Search for natural supersymmetry in events with top quark pairs and photons in pp collisions at \( \sqrt{s}=8 \) TeV
HJE
p s = 8 TeV quark pairs and photons in pp collisions at
Physics Processes
Results are presented from a search for natural gauge-mediated supersymmetry (SUSY) in a scenario in which the top squark is the lightest squark, the next-to-lightest SUSY particle is a bino-like neutralino, and the lightest SUSY particle is the gravitino. The strong production of top squark pairs can produce events with pairs of top quarks and neutralinos, with each bino-like neutralino decaying to a photon and a gravitino. The search is performed using a sample of pp collision data accumulated by the CMS experiment at s = 8 TeV, corresponding to an integrated luminosity of 19.7 fb 1. The nal state consists of a lepton (electron or muon), jets, and one or two photons. The imbalance in transverse momentum in the events is compared with the expected spectrum from standard model processes. No excess event yield is observed beyond the expected background, and the result is interpreted in the context of a general model of gauge-mediated SUSY breaking that leads to exclusion of top squark masses below 650{730 GeV.
Hadron-Hadron scattering (experiments); Supersymmetry
-
The CMS collaboration
1 Introduction
2
3
4
5
6
Event selection and analysis strategy
Results and interpretation
Summary
The CMS collaboration
ing to an integrated luminosity of 19.7 fb 1 of pp collisions at p
In this paper, we describe a search for light top squarks (et) in a data sample
corresponds = 8 TeV. This search
is motivated by models of gauge-mediated SUSY breaking (GMSB) [27{29] in which the
neutralino ( e01) is the next-to-lightest sparticle (NLSP) and the gravitino (G~) is the lightest
sparticle (LSP). The gravitino escapes undetected and contributes to missing transverse
+pTmiss topology. This event topology is shown
in the background estimates because of the exceedingly small cross section for such events
in the SM. Two signal regions are de ned for both electron and muon channels, depending
on the presence of one or two selected photons in the event. Control regions are similarly
de ned, using photons that fail either the nominal isolation or shower-energy distribution
requirements.
The results of the analysis are evaluated by comparing the shapes of pTmiss distributions
between the data and estimated backgrounds in the one- and two-photon signal regions.
The results are interpreted for a range of top squark and neutralino masses in a general
gauge-mediated (GGM) SUSY model framework [32{37].
2
The CMS detector
The central feature of the CMS detector is a superconducting solenoid with an internal
diameter of 6 m, providing a magnetic eld of 3.8 T. A silicon pixel and strip tracker,
a lead tungstate crystal electromagnetic calorimeter (ECAL), and a brass and
scintillator sampling hadron calorimeter (HCAL), each separated into central barrel and endcap
sections, reside within the eld volume. Extensive forward calorimetry complements the
coverage provided by the barrel and endcap detectors. The muon system, embedded in the
steel return yoke outside of the solenoid, measures muons using drift tubes, cathode strip
chambers, and resistive plate chambers.
An energy resolution averaging approximately 1% is achieved for unconverted or
lateconverting photons in the energy range of photons in the barrel section of ECAL. The
remaining converted barrel photons have a resolution of about 1.3% up to a pseudorapidity
of j j = 1, rising to about 2.5% at j j = 1:4 [38]. Only photons located in the barrel of
the ECAL are considered in this analysis because of the superior energy resolution in the
barrel compared to the endcap.
{ 2 {
The rst level of the CMS trigger system, constructed using special hardware
processors, provides information from the calorimeters and muon detectors to select the most
interesting events in a
xed time interval of less than 4 s. The high-level trigger
processor farm further decreases the event rate from around 100 kHz to about 400 Hz before
data storage.
A more detailed description of the CMS detector, together with a de nition of the
coordinate system and the kinematic variables, such as
or the azimuthal angle
(in
radians), can be found in ref. [39].
3
Object reconstruction
All physics objects in the event (muons, electrons, photons, jets, and pmiss) are
reconstructed using the particle- ow (PF) algorithm [40, 41]. Jets are formed by clustering PF
candidates using the anti-kT algorithm [42], as implemented in FastJet toolkit [43], using
a distance parameter of 0.5, and their momenta are corrected for e ects of multiple
interactions in the same or neighboring bunch crossings (pileup). The pmiss of an event is de ned
by the projection of the negative of the vector sum of the momenta of all reconstructed
objects in the event onto the plane perpendicular to the proton beams. All PF candidates
are used in the calculation of pTmiss.
p
(
Photons are reconstructed from energy clusters in the ECAL barrel (j j < 1:44), are
required to be highly isolated from other objects, and to have transverse momentum pT >
20 GeV. The ratio of the energy deposited in the HCAL tower closest to the seed of
the ECAL photon cluster to the energy in the photon cluster has to be less than
ve
percent. The photon shower is required to have a photon-like spatial distribution in its
energy [38]. The isolation variable, de ned through the sum of the scalar values of pT of
all PF candidates within a cone centered on the photon axis, in the
plane of
R =
)2 + (
)2 = 0:3, is calculated without including the pT of the candidate photon.
The isolation energy for charged hadrons is required to be <15 GeV, the neutral-hadron
energy <3.5 GeV + 4% of the photon candidate pT, and the isolation energy from any
other photons in the cone must be <13 GeV + 0.5% of the candidate photon pT. Pileup
corrections depending on
are applied to all calculated isolation variables.
Electrons are reconstructed from clusters of deposited energy in the ECAL that are
matched to a track in the silicon tracker [44]. Candidate electrons are required to have
pT > 30 GeV, and to be within j j < 2:5, excluding the small transition region (1:44 < j j <
1:52) between the ECAL barrel and the endcaps. Electrons are required to be isolated,
with the sum of the energy deposition within a cone of radius
R = 0:3, excluding the
electron, to correspond to < 10% of the momentum of the candidate electron.
Muons are reconstructed from measurements in the muon system and compatible track
segments in the silicon tracker [45]. Candidate muons are required to have pT > 30 GeV,
be within j j < 2:1, and to have an isolation energy sum in a cone of radius
R = 0:4,
excluding the muon, of <12% of their pT. Looser lepton requirements are applied to identify
extra leptons that are used to veto the dilepton tt nal states, as described in section 4.
{ 3 {
HJEP03(218)67
The combined secondary vertex algorithm (CSV) [46, 47] is used to identify jets from
b quarks. The CSV algorithm uses secondary vertices and track impact parameters to
provide a discriminant separating b quark jets from charm, light quark, or gluon jets. The
selection e ciency is about 70% for b quark jets and 20% for c quark jets. The rejection
factor for lighter quark or gluon jets at this working point is about 2%.
4
Event selection and analysis strategy
Events are required to pass either a single-electron or single-muon trigger, requiring one
isolated electron or muon with minimum pT of 27 or 24 GeV, respectively. In addition,
the single-muon trigger requires the muon candidate to be within j j < 2:1. The trigger
e ciency is approximately 100% using o ine cuts on pT of 30 GeV.
Only one lepton and at least three jets with pT > 30 GeV and j j < 2:4 are required,
with at least one of the three jets tagged as originating from a b quark. All objects are
required to be separated from each other by at least
R = 0:5. Events containing additional
leptons satisfying less restrictive criteria of pT > 10 GeV, j j < 2:5, and isolation-energy
sums with <20% of their pT, are rejected.
After this preselection, events are separated into independent samples based on the
number of candidate photons. Candidate photons are required to be separated from all jets
by
R > 0:7. Two signal regions are de ned, with SR1 containing one photon candidate,
and SR2 at least two photon candidates.
Photons that fail either the shower-energy distribution or charged-hadron isolation
criteria are referred to as fake photons. These objects are predominantly jets with large
electromagnetic
uctuations in their hadronization and are used to de ne two control
regions: CR1, containing one fake and no properly reconstructed photons, and CR2,
containing two or more fake and no properly reconstructed photons. The control regions are
de ned not to overlap with signal regions, to have very small acceptance for signal, and to
greatly enhance the population of photon-like jets that contribute most of the estimated
background in signal regions. The control regions also provide events that can be used to
study the performance of the pTmiss simulation for poorly reconstructed photon-like objects
in the signal region. The e ect on the pmiss resolution from these poorly reconstructed
photon-like objects is found to be negligible compared to the e ect of pT resolutions in the
T
jets from the tt decays.
The background expected in the signal regions is largely dominated by tt+jets and
tt+
events, where many selected photons may originate from misreconstructed jets.
These two processes are simulated in Monte Carlo (MC) using the leading-order (LO)
MadGraph 5.1.3 [48] matrix element generator matched to pythia 6.426 [49] for parton
showering and fragmentation. Simulated tt+
events are generated in a 2 ! 7 con
guration (pp!bbjj`
). Approximately 0.6% of the simulated tt+jets events that contain
a generator-level photon fall into the phase space of the tt+
sample, and are removed
to avoid double counting these events. Most other backgrounds are simulated with
MadGraph and matched to pythia, including W+jets or Z+jets, tt+W or tt+Z, W+
or
Z+ , and diboson (ZZ, WZ, and WW) processes. Single top quark events are generated
{ 4 {
MadGraph 5.1.3 powheg 1.0 pythia 6.42 tauola
Z2* tune
Geant4
CTEQ6M
SuSpect 2.41 prospino 2.1 sdecay 1.2
Purpose
(LO) Matrix element generator
(NLO) Matrix element generator
Parton showering and fragmentation
Decay of
leptons
Modeling of underlying event
Modeling of the CMS detector
Parton distribution functions (PDF)
Generation of GGM signal spectrum
(NLO) Cross section calculation
Decay tables for GGM particles
All backgrounds except single top
Single top quark backgrounds
All backgrounds and signal
Single top quark backgrounds
All backgrounds and signal
All backgrounds and signal
All backgrounds and signal
with the next-to-lowest-order (NLO) generator powheg 1.0 [50], modeling the decay of
leptons with tauola [51]. The Z2* tune [52, 53] is used for the underlying event. All
simulated backgrounds are processed using the full simulation of the response of the CMS
detector using the Geant4 [54] package, and reconstructed under the same conditions as
the data. These backgrounds are then normalized to the integrated luminosity of the data
using their respective cross sections calculated at least at NLO. The CTEQ6M parton
distribution functions (PDF) are used in the signal and background simulations [55]. A
summary of the software used in the MC simulations of backgrounds is given in table 1.
In the muon+jets channel, the background from Z+jets and Z+
events is very small
T
because of the low probablility for a muon to be misidenti ed as a photon. In the
electron+jets channel, however, these processes contribute more to the background, especially
at low pmiss, because the probability for an electron to be misidenti ed as a photon is
much greater. This electron misidenti cation rate can be determined from the size of the
peak at the Z boson mass in the invariant mass distribution of electron-photon pairs in the
electron+jets channel of SR1. This rate depends on an estimate of the number of selected
Z bosons in the electron+jets channel, the accuracy of which can be improved through
the implementation of a scale factor (SF ) extracted to normalize the Z+jets and Z+
MC
events in both the electron and muon channels. The SF is measured imposing a dilepton
selection similar to the one used in the SR1 selection, but altered to require two same- avor
leptons rather than just a single lepton. Events with additional leptons are vetoed, and no
photons are required. A
t to the invariant mass of the dilepton system in data, using the
Z+jets and Z+
MC events as the signal template and all other MC events as background
templates, provides a normalization scale factor for both the Z+jets and Z+
MC events,
labeled SFZ( ), in the electron and the muon channels.
