De Wolf, X. Janssen, J. Lauwers, M. Van De Klundert, H. Van Haevermaet, P. Van Mechelen, N. Van Remortel, A. Van Spilbeeck Vrije Universiteit Brussel, Brussel, Belgium S. Abu Zeid, F. Blekman, J. D'Hondt, N. Daci, I. De Bruyn, K. Deroover, S. Lowette, S. Moortgat, L. Moreels, A. Olbrechts, Q. Python, K. Skovpen, S. Tavernier, W. Van Doninck, P. Van Mulders, I. Van Parijs Universite Libre de Bruxelles, Bruxelles, Belgium H. Brun, B. Clerbaux, G. De Lentdecker, H. Delannoy, G. Fasanella, L. Favart, R. Goldouzian, A. Grebenyuk, G. Karapostoli, T. Lenzi, A. Leonard, J. Luetic, T. Maerschalk, A. Marinov, A. Randle-conde, T. Seva, C. Vander Velde, P. Vanlaer, D. Vannerom, R. Yonamine, F. Zenoni, F. Zhang2 Ghent University, Ghent, Belgium T. Cornelis, D. Dobur, A. Fagot, M. Gul, I. Khvastunov, D. Poyraz, S. Salva, R. Schofbeck, M. Tytgat, W. Van Driessche, W. Verbeke, N. Zaganidis Universite Catholique de Louvain, Louvain-la-Neuve, Belgium H. Bakhshiansohi, O. Bondu, S. Brochet, G. Bruno, A. Caudron, S. De Visscher, C. Delaere, M. Delcourt, B. Francois, A. Giammanco, A. Jafari, M. Komm, G. Krintiras, V. Lemaitre, A. Magitteri, A. Mertens, M. Musich, K. Piotrzkowski, L. Quertenmont, M. Vidal Marono, S. Wertz N. Beliy P. Rebello Teles Universite de Mons, Mons, Belgium Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil W.L. Alda Junior, F.L. Alves, G.A. Alves, L. Brito, C. Hensel, A. Moraes, M.E. Pol, Brazil Sciences tova J.C. Ruiz Vargasa Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil E. Belchior Batista Das Chagas, W. Carvalho, J. Chinellato3, A. Custodio, E.M. Da Costa, G.G. Da Silveira4, D. De Jesus Damiao, C. De Oliveira Martins, S. Fonseca De Souza, L.M. Huertas Guativa, H. Malbouisson, D. Matos Figueiredo, C. Mora Herrera, L. Mundim, F. Torres Da Silva De Araujo, A. Vilela Pereira Universidade Estadual Paulista a, Universidade Federal do ABC b, S~ao Paulo, Institute for Nuclear Research and Nuclear Energy of Bulgaria Academy of A. Aleksandrov, R. Hadjiiska, P. Iaydjiev, M. Rodozov, S. Stoykova, G. Sultanov, M. Vu University of So a, So a, Bulgaria A. Dimitrov, I. Glushkov, L. Litov, B. Pavlov, P. Petkov Beihang University, Beijing, China W. Fang5, X. Gao5 Institute of High Energy Physics, Beijing, China M. Ahmad, J.G. Bian, G.M. Chen, H.S. Chen, M. Chen, Y. Chen, T. Cheng, C.H. Jiang, D. Leggat, Z. Liu, F. Romeo, M. Ruan, S.M. Shaheen, A. Spiezia, J. Tao, C. Wang, Z. Wang, E. Yazgan, H. Zhang, J. Zhao State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China Y. Ban, G. Chen, Q. Li, S. Liu, Y. Mao, S.J. Qian, D. Wang, Z. Xu Universidad de Los Andes, Bogota, Colombia C. Avila, A. Cabrera, L.F. Chaparro Sierra, C. Florez, J.P. Gomez, C.F. Gonzalez Hernandez, J.D. Ruiz Alvarez6, J.C. Sanabria University of Split, Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, Split, Croatia N. Godinovic, D. Lelas, I. Puljak, P.M. Ribeiro Cipriano, T. Sculac University of Split, Faculty of Science, Split, Croatia Z. Antunovic, M. Kovac Institute Rudjer Boskovic, Zagreb, Croatia V. Brigljevic, D. Ferencek, K. Kadija, B. Mesic, T. Susa University of Cyprus, Nicosia, Cyprus M.W. Ather, A. Attikis, G. Mavromanolakis, J. Mousa, C. Nicolaou, F. Ptochos, P.A. Razis, H. Rykaczewski Charles University, Prague, Czech Republic M. Finger7, M. Finger Jr.7 Universidad San Francisco de Quito, Quito, Ecuador E. Carrera Jarrin Academy of Scienti c Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt Y. Assran8;9, M.A. Mahmoud10;9, A. Mahrous11 National Institute of Chemical Physics and Biophysics, Tallinn, Estonia M. Kadastik, L. Perrini, M. Raidal, A. Tiko, C. Veelken Department of Physics, University of Helsinki, Helsinki, Finland P. Eerola, J. Pekkanen, M. Voutilainen Helsinki Institute of Physics, Helsinki, Finland J. Harkonen, T. Jarvinen, V. Karimaki, R. Kinnunen, T. Lampen, K. Lassila-Perini, S. Lehti, T. Linden, P. Luukka, J. Tuominiemi, E. Tuovinen, L. Wendland Lappeenranta University of Technology, Lappeenranta, Finland J. Talvitie, T. Tuuva IRFU, CEA, Universite Paris-Saclay, Gif-sur-Yvette, France M. Besancon, F. Couderc, M. Dejardin, D. Denegri, B. Fabbro, J.L. Faure, C. Favaro, F. Ferri, S. Ganjour, S. Ghosh, A. Givernaud, P. Gras, G. Hamel de Monchenault, P. Jarry, I. Kucher, E. Locci, M. Machet, J. Malcles, J. Rander, A. Rosowsky, M. Titov Laboratoire Leprince-Ringuet, Ecole polytechnique, CNRS/IN2P3, Universite Paris-Saclay, Palaiseau, France A. Abdulsalam, I. Antropov, S. Ba oni, F. Beaudette, P. Busson, L. Cadamuro, E. Chapon, C. Charlot, O. Davignon, R. Granier de Cassagnac, M. Jo, S. Lisniak, A. Lobanov, P. Mine, M. Nguyen, C. Ochando, G. Ortona, P. Paganini, P. Pigard, S. Regnard, R. Salerno, Y. Sirois, A.G. Stahl Leiton, T. Strebler, Y. Yilmaz, A. Zabi, A. Zghiche France P. Van Hove S. Gadrat Universite de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, J.-L. Agram12, J. Andrea, D. Bloch, J.-M. Brom, M. Buttignol, E.C. Chabert, N. Chanon, C. Collard, E. Conte12, X. Coubez, J.-C. Fontaine12, D. Gele, U. Goerlach, A.-C. Le Bihan, Centre de Calcul de l'Institut National de Physique Nucleaire et de Physique des Particules, CNRS/IN2P3, Villeurbanne, France Universite de Lyon, Universite Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucleaire de Lyon, Villeurbanne, France S. Beauceron, C. Bernet, G. Boudoul, C.A. Carrillo Montoya, R. Chierici, D. Contardo, B. Courbon, P. Depasse, H. El Mamouni, J. Fay, L. Finco, S. Gascon, M. Gouzevitch, G. Grenier, B. Ille, F. Lagarde, I.B. Laktineh, M. Lethuillier, L. Mirabito, A.L. Pequegnot, S. Perries, A. Popov13, V. Sordini, M. Vander Donckt, P. Verdier, S. Viret Georgian Technical University, Tbilisi, Georgia A. Khvedelidze7 Z. Tsamalaidze7 Tbilisi State University, Tbilisi, Georgia RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany C. Autermann, S. Beranek, L. Feld, M.K. Kiesel, K. Klein, M. Lipinski, M. Preuten, C. Schomakers, J. Schulz, T. Verlage RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany A. Albert, M. Brodski, E. Dietz-Laursonn, D. Duchardt, M. Endres, M. Erdmann, S. Erdweg, T. Esch, R. Fischer, A. Guth, M. Hamer, T. Hebbeker, C. Heidemann, K. Hoepfner, S. Knutzen, M. Merschmeyer, A. Meyer, P. Millet, S. Mukherjee, M. Olschewski, K. Padeken, T. Pook, M. Radziej, H. Reithler, M. Rieger, F. Scheuch, L. Sonnenschein, D. Teyssier, S. Thuer RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany V. Cherepanov, G. Flugge, B. Kargoll, T. Kress, A. Kunsken, J. Lingemann, T. Muller, A. Nehrkorn, A. Nowack, C. Pistone, O. Pooth, A. Stahl14 Deutsches Elektronen-Synchrotron, Hamburg, Germany M. Aldaya Martin, T. Arndt, C. Asawatangtrakuldee, K. Beernaert, O. Behnke, U. Behrens, A.A. Bin Anuar, K. Borras15, A. Campbell, P. Connor, C. ContrerasCampana, F. Costanza, C. Diez Pardos, G. Dolinska, G. Eckerlin, D. Eckstein, T. Eichhorn, E. Eren, E. Gallo16, J. Garay Garcia, A. Geiser, A. Gizhko, J.M. Grados Luyando, A. Grohsjean, P. Gunnellini, A. Harb, J. Hauk, M. Hempel17, H. Jung, A. Kalogeropoulos, O. Karacheban17, M. Kasemann, J. Keaveney, C. Kleinwort, I. Korol, D. Krucker, W. Lange, A. Lelek, T. Lenz, J. Leonard, K. Lipka, W. Lohmann17, R. Mankel, I.A. Melzer-Pellmann, A.B. Meyer, G. Mittag, J. Mnich, A. Mussgiller, E. Ntomari, D. Pitzl, R. Placakyte, A. Raspereza, B. Roland, M.O . Sahin, P. Saxena, T. Schoerner-Sadenius, S. Spannagel, N. Stefaniuk, G.P. Van Onsem, R. Walsh, C. Wissing University of Hamburg, Hamburg, Germany V. Blobel, M. Centis Vignali, A.R. Draeger, T. Dreyer, E. Garutti, D. Gonzalez, J. Haller, M. Ho mann, A. Junkes, R. Klanner, R. Kogler, N. Kovalchuk, S. Kurz, T. Lapsien, I. Marchesini, D. Marconi, M. Meyer, M. Niedziela, D. Nowatschin, F. Pantaleo14, T. Pei er, A. Perieanu, C. Scharf, P. Schleper, A. Schmidt, S. Schumann, J. Schwandt, J. Sonneveld, H. Stadie, G. Steinbruck, F.M. Stober, M. Stover, H. Tholen, D. Troendle, E. Usai, L. Vanelderen, A. Vanhoefer, B. Vormwald Paraskevi, Greece I. Topsis-Giotis Institut fur Experimentelle Kernphysik, Karlsruhe, Germany M. Akbiyik, C. Barth, S. Baur, C. Baus, J. Berger, E. Butz, R. Caspart, T. Chwalek, F. Colombo, W. De Boer, A. Dierlamm, S. Fink, B. Freund, R. Friese, M. Gi els, A. Gilbert, I. Katkov13, S. Kudella, H. Mildner, M.U. Mozer, Th. Muller, M. Plagge, G. Quast, K. Rabbertz, S. Rocker, F. Roscher, M. Schroder, I. Shvetsov, G. Sieber, H.J. Simonis, R. Ulrich, S. Wayand, M. Weber, T. Weiler, S. Williamson, C. Wohrmann, R. Wolf Institute of Nuclear and Particle Physics (INPP), NCSR Demokritos, Aghia G. Anagnostou, G. Daskalakis, T. Geralis, V.A. Giakoumopoulou, A. Kyriakis, D. Loukas, National and Kapodistrian University of Athens, Athens, Greece S. Kesisoglou, A. Panagiotou, N. Saoulidou, E. Tziaferi National Technical University of Athens, Athens, Greece K. Kousouris University of Ioannina, Ioannina, Greece I. Evangelou, G. Flouris, C. Foudas, P. Kokkas, N. Loukas, N. Manthos, I. Papadopoulos, E. Paradas, F.A. Triantis MTA-ELTE Lendulet CMS Particle and Nuclear Physics Group, Eotvos Lorand University, Budapest, Hungary N. Filipovic, G. Pasztor Wigner Research Centre for Physics, Budapest, Hungary G. Bencze, C. Hajdu, D. Horvath18, F. Sikler, V. Veszpremi, G. Vesztergombi19, A.J. Zsigmond Institute of Nuclear Research ATOMKI, Debrecen, Hungary N. Beni, S. Czellar, J. Karancsi20, A. Makovec, J. Molnar, Z. Szillasi Institute of Physics, University of Debrecen, Debrecen, Hungary M. Bartok19, P. Raics, Z.L. Trocsanyi, B. Ujvari Indian Institute of Science (IISc), Bangalore, India S. Choudhury, J.R. Komaragiri National Institute of Science Education and Research, Bhubaneswar, India S. Bahinipati21, S. Bhowmik22, P. Mal, K. Mandal, A. Nayak23, D.K. Sahoo21, N. Sahoo, S.K. Swain Panjab University, Chandigarh, India S. Bansal, S.B. Beri, V. Bhatnagar, U. Bhawandeep, R. Chawla, A.K. Kalsi, A. Kaur, M. Kaur, R. Kumar, P. Kumari, A. Mehta, M. Mittal, J.B. Singh, G. Walia University of Delhi, Delhi, India Ashok Kumar, A. Bhardwaj, B.C. Choudhary, R.B. Garg, S. Keshri, A. Kumar, S. Malhotra, M. Naimuddin, K. Ranjan, R. Sharma, V. Sharma Saha Institute of Nuclear Physics, HBNI, Kolkata, India R. Bhattacharya, S. Bhattacharya, K. Chatterjee, S. Dey, S. Dutt, S. Dutta, S. Ghosh, N. Majumdar, A. Modak, K. Mondal, S. Mukhopadhyay, S. Nandan, A. Purohit, A. Roy, D. Roy, S. Roy Chowdhury, S. Sarkar, M. Sharan, S. Thakur Indian Institute of Technology Madras, Madras, India P.K. Behera Bhabha Atomic Research Centre, Mumbai, India R. Chudasama, D. Dutta, V. Jha, V. Kumar, A.K. Mohanty14, P.K. Netrakanti, L.M. Pant, P. Shukla, A. Topkar B. Sutar Tata Institute of Fundamental Research-A, Mumbai, India T. Aziz, S. Dugad, G. Kole, B. Mahakud, S. Mitra, G.B. Mohanty, B. Parida, N. Sur, Tata Institute of Fundamental Research-B, Mumbai, India S. Banerjee, R.K. Dewanjee, S. Ganguly, M. Guchait, Sa. Jain, S. Kumar, M. Maity22, G. Majumder, K. Mazumdar, T. Sarkar22, N. Wickramage24 Indian Institute of Science Education and Research (IISER), Pune, India S. Chauhan, S. Dube, V. Hegde, A. Kapoor, K. Kothekar, S. Pandey, A. Rane, S. Sharma Institute for Research in Fundamental Sciences (IPM), Tehran, Iran S. Chenarani25, E. Eskandari Tadavani, S.M. Etesami25, M. Khakzad, M. Mohammadi Najafabadi, M. Naseri, S. Paktinat Mehdiabadi26, F. Rezaei Hosseinabadi, B. Safarzadeh27, M. Zeinali University College Dublin, Dublin, Ireland M. Felcini, M. Grunewald INFN Sezione di Bari a, Universita di Bari b, Politecnico di Bari c, Bari, Italy M. Abbresciaa;b, C. Calabriaa;b, C. Caputoa;b, A. Colaleoa, D. Creanzaa;c, L. Cristellaa;b, N. De Filippisa;c, M. De Palmaa;b, L. Fiorea, G. Iasellia;c, G. Maggia;c, M. Maggia, G. Minielloa;b, S. Mya;b, S. Nuzzoa;b, A. Pompilia;b, G. Pugliesea;c, R. Radognaa;b, A. Ranieria, G. Selvaggia;b, A. Sharmaa, L. Silvestrisa;14, R. Vendittia, P. Verwilligena INFN Sezione di Bologna a, Universita di Bologna b, Bologna, Italy G. Abbiendia, C. Battilana, D. Bonacorsia;b, S. Braibant-Giacomellia;b, L. Brigliadoria;b, R. Campaninia;b, P. Capiluppia;b, A. Castroa;b, F.R. Cavalloa, S.S. Chhibraa;b, G. Codispotia;b, M. Cu ania;b, G.M. Dallavallea, F. Fabbria, A. Fanfania;b, D. Fasanellaa;b, P. Giacomellia, C. Grandia, L. Guiduccia;b, S. Marcellinia, G. Masettia, A. Montanaria, F.L. Navarriaa;b, A. Perrottaa, A.M. Rossia;b, T. Rovellia;b, G.P. Sirolia;b, N. Tosia;b;14 Italy Fatisa;b Italy INFN Sezione di Catania a, Universita di Catania