Once this rst SF is applied to correct the MC estimate of the number of Z bosons, the
Z resonance in the SR1 electron+jets channel is used to obtain a second scale factor SFe!
which corrects the misidenti cation of electrons as photons. A
t to the invariant mass
of the electron-photon system in SR1 data, with pmiss < 50 GeV, to limit the presence of
signal, is performed using the Z+jets and Z+
MC events to determine their contributions.
T
Generator-level matching of reconstructed photons to generated electrons is applied to
{ 5 {
e
1.38
channel, only the SFZ( ) scale factor is relevant. The rst uncertainties are statistical, obtained from
uncertainties in the resultant ts. The second uncertainties correspond to di erences in the resulting
scale factors, added in quadrature, that were obtained by allowing each systematic uncertainty to
uctuate up and down by one standard deviation and re tting.
increase the purity of the misidenti ed e mass template. To increase the statistics available
for each template, the b tagging requirement is removed from the MC events and from the
data sample, as the misidenti cation does not depend on the presence of a b jet. From
the result of this t, a normalization SFe!
is measured and applied to both the Z+jets
and Z+
MC events in the electron-signal regions. A corresponding SF !
scale factor
is not applied in the muon-signal regions, as the misidenti cation of muons as photons
is negligible. The results of the ts for each of these scale factors are listed in table 2.
Comparisons of the data and MC distributions are shown in gure 2 after the applying the
scale factors of table 2.
The nal ingredient needed to estimate the background is the relative compositions of
photons and photon-like jets in the dominant tt+jets and tt+
backgrounds. As stated in
the introdcution, no explicit tt+
sample is used in the background estimate because of
the exceedingly small cross section for such events. The sources of two photon events in
SR2 are largely the result of jets or electrons misidenti ed as photons as described above,
or of initial or
nal-state radiation as predicted by pythia.
While the precise photon
T
purity in each signal region is important for absolute measurements, no di erence in the
overall shape of simulated pmiss is found when altering the purity of selected photons. The
maximum bin-by-bin di erence between the simulated pmiss of tt+jets and tt+
events is
found to be 5%. When their relative normalizations are adjusted to the observed photon
T
T
purity in data through a t to the photon isolation variable, the result is well contained
within the statistical uncertainties in the pmiss distribution. The pmiss distribution in both
signal regions is found to be insensitive to the source of selected photons in tt+jets and
tt+
backgrounds, and, as such, no dedicated tt+
sample is required. To eliminate any
dependence on the overall production rate of tt+ events, the normalizations of tt+jets and
T
tt+
backgrounds are allowed to oat freely in the calculations of upper limits, so that the
interpretation of the results is based completely on the observed shapes of the distributions.
T
The control regions allow us to validate the prediction of the pTmiss background, as they
contain less than 1% contamination from signal. Inverting the requirements on the photon
shower selection or on charged-hadron isolation, the CR1 and CR2 regions can contain
the same tt systems as the signal regions, but with greatly enhanced contributions from
misidenti ed jets compared to the photon content in each sample. The observed data and
predicted background pmiss are shown in gure 3 for each control region.
{ 6 {
19.7 fb-1 (8 TeV) ee+bjj
Data
Z(γ) + jets
Other backgrounds
104 CMS
V
e
G
0
1
/
.d1.5
D 20
V
e
G
0
1
/
.d1.5
D 20
.d1.5
160
m
180
eγ [GeV]
and (middle pane) for the muon channels. The lower pane shows the result of the t of me SR1
electron data (without the b tag requirement) to determine SFe! . The mass spectra are shown
post- t after the application of the derived scale factors. The ratio of data to the total background
is included in the lower panel of each plot. Uncertainties include the quadratic sum of all statistical
and systematic components.
{ 7 {
eV102
G
/
/B 1
D 0
0
CMS
WW, WZ, ZZ, W+gamma, and Z+gamma.
the modeling of pmiss, and is applied bin-by-bin in the signal region. The
KolmogorovSmirnov test [56] result of 0.66 between data and simulation for CR2 is attributable to
the very small number of events in data and, therefore, CR2 is not used to determine
an uncertainty for the signal region SR2. The CR1 results are therefore used for both
SR1 and SR2. An additional systematic uncertainty in SR1 is obtained using the
bin-bybin fractional di erences (1
CR1=SR1) of CR1 and SR1 pmiss shapes. A
nal systematic
T
this accounts for a 10{20% systematic uncertainty from di erences between the data and
the CR1 MC pmiss shapes, a 1{8% systematic uncertainty in SR1 due to the di erence
between CR1 and SR1 pmiss shapes, and a 10{50% systematic uncertainty (the 50% value
applies only in the highest bin of pmiss) in SR2, based on the di erence SR1 and SR2
5
Results and interpretation
For any given background or signal process, contributions from systematic uncertainties
affecting pTmiss are treated simultaneously and are assumed to be completely uncorrelated. All
backgrounds are simulated using MC generated events and assigned systematic
uncertainties based on integrated luminosity uncertainties, PDF and scale uncertainties, corrections
for the number of pileup events, and jet energy scale and resolution (JES and JER).
Estimated uncertainties on trigger e ciency and object selections are derived from the
systematic uncertainties in MC scale factors. These include trigger e ciencies, b tagging [46, 47]
as well as electron [44], muon [45], and photon identi cation [38]. The systematic
uncertainties are summarized in table 3.
The observed data are compared to the SM background estimates as a function of pTmiss
in each signal region, as shown in
gure 4. No signi cant deviation is observed between
data and the background prediction. The nal results are summarized in table 4.
To demonstated what a GGM signal would look like compared to the data, an
example of a GGM spectrum is generated with FastSim [57] using pythia 6 and SuSpect
2.41 [58], using the decay tables from sdecay 1.2 [59] and NLO cross sections calculated
with prospino 2.1 [60]. We scan over the parameters M1 (U(1)Y ), gaugino (bino) mass
and MtR in the SLHA les [61]. The other input parameters of GGM such as M2 (SU(2)L),
gaugino (wino) mass) and MdR, etc. are decoupled. As a result sdecay + SuSpect
produce neutralino and top squark masses that are similar to the settings of M1 and MtR, and
the rest of the particles masses are in the TeV range.
The GGM signal is shown superimposed on the data and background MC in gure 4.
e
The mass of the top squark (mt) is chosen to range from 360 to 910 GeV. The neutralino is
assumed for simplicity to be 100% bino-like, decaying 100% to a photon plus a gravitino.
The neutralino mass (me01 ) is chosen to range from 150 to 725 GeV and the gravitino mass
is 1 GeV. Signal points are evaluated in 25 GeV steps in both me01 and m
e
and in 50 GeV steps for higher masses. All other SUSY particles (squarks, gluinos, and
CMS
19.7 fb-1 (8 TeV) e or μ + b + jj + γ
Data
vE 1
10−1
10−2
10−3
/B 1
photons. Each bin is normalized by its bin width.
gauginos) are decoupled by setting their masses to very large values so that the only relevant
process is the production of top squark pairs that decay to bino-like NLSPs. The mass
b jets limits the sensitivity in this mass range.
region where m
t
e
me01 < mt is not considered, as the requirement for high-pT leptons and
No signi cant excess of events is observed beyond the SM expectation, and 95%
condence level (CL) upper limits are placed on the cross sections by combining the results of
all four search regions (electron SR1, muon SR1, electron SR2, and muon SR2) using the
CLs criterion [62{64]. The test statistic is constructed as the product of likelihood ratios
in bins of pTmiss. Systematic uncertainties are included as nuisance parameters in the signal
Source
Integrated luminosity
Lepton ID/trigger
Photon ID
Pileup
JES/JER
b tagging
PDFs
Renormalization and factorization scales
Control region discrepancy
SR1/CR1 shape di erences
SR2/SR1 shape di erences
SUSY cross sections
W or Z + jets
the control region. In the calculation of the upper limits, the normalizations of the tt+jets and
tt+
backgrounds are allowed to oat freely in the t. Check marks indicate the uncertainties that
a ect the shape of pTmiss.
statistical and the second is systematic.
Expectations from two GGM signal model points are included, for which (460, 175) refers to m
460 GeV and me01 = 175 GeV, and similarly for (560, 325). The rst group of uncertainties is
e
t =
T
and background pmiss shapes. Systematic uncertainties a ecting only the normalization of
signal or background processes are modeled through log-normal distributions, taken as the
probability density functions in their associated nuisance parameters. Fluctuations in the
shape of pTmiss distributions determine both upward and downward systematic uncertainties.
A single
100% nuisance parameter is introduced with a log-uniform probability
density function for its normalization to allow the tt and tt+
normalizations to oat freely
in the upper-limit calculation. Statistical uncertainties resulting from the limited number
of MC events are also included as nuisance parameters, as prescribed in ref. [65].
Shapes Uncertainty (%)
64
35
6
1.1
116
1.0
388
411
6
1.9
19.7 fb-1(8 TeV) e or μ + b + jj + γ(γ)
p p → ~t~t, ~t→ t + ∼χ01 , ∼χ01 → γ + G~
Observed UL
600
800
V
e
0 1
V
e
G
0 1
0
m∼χ1
m~t
m~t
<
0
m∼χ1
m~t
0
m∼χ1
400
<
m t
p
p
u
L
m
C
%
5
9
section at 95% CL in the met{me01 plane.
The expected and observed upper limits are shown in gure 5. The observed upper
limits are slightly less stringent than the expected limits. Observed and expected exclusion
contours are also determined and shown in
gure 6 with exclusion of top squark mass
below 650 to 730 GeV corresponding to neutralino masses of 500 and 150 GeV, respectively.
These exclusions are obtained using the
1 theoretical excursion from the observed
exclusion mean.
G
0
m∼χ1
m t
19.7 fb-1 (8 TeV) e or μ + b + jj + γ(γ)
p p → ~t ~t, ~t → t + ∼χ01 , ∼χ01 → γ + G~
Observed ± 1σtheory
Expected ± 1σexperiment
600
800
plane, and their ranges of uncertainties given by the contours at the 68% CL. The region to the left
of the contour for mt-me01 < mt is excluded by this analysis.
e
6
Summary
We have presented a search for natural gauge-mediated supersymmetry breaking in events
with a top quark pair and one or two photons. No signi cant deviation is found in the
distribution of the missing transverse momentum between data and expected SM
backgrounds that would indicate the presence of new physics. Upper limits on signal cross
sections are calculated for a range of top squark and bino masses. Top squark masses
between 650 to 730 GeV are excluded at the 95% CL corresponding to the neutralino mass
range of 500 to 150 GeV, respectively. These top squark mass points are obtained using
the
1 theoretical excursion from the observed exclusion mean. These results set the
most stringent exclusions on top squark masses in gauge-mediated supersymmetric model
considered here.
Acknowledgments
We congratulate our colleagues in the CERN accelerator departments for the excellent
performance of the LHC and thank the technical and administrative sta s at CERN and
at other CMS institutes for their contributions to the success of the CMS e ort. In
addition, we gratefully acknowledge the computing centers and personnel of the Worldwide
LHC Computing Grid for delivering so e ectively the computing infrastructure essential
to our analyses. Finally, we acknowledge the enduring support for the construction and
operation of the LHC and the CMS detector provided by the following funding agencies:
BMWFW and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ,
and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China);
COLCIENCIAS (Colombia); MSES and CSF (Croatia); RPF (Cyprus); SENESCYT (Ecuador);
MoER, ERC IUT, and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland);
CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece);
OTKA and NIH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN
(Italy); MSIP and NRF (Republic of Korea); LAS (Lithuania); MOE and UM (Malaysia);
BUAP, CINVESTAV, CONACYT, LNS, SEP, and UASLP-FAI (Mexico); MBIE (New
Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna);
MON, RosAtom, RAS, RFBR and RAEP (Russia); MESTD (Serbia); SEIDI, CPAN, PCTI
and FEDER (Spain); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter,
IPST, STAR, and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU and SFFR
(Ukraine); STFC (United Kingdom); DOE and NSF (U.S.A.).