b, Catania, Italy S. Albergoa;b, S. Costaa;b, A. Di Mattiaa, F. Giordanoa;b, R. Potenzaa;b, A. Tricomia;b, C. Tuvea;b INFN Sezione di Firenze a, Universita di Firenze b, Firenze, Italy G. Barbaglia, V. Ciullia;b, C. Civininia, R. D'Alessandroa;b, E. Focardia;b, P. Lenzia;b, M. Meschinia, S. Paolettia, L. Russoa;28, G. Sguazzonia, D. Stroma, L. Viliania;b;14 INFN Laboratori Nazionali di Frascati, Frascati, Italy L. Benussi, S. Bianco, F. Fabbri, D. Piccolo, F. Primavera14 INFN Sezione di Genova a, Universita di Genova b, Genova, Italy V. Calvellia;b, F. Ferroa, M.R. Mongea;b, E. Robuttia, S. Tosia;b INFN Sezione di Milano-Bicocca a, Universita di Milano-Bicocca b, Milano, L. Brianzaa;b;14, F. Brivioa;b, V. Ciriolo, M.E. Dinardoa;b, S. Fiorendia;b;14, S. Gennaia, A. Ghezzia;b, P. Govonia;b, M. Malbertia;b, S. Malvezzia, R.A. Manzonia;b, D. Menascea, L. Moronia, M. Paganonia;b, D. Pedrinia, S. Pigazzinia;b, S. Ragazzia;b, T. Tabarelli de INFN Sezione di Napoli a, Universita di Napoli 'Federico II' b, Napoli, Italy, Universita della Basilicata c, Potenza, Italy, Universita G. Marconi d, Roma, S. Buontempoa, N. Cavalloa;c, G. De Nardoa;b, S. Di Guidaa;d;14, F. Fabozzia;c, F. Fiengaa;b, A.O.M. Iorioa;b, L. Listaa, S. Meolaa;d;14, P. Paoluccia;14, C. Sciaccaa;b, F. Thyssena Trento c, Trento, Italy INFN Sezione di Padova a, Universita di Padova b, Padova, Italy, Universita di P. Azzia;14, N. Bacchettaa, L. Benatoa;b, D. Biselloa;b, A. Bolettia;b, R. Carlina;b, A. Carvalho Antunes De Oliveiraa;b, P. Checchiaa, M. Dall'Ossoa;b, P. De Castro Manzanoa, T. Dorigoa, U. Dossellia, F. Gasparinia;b, U. Gasparinia;b, A. Gozzelinoa, S. Lacapraraa, M. Margonia;b, A.T. Meneguzzoa;b, J. Pazzinia;b, N. Pozzobona;b, P. Ronchesea;b, F. Simonettoa;b, E. Torassaa, M. Zanettia;b, P. Zottoa;b, G. Zumerlea;b INFN Sezione di Pavia a, Universita di Pavia b, Pavia, Italy A. Braghieria, F. Fallavollitaa;b, A. Magnania;b, P. Montagnaa;b, S.P. Rattia;b, V. Rea, M. Ressegotti, C. Riccardia;b, P. Salvinia, I. Vaia;b, P. Vituloa;b INFN Sezione di Perugia a, Universita di Perugia b, Perugia, Italy L. Alunni Solestizia;b, G.M. Bileia, D. Ciangottinia;b, L. Fanoa;b, P. Laricciaa;b, R. Leonardia;b, G. Mantovania;b, V. Mariania;b, M. Menichellia, A. Sahaa, A. Santocchiaa;b INFN Sezione di Pisa a, Universita di Pisa b, Scuola Normale Superiore di Pisa c, Pisa, Italy K. Androsova, P. Azzurria;14, G. Bagliesia, J. Bernardinia, T. Boccalia, R. Castaldia, M.A. Cioccia;b, R. Dell'Orsoa, G. Fedia, A. Giassia, M.T. Grippoa;28, F. Ligabuea;c, P. Spagnoloa, R. Tenchinia, G. Tonellia;b, A. Venturia, P.G. Verdinia INFN Sezione di Roma a, Sapienza Universita di Roma b, Rome, Italy L. Baronea;b, F. Cavallaria, M. Cipriania;b, D. Del Rea;b;14, M. Diemoza, S. Gellia;b, E. Longoa;b, F. Margarolia;b, Meridiania, R. Paramattia;b, F. Preiatoa;b, S. Rahatloua;b, C. Rovellia, F. Santanastasioa;b INFN Sezione di Torino a, Universita di Torino b, Torino, Italy, Universita del Piemonte Orientale c, Novara, Italy N. Amapanea;b, R. Arcidiaconoa;c;14, S. Argiroa;b, M. Arneodoa;c, N. Bartosika, R. Bellana;b, C. Biinoa, N. Cartigliaa, F. Cennaa;b, M. Costaa;b, R. Covarellia;b, A. Deganoa;b, N. Demariaa, B. Kiania;b, C. Mariottia, S. Masellia, E. Migliorea;b, V. Monacoa;b, E. Monteila;b, M. Montenoa, M.M. Obertinoa;b, L. Pachera;b, N. Pastronea, M. Pelliccionia, G.L. Pinna Angionia;b, F. Raveraa;b, A. Romeroa;b, M. Ruspaa;c, R. Sacchia;b, K. Shchelinaa;b, V. Solaa, A. Solanoa;b, A. Staianoa, P. Traczyka;b INFN Sezione di Trieste a, Universita di Trieste b, Trieste, Italy S. Belfortea, M. Casarsaa, F. Cossuttia, G. Della Riccaa;b, A. Zanettia Kyungpook National University, Daegu, Korea D.H. Kim, G.N. Kim, M.S. Kim, J. Lee, S. Lee, S.W. Lee, Y.D. Oh, S. Sekmen, D.C. Son, Y.C. Yang A. Lee Chonbuk National University, Jeonju, Korea Chonnam National University, Institute for Universe and Elementary Particles, Kwangju, Korea H. Kim Hanyang University, Seoul, Korea J.A. Brochero Cifuentes, J. Goh, T.J. Kim Korea University, Seoul, Korea J. Lim, S.K. Park, Y. Roh Seoul National University, Seoul, Korea S. Cho, S. Choi, Y. Go, D. Gyun, S. Ha, B. Hong, Y. Jo, Y. Kim, K. Lee, K.S. Lee, S. Lee, J. Almond, J. Kim, H. Lee, S.B. Oh, B.C. Radburn-Smith, S.h. Seo, U.K. Yang, H.D. Yoo, G.B. Yu University of Seoul, Seoul, Korea M. Choi, H. Kim, J.H. Kim, J.S.H. Lee, I.C. Park, G. Ryu, M.S. Ryu Sungkyunkwan University, Suwon, Korea Y. Choi, C. Hwang, J. Lee, I. Yu Vilnius University, Vilnius, Lithuania V. Dudenas, A. Juodagalvis, J. Vaitkus HJEP03(218)67 National Centre for Particle Physics, Universiti Malaya, Kuala Lumpur, Malaysia M.N. Yusli, Z. Zolkapli I. Ahmed, Z.A. Ibrahim, M.A.B. Md Ali30, F. Mohamad Idris31, W.A.T. Wan Abdullah, Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico H. Castilla-Valdez, E. De La Cruz-Burelo, I. Heredia-De La Cruz32, R. Lopez-Fernandez, R. Magan~a Villalba, J. Mejia Guisao, A. Sanchez-Hernandez Universidad Iberoamericana, Mexico City, Mexico S. Carrillo Moreno, C. Oropeza Barrera, F. Vazquez Valencia Benemerita Universidad Autonoma de Puebla, Puebla, Mexico S. Carpinteyro, I. Pedraza, H.A. Salazar Ibarguen, C. Uribe Estrada Universidad Autonoma de San Luis Potos , San Luis Potos , Mexico A. Morelos Pineda D. Krofcheck P.H. Butler University of Auckland, Auckland, New Zealand University of Canterbury, Christchurch, New Zealand National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan A. Ahmad, M. Ahmad, Q. Hassan, H.R. Hoorani, W.A. Khan, A. Saddique, M.A. Shah, M. Shoaib, M. Waqas National Centre for Nuclear Research, Swierk, Poland H. Bialkowska, M. Bluj, B. Boimska, T. Frueboes, M. Gorski, M. Kazana, K. Nawrocki, K. Romanowska-Rybinska, M. Szleper, P. Zalewski Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland K. Bunkowski, A. Byszuk33, K. Doroba, A. Kalinowski, M. Konecki, J. Krolikowski, M. Misiura, M. Olszewski, A. Pyskir, M. Walczak Laboratorio de Instrumentac~ao e F sica Experimental de Part culas, Lisboa, Portugal P. Bargassa, C. Beir~ao Da Cruz E Silva, B. Calpas, A. Di Francesco, P. Faccioli, M. Gallinaro, J. Hollar, N. Leonardo, L. Lloret Iglesias, M.V. Nemallapudi, J. Seixas, O. Toldaiev, D. Vadruccio, J. Varela