Individuals have received support from the Marie-Curie program and the European
Research Council and Horizon 2020 Grant, contract No. 675440 (European Union); the
Leventis Foundation; the A. P. Sloan Foundation; the Alexander von Humboldt
Foundation; the Belgian Federal Science Policy O
ce; the Fonds pour la Formation a la Recherche
dans l'Industrie et dans l'Agriculture (FRIA-Belgium); the Agentschap voor Innovatie
door Wetenschap en Technologie (IWT-Belgium); the Ministry of Education, Youth and
Sports (MEYS) of the Czech Republic; the Council of Science and Industrial Research,
India; the HOMING PLUS program of the Foundation for Polish Science, co nanced from
European Union, Regional Development Fund, the Mobility Plus program of the
Ministry of Science and Higher Education, the National Science Center (Poland), contracts
Harmonia 2014/14/M/ST2/00428, Opus 2014/13/B/ST2/02543, 2014/15/B/ST2/03998,
and 2015/19/B/ST2/02861, Sonata-bis 2012/07/E/ST2/01406; the National Priorities
Research Program by Qatar National Research Fund; the Programa Clar n-COFUND del
Principado de Asturias; the Thalis and Aristeia programs co nanced by EU-ESF and the
Greek NSRF; the Rachadapisek Sompot Fund for Postdoctoral Fellowship, Chulalongkorn
University and the Chulalongkorn Academic into Its 2nd Century Project Advancement
Project (Thailand); and the Welch Foundation, contract C-1845.
Open Access.
This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
(1974) 39 [INSPIRE].
438 [INSPIRE].
[1] J. Wess and B. Zumino, Supergauge transformations in four-dimensions, Nucl. Phys. B 70
[2] Yu. A. Golfand and E.P. Likhtman, Extension of the algebra of Poincare group generators
and violation of p invariance, JETP Lett. 13 (1971) 323 [INSPIRE].
[3] D.V. Volkov and V.P. Akulov, Possible universal neutrino interaction, JETP Lett. 16 (1972)
Phys. Rev. Lett. 49 (1982) 970 [INSPIRE].
HJEP03(218)67
breaking, Phys. Rev. D 27 (1983) 2359 [INSPIRE].
Sci. Ser. B 59 (1980) 135.
(1981) 575 [INSPIRE].
(1981) 150 [INSPIRE].
[16] ATLAS collaboration, Observation of a new particle in the search for the standard model
Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1
[arXiv:1207.7214] [INSPIRE].
[17] CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS
experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235].
[18] ATLAS and CMS collaboration, Combined measurement of the Higgs boson mass in pp
collisions at p
(2015) 191803 [arXiv:1503.07589] [INSPIRE].
s = 7 and 8 TeV with the ATLAS and CMS experiments, Phys. Rev. Lett. 114
[19] J. Barnard, B. Farmer, T. Gherghetta and M. White, Natural gauge mediation with a bino
NLSP at the LHC, Phys. Rev. Lett. 109 (2012) 241801 [arXiv:1208.6062] [INSPIRE].
[20] Y. Kats, P. Meade, M. Reece and D. Shih, The status of GMSB after 1/fb at the LHC, JHEP
02 (2012) 115 [arXiv:1110.6444] [INSPIRE].
[21] CMS collaboration, Searches for pair production of third-generation squarks in p
s = 13 TeV
pp collisions, Eur. Phys. J. C 77 (2017) 327 [arXiv:1612.03877] [INSPIRE].
[22] CMS collaboration, Search for top squark and higgsino production using diphoton Higgs
boson decays, Phys. Rev. Lett. 112 (2014) 161802 [arXiv:1312.3310] [INSPIRE].
[23] CMS collaboration, Search for top-squark pairs decaying into Higgs or Z bosons in pp
collisions at p
s = 8 TeV, Phys. Lett. B 736 (2014) 371 [arXiv:1405.3886] [INSPIRE].
[24] ATLAS collaboration, Search for supersymmetry in events with photons, bottom quarks and
missing transverse momentum in proton{proton collisions at a centre-of-mass energy of 7
TeV with the ATLAS detector, Phys. Lett. B 719 (2013) 261 [arXiv:1211.1167] [INSPIRE].
[25] ATLAS collaboration, Search for photonic signatures of gauge-mediated supersymmetry in
8 TeV pp collisions with the ATLAS detector, Phys. Rev. D 92 (2015) 072001
[26] ATLAS collaboration, Search for top squarks in nal states with one isolated lepton, jets
and missing transverse momentum in p
Phys. Rev. D 94 (2016) 052009 [arXiv:1606.03903] [INSPIRE].
s = 13 TeV pp collisions with the ATLAS detector,
[27] M. Dine and W. Fischler, A phenomenological model of particle physics based on
[28] C.R. Nappi and B.A. Ovrut, Supersymmetric extension of the SU(3)
SU(2)
U(1) model,
(2009) 143 [arXiv:0801.3278] [INSPIRE].
(2009) 016 [arXiv:0812.3668] [INSPIRE].
[33] M. Buican, P. Meade, N. Seiberg and D. Shih, Exploring general gauge mediation, JHEP 03
supersymmetry, Phys. Lett. 110 (1982) 227.
Phys. Lett. 113B (1982) 175 [INSPIRE].
207 (1982) 96 [INSPIRE].
[hep-ph/0406039] [INSPIRE].
mediation, JHEP 12 (2009) 001 [arXiv:0910.2674] [INSPIRE].
[35] J.T. Ruderman and D. Shih, General neutralino NLSPs at the early LHC, JHEP 08 (2012)
159 [arXiv:1103.6083] [INSPIRE].
[36] Y. Kats and M.J. Strassler, Probing colored particles with photons, leptons and jets, JHEP
11 (2012) 097 [Erratum ibid. 07 (2016) 009] [arXiv:1204.1119] [INSPIRE].
[37] P. Grajek, A. Mariotti and D. Redigolo, Phenomenology of general gauge mediation in light
of a 125 GeV Higgs, JHEP 07 (2013) 109 [arXiv:1303.0870] [INSPIRE].
[38] CMS collaboration, Performance of photon reconstruction and identi cation with the CMS
s = 8 TeV, 2015 JINST 10 P08010
detector in proton-proton collisions at p
[arXiv:1502.02702] [INSPIRE].
[39] CMS collaboration, The CMS experiment at the CERN LHC, 2008 JINST 3 S08004
[40] CMS collaboration, Particle- ow reconstruction and global event description with the CMS
detector, 2017 JINST 12 P10003 [arXiv:1706.04965] [INSPIRE].
jet events from pp collisions at 7 TeV, CMS-PAS-PFT-10-002 (2010).
[41] CMS collaboration, Commissioning of the particle- ow reconstruction in minimum-bias and
[42] M. Cacciari, G.P. Salam and G. Soyez, The anti-kt jet clustering algorithm, JHEP 04 (2008)
063 [arXiv:0802.1189] [INSPIRE].
p
p
[arXiv:1111.6097] [INSPIRE].
[44] CMS collaboration, Performance of electron reconstruction and selection with the CMS
detector in proton-proton collisons at p(s) = 8 TeV, 2006 JINST 10 P06005.
[45] CMS collaboration, Performance of CMS muon reconstruction in pp collision events at
s = 7 TeV, 2012 JINST 7 P10002 [arXiv:1206.4071] [INSPIRE].
[46] CMS collaboration, Identi cation of b-quarks jets with the CMS experiment,
CMS-PAS-BTV-12-001 (2012).
[47] CMS collaboration, Performance of b tagging at ps = 8 TeV in multijet, tt and boosted
simulations: the POWHEG method, JHEP 11 (2007) 070 [arXiv:0709.2092] [INSPIRE].
[51] Z. Was, TAUOLA the library for tau lepton decay and KKMC/KORALB/KORALZ/: : :
status report, Nucl. Phys. Proc. Suppl. 98 (2001) 96 [hep-ph/0011305] [INSPIRE].
[52] CMS collaboration, Study of the underlying event at forward rapidity in pp collisions at
s = 0:9, 2:76 and 7 TeV, JHEP 04 (2013) 072 [arXiv:1302.2394] [INSPIRE].
[53] CMS collaboration, Event generator tunes obtained from underlying event and multiparton
scattering measurements, Eur. Phys. J. C 76 (2016) 155 [arXiv:1512.00815] [INSPIRE].
[54] GEANT4 collaboration, S. Agostinelli et al., GEANT4 | a simulation toolkit, Nucl.
Instrum. Meth. A 506 (2003) 250 [INSPIRE].
analysis, JHEP 07 (2002) 012 [hep-ph/0201195] [INSPIRE].
[55] J. Pumplin et al., New generation of parton distributions with uncertainties from global QCD
[56] N. Smirnov, Table for estimating the goodness of t of empirical distributions, Ann. Math.
Statist. 19 (1948) 279.
(2011) 032049.
[hep-ph/0211331] [INSPIRE].
[57] S. Abdullin et al., The fast simulation of the CMS detector at LHC, J. Phys. Conf. Ser. 331
[58] A. Djouadi, J.-L. Kneur and G. Moultaka, SuSpect: a Fortran code for the supersymmetric
and Higgs particle spectrum in the MSSM, Comput. Phys. Commun. 176 (2007) 426
[59] M. Muhlleitner, A. Djouadi and Y. Mambrini, SDECAY: a Fortran code for the decays of the
supersymmetric particles in the MSSM, Comput. Phys. Commun. 168 (2005) 46
[hep-ph/0311167] [INSPIRE].
[60] W. Beenakker, R. Hopker and M. Spira, PROSPINO: a program for the production of
supersymmetric particles in next-to-leading order QCD, hep-ph/9611232 [INSPIRE].
[61] B.C. Allanach et al., SUSY Les Houches accord 2, Comput. Phys. Commun. 180 (2009) 8
[arXiv:0801.0045] [INSPIRE].
[62] T. Junk, Con dence level computation for combining searches with small statistics, Nucl.
Instrum. Meth. A 434 (1999) 435 [hep-ex/9902226].
[INSPIRE].
Commun. 77 (1993) 219 [INSPIRE].
Yerevan Physics Institute, Yerevan, Armenia
A.M. Sirunyan, A. Tumasyan
Institut fur Hochenergiephysik, Wien, Austria
W. Adam, E. Asilar, T. Bergauer, J. Brandstetter, E. Brondolin, M. Dragicevic, J. Ero,
M. Jeitler1, A. Konig, I. Kratschmer, D. Liko, T. Matsushita, I. Mikulec, D. Rabady,
N. Rad, B. Rahbaran, H. Rohringer, J. Schieck1, J. Strauss, W. Waltenberger, C.-E. Wulz1
Institute for Nuclear Problems, Minsk, Belarus
O. Dvornikov, V. Makarenko, V. Mossolov, J. Suarez Gonzalez, V. Zykunov
National Centre for Particle and High Energy Physics, Minsk, Belarus
N. Shumeiko
Universiteit Antwerpen, Antwerpen, Belgium
S. Alderweireldt, E.A. De Wolf, X. Janssen, J. Lauwers, M. Van De Klundert, H. Van
Haevermaet, P. Van Mechelen, N. Van Remortel, A. Van Spilbeeck
Vrije Universiteit Brussel, Brussel, Belgium
S. Abu Zeid, F. Blekman, J. D'Hondt, N. Daci, I. De Bruyn, K. Deroover, S. Lowette,
S. Moortgat, L. Moreels, A. Olbrechts, Q. Python, K. Skovpen, S. Tavernier, W. Van
Doninck, P. Van Mulders, I. Van Parijs
Universite Libre de Bruxelles, Bruxelles, Belgium
H. Brun, B. Clerbaux, G. De Lentdecker, H. Delannoy, G. Fasanella, L. Favart,
R. Goldouzian, A. Grebenyuk, G. Karapostoli, T. Lenzi, A. Leonard, J. Luetic, T.
Maerschalk, A. Marinov, A. Randle-conde, T. Seva, C. Vander Velde, P. Vanlaer, D. Vannerom,
R. Yonamine, F. Zenoni, F. Zhang2
Ghent University, Ghent, Belgium
T. Cornelis, D. Dobur, A. Fagot, M. Gul, I. Khvastunov, D. Poyraz, S. Salva, R. Schofbeck,
M. Tytgat, W. Van Driessche, W. Verbeke, N. Zaganidis
Universite Catholique de Louvain, Louvain-la-Neuve, Belgium
H. Bakhshiansohi, O. Bondu, S. Brochet, G. Bruno, A. Caudron, S. De Visscher, C. Delaere,
M. Delcourt, B. Francois, A. Giammanco, A. Jafari, M. Komm, G. Krintiras, V. Lemaitre,
A. Magitteri, A. Mertens, M. Musich, K. Piotrzkowski, L. Quertenmont, M. Vidal Marono,
S. Wertz
N. Beliy
P. Rebello Teles
Universite de Mons, Mons, Belgium
Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil
W.L. Alda Junior, F.L. Alves, G.A. Alves, L. Brito, C. Hensel, A. Moraes, M.E. Pol,
Brazil
Sciences
tova
J.C. Ruiz Vargasa
Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
E. Belchior Batista Das Chagas, W. Carvalho, J. Chinellato3, A. Custodio, E.M. Da Costa,
G.G. Da Silveira4, D. De Jesus Damiao, C. De Oliveira Martins, S. Fonseca De Souza,
L.M. Huertas Guativa, H. Malbouisson, D. Matos Figueiredo, C. Mora Herrera, L. Mundim,
F. Torres Da Silva De Araujo, A. Vilela Pereira
Universidade Estadual Paulista a, Universidade Federal do ABC b, S~ao Paulo,
Institute for Nuclear Research and Nuclear Energy of Bulgaria Academy of
A. Aleksandrov, R. Hadjiiska, P. Iaydjiev, M. Rodozov, S. Stoykova, G. Sultanov, M.
Vu
University of So a, So a, Bulgaria
A. Dimitrov, I. Glushkov, L. Litov, B. Pavlov, P. Petkov
Beihang University, Beijing, China
W. Fang5, X. Gao5
Institute of High Energy Physics, Beijing, China
M. Ahmad, J.G. Bian, G.M. Chen, H.S. Chen, M. Chen, Y. Chen, T. Cheng, C.H. Jiang,
D. Leggat, Z. Liu, F. Romeo, M. Ruan, S.M. Shaheen, A. Spiezia, J. Tao, C. Wang,
Z. Wang, E. Yazgan, H. Zhang, J. Zhao
State Key Laboratory of Nuclear Physics and Technology, Peking University,
Beijing, China
Y. Ban, G. Chen, Q. Li, S. Liu, Y. Mao, S.J. Qian, D. Wang, Z. Xu
Universidad de Los Andes, Bogota, Colombia
C. Avila, A. Cabrera, L.F. Chaparro Sierra, C. Florez, J.P. Gomez, C.F. Gonzalez
Hernandez, J.D. Ruiz Alvarez6, J.C. Sanabria
University of Split, Faculty of Electrical Engineering, Mechanical Engineering
and Naval Architecture, Split, Croatia
N. Godinovic, D. Lelas, I. Puljak, P.M. Ribeiro Cipriano, T. Sculac
University of Split, Faculty of Science, Split, Croatia
Z. Antunovic, M. Kovac
Institute Rudjer Boskovic, Zagreb, Croatia
V. Brigljevic, D. Ferencek, K. Kadija, B. Mesic, T. Susa
University of Cyprus, Nicosia, Cyprus
M.W. Ather, A. Attikis, G. Mavromanolakis, J. Mousa, C. Nicolaou, F. Ptochos,
P.A. Razis, H. Rykaczewski
Charles University, Prague, Czech Republic
M. Finger7, M. Finger Jr.7
Universidad San Francisco de Quito, Quito, Ecuador
E. Carrera Jarrin
Academy of Scienti c Research and Technology of the Arab Republic of Egypt,
Egyptian Network of High Energy Physics, Cairo, Egypt
Y. Assran8;9, M.A. Mahmoud10;9, A. Mahrous11
National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
M. Kadastik, L. Perrini, M. Raidal, A. Tiko, C. Veelken
Department of Physics, University of Helsinki, Helsinki, Finland
P. Eerola, J. Pekkanen, M. Voutilainen
Helsinki Institute of Physics, Helsinki, Finland
J. Harkonen, T. Jarvinen, V. Karimaki, R. Kinnunen, T. Lampen, K. Lassila-Perini,
S. Lehti, T. Linden, P. Luukka, J. Tuominiemi, E. Tuovinen, L. Wendland
Lappeenranta University of Technology, Lappeenranta, Finland
J. Talvitie, T. Tuuva
IRFU, CEA, Universite Paris-Saclay, Gif-sur-Yvette, France
M. Besancon, F. Couderc, M. Dejardin, D. Denegri, B. Fabbro, J.L. Faure, C. Favaro,
F. Ferri, S. Ganjour, S. Ghosh, A. Givernaud, P. Gras, G. Hamel de Monchenault, P. Jarry,
I. Kucher, E. Locci, M. Machet, J. Malcles, J. Rander, A. Rosowsky, M. Titov
Laboratoire Leprince-Ringuet, Ecole polytechnique, CNRS/IN2P3,
Universite Paris-Saclay, Palaiseau, France
A. Abdulsalam, I. Antropov, S. Ba oni, F. Beaudette, P. Busson, L. Cadamuro,
E. Chapon, C. Charlot, O. Davignon, R. Granier de Cassagnac, M. Jo, S. Lisniak,
A. Lobanov, P. Mine, M. Nguyen, C. Ochando, G. Ortona, P. Paganini, P. Pigard,
S. Regnard, R. Salerno, Y. Sirois, A.G. Stahl Leiton, T. Strebler, Y. Yilmaz, A. Zabi,
A. Zghiche
France
P. Van Hove
S. Gadrat
Universite de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg,
J.-L. Agram12, J. Andrea, D. Bloch, J.-M. Brom, M. Buttignol, E.C. Chabert, N. Chanon,
C. Collard, E. Conte12, X. Coubez, J.-C. Fontaine12, D. Gele, U. Goerlach, A.-C. Le Bihan,
Centre de Calcul de l'Institut National de Physique Nucleaire et de Physique
des Particules, CNRS/IN2P3, Villeurbanne, France
Universite de Lyon, Universite Claude Bernard Lyon 1, CNRS-IN2P3, Institut
de Physique Nucleaire de Lyon, Villeurbanne, France
S. Beauceron, C. Bernet, G. Boudoul, C.A. Carrillo Montoya, R. Chierici, D. Contardo,
B. Courbon, P. Depasse, H. El Mamouni, J. Fay, L. Finco, S. Gascon, M. Gouzevitch,
G. Grenier, B. Ille, F. Lagarde, I.B. Laktineh, M. Lethuillier, L. Mirabito, A.L. Pequegnot,
S. Perries, A. Popov13, V. Sordini, M. Vander Donckt, P. Verdier, S. Viret
Georgian Technical University, Tbilisi, Georgia
A. Khvedelidze7
Z. Tsamalaidze7
Tbilisi State University, Tbilisi, Georgia
RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany
C. Autermann, S. Beranek, L. Feld, M.K. Kiesel, K. Klein, M. Lipinski, M. Preuten,
C. Schomakers, J. Schulz, T. Verlage
RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany
A. Albert, M. Brodski, E. Dietz-Laursonn, D. Duchardt, M. Endres, M. Erdmann, S.
Erdweg, T. Esch, R. Fischer, A. Guth, M. Hamer, T. Hebbeker, C. Heidemann, K. Hoepfner,
S. Knutzen, M. Merschmeyer, A. Meyer, P. Millet, S. Mukherjee, M. Olschewski,
K. Padeken, T. Pook, M. Radziej, H. Reithler, M. Rieger, F. Scheuch, L. Sonnenschein,
D. Teyssier, S. Thuer
RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany
V. Cherepanov, G. Flugge, B. Kargoll, T. Kress, A. Kunsken, J. Lingemann, T. Muller,
A. Nehrkorn, A. Nowack, C. Pistone, O. Pooth, A. Stahl14
Deutsches Elektronen-Synchrotron, Hamburg, Germany
M. Aldaya Martin, T. Arndt, C. Asawatangtrakuldee, K. Beernaert, O. Behnke,
U. Behrens, A.A. Bin Anuar, K. Borras15, A. Campbell, P. Connor, C.
ContrerasCampana, F. Costanza, C. Diez Pardos, G. Dolinska, G. Eckerlin, D. Eckstein, T. Eichhorn,
E. Eren, E. Gallo16, J. Garay Garcia, A. Geiser, A. Gizhko, J.M. Grados Luyando,
A. Grohsjean, P. Gunnellini, A. Harb, J. Hauk, M. Hempel17, H. Jung, A. Kalogeropoulos,
O. Karacheban17, M. Kasemann, J. Keaveney, C. Kleinwort, I. Korol, D. Krucker,
W. Lange, A. Lelek, T. Lenz, J. Leonard, K. Lipka, W. Lohmann17, R. Mankel,
I.A. Melzer-Pellmann, A.B. Meyer, G. Mittag, J. Mnich, A. Mussgiller, E. Ntomari, D. Pitzl,