Joint Institute for Nuclear Research, Dubna, Russia S. Afanasiev, P. Bunin, M. Gavrilenko, I. Golutvin, I. Gorbunov, A. Kamenev, V. Karjavin, A. Lanev, A. Malakhov, V. Matveev34;35, V. Palichik, V. Perelygin, S. Shmatov, S. Shulha, N. Skatchkov, V. Smirnov, N. Voytishin, A. Zarubin Petersburg Nuclear Physics Institute, Gatchina (St. Petersburg), Russia L. Chtchipounov, V. Golovtsov, Y. Ivanov, V. Kim36, E. Kuznetsova37, V. Murzin, V. Oreshkin, V. Sulimov, A. Vorobyev Institute for Nuclear Research, Moscow, Russia Yu. Andreev, A. Dermenev, S. Gninenko, N. Golubev, A. Karneyeu, M. Kirsanov, N. Krasnikov, A. Pashenkov, D. Tlisov, A. Toropin Institute for Theoretical and Experimental Physics, Moscow, Russia V. Epshteyn, V. Gavrilov, N. Lychkovskaya, V. Popov, I. Pozdnyakov, G. Safronov, A. Spiridonov, M. Toms, E. Vlasov, A. Zhokin HJEP03(218)67 Moscow Institute of Physics and Technology, Moscow, Russia T. Aushev, A. Bylinkin35 National Research Nuclear University 'Moscow Engineering Physics Institute' (MEPhI), Moscow, Russia R. Chistov38, M. Danilov38, E. Zhemchugov P.N. Lebedev Physical Institute, Moscow, Russia V. Andreev, M. Azarkin35, I. Dremin35, M. Kirakosyan, A. Leonidov35, A. Terkulov Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia V. Savrin A. Baskakov, A. Belyaev, E. Boos, V. Bunichev, M. Dubinin39, L. Dudko, A. Ershov, A. Gribushin, V. Klyukhin, O. Kodolova, I. Lokhtin, I. Miagkov, S. Obraztsov, M. Per lov, Novosibirsk State University (NSU), Novosibirsk, Russia V. Blinov40, Y.Skovpen40, D. Shtol40 State Research Center of Russian Federation, Institute for High Energy Physics, Protvino, Russia I. Azhgirey, I. Bayshev, S. Bitioukov, D. Elumakhov, V. Kachanov, A. Kalinin, D. Konstantinov, V. Krychkine, V. Petrov, R. Ryutin, A. Sobol, S. Troshin, N. Tyurin, A. Uzunian, A. Volkov University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia P. Adzic41, P. Cirkovic, D. Devetak, M. Dordevic, J. Milosevic, V. Rekovic Centro de Investigaciones Energeticas Medioambientales y Tecnologicas (CIEMAT), Madrid, Spain J. Alcaraz Maestre, M. Barrio Luna, E. Calvo, M. Cerrada, M. Chamizo Llatas, N. Colino, B. De La Cruz, A. Delgado Peris, A. Escalante Del Valle, C. Fernandez Bedoya, J.P. Fernandez Ramos, J. Flix, M.C. Fouz, P. Garcia-Abia, O. Gonzalez Lopez, S. Goy Lopez, J.M. Hernandez, M.I. Josa, E. Navarro De Martino, A. Perez-Calero Yzquierdo, J. Puerta Pelayo, A. Quintario Olmeda, I. Redondo, L. Romero, M.S. Soares Universidad Autonoma de Madrid, Madrid, Spain J.F. de Troconiz, M. Missiroli, D. Moran Universidad de Oviedo, Oviedo, Spain J. Cuevas, C. Erice, J. Fernandez Menendez, I. Gonzalez Caballero, J.R. Gonzalez Fernandez, E. Palencia Cortezon, S. Sanchez Cruz, I. Suarez Andres, P. Vischia, J.M. Vizan Garcia Santander, Spain Instituto de F sica de Cantabria (IFCA), CSIC-Universidad de Cantabria, I.J. Cabrillo, A. Calderon, E. Curras, M. Fernandez, J. Garcia-Ferrero, G. Gomez, A. Lopez Virto, J. Marco, C. Martinez Rivero, F. Matorras, J. Piedra Gomez, T. Rodrigo, A. RuizJimeno, L. Scodellaro, N. Trevisani, I. Vila, R. Vilar Cortabitarte CERN, European Organization for Nuclear Research, Geneva, Switzerland D. Abbaneo, E. Au ray, G. Auzinger, P. Baillon, A.H. Ball, D. Barney, P. Bloch, A. Bocci, C. Botta, T. Camporesi, R. Castello, M. Cepeda, G. Cerminara, Y. Chen, A. Cimmino, D. d'Enterria, A. Dabrowski, V. Daponte, A. David, M. De Gruttola, A. De Roeck, E. Di Marco42, M. Dobson, B. Dorney, T. du Pree, M. Dunser, N. Dupont, A. Elliott-Peisert, P. Everaerts, S. Fartoukh, G. Franzoni, J. Fulcher, W. Funk, D. Gigi, K. Gill, M. Girone, F. Glege, D. Gulhan, S. Gundacker, M. Gutho , P. Harris, J. Hegeman, V. Innocente, P. Janot, J. Kieseler, H. Kirschenmann, V. Knunz, A. Kornmayer14, M.J. Kortelainen, M. Krammer1, C. Lange, P. Lecoq, C. Lourenco, M.T. Lucchini, L. Malgeri, M. Mannelli, A. Martelli, F. Meijers, J.A. Merlin, S. Mersi, E. Meschi, P. Milenovic43, F. Moortgat, S. Morovic, M. Mulders, H. Neugebauer, S. Orfanelli, L. Orsini, L. Pape, E. Perez, M. Peruzzi, A. Petrilli, G. Petrucciani, A. Pfei er, M. Pierini, A. Racz, T. Reis, G. Rolandi44, M. Rovere, H. Sakulin, J.B. Sauvan, C. Schafer, C. Schwick, M. Seidel, M. Selvaggi, A. Sharma, P. Silva, P. Sphicas45, J. Steggemann, M. Stoye, Y. Takahashi, M. Tosi, D. Treille, A. Triossi, A. Tsirou, V. Veckalns46, G.I. Veres19, M. Verweij, N. Wardle, H.K. Wohri, A. Zagozdzinska33, W.D. Zeuner Paul Scherrer Institut, Villigen, Switzerland W. Bertl, K. Deiters, W. Erdmann, R. Horisberger, Q. Ingram, H.C. Kaestli, D. Kotlinski, U. Langenegger, T. Rohe, S.A. Wiederkehr Institute for Particle Physics, ETH Zurich, Zurich, Switzerland F. Bachmair, L. Bani, L. Bianchini, B. Casal, G. Dissertori, M. Dittmar, M. Donega, C. Grab, C. Heidegger, D. Hits, J. Hoss, G. Kasieczka, W. Lustermann, B. Mangano, M. Marionneau, P. Martinez Ruiz del Arbol, M. Masciovecchio, M.T. Meinhard, D. Meister, F. Micheli, P. Musella, F. Nessi-Tedaldi, F. Pandol , J. Pata, F. Pauss, G. Perrin, L. Perrozzi, M. Quittnat, M. Rossini, M. Schonenberger, A. Starodumov47, V.R. Tavolaro, K. Theo latos, R. Wallny Universitat Zurich, Zurich, Switzerland T.K. Aarrestad, C. Amsler48, L. Caminada, M.F. Canelli, A. De Cosa, S. Donato, C. Galloni, A. Hinzmann, T. Hreus, B. Kilminster, J. Ngadiuba, D. Pinna, G. Rauco, P. Robmann, D. Salerno, C. Seitz, Y. Yang, A. Zucchetta National Central University, Chung-Li, Taiwan V. Candelise, T.H. Doan, Sh. Jain, R. Khurana, M. Konyushikhin, C.M. Kuo, W. Lin, A. Pozdnyakov, S.S. Yu National Taiwan University (NTU), Taipei, Taiwan Arun Kumar, P. Chang, Y.H. Chang, Y. Chao, K.F. Chen, P.H. Chen, F. Fiori, W.-S. Hou, Y. Hsiung, Y.F. Liu, R.