R. Placakyte, A. Raspereza, B. Roland, M.O . Sahin, P. Saxena, T. Schoerner-Sadenius,
S. Spannagel, N. Stefaniuk, G.P. Van Onsem, R. Walsh, C. Wissing
University of Hamburg, Hamburg, Germany
V. Blobel, M. Centis Vignali, A.R. Draeger, T. Dreyer, E. Garutti, D. Gonzalez, J. Haller,
M. Ho mann, A. Junkes, R. Klanner, R. Kogler, N. Kovalchuk, S. Kurz, T. Lapsien,
I. Marchesini, D. Marconi, M. Meyer, M. Niedziela, D. Nowatschin, F. Pantaleo14,
T. Pei er, A. Perieanu, C. Scharf, P. Schleper, A. Schmidt, S. Schumann, J. Schwandt,
J. Sonneveld, H. Stadie, G. Steinbruck, F.M. Stober, M. Stover, H. Tholen, D. Troendle,
E. Usai, L. Vanelderen, A. Vanhoefer, B. Vormwald
Paraskevi, Greece
I. Topsis-Giotis
Institut fur Experimentelle Kernphysik, Karlsruhe, Germany
M. Akbiyik, C. Barth, S. Baur, C. Baus, J. Berger, E. Butz, R. Caspart, T. Chwalek,
F. Colombo, W. De Boer, A. Dierlamm, S. Fink, B. Freund, R. Friese, M. Gi els, A. Gilbert,
I. Katkov13, S. Kudella, H. Mildner, M.U. Mozer, Th. Muller, M. Plagge, G. Quast,
K. Rabbertz, S. Rocker, F. Roscher, M. Schroder, I. Shvetsov, G. Sieber, H.J. Simonis,
R. Ulrich, S. Wayand, M. Weber, T. Weiler, S. Williamson, C. Wohrmann, R. Wolf
Institute of Nuclear and Particle Physics (INPP), NCSR Demokritos, Aghia
G. Anagnostou, G. Daskalakis, T. Geralis, V.A. Giakoumopoulou, A. Kyriakis, D. Loukas,
National and Kapodistrian University of Athens, Athens, Greece
S. Kesisoglou, A. Panagiotou, N. Saoulidou, E. Tziaferi
National Technical University of Athens, Athens, Greece
K. Kousouris
University of Ioannina, Ioannina, Greece
I. Evangelou, G. Flouris, C. Foudas, P. Kokkas, N. Loukas, N. Manthos, I. Papadopoulos,
E. Paradas, F.A. Triantis
MTA-ELTE Lendulet CMS Particle and Nuclear Physics Group, Eotvos Lorand
University, Budapest, Hungary
N. Filipovic, G. Pasztor
Wigner Research Centre for Physics, Budapest, Hungary
G. Bencze, C. Hajdu, D. Horvath18, F. Sikler, V. Veszpremi, G. Vesztergombi19, A.J.
Zsigmond
Institute of Nuclear Research ATOMKI, Debrecen, Hungary
N. Beni, S. Czellar, J. Karancsi20, A. Makovec, J. Molnar, Z. Szillasi
Institute of Physics, University of Debrecen, Debrecen, Hungary
M. Bartok19, P. Raics, Z.L. Trocsanyi, B. Ujvari
Indian Institute of Science (IISc), Bangalore, India
S. Choudhury, J.R. Komaragiri
National Institute of Science Education and Research, Bhubaneswar, India
S. Bahinipati21, S. Bhowmik22, P. Mal, K. Mandal, A. Nayak23, D.K. Sahoo21, N. Sahoo,
S.K. Swain
Panjab University, Chandigarh, India
S. Bansal, S.B. Beri, V. Bhatnagar, U. Bhawandeep, R. Chawla, A.K. Kalsi, A. Kaur,
M. Kaur, R. Kumar, P. Kumari, A. Mehta, M. Mittal, J.B. Singh, G. Walia
University of Delhi, Delhi, India
Ashok Kumar, A. Bhardwaj, B.C. Choudhary, R.B. Garg, S. Keshri, A. Kumar, S.
Malhotra, M. Naimuddin, K. Ranjan, R. Sharma, V. Sharma
Saha Institute of Nuclear Physics, HBNI, Kolkata, India
R. Bhattacharya, S. Bhattacharya, K. Chatterjee, S. Dey, S. Dutt, S. Dutta, S. Ghosh,
N. Majumdar, A. Modak, K. Mondal, S. Mukhopadhyay, S. Nandan, A. Purohit, A. Roy,
D. Roy, S. Roy Chowdhury, S. Sarkar, M. Sharan, S. Thakur
Indian Institute of Technology Madras, Madras, India
P.K. Behera
Bhabha Atomic Research Centre, Mumbai, India
R. Chudasama, D. Dutta, V. Jha, V. Kumar, A.K. Mohanty14, P.K. Netrakanti, L.M. Pant,
P. Shukla, A. Topkar
B. Sutar
Tata Institute of Fundamental Research-A, Mumbai, India
T. Aziz, S. Dugad, G. Kole, B. Mahakud, S. Mitra, G.B. Mohanty, B. Parida, N. Sur,
Tata Institute of Fundamental Research-B, Mumbai, India
S. Banerjee, R.K. Dewanjee, S. Ganguly, M. Guchait, Sa. Jain, S. Kumar, M. Maity22,
G. Majumder, K. Mazumdar, T. Sarkar22, N. Wickramage24
Indian Institute of Science Education and Research (IISER), Pune, India
S. Chauhan, S. Dube, V. Hegde, A. Kapoor, K. Kothekar, S. Pandey, A. Rane, S. Sharma
Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
S. Chenarani25, E. Eskandari Tadavani, S.M. Etesami25, M. Khakzad, M. Mohammadi
Najafabadi, M. Naseri, S. Paktinat Mehdiabadi26, F. Rezaei Hosseinabadi, B. Safarzadeh27,
M. Zeinali
University College Dublin, Dublin, Ireland
M. Felcini, M. Grunewald
INFN Sezione di Bari a, Universita di Bari b, Politecnico di Bari c, Bari, Italy
M. Abbresciaa;b, C. Calabriaa;b, C. Caputoa;b, A. Colaleoa, D. Creanzaa;c, L. Cristellaa;b,
N. De Filippisa;c, M. De Palmaa;b, L. Fiorea, G. Iasellia;c, G. Maggia;c, M. Maggia,
G. Minielloa;b, S. Mya;b, S. Nuzzoa;b, A. Pompilia;b, G. Pugliesea;c, R. Radognaa;b,
A. Ranieria, G. Selvaggia;b, A. Sharmaa, L. Silvestrisa;14, R. Vendittia, P. Verwilligena
INFN Sezione di Bologna a, Universita di Bologna b, Bologna, Italy
G. Abbiendia, C. Battilana, D. Bonacorsia;b, S. Braibant-Giacomellia;b, L. Brigliadoria;b,
R. Campaninia;b, P. Capiluppia;b,
A. Castroa;b, F.R. Cavalloa,
S.S. Chhibraa;b,
G. Codispotia;b, M. Cu ania;b, G.M. Dallavallea, F. Fabbria, A. Fanfania;b, D. Fasanellaa;b,
P. Giacomellia, C. Grandia, L. Guiduccia;b, S. Marcellinia, G. Masettia, A. Montanaria,
F.L. Navarriaa;b, A. Perrottaa, A.M. Rossia;b, T. Rovellia;b, G.P. Sirolia;b, N. Tosia;b;14
Italy
Fatisa;b
Italy
INFN Sezione di Catania a, Universita di Catania b, Catania, Italy
S. Albergoa;b, S. Costaa;b, A. Di Mattiaa, F. Giordanoa;b, R. Potenzaa;b, A. Tricomia;b,
C. Tuvea;b
INFN Sezione di Firenze a, Universita di Firenze b, Firenze, Italy
G. Barbaglia, V. Ciullia;b, C. Civininia, R. D'Alessandroa;b, E. Focardia;b, P. Lenzia;b,
M. Meschinia, S. Paolettia, L. Russoa;28, G. Sguazzonia, D. Stroma, L. Viliania;b;14
INFN Laboratori Nazionali di Frascati, Frascati, Italy
L. Benussi, S. Bianco, F. Fabbri, D. Piccolo, F. Primavera14
INFN Sezione di Genova a, Universita di Genova b, Genova, Italy
V. Calvellia;b, F. Ferroa, M.R. Mongea;b, E. Robuttia, S. Tosia;b
INFN Sezione di Milano-Bicocca a, Universita di Milano-Bicocca b, Milano,
L. Brianzaa;b;14, F. Brivioa;b, V. Ciriolo, M.E. Dinardoa;b, S. Fiorendia;b;14, S. Gennaia,
A. Ghezzia;b, P. Govonia;b, M. Malbertia;b, S. Malvezzia, R.A. Manzonia;b, D. Menascea,
L. Moronia, M. Paganonia;b, D. Pedrinia, S. Pigazzinia;b, S. Ragazzia;b, T. Tabarelli de
INFN Sezione di Napoli a, Universita di Napoli 'Federico II' b, Napoli, Italy,
Universita della Basilicata c, Potenza, Italy, Universita G. Marconi d, Roma,
S. Buontempoa, N. Cavalloa;c, G. De Nardoa;b, S. Di Guidaa;d;14, F. Fabozzia;c,
F. Fiengaa;b, A.O.M. Iorioa;b, L. Listaa, S. Meolaa;d;14, P. Paoluccia;14, C. Sciaccaa;b,
F. Thyssena
Trento c, Trento, Italy
INFN Sezione di Padova a, Universita di Padova b, Padova, Italy, Universita di
P. Azzia;14, N. Bacchettaa, L. Benatoa;b, D. Biselloa;b, A. Bolettia;b, R. Carlina;b, A.
Carvalho Antunes De Oliveiraa;b, P. Checchiaa, M. Dall'Ossoa;b, P. De Castro Manzanoa,
T. Dorigoa, U. Dossellia, F. Gasparinia;b, U. Gasparinia;b, A. Gozzelinoa, S. Lacapraraa,
M. Margonia;b, A.T. Meneguzzoa;b, J. Pazzinia;b, N. Pozzobona;b, P. Ronchesea;b,
F. Simonettoa;b, E. Torassaa, M. Zanettia;b, P. Zottoa;b, G. Zumerlea;b
INFN Sezione di Pavia a, Universita di Pavia b, Pavia, Italy
A. Braghieria, F. Fallavollitaa;b, A. Magnania;b, P. Montagnaa;b, S.P. Rattia;b, V. Rea,
M. Ressegotti, C. Riccardia;b, P. Salvinia, I. Vaia;b, P. Vituloa;b
INFN Sezione di Perugia a, Universita di Perugia b, Perugia, Italy
L. Alunni Solestizia;b, G.M. Bileia, D. Ciangottinia;b, L. Fanoa;b, P. Laricciaa;b,
R. Leonardia;b, G. Mantovania;b, V. Mariania;b, M. Menichellia, A. Sahaa, A. Santocchiaa;b
INFN Sezione di Pisa a, Universita di Pisa b, Scuola Normale Superiore di
Pisa c, Pisa, Italy
K. Androsova, P. Azzurria;14, G. Bagliesia, J. Bernardinia, T. Boccalia, R. Castaldia,
M.A. Cioccia;b, R. Dell'Orsoa, G. Fedia, A. Giassia, M.T. Grippoa;28, F. Ligabuea;c,
P. Spagnoloa, R. Tenchinia, G. Tonellia;b, A. Venturia, P.G. Verdinia
INFN Sezione di Roma a, Sapienza Universita di Roma b, Rome, Italy
L. Baronea;b, F. Cavallaria, M. Cipriania;b, D. Del Rea;b;14, M. Diemoza, S. Gellia;b,
E. Longoa;b,
F. Margarolia;b,
Meridiania,
R. Paramattia;b, F. Preiatoa;b, S. Rahatloua;b, C. Rovellia, F. Santanastasioa;b
INFN Sezione di Torino a, Universita di Torino b, Torino, Italy, Universita del
Piemonte Orientale c, Novara, Italy
N. Amapanea;b, R. Arcidiaconoa;c;14, S. Argiroa;b, M. Arneodoa;c, N. Bartosika,
R. Bellana;b, C. Biinoa, N. Cartigliaa, F. Cennaa;b, M. Costaa;b, R. Covarellia;b,
A. Deganoa;b, N. Demariaa, B. Kiania;b, C. Mariottia, S. Masellia, E. Migliorea;b,
V. Monacoa;b, E. Monteila;b, M. Montenoa, M.M. Obertinoa;b, L. Pachera;b, N. Pastronea,
M. Pelliccionia, G.L. Pinna Angionia;b, F. Raveraa;b, A. Romeroa;b, M. Ruspaa;c,
R. Sacchia;b, K. Shchelinaa;b, V. Solaa, A. Solanoa;b, A. Staianoa, P. Traczyka;b
INFN Sezione di Trieste a, Universita di Trieste b, Trieste, Italy
S. Belfortea, M. Casarsaa, F. Cossuttia, G. Della Riccaa;b, A. Zanettia
Kyungpook National University, Daegu, Korea
D.H. Kim, G.N. Kim, M.S. Kim, J. Lee, S. Lee, S.W. Lee, Y.D. Oh, S. Sekmen, D.C. Son,
Y.C. Yang
A. Lee
Chonbuk National University, Jeonju, Korea
Chonnam National University, Institute for Universe and Elementary Particles,
Kwangju, Korea
H. Kim
Hanyang University, Seoul, Korea
J.A. Brochero Cifuentes, J. Goh, T.J. Kim
Korea University, Seoul, Korea
J. Lim, S.K. Park, Y. Roh
Seoul National University, Seoul, Korea
S. Cho, S. Choi, Y. Go, D. Gyun, S. Ha, B. Hong, Y. Jo, Y. Kim, K. Lee, K.S. Lee, S. Lee,
J. Almond, J. Kim, H. Lee, S.B. Oh, B.C. Radburn-Smith, S.h. Seo, U.K. Yang, H.D. Yoo,
G.B. Yu
University of Seoul, Seoul, Korea
M. Choi, H. Kim, J.H. Kim, J.S.H. Lee, I.C. Park, G. Ryu, M.S. Ryu
Sungkyunkwan University, Suwon, Korea
Y. Choi, C. Hwang, J. Lee, I. Yu
Vilnius University, Vilnius, Lithuania
V. Dudenas, A. Juodagalvis, J. Vaitkus
HJEP03(218)67
National Centre for Particle Physics, Universiti Malaya, Kuala Lumpur,
Malaysia
M.N. Yusli, Z. Zolkapli
I. Ahmed, Z.A. Ibrahim, M.A.B. Md Ali30, F. Mohamad Idris31, W.A.T. Wan Abdullah,
Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico
H. Castilla-Valdez, E. De La Cruz-Burelo, I. Heredia-De La Cruz32, R. Lopez-Fernandez,
R. Magan~a Villalba, J. Mejia Guisao, A. Sanchez-Hernandez
Universidad Iberoamericana, Mexico City, Mexico
S. Carrillo Moreno, C. Oropeza Barrera, F. Vazquez Valencia
Benemerita Universidad Autonoma de Puebla, Puebla, Mexico
S. Carpinteyro, I. Pedraza, H.A. Salazar Ibarguen, C. Uribe Estrada
Universidad Autonoma de San Luis Potos , San Luis Potos , Mexico
A. Morelos Pineda
D. Krofcheck
P.H. Butler
University of Auckland, Auckland, New Zealand
University of Canterbury, Christchurch, New Zealand
National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan
A. Ahmad, M. Ahmad, Q. Hassan, H.R. Hoorani, W.A. Khan, A. Saddique, M.A. Shah,
M. Shoaib, M. Waqas
National Centre for Nuclear Research, Swierk, Poland
H. Bialkowska, M. Bluj, B. Boimska, T. Frueboes, M. Gorski, M. Kazana, K. Nawrocki,
K. Romanowska-Rybinska, M. Szleper, P. Zalewski
Institute of Experimental Physics, Faculty of Physics, University of Warsaw,
Warsaw, Poland
K. Bunkowski, A. Byszuk33, K. Doroba, A. Kalinowski, M. Konecki, J. Krolikowski,
M. Misiura, M. Olszewski, A. Pyskir, M. Walczak
Laboratorio de Instrumentac~ao e F sica Experimental de Part culas, Lisboa,
Portugal
P. Bargassa, C. Beir~ao Da Cruz E Silva, B. Calpas, A. Di Francesco, P. Faccioli,
M. Gallinaro, J. Hollar, N. Leonardo, L. Lloret Iglesias, M.V. Nemallapudi, J. Seixas,
O. Toldaiev, D. Vadruccio, J. Varela
Joint Institute for Nuclear Research, Dubna, Russia
S. Afanasiev, P. Bunin, M. Gavrilenko, I. Golutvin, I. Gorbunov, A. Kamenev, V. Karjavin,
A. Lanev, A. Malakhov, V. Matveev34;35, V. Palichik, V. Perelygin, S. Shmatov, S. Shulha,
N. Skatchkov, V. Smirnov, N. Voytishin, A. Zarubin
Petersburg Nuclear Physics Institute, Gatchina (St. Petersburg), Russia
L. Chtchipounov, V. Golovtsov, Y. Ivanov, V. Kim36, E. Kuznetsova37, V. Murzin,
V. Oreshkin, V. Sulimov, A. Vorobyev
Institute for Nuclear Research, Moscow, Russia
Yu. Andreev, A. Dermenev, S. Gninenko, N. Golubev, A. Karneyeu, M. Kirsanov,
N. Krasnikov, A. Pashenkov, D. Tlisov, A. Toropin
Institute for Theoretical and Experimental Physics, Moscow, Russia
V. Epshteyn, V. Gavrilov, N. Lychkovskaya, V. Popov, I. Pozdnyakov, G. Safronov,
A. Spiridonov, M. Toms, E. Vlasov, A. Zhokin
HJEP03(218)67
Moscow Institute of Physics and Technology, Moscow, Russia
T. Aushev, A. Bylinkin35
National Research Nuclear University 'Moscow Engineering Physics
Institute' (MEPhI), Moscow, Russia
R. Chistov38, M. Danilov38, E. Zhemchugov
P.N. Lebedev Physical Institute, Moscow, Russia
V. Andreev, M. Azarkin35, I. Dremin35, M. Kirakosyan, A. Leonidov35, A. Terkulov
Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University,
Moscow, Russia
V. Savrin
A. Baskakov, A. Belyaev, E. Boos, V. Bunichev, M. Dubinin39, L. Dudko, A. Ershov,
A. Gribushin, V. Klyukhin, O. Kodolova, I. Lokhtin, I. Miagkov, S. Obraztsov, M. Per lov,
Novosibirsk State University (NSU), Novosibirsk, Russia
V. Blinov40, Y.Skovpen40, D. Shtol40
State Research Center of Russian Federation, Institute for High Energy
Physics, Protvino, Russia
I. Azhgirey, I. Bayshev, S. Bitioukov, D. Elumakhov, V. Kachanov, A. Kalinin, D.
Konstantinov, V. Krychkine, V. Petrov, R. Ryutin, A. Sobol, S. Troshin, N. Tyurin, A. Uzunian,
A. Volkov
University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear
Sciences, Belgrade, Serbia
P. Adzic41, P. Cirkovic, D. Devetak, M. Dordevic, J. Milosevic, V. Rekovic
Centro
de
Investigaciones
Energeticas
Medioambientales y Tecnologicas (CIEMAT), Madrid, Spain
J. Alcaraz Maestre, M. Barrio Luna, E. Calvo, M. Cerrada, M. Chamizo Llatas, N.
Colino, B. De La Cruz, A. Delgado Peris, A. Escalante Del Valle, C. Fernandez Bedoya,
J.P. Fernandez Ramos, J. Flix, M.C. Fouz, P. Garcia-Abia, O. Gonzalez Lopez, S. Goy
Lopez, J.M. Hernandez, M.I. Josa, E. Navarro De Martino, A. Perez-Calero Yzquierdo,
J. Puerta Pelayo, A. Quintario Olmeda, I. Redondo, L. Romero, M.S. Soares
Universidad Autonoma de Madrid, Madrid, Spain
J.F. de Troconiz, M. Missiroli, D. Moran
Universidad de Oviedo, Oviedo, Spain
J. Cuevas, C. Erice, J. Fernandez Menendez, I. Gonzalez Caballero, J.R. Gonzalez
Fernandez, E. Palencia Cortezon, S. Sanchez Cruz, I. Suarez Andres, P. Vischia, J.M. Vizan
Garcia
Santander, Spain
Instituto de F sica de Cantabria (IFCA),
CSIC-Universidad de Cantabria,
I.J. Cabrillo, A. Calderon, E. Curras, M. Fernandez, J. Garcia-Ferrero, G. Gomez, A. Lopez
Virto, J. Marco, C. Martinez Rivero, F. Matorras, J. Piedra Gomez, T. Rodrigo, A.
RuizJimeno, L. Scodellaro, N. Trevisani, I. Vila, R. Vilar Cortabitarte
CERN, European Organization for Nuclear Research, Geneva, Switzerland
D. Abbaneo, E. Au ray, G. Auzinger, P. Baillon, A.H. Ball, D. Barney, P. Bloch, A. Bocci,
C. Botta, T. Camporesi, R. Castello, M. Cepeda, G. Cerminara, Y. Chen, A. Cimmino,
D. d'Enterria, A. Dabrowski, V. Daponte, A. David, M. De Gruttola, A. De Roeck, E. Di
Marco42, M. Dobson, B. Dorney, T. du Pree, M. Dunser, N. Dupont, A. Elliott-Peisert,