-S. Lu, M. Min~ano Moya, E. Paganis, A. Psallidas, J.f. Tsai Chulalongkorn University, Faculty of Science, Department of Physics, Bangkok, B. Asavapibhop, G. Singh, N. Srimanobhas, N. Suwonjandee Cukurova University, Physics Department, Science and Art Faculty, Adana, A. Adiguzel, M.N. Bakirci49, F. Boran, S. Damarseckin, Z.S. Demiroglu, C. Dozen, E. Eskut, S. Girgis, G. Gokbulut, Y. Guler, I. Hos50, E.E. Kangal51, O. Kara, U. Kiminsu, M. Oglakci, G. Onengut52, K. Ozdemir53, S. Ozturk49, A. Polatoz, D. Sunar Cerci54, S. Turkcapar, I.S. Zorbakir, C. Zorbilmez Middle East Technical University, Physics Department, Ankara, Turkey B. Bilin, B. Isildak55, G. Karapinar56, M. Yalvac, M. Zeyrek Bogazici University, Istanbul, Turkey E. Gulmez, M. Kaya57, O. Kaya58, E.A. Yetkin59, T. Yetkin60 Istanbul Technical University, Istanbul, Turkey A. Cakir, K. Cankocak, S. Sen61 Institute for Scintillation Materials of National Academy of Science of Ukraine, Kharkov, Ukraine B. Grynyov Kharkov, Ukraine L. Levchuk, P. Sorokin National Scienti c Center, Kharkov Institute of Physics and Technology, University of Bristol, Bristol, United Kingdom R. Aggleton, F. Ball, L. Beck, J.J. Brooke, D. Burns, E. Clement, D. Cussans, H. Flacher, J. Goldstein, M. Grimes, G.P. Heath, H.F. Heath, J. Jacob, L. Kreczko, C. Lucas, D.M. Newbold62, S. Paramesvaran, A. Poll, T. Sakuma, S. Seif El Nasr-storey, D. Smith, V.J. Smith Rutherford Appleton Laboratory, Didcot, United Kingdom K.W. Bell, A. Belyaev63, C. Brew, R.M. Brown, L. Calligaris, D. Cieri, D.J.A. Cockerill, J.A. Coughlan, K. Harder, S. Harper, E. Olaiya, D. Petyt, C.H. Shepherd-Themistocleous, A. Thea, I.R. Tomalin, T. Williams Imperial College, London, United Kingdom M. Baber, R. Bainbridge, O. Buchmuller, A. Bundock, S. Casasso, M. Citron, D. Colling, L. Corpe, P. Dauncey, G. Davies, A. De Wit, M. Della Negra, R. Di Maria, P. Dunne, A. Elwood, D. Futyan, Y. Haddad, G. Hall, G. Iles, T. James, R. Lane, C. Laner, L. Lyons, A.-M. Magnan, S. Malik, L. Mastrolorenzo, J. Nash, A. Nikitenko47, J. Pela, B. Penning, M. Pesaresi, D.M. Raymond, A. Richards, A. Rose, E. Scott, C. Seez, S. Summers, A. Tapper, K. Uchida, M. Vazquez Acosta64, T. Virdee14, J. Wright, S.C. Zenz Brunel University, Uxbridge, United Kingdom J.E. Cole, P.R. Hobson, A. Khan, P. Kyberd, I.D. Reid, P. Symonds, L. Teodorescu, Baylor University, Waco, U.S.A. A. Borzou, K. Call, J. Dittmann, K. Hatakeyama, H. Liu, N. Pastika Catholic University of America, Washington, U.S.A. R. Bartek, A. Dominguez The University of Alabama, Tuscaloosa, U.S.A. A. Buccilli, S.I. Cooper, C. Henderson, P. Rumerio, C. West Boston University, Boston, U.S.A. D. Arcaro, A. Avetisyan, T. Bose, D. Gastler, D. Rankin, C. Richardson, J. Rohlf, L. Sulak, D. Zou R. Syarif Brown University, Providence, U.S.A. G. Benelli, D. Cutts, A. Garabedian, J. Hakala, U. Heintz, J.M. Hogan, O. Jesus, K.H.M. Kwok, E. Laird, G. Landsberg, Z. Mao, M. Narain, S. Piperov, S. Sagir, E. Spencer, University of California, Davis, Davis, U.S.A. R. Breedon, D. Burns, M. Calderon De La Barca Sanchez, S. Chauhan, M. Chertok, J. Conway, R. Conway, P.T. Cox, R. Erbacher, C. Flores, G. Funk, M. Gardner, W. Ko, R. Lander, C. Mclean, M. Mulhearn, D. Pellett, J. Pilot, S. Shalhout, M. Shi, J. Smith, M. Squires, D. Stolp, K. Tos, M. Tripathi University of California, Los Angeles, U.S.A. M. Bachtis, C. Bravo, R. Cousins, A. Dasgupta, A. Florent, J. Hauser, M. Ignatenko, N. Mccoll, D. Saltzberg, C. Schnaible, V. Valuev, M. Weber University of California, Riverside, Riverside, U.S.A. E. Bouvier, K. Burt, R. Clare, J. Ellison, J.W. Gary, S.M.A. Ghiasi Shirazi, G. Hanson, J. Heilman, P. Jandir, E. Kennedy, F. Lacroix, O.R. Long, M. Olmedo Negrete, M.I. Paneva, A. Shrinivas, W. Si, H. Wei, S. Wimpenny, B. R. Yates University of California, San Diego, La Jolla, U.S.A. J.G. Branson, G.B. Cerati, S. Cittolin, M. Derdzinski, R. Gerosa, A. Holzner, D. Klein, V. Krutelyov, J. Letts, I. Macneill, D. Olivito, S. Padhi, M. Pieri, M. Sani, V. Sharma, S. Simon, M. Tadel, A. Vartak, S. Wasserbaech65, C. Welke, J. Wood, F. Wurthwein, A. Yagil, G. Zevi Della Porta bara, U.S.A. University of California, Santa Barbara - Department of Physics, Santa BarN. Amin, R. Bhandari, J. Bradmiller-Feld, C. Campagnari, A. Dishaw, V. Dutta, M. Franco Sevilla, C. George, F. Golf, L. Gouskos, J. Gran, R. Heller, J. Incandela, S.D. Mullin, A. Ovcharova, H. Qu, J. Richman, D. Stuart, I. Suarez, J. Yoo California Institute of Technology, Pasadena, U.S.A. D. Anderson, J. Bendavid, A. Bornheim, J. Bunn, J.M. Lawhorn, A. Mott, H.B. Newman, C. Pena, M. Spiropulu, J.R. Vlimant, S. Xie, R.Y. Zhu Carnegie Mellon University, Pittsburgh, U.S.A. M.B. Andrews, T. Ferguson, M. Paulini, J. Russ, M. Sun, H. Vogel, I. Vorobiev, M. Weinberg University of Colorado Boulder, Boulder, U.S.A. J.P. Cumalat, W.T. Ford, F. Jensen, A. Johnson, M. Krohn, S. Leontsinis, T. Mulholland, K. Stenson, S.R. Wagner Cornell University, Ithaca, U.S.A. P. Wittich, M. Zientek Fair eld University, Fair eld, U.S.A. D. Winn J. Alexander, J. Chaves, J. Chu, S. Dittmer, K. Mcdermott, N. Mirman, J.R. Patterson, A. Rinkevicius, A. Ryd, L. Skinnari, L. So , S.M. Tan, Z. Tao, J. Thom, J. Tucker, Fermi National Accelerator Laboratory, Batavia, U.S.A. S. Abdullin, M. Albrow, G. Apollinari, A. Apresyan, S. Banerjee, L.A.T. Bauerdick, A. Beretvas, J. Berryhill, P.C. Bhat, G. Bolla, K. Burkett, J.N. Butler, H.W.K. Cheung, F. Chlebana, S. Cihangiry, M. Cremonesi, J. Duarte, V.D. Elvira, I. Fisk, J. Freeman, E. Gottschalk, L. Gray, D. Green, S. Grunendahl, O. Gutsche, R.M. Harris, S. Hasegawa, J. Hirschauer, Z. Hu, B. Jayatilaka, S. Jindariani, M. Johnson, U. Joshi, B. Klima, B. Kreis, S. Lammel, J. Linacre, D. Lincoln, R. Lipton, M. Liu, T. Liu, R. Lopes De Sa, J. Lykken, K. Maeshima, N. Magini, J.M. Marra no, S. Maruyama, D. Mason, P. McBride, P. Merkel, S. Mrenna, S. Nahn, V. O'Dell, K. Pedro, O. Prokofyev, G. Rakness, L. Ristori, E. SextonKennedy, A. Soha, W.J. Spalding, L. Spiegel, S. Stoynev, J. Strait, N. Strobbe, L. Taylor, S. Tkaczyk, N.V. Tran, L. Uplegger, E.W. Vaandering, C. Vernieri, M. Verzocchi, R. Vidal, M. Wang, H.A. Weber, A. Whitbeck, Y. Wu University of Florida, Gainesville, U.S.A. D. Acosta, P. Avery, P. Bortignon, D. Bourilkov, A. Brinkerho , A. Carnes, M. Carver, D. Curry, S. Das, R.D. Field, I.K. Furic, J. Konigsberg, A. Korytov, J.F. Low, P. Ma, K. Matchev, H. Mei, G. Mitselmakher, D. Rank, L. Shchutska, D. Sperka, L. Thomas, J. Wang, S. Wang, J. Yelton Florida International University, Miami, U.S.A. S. Linn, P. Markowitz, G. Martinez, J.L. Rodriguez Florida State University, Tallahassee, U.S.A. A. Ackert, T. Adams, A. Askew, S. Bein, S. Hagopian, V. Hagopian, K.F. Johnson, T. Kolberg, T. Perry, H. Prosper, A. Santra, R. Yohay Florida Institute of Technology, Melbourne, U.S.A. M.M. Baarmand, V. Bhopatkar, S. Colafranceschi, M. Hohlmann, D. Noonan, T. Roy, F. Yumiceva University of Illinois at Chicago (UIC), Chicago, U.S.A. M.R. Adams, L. Apanasevich, D. Berry, R.R. Betts, R. Cavanaugh, X. Chen, O. Evdokimov, C.E. Gerber, D.A. Hangal, D.J. Hofman, K. Jung, J. Kamin, I.D. Sandoval Gonzalez, H. Trauger, N. Varelas, H. Wang, Z. Wu, J. Zhang The University of Iowa, Iowa City, U.S.A. B. Bilki66, W. Clarida, K. Dilsiz, S. Durgut, R.P. Gandrajula, M. Haytmyradov, V. Khristenko, J.