P. Everaerts, S. Fartoukh, G. Franzoni, J. Fulcher, W. Funk, D. Gigi, K. Gill, M. Girone,
F. Glege, D. Gulhan, S. Gundacker, M. Gutho , P. Harris, J. Hegeman, V. Innocente,
P. Janot, J. Kieseler, H. Kirschenmann, V. Knunz, A. Kornmayer14, M.J. Kortelainen,
M. Krammer1, C. Lange, P. Lecoq, C. Lourenco, M.T. Lucchini, L. Malgeri, M. Mannelli,
A. Martelli, F. Meijers, J.A. Merlin, S. Mersi, E. Meschi, P. Milenovic43, F. Moortgat,
S. Morovic, M. Mulders, H. Neugebauer, S. Orfanelli, L. Orsini, L. Pape, E. Perez, M.
Peruzzi, A. Petrilli, G. Petrucciani, A. Pfei er, M. Pierini, A. Racz, T. Reis, G. Rolandi44,
M. Rovere, H. Sakulin, J.B. Sauvan, C. Schafer, C. Schwick, M. Seidel, M. Selvaggi,
A. Sharma, P. Silva, P. Sphicas45, J. Steggemann, M. Stoye, Y. Takahashi, M. Tosi,
D. Treille, A. Triossi, A. Tsirou, V. Veckalns46, G.I. Veres19, M. Verweij, N. Wardle,
H.K. Wohri, A. Zagozdzinska33, W.D. Zeuner
Paul Scherrer Institut, Villigen, Switzerland
W. Bertl, K. Deiters, W. Erdmann, R. Horisberger, Q. Ingram, H.C. Kaestli, D. Kotlinski,
U. Langenegger, T. Rohe, S.A. Wiederkehr
Institute for Particle Physics, ETH Zurich, Zurich, Switzerland
F. Bachmair, L. Bani, L. Bianchini, B. Casal, G. Dissertori, M. Dittmar, M. Donega,
C. Grab, C. Heidegger, D. Hits, J. Hoss, G. Kasieczka, W. Lustermann, B. Mangano,
M. Marionneau, P. Martinez Ruiz del Arbol, M. Masciovecchio, M.T. Meinhard, D. Meister,
F. Micheli, P. Musella, F. Nessi-Tedaldi, F. Pandol , J. Pata, F. Pauss, G. Perrin,
L. Perrozzi, M. Quittnat, M. Rossini, M. Schonenberger, A. Starodumov47, V.R. Tavolaro,
K. Theo latos, R. Wallny
Universitat Zurich, Zurich, Switzerland
T.K. Aarrestad, C. Amsler48, L. Caminada, M.F. Canelli, A. De Cosa, S. Donato,
C. Galloni, A. Hinzmann, T. Hreus, B. Kilminster, J. Ngadiuba, D. Pinna, G. Rauco,
P. Robmann, D. Salerno, C. Seitz, Y. Yang, A. Zucchetta
National Central University, Chung-Li, Taiwan
V. Candelise, T.H. Doan, Sh. Jain, R. Khurana, M. Konyushikhin, C.M. Kuo, W. Lin,
A. Pozdnyakov, S.S. Yu
National Taiwan University (NTU), Taipei, Taiwan
Arun Kumar, P. Chang, Y.H. Chang, Y. Chao, K.F. Chen, P.H. Chen, F. Fiori, W.-S. Hou,
Y. Hsiung, Y.F. Liu, R.-S. Lu, M. Min~ano Moya, E. Paganis, A. Psallidas, J.f. Tsai
Chulalongkorn University, Faculty of Science, Department of Physics, Bangkok,
B. Asavapibhop, G. Singh, N. Srimanobhas, N. Suwonjandee
Cukurova University, Physics Department, Science and Art Faculty, Adana,
A. Adiguzel, M.N. Bakirci49, F. Boran, S. Damarseckin, Z.S. Demiroglu, C. Dozen,
E. Eskut, S. Girgis, G. Gokbulut, Y. Guler, I. Hos50, E.E. Kangal51, O. Kara, U. Kiminsu,
M. Oglakci, G. Onengut52, K. Ozdemir53, S. Ozturk49, A. Polatoz, D. Sunar Cerci54,
S. Turkcapar, I.S. Zorbakir, C. Zorbilmez
Middle East Technical University, Physics Department, Ankara, Turkey
B. Bilin, B. Isildak55, G. Karapinar56, M. Yalvac, M. Zeyrek
Bogazici University, Istanbul, Turkey
E. Gulmez, M. Kaya57, O. Kaya58, E.A. Yetkin59, T. Yetkin60
Istanbul Technical University, Istanbul, Turkey
A. Cakir, K. Cankocak, S. Sen61
Institute for Scintillation Materials of National Academy of Science of Ukraine,
Kharkov, Ukraine
B. Grynyov
Kharkov, Ukraine
L. Levchuk, P. Sorokin
National Scienti c Center, Kharkov Institute of Physics and Technology,
University of Bristol, Bristol, United Kingdom
R. Aggleton, F. Ball, L. Beck, J.J. Brooke, D. Burns, E. Clement, D. Cussans, H. Flacher,
J. Goldstein, M. Grimes, G.P. Heath, H.F. Heath, J. Jacob, L. Kreczko, C. Lucas,
D.M. Newbold62, S. Paramesvaran, A. Poll, T. Sakuma, S. Seif El Nasr-storey, D. Smith,
V.J. Smith
Rutherford Appleton Laboratory, Didcot, United Kingdom
K.W. Bell, A. Belyaev63, C. Brew, R.M. Brown, L. Calligaris, D. Cieri, D.J.A. Cockerill,
J.A. Coughlan, K. Harder, S. Harper, E. Olaiya, D. Petyt, C.H. Shepherd-Themistocleous,
A. Thea, I.R. Tomalin, T. Williams
Imperial College, London, United Kingdom
M. Baber, R. Bainbridge, O. Buchmuller, A. Bundock, S. Casasso, M. Citron, D. Colling,
L. Corpe, P. Dauncey, G. Davies, A. De Wit, M. Della Negra, R. Di Maria, P. Dunne,
A. Elwood, D. Futyan, Y. Haddad, G. Hall, G. Iles, T. James, R. Lane, C. Laner, L. Lyons,
A.-M. Magnan, S. Malik, L. Mastrolorenzo, J. Nash, A. Nikitenko47, J. Pela, B. Penning,
M. Pesaresi, D.M. Raymond, A. Richards, A. Rose, E. Scott, C. Seez, S. Summers,
A. Tapper, K. Uchida, M. Vazquez Acosta64, T. Virdee14, J. Wright, S.C. Zenz
Brunel University, Uxbridge, United Kingdom
J.E. Cole, P.R. Hobson, A. Khan, P. Kyberd, I.D. Reid, P. Symonds, L. Teodorescu,
Baylor University, Waco, U.S.A.
A. Borzou, K. Call, J. Dittmann, K. Hatakeyama, H. Liu, N. Pastika
Catholic University of America, Washington, U.S.A.
R. Bartek, A. Dominguez
The University of Alabama, Tuscaloosa, U.S.A.
A. Buccilli, S.I. Cooper, C. Henderson, P. Rumerio, C. West
Boston University, Boston, U.S.A.
D. Arcaro, A. Avetisyan, T. Bose, D. Gastler, D. Rankin, C. Richardson, J. Rohlf, L. Sulak,
D. Zou
R. Syarif
Brown University, Providence, U.S.A.
G. Benelli, D. Cutts, A. Garabedian, J. Hakala, U. Heintz, J.M. Hogan, O. Jesus,
K.H.M. Kwok, E. Laird, G. Landsberg, Z. Mao, M. Narain, S. Piperov, S. Sagir, E. Spencer,
University of California, Davis, Davis, U.S.A.
R. Breedon, D. Burns, M. Calderon De La Barca Sanchez, S. Chauhan, M. Chertok,
J. Conway, R. Conway, P.T. Cox, R. Erbacher, C. Flores, G. Funk, M. Gardner, W. Ko,
R. Lander, C. Mclean, M. Mulhearn, D. Pellett, J. Pilot, S. Shalhout, M. Shi, J. Smith,
M. Squires, D. Stolp, K. Tos, M. Tripathi
University of California, Los Angeles, U.S.A.
M. Bachtis, C. Bravo, R. Cousins, A. Dasgupta, A. Florent, J. Hauser, M. Ignatenko,
N. Mccoll, D. Saltzberg, C. Schnaible, V. Valuev, M. Weber
University of California, Riverside, Riverside, U.S.A.
E. Bouvier, K. Burt, R. Clare, J. Ellison, J.W. Gary, S.M.A. Ghiasi Shirazi, G.
Hanson, J. Heilman, P. Jandir, E. Kennedy, F. Lacroix, O.R. Long, M. Olmedo Negrete,
M.I. Paneva, A. Shrinivas, W. Si, H. Wei, S. Wimpenny, B. R. Yates
University of California, San Diego, La Jolla, U.S.A.
J.G. Branson, G.B. Cerati, S. Cittolin, M. Derdzinski, R. Gerosa, A. Holzner, D. Klein,
V. Krutelyov, J. Letts, I. Macneill, D. Olivito, S. Padhi, M. Pieri, M. Sani, V. Sharma,
S. Simon, M. Tadel, A. Vartak, S. Wasserbaech65, C. Welke, J. Wood, F. Wurthwein,
A. Yagil, G. Zevi Della Porta
bara, U.S.A.
University of California, Santa Barbara - Department of Physics, Santa
BarN. Amin, R. Bhandari, J. Bradmiller-Feld, C. Campagnari, A. Dishaw, V. Dutta, M. Franco
Sevilla, C. George, F. Golf, L. Gouskos, J. Gran, R. Heller, J. Incandela, S.D. Mullin,
A. Ovcharova, H. Qu, J. Richman, D. Stuart, I. Suarez, J. Yoo
California Institute of Technology, Pasadena, U.S.A.
D. Anderson, J. Bendavid, A. Bornheim, J. Bunn, J.M. Lawhorn, A. Mott, H.B. Newman,
C. Pena, M. Spiropulu, J.R. Vlimant, S. Xie, R.Y. Zhu
Carnegie Mellon University, Pittsburgh, U.S.A.
M.B. Andrews, T. Ferguson, M. Paulini, J. Russ, M. Sun, H. Vogel, I. Vorobiev, M.
Weinberg
University of Colorado Boulder, Boulder, U.S.A.
J.P. Cumalat, W.T. Ford, F. Jensen, A. Johnson, M. Krohn, S. Leontsinis, T. Mulholland,
K. Stenson, S.R. Wagner
Cornell University, Ithaca, U.S.A.
P. Wittich, M. Zientek
Fair eld University, Fair eld, U.S.A.
D. Winn
J. Alexander, J. Chaves, J. Chu, S. Dittmer, K. Mcdermott, N. Mirman, J.R. Patterson,
A. Rinkevicius, A. Ryd, L. Skinnari, L. So , S.M. Tan, Z. Tao, J. Thom, J. Tucker,
Fermi National Accelerator Laboratory, Batavia, U.S.A.
S. Abdullin, M. Albrow, G. Apollinari, A. Apresyan, S. Banerjee, L.A.T. Bauerdick,
A. Beretvas, J. Berryhill, P.C. Bhat, G. Bolla, K. Burkett, J.N. Butler, H.W.K. Cheung,
F. Chlebana, S. Cihangiry, M. Cremonesi, J. Duarte, V.D. Elvira, I. Fisk, J. Freeman,
E. Gottschalk, L. Gray, D. Green, S. Grunendahl, O. Gutsche, R.M. Harris, S. Hasegawa,
J. Hirschauer, Z. Hu, B. Jayatilaka, S. Jindariani, M. Johnson, U. Joshi, B. Klima, B. Kreis,
S. Lammel, J. Linacre, D. Lincoln, R. Lipton, M. Liu, T. Liu, R. Lopes De Sa, J. Lykken,
K. Maeshima, N. Magini, J.M. Marra no, S. Maruyama, D. Mason, P. McBride, P. Merkel,
S. Mrenna, S. Nahn, V. O'Dell, K. Pedro, O. Prokofyev, G. Rakness, L. Ristori, E.
SextonKennedy, A. Soha, W.J. Spalding, L. Spiegel, S. Stoynev, J. Strait, N. Strobbe, L. Taylor,
S. Tkaczyk, N.V. Tran, L. Uplegger, E.W. Vaandering, C. Vernieri, M. Verzocchi, R. Vidal,
M. Wang, H.A. Weber, A. Whitbeck, Y. Wu
University of Florida, Gainesville, U.S.A.
D. Acosta, P. Avery, P. Bortignon, D. Bourilkov, A. Brinkerho , A. Carnes, M. Carver,
D. Curry, S. Das, R.D. Field, I.K. Furic, J. Konigsberg, A. Korytov, J.F. Low, P. Ma,
K. Matchev, H. Mei, G. Mitselmakher, D. Rank, L. Shchutska, D. Sperka, L. Thomas,
J. Wang, S. Wang, J. Yelton
Florida International University, Miami, U.S.A.
S. Linn, P. Markowitz, G. Martinez, J.L. Rodriguez
Florida State University, Tallahassee, U.S.A.
A. Ackert, T. Adams, A. Askew, S. Bein, S. Hagopian, V. Hagopian, K.F. Johnson,
T. Kolberg, T. Perry, H. Prosper, A. Santra, R. Yohay
Florida Institute of Technology, Melbourne, U.S.A.
M.M. Baarmand, V. Bhopatkar, S. Colafranceschi, M. Hohlmann, D. Noonan, T. Roy,
F. Yumiceva
University of Illinois at Chicago (UIC), Chicago, U.S.A.
M.R. Adams, L. Apanasevich, D. Berry, R.R. Betts, R. Cavanaugh, X. Chen, O.