-P. Merlo, H. Mermerkaya67, A. Mestvirishvili, A. Moeller, J. Nachtman, H. Ogul, Y. Onel, F. Ozok68, A. Penzo, C. Snyder, E. Tiras, J. Wetzel, K. Yi Johns Hopkins University, Baltimore, U.S.A. B. Blumenfeld, A. Cocoros, N. Eminizer, D. Fehling, L. Feng, A.V. Gritsan, P. Maksimovic, J. Roskes, U. Sarica, M. Swartz, M. Xiao, C. You The University of Kansas, Lawrence, U.S.A. A. Al-bataineh, P. Baringer, A. Bean, S. Boren, J. Bowen, J. Castle, L. Forthomme, S. Khalil, A. Kropivnitskaya, D. Majumder, W. Mcbrayer, M. Murray, S. Sanders, R. Stringer, J.D. Tapia Takaki, Q. Wang Kansas State University, Manhattan, U.S.A. A. Ivanov, K. Kaadze, Y. Maravin, A. Mohammadi, L.K. Saini, N. Skhirtladze, S. Toda Lawrence Livermore National Laboratory, Livermore, U.S.A. F. Rebassoo, D. Wright University of Maryland, College Park, U.S.A. C. Anelli, A. Baden, O. Baron, A. Belloni, B. Calvert, S.C. Eno, C. Ferraioli, N.J. Hadley, S. Jabeen, G.Y. Jeng, R.G. Kellogg, J. Kunkle, A.C. Mignerey, F. Ricci-Tam, Y.H. Shin, A. Skuja, M.B. Tonjes, S.C. Tonwar Massachusetts Institute of Technology, Cambridge, U.S.A. D. Abercrombie, B. Allen, A. Apyan, V. Azzolini, R. Barbieri, A. Baty, R. Bi, K. Bierwagen, S. Brandt, W. Busza, I.A. Cali, M. D'Alfonso, Z. Demiragli, G. Gomez Ceballos, M. Goncharov, D. Hsu, Y. Iiyama, G.M. Innocenti, M. Klute, D. Kovalskyi, K. Krajczar, Y.S. Lai, Y.-J. Lee, A. Levin, P.D. Luckey, B. Maier, A.C. Marini, C. Mcginn, C. Mironov, S. Narayanan, X. Niu, C. Paus, C. Roland, G. Roland, J. Salfeld-Nebgen, G.S.F. Stephans, K. Tatar, D. Velicanu, J. Wang, T.W. Wang, B. Wyslouch A.C. Benvenuti, R.M. Chatterjee, A. Evans, P. Hansen, S. Kalafut, S.C. Kao, Y. Kubota, Z. Lesko, J. Mans, S. Nourbakhsh, N. Ruckstuhl, R. Rusack, N. Tambe, J. Turkewitz University of Mississippi, Oxford, U.S.A. J.G. Acosta, S. Oliveros University of Nebraska-Lincoln, Lincoln, U.S.A. E. Avdeeva, K. Bloom, D.R. Claes, C. Fangmeier, R. Gonzalez Suarez, R. Kamalieddin, I. Kravchenko, A. Malta Rodrigues, J. Monroy, J.E. Siado, G.R. Snow, B. Stieger State University of New York at Bu alo, Bu alo, U.S.A. M. Alyari, J. Dolen, A. Godshalk, C. Harrington, I. Iashvili, D. Nguyen, A. Parker, HJEP03(218)67 S. Rappoccio, B. Roozbahani Northeastern University, Boston, U.S.A. G. Alverson, E. Barberis, A. Hortiangtham, A. Massironi, D.M. Morse, D. Nash, T. Orimoto, R. Teixeira De Lima, D. Trocino, R.-J. Wang, D. Wood Northwestern University, Evanston, U.S.A. S. Bhattacharya, O. Charaf, K.A. Hahn, N. Mucia, N. Odell, B. Pollack, M.H. Schmitt, K. Sung, M. Trovato, M. Velasco University of Notre Dame, Notre Dame, U.S.A. N. Dev, M. Hildreth, K. Hurtado Anampa, C. Jessop, D.J. Karmgard, N. Kellams, K. Lannon, N. Marinelli, F. Meng, C. Mueller, Y. Musienko34, M. Planer, A. Reinsvold, R. Ruchti, N. Rupprecht, G. Smith, S. Taroni, M. Wayne, M. Wolf, A. Woodard The Ohio State University, Columbus, U.S.A. J. Alimena, L. Antonelli, B. Bylsma, L.S. Durkin, S. Flowers, B. Francis, A. Hart, C. Hill, W. Ji, B. Liu, W. Luo, D. Puigh, B.L. Winer, H.W. Wulsin Princeton University, Princeton, U.S.A. S. Cooperstein, O. Driga, P. Elmer, J. Hardenbrook, P. Hebda, D. Lange, J. Luo, D. Marlow, T. Medvedeva, K. Mei, I. Ojalvo, J. Olsen, C. Palmer, P. Piroue, D. Stickland, A. Svyatkovskiy, C. Tully University of Puerto Rico, Mayaguez, U.S.A. S. Malik Purdue University, West Lafayette, U.S.A. A. Barker, V.E. Barnes, S. Folgueras, L. Gutay, M.K. Jha, M. Jones, A.W. Jung, A. Khatiwada, D.H. Miller, N. Neumeister, J.F. Schulte, J. Sun, F. Wang, W. Xie Purdue University Northwest, Hammond, U.S.A. N. Parashar, J. Stupak Rice University, Houston, U.S.A. A. Adair, B. Akgun, Z. Chen, K.M. Ecklund, F.J.M. Geurts, M. Guilbaud, W. Li, B. Michlin, M. Northup, B.P. Padley, J. Roberts, J. Rorie, Z. Tu, J. Zabel University of Rochester, Rochester, U.S.A. B. Betchart, A. Bodek, P. de Barbaro, R. Demina, Y.t. Duh, T. Ferbel, M. Galanti, A. Garcia-Bellido, J. Han, O. Hindrichs, A. Khukhunaishvili, K.H. Lo, P. Tan, M. Verzetti Rutgers, The State University of New Jersey, Piscataway, U.S.A. A. Agapitos, J.P. Chou, Y. Gershtein, T.A. Gomez Espinosa, E. Halkiadakis, M. Heindl, E. Hughes, S. Kaplan, R. Kunnawalkam Elayavalli, S. Kyriacou, A. Lath, R. Montalvo, K. Nash, M. Osherson, H. Saka, S. Salur, S. Schnetzer, D. She eld, S. Somalwar, R. Stone, S. Thomas, P. Thomassen, M. Walker University of Tennessee, Knoxville, U.S.A. A.G. Delannoy, M. Foerster, J. Heideman, G. Riley, K. Rose, S. Spanier, K. Thapa Texas A&M University, College Station, U.S.A. O. Bouhali69, A. Celik, M. Dalchenko, M. De Mattia, A. Delgado, S. Dildick, R. Eusebi, J. Gilmore, T. Huang, E. Juska, T. Kamon70, R. Mueller, Y. Pakhotin, R. Patel, A. Perlo , L. Pernie, D. Rathjens, A. Safonov, A. Tatarinov, K.A. Ulmer Texas Tech University, Lubbock, U.S.A. N. Akchurin, J. Damgov, F. De Guio, C. Dragoiu, P.R. Dudero, J. Faulkner, E. Gurpinar, S. Kunori, K. Lamichhane, S.W. Lee, T. Libeiro, T. Peltola, S. Undleeb, I. Volobouev, Z. Wang Vanderbilt University, Nashville, U.S.A. S. Greene, A. Gurrola, R. Janjam, W. Johns, C. Maguire, A. Melo, H. Ni, P. Sheldon, S. Tuo, J. Velkovska, Q. Xu University of Virginia, Charlottesville, U.S.A. M.W. Arenton, P. Barria, B. Cox, R. Hirosky, A. Ledovskoy, H. Li, C. Neu, T. Sinthuprasith, X. Sun, Y. Wang, E. Wolfe, F. Xia Wayne State University, Detroit, U.S.A. C. Clarke, R. Harr, P.E. Karchin, J. Sturdy, S. Zaleski University of Wisconsin - Madison, Madison, WI, U.S.A. D.A. Belknap, J. Buchanan, C. Caillol, S. Dasu, L. Dodd, S. Duric, B. Gomber, M. Grothe, M. Herndon, A. Herve, U. Hussain, P. Klabbers, A. Lanaro, A. Levine, K. Long, R. Loveless, G.A. Pierro, G. Polese, T. Ruggles, A. Savin, N. Smith, W.H. Smith, D. Taylor, 1: Also at Vienna University of Technology, Vienna, Austria 2: Also at State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, N. Woods y: Deceased China 3: Also at Universidade Estadual de Campinas, Campinas, Brazil 4: Also at Universidade Federal de Pelotas, Pelotas, Brazil 5: Also at Universite Libre de Bruxelles, Bruxelles, Belgium 6: Also at Universidad de Antioquia, Medellin, Colombia 8: Also at Suez University, Suez, Egypt 9: Now at British University in Egypt, Cairo, Egypt 10: Also at Fayoum University, El-Fayoum, Egypt 11: Now at Helwan University, Cairo, Egypt 12: Also at Universite de Haute Alsace, Mulhouse, France 13: Also at Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia 14: Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland 15: Also at RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany 16: Also at University of Hamburg, Hamburg, Germany 17: Also at Brandenburg University of Technology, Cottbus, Germany 18: Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary 19: Also at MTA-ELTE Lendulet CMS Particle and Nuclear Physics Group, Eotvos Lorand University, Budapest, Hungary 20: Also at Institute of Physics, University of Debrecen, Debrecen, Hungary 21: Also at Indian Institute of Technology Bhubaneswar, Bhubaneswar, India 22: Also at University of Visva-Bharati, Santiniketan, India 23: Also at Institute of Physics, Bhubaneswar, India 24: Also at University of Ruhuna, Matara, Sri Lanka 25: Also at Isfahan University of Technology, Isfahan, Iran 26: Also at Yazd University, Yazd, Iran University, Tehran, Iran 28: Also at Universita degli Studi di Siena, Siena, Italy 29: Also at Purdue University, West Lafayette, U.S.A. 27: Also at Plasma Physics Research Center, Science and Research Branch, Islamic Azad 30: Also at International Islamic University of Malaysia, Kuala Lumpur, Malaysia 31: Also at Malaysian Nuclear Agency, MOSTI, Kajang, Malaysia 32: Also at Consejo Nacional de Ciencia y Tecnolog a, Mexico city, Mexico 33: Also at Warsaw University of Technology, Institute of Electronic Systems, Warsaw, Poland 34: Also at Institute for Nuclear Research, Moscow, Russia 35: Now at National Research Nuclear University 'Moscow 36: Also at St. Petersburg State Polytechnical University, St. Petersburg, Russia 37: Also at University of Florida, Gainesville, U.S.A. 38: Also at P.N. Lebedev Physical Institute, Moscow, Russia 39: Also at California Institute of Technology, Pasadena, U.S.A. 40: Also at Budker Institute of Nuclear Physics, Novosibirsk, Russia 41: Also at Faculty of Physics, University of Belgrade, Belgrade, Serbia 42: Also at INFN Sezione di Roma; Sapienza Universita di Roma, Rome, Italy Belgrade, Serbia 44: Also at Scuola Normale e Sezione dell'INFN, Pisa, Italy 45: Also at National and Kapodistrian University of Athens, Athens, Greece 46: Also at Riga Technical University, Riga, Latvia 47: Also at Institute for Theoretical and Experimental Physics, Moscow, Russia 48: Also at Albert Einstein Center for Fundamental Physics, Bern, Switzerland 49: Also at Gaziosmanpasa University, Tokat, Turkey 43: Also at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, 51: Also at Mersin University, Mersin, Turkey 52: Also at Cag University, Mersin, Turkey 53: Also at Piri Reis University, Istanbul, Turkey 54: Also at Adiyaman University, Adiyaman, Turkey 55: Also at Ozyegin University, Istanbul, Turkey 56: Also at Izmir Institute of Technology, Izmir, Turkey 57: Also at Marmara University, Istanbul, Turkey 58: Also at Kafkas University, Kars, Turkey 59: Also at Istanbul Bilgi University, Istanbul, Turkey 60: Also at Yildiz Technical University, Istanbul, Turkey 61: Also at Hacettepe University, Ankara, Turkey 62: Also at Rutherford Appleton Laboratory, Didcot, United Kingdom 63: Also at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom 64: Also at Instituto de Astrof sica de Canarias, La Laguna, Spain 65: Also at Utah Valley University, Orem, U.S.A. 66: Also at BEYKENT UNIVERSITY, Istanbul, Turkey 67: Also at Erzincan University, Erzincan, Turkey 68: Also at Mimar Sinan University, Istanbul, Istanbul, Turkey 69: Also at Texas A&M University at Qatar, Doha, Qatar 70: Also at Kyungpook National University, Daegu, Korea [4] A.H. Chamseddine , R.L. Arnowitt and P. Nath , Locally supersymmetric grand uni cation , [5] G.L. Kane , C.F. Kolda , L. Roszkowski and J.D. Wells , Study of constrained minimal supersymmetry , Phys. Rev. D 49 ( 1994 ) 6173 [ hep -ph/9312272] [INSPIRE]. [6] P. Fayet , Supergauge invariant extension of the Higgs mechanism and a model for the electron and its neutrino , Nucl. Phys. B 90 ( 1975 ) 104 [INSPIRE]. [7] R. Barbieri , S. Ferrara and C.A. Savoy , Gauge models with spontaneously broken local supersymmetry , Phys. Lett. 119B ( 1982 ) 343 [INSPIRE]. [8] L.J. Hall , J.D. Lykken and S. Weinberg , Supergravity as the messenger of supersymmetry [9] P. Ramond, Dual theory for free fermions , Phys. Rev. D 3 ( 1971 ) 2415 [INSPIRE]. [10] G. ' t Hooft, Naturalness, chiral symmetry, and spontaneous chiral symmetry breaking , NATO [11] E. Witten , Dynamical breaking of supersymmetry, Nucl. Phys. B 188 ( 1981 ) 513 . [12] M. Dine , W. Fischler and M. Srednicki , Supersymmetric technicolor, Nucl. Phys. B 189 [13] S. Dimopoulos and S. Raby , Supercolor, Nucl. Phys. B 192 ( 1981 ) 353 [INSPIRE]. [14] S. Dimopoulos and H. Georgi , Softly broken supersymmetry and SU(5), Nucl . Phys. B 193 [15] R.K. Kaul and P. Majumdar , Cancellation of quadratically divergent mass corrections in globally supersymmetric spontaneously broken gauge theories , Nucl. Phys. B 199 ( 1982 ) 36 [29] L. Alvarez-Gaume , M. Claudson and M.B. Wise , Low-energy supersymmetry , Nucl. Phys. B [30] R. Barbier et al., R-parity violating supersymmetry , Phys. Rept . 420 ( 2005 ) 1 [31] G.R. Farrar and P. Fayet , Phenomenology of the production, decay and detection of new hadronic states associated with supersymmetry , Phys. Lett. 76B ( 1978 ) 575 [INSPIRE]. [32] P. Meade , N. Seiberg and D. Shih , General gauge mediation , Prog. Theor. Phys. Suppl . 177 [34] S. Abel , M.J. Dolan , J. Jaeckel and V.V. Khoze , Phenomenology of pure general gauge [43] M. Cacciari , G.P. Salam and G. Soyez, FastJet user manual , Eur. Phys. J. C 72 ( 2012 ) 1896 [48] J. Alwall , M. Herquet , F. Maltoni , O. Mattelaer and T. Stelzer , MadGraph 5: going beyond, [49] T. Sj ostrand, S. Mrenna and P.Z. Skands , PYTHIA 6 . 4 physics and manual , JHEP 05 [50] S. Frixione , P. Nason and C. Oleari , Matching NLO QCD computations with Parton Shower [63] A.L. Read , Presentation of search results: the CL(s) technique , J. Phys. G 28 ( 2002 ) 2693 [64] G. Cowan , K. Cranmer , E. Gross and O. Vitells , Asymptotic formulae for likelihood-based tests of new physics , Eur. Phys. J. C 71 ( 2011 ) 1554 [Erratum ibid . C 73 ( 2013 ) 2501] [65] R.J. Barlow and C. Beeston , Fitting using nite Monte Carlo samples , Comput. Phys.


This is a preview of a remote PDF: https://link.springer.com/content/pdf/10.1007%2FJHEP03%282018%29167.pdf

The CMS collaboration, A. M. Sirunyan, A. Tumasyan, W. Adam, E. Asilar, T. Bergauer, J. Brandstetter, E. Brondolin, M. Dragicevic, J. Erö, M. Flechl, M. Friedl, R. Frühwirth, V. M. Ghete, C. Hartl, N. Hörmann, J. Hrubec, M. Jeitler, A. König, I. Krätschmer, D. Liko, T. Matsushita, I. Mikulec, D. Rabady, N. Rad, B. Rahbaran, H. Rohringer, J. Schieck, J. Strauss, W. Waltenberger, C.-E. Wulz, O. Dvornikov, V. Makarenko, V. Mossolov, J. Suarez Gonzalez, V. Zykunov, N. Shumeiko, S. Alderweireldt, E. A. De Wolf, X. Janssen, J. Lauwers, M. Van De Klundert, H. Van Haevermaet, P. Van Mechelen, N. Van Remortel, A. Van Spilbeeck, S. Abu Zeid, F. Blekman, J. D’Hondt, N. Daci, I. De Bruyn, K. Deroover, S. Lowette, S. Moortgat, L. Moreels, A. Olbrechts, Q. Python, K. Skovpen, S. Tavernier, W. Van Doninck, P. Van Mulders, I. Van Parijs, H. Brun, B. Clerbaux, G. De Lentdecker, H. Delannoy, G. Fasanella, L. Favart, R. Goldouzian, A. Grebenyuk, G. Karapostoli, T. Lenzi, A. Léonard, J. Luetic, T. Maerschalk, A. Marinov, A. Randle-conde, T. Seva, C. Vander Velde, P. Vanlaer, D. Vannerom, R. Yonamine, F. Zenoni, F. Zhang, T. Cornelis, D. Dobur, A. Fagot, M. Gul, I. Khvastunov, D. Poyraz, S. Salva, R. Schöfbeck, M. Tytgat, W. Van Driessche, W. Verbeke, N. Zaganidis, H. Bakhshiansohi, O. Bondu, S. Brochet, G. Bruno, A. Caudron, S. De Visscher, C. Delaere, M. Delcourt, B. Francois, A. Giammanco, A. Jafari, M. Komm, G. Krintiras, V. Lemaitre, A. Magitteri, A. Mertens, M. Musich, K. Piotrzkowski, L. Quertenmont, M. Vidal Marono, S. Wertz, N. Beliy, W. L. Aldá Júnior, F. L. Alves, G. A. Alves, L. Brito, C. Hensel, A. Moraes, M. E. Pol, P. Rebello Teles, E. Belchior Batista Das Chagas, W. Carvalho, J. Chinellato, A. Custódio, E. M. Da Costa, G. G. Da Silveira, D. De Jesus Damiao, C. De Oliveira Martins, S. Fonseca De Souza, L. M. Huertas Guativa, H. Malbouisson, D. Matos Figueiredo, C. Mora Herrera, L. Mundim, H. Nogima, W. L. Prado Da Silva, A. Santoro, A. Sznajder, E. J. Tonelli Manganote, F. Torres Da Silva De Araujo, A. Vilela Pereira, S. Ahuja, C. A. Bernardes, S. Dogra, T. R. Fernandez Perez Tomei, E. M. Gregores, P. G. Mercadante, C. S. Moon, S. F. Novaes, Sandra S. Padula, D. Romero Abad, J. C. Ruiz Vargas, A. Aleksandrov, R. Hadjiiska, P. Iaydjiev, M. Rodozov, S. Stoykova, G. Sultanov, M. Vutova, A. Dimitrov, I. Glushkov, L. Litov, B. Pavlov, P. Petkov, W. Fang, X. Gao, M. Ahmad, J. G. Bian, G. M. Chen, H. S. Chen, M. Chen, Y. Chen, T. Cheng, C. H. Jiang, D. Leggat, Z. Liu, F. Romeo, M. Ruan, S. M. Shaheen, A. Spiezia, J. Tao, C. Wang, Z. Wang, E. Yazgan, H. Zhang, J. Zhao, Y. Ban, G. Chen, Q. Li, S. Liu, Y. Mao, S. J. Qian, D. Wang, Z. Xu, C. Avila, A. Cabrera, L. F. Chaparro Sierra, C. Florez, J. P. Gomez, C. F. González Hernández, J. D. Ruiz Alvarez, J. C. Sanabria, N. Godinovic, D. Lelas, I. Puljak, P. M. Ribeiro Cipriano, T. Sculac, Z. Antunovic, M. Kovac, V. Brigljevic, D. Ferencek, K. Kadija, B. Mesic, T. Susa, M. W. Ather, A. Attikis, G. Mavromanolakis, J. Mousa, C. Nicolaou, F. Ptochos, P. A. Razis, H. Rykaczewski, M. Finger, M. Finger, E. Carrera Jarrin, Y. Assran, M. A. Mahmoud, A. Mahrous, M. Kadastik, L. Perrini, M. Raidal, A. Tiko, C. Veelken, P. Eerola, J. Pekkanen, M. Voutilainen, J. Härkönen, T. Järvinen, V. Karimäki, R. Kinnunen, T. Lampén, K. Lassila-Perini, S. Lehti, T. Lindén, P. Luukka, J. Tuominiemi, E. Tuovinen, L. Wendland, J. Talvitie, T. Tuuva, M. Besancon, F. Couderc, M. Dejardin, D. Denegri, B. Fabbro, J. L. Faure, C. Favaro, F. Ferri, S. Ganjour, S. Ghosh, A. Givernaud, P. Gras, G. Hamel de Monchenault, P. Jarry, I. Kucher, E. Locci, M. Machet, J. Malcles, J. Rander, A. Rosowsky, M. Titov, A. Abdulsalam, I. Antropov, S. Baffioni, F. Beaudette, P. Busson, L. Cadamuro, E. Chapon, C. Charlot, O. Davignon, R. Granier de Cassagnac, M. Jo, S. Lisniak, A. Lobanov, P. Miné, M. Nguyen, C. Ochando, G. Ortona, P. Paganini, P. Pigard, S. Regnard, R. Salerno, Y. Sirois, A. G. Stahl Leiton, T. Strebler, Y. Yilmaz, A. Zabi, A. Zghiche, J.-L. Agram, J. Andrea, D. Bloch, J.-M. Brom, M. Buttignol, E. C. Chabert, N. Chanon, C. Collard, E. Conte, X. Coubez, J.-C. Fontaine, D. Gelé, U. Goerlach, A.-C. Le Bihan, P. Van Hove, S. Gadrat, S. Beauceron, C. Bernet, G. Boudoul, C. A. Carrillo Montoya, R. Chierici, D. Contardo, B. Courbon, P. Depasse, H. El Mamouni, J. Fay, L. Finco, S. Gascon, M. Gouzevitch, G. Grenier, B. Ille, F. Lagarde, I. B. Laktineh, M. Lethuillier, L. Mirabito, A. L. Pequegnot, S. Perries, A. Popov, V. Sordini, M. Vander Donckt, P. Verdier, S. Viret, A. Khvedelidze, Z. Tsamalaidze, C. Autermann, S. Beranek, L. Feld, M. K. Kiesel, K. Klein, M. Lipinski, M. Preuten, C. Schomakers, J. Schulz, T. Verlage, A. Albert, M. Brodski, E. Dietz-Laursonn, D. Duchardt, M. Endres, M. Erdmann, S. Erdweg, T. Esch, R. Fischer, A. Güth, M. Hamer, T. Hebbeker, C. Heidemann, K. Hoepfner, S. Knutzen, M. Merschmeyer, A. Meyer, P. Millet, S. Mukherjee, M. Olschewski, K. Padeken, T. Pook, M. Radziej, H. Reithler, M. Rieger. Search for natural supersymmetry in events with top quark pairs and photons in pp collisions at \( \sqrt{s}=8 \) TeV, Journal of High Energy Physics, 2018, 167, DOI: 10.1007/JHEP03(2018)167