Evdokimov, C.E. Gerber, D.A. Hangal, D.J. Hofman, K. Jung, J. Kamin, I.D. Sandoval Gonzalez,
H. Trauger, N. Varelas, H. Wang, Z. Wu, J. Zhang
The University of Iowa, Iowa City, U.S.A.
B. Bilki66, W. Clarida, K. Dilsiz, S. Durgut, R.P. Gandrajula, M. Haytmyradov, V.
Khristenko, J.-P. Merlo, H. Mermerkaya67, A. Mestvirishvili, A. Moeller, J. Nachtman, H. Ogul,
Y. Onel, F. Ozok68, A. Penzo, C. Snyder, E. Tiras, J. Wetzel, K. Yi
Johns Hopkins University, Baltimore, U.S.A.
B. Blumenfeld, A. Cocoros, N. Eminizer, D. Fehling, L. Feng, A.V. Gritsan, P. Maksimovic,
J. Roskes, U. Sarica, M. Swartz, M. Xiao, C. You
The University of Kansas, Lawrence, U.S.A.
A. Al-bataineh, P. Baringer, A. Bean, S. Boren, J. Bowen, J. Castle, L. Forthomme,
S. Khalil, A. Kropivnitskaya, D. Majumder, W. Mcbrayer, M. Murray, S. Sanders,
R. Stringer, J.D. Tapia Takaki, Q. Wang
Kansas State University, Manhattan, U.S.A.
A. Ivanov, K. Kaadze, Y. Maravin, A. Mohammadi, L.K. Saini, N. Skhirtladze, S. Toda
Lawrence Livermore National Laboratory, Livermore, U.S.A.
F. Rebassoo, D. Wright
University of Maryland, College Park, U.S.A.
C. Anelli, A. Baden, O. Baron, A. Belloni, B. Calvert, S.C. Eno, C. Ferraioli, N.J. Hadley,
S. Jabeen, G.Y. Jeng, R.G. Kellogg, J. Kunkle, A.C. Mignerey, F. Ricci-Tam, Y.H. Shin,
A. Skuja, M.B. Tonjes, S.C. Tonwar
Massachusetts Institute of Technology, Cambridge, U.S.A.
D. Abercrombie, B. Allen, A. Apyan, V. Azzolini, R. Barbieri, A. Baty, R. Bi, K.
Bierwagen, S. Brandt, W. Busza, I.A. Cali, M. D'Alfonso, Z. Demiragli, G. Gomez Ceballos,
M. Goncharov, D. Hsu, Y. Iiyama, G.M. Innocenti, M. Klute, D. Kovalskyi, K. Krajczar,
Y.S. Lai, Y.-J. Lee, A. Levin, P.D. Luckey, B. Maier, A.C. Marini, C. Mcginn, C. Mironov,
S. Narayanan, X. Niu, C. Paus, C. Roland, G. Roland, J. Salfeld-Nebgen, G.S.F. Stephans,
K. Tatar, D. Velicanu, J. Wang, T.W. Wang, B. Wyslouch
A.C. Benvenuti, R.M. Chatterjee, A. Evans, P. Hansen, S. Kalafut, S.C. Kao, Y. Kubota,
Z. Lesko, J. Mans, S. Nourbakhsh, N. Ruckstuhl, R. Rusack, N. Tambe, J. Turkewitz
University of Mississippi, Oxford, U.S.A.
J.G. Acosta, S. Oliveros
University of Nebraska-Lincoln, Lincoln, U.S.A.
E. Avdeeva, K. Bloom, D.R. Claes, C. Fangmeier, R. Gonzalez Suarez, R. Kamalieddin,
I. Kravchenko, A. Malta Rodrigues, J. Monroy, J.E. Siado, G.R. Snow, B. Stieger
State University of New York at Bu alo, Bu alo, U.S.A.
M. Alyari, J. Dolen, A. Godshalk, C. Harrington, I. Iashvili, D. Nguyen, A. Parker,
HJEP03(218)67
S. Rappoccio, B. Roozbahani
Northeastern University, Boston, U.S.A.
G. Alverson, E. Barberis, A. Hortiangtham, A. Massironi, D.M. Morse, D. Nash, T.
Orimoto, R. Teixeira De Lima, D. Trocino, R.-J. Wang, D. Wood
Northwestern University, Evanston, U.S.A.
S. Bhattacharya, O. Charaf, K.A. Hahn, N. Mucia, N. Odell, B. Pollack, M.H. Schmitt,
K. Sung, M. Trovato, M. Velasco
University of Notre Dame, Notre Dame, U.S.A.
N. Dev, M. Hildreth, K. Hurtado Anampa, C. Jessop, D.J. Karmgard, N. Kellams,
K. Lannon, N. Marinelli, F. Meng, C. Mueller, Y. Musienko34, M. Planer, A. Reinsvold,
R. Ruchti, N. Rupprecht, G. Smith, S. Taroni, M. Wayne, M. Wolf, A. Woodard
The Ohio State University, Columbus, U.S.A.
J. Alimena, L. Antonelli, B. Bylsma, L.S. Durkin, S. Flowers, B. Francis, A. Hart, C. Hill,
W. Ji, B. Liu, W. Luo, D. Puigh, B.L. Winer, H.W. Wulsin
Princeton University, Princeton, U.S.A.
S. Cooperstein, O. Driga, P. Elmer, J. Hardenbrook, P. Hebda, D. Lange, J. Luo,
D. Marlow, T. Medvedeva, K. Mei, I. Ojalvo, J. Olsen, C. Palmer, P. Piroue, D. Stickland,
A. Svyatkovskiy, C. Tully
University of Puerto Rico, Mayaguez, U.S.A.
S. Malik
Purdue University, West Lafayette, U.S.A.
A. Barker, V.E. Barnes, S. Folgueras, L. Gutay, M.K. Jha, M. Jones, A.W. Jung,
A. Khatiwada, D.H. Miller, N. Neumeister, J.F. Schulte, J. Sun, F. Wang, W. Xie
Purdue University Northwest, Hammond, U.S.A.
N. Parashar, J. Stupak
Rice University, Houston, U.S.A.
A. Adair, B. Akgun, Z. Chen, K.M. Ecklund, F.J.M. Geurts, M. Guilbaud, W. Li,
B. Michlin, M. Northup, B.P. Padley, J. Roberts, J. Rorie, Z. Tu, J. Zabel
University of Rochester, Rochester, U.S.A.
B. Betchart, A. Bodek, P. de Barbaro, R. Demina, Y.t. Duh, T. Ferbel, M. Galanti,
A. Garcia-Bellido, J. Han, O. Hindrichs, A. Khukhunaishvili, K.H. Lo, P. Tan, M. Verzetti
Rutgers, The State University of New Jersey, Piscataway, U.S.A.
A. Agapitos, J.P. Chou, Y. Gershtein, T.A. Gomez Espinosa, E. Halkiadakis, M. Heindl,
E. Hughes, S. Kaplan, R. Kunnawalkam Elayavalli, S. Kyriacou, A. Lath, R. Montalvo,
K. Nash, M. Osherson, H. Saka, S. Salur, S. Schnetzer, D. She eld, S. Somalwar, R. Stone,
S. Thomas, P. Thomassen, M. Walker
University of Tennessee, Knoxville, U.S.A.
A.G. Delannoy, M. Foerster, J. Heideman, G. Riley, K. Rose, S. Spanier, K. Thapa
Texas A&M University, College Station, U.S.A.
O. Bouhali69, A. Celik, M. Dalchenko, M. De Mattia, A. Delgado, S. Dildick, R. Eusebi,
J. Gilmore, T. Huang, E. Juska, T. Kamon70, R. Mueller, Y. Pakhotin, R. Patel, A. Perlo ,
L. Pernie, D. Rathjens, A. Safonov, A. Tatarinov, K.A. Ulmer
Texas Tech University, Lubbock, U.S.A.
N. Akchurin, J. Damgov, F. De Guio, C. Dragoiu, P.R. Dudero, J. Faulkner, E. Gurpinar,
S. Kunori, K. Lamichhane, S.W. Lee, T. Libeiro, T. Peltola, S. Undleeb, I. Volobouev,
Z. Wang
Vanderbilt University, Nashville, U.S.A.
S. Greene, A. Gurrola, R. Janjam, W. Johns, C. Maguire, A. Melo, H. Ni, P. Sheldon,
S. Tuo, J. Velkovska, Q. Xu
University of Virginia, Charlottesville, U.S.A.
M.W. Arenton, P. Barria, B. Cox, R. Hirosky, A. Ledovskoy, H. Li, C. Neu, T.
Sinthuprasith, X. Sun, Y. Wang, E. Wolfe, F. Xia
Wayne State University, Detroit, U.S.A.
C. Clarke, R. Harr, P.E. Karchin, J. Sturdy, S. Zaleski
University of Wisconsin - Madison, Madison, WI, U.S.A.
D.A. Belknap, J. Buchanan, C. Caillol, S. Dasu, L. Dodd, S. Duric, B. Gomber, M. Grothe,
M. Herndon, A. Herve, U. Hussain, P. Klabbers, A. Lanaro, A. Levine, K. Long,
R. Loveless, G.A. Pierro, G. Polese, T. Ruggles, A. Savin, N. Smith, W.H. Smith, D. Taylor,
1: Also at Vienna University of Technology, Vienna, Austria
2: Also at State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing,
N. Woods
y: Deceased
China
3: Also at Universidade Estadual de Campinas, Campinas, Brazil
4: Also at Universidade Federal de Pelotas, Pelotas, Brazil
5: Also at Universite Libre de Bruxelles, Bruxelles, Belgium
6: Also at Universidad de Antioquia, Medellin, Colombia
8: Also at Suez University, Suez, Egypt
9: Now at British University in Egypt, Cairo, Egypt
10: Also at Fayoum University, El-Fayoum, Egypt
11: Now at Helwan University, Cairo, Egypt
12: Also at Universite de Haute Alsace, Mulhouse, France
13: Also at Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University,
Moscow, Russia
14: Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland
15: Also at RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany
16: Also at University of Hamburg, Hamburg, Germany
17: Also at Brandenburg University of Technology, Cottbus, Germany
18: Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary
19: Also at MTA-ELTE Lendulet CMS Particle and Nuclear Physics Group, Eotvos Lorand
University, Budapest, Hungary
20: Also at Institute of Physics, University of Debrecen, Debrecen, Hungary
21: Also at Indian Institute of Technology Bhubaneswar, Bhubaneswar, India
22: Also at University of Visva-Bharati, Santiniketan, India
23: Also at Institute of Physics, Bhubaneswar, India
24: Also at University of Ruhuna, Matara, Sri Lanka
25: Also at Isfahan University of Technology, Isfahan, Iran
26: Also at Yazd University, Yazd, Iran
University, Tehran, Iran
28: Also at Universita degli Studi di Siena, Siena, Italy
29: Also at Purdue University, West Lafayette, U.S.A.
27: Also at Plasma Physics Research Center, Science and Research Branch, Islamic Azad
30: Also at International Islamic University of Malaysia, Kuala Lumpur, Malaysia
31: Also at Malaysian Nuclear Agency, MOSTI, Kajang, Malaysia
32: Also at Consejo Nacional de Ciencia y Tecnolog a, Mexico city, Mexico
33: Also at Warsaw University of Technology, Institute of Electronic Systems, Warsaw, Poland
34: Also at Institute for Nuclear Research, Moscow, Russia
35: Now
at National Research
Nuclear University 'Moscow
36: Also at St. Petersburg State Polytechnical University, St. Petersburg, Russia
37: Also at University of Florida, Gainesville, U.S.A.
38: Also at P.N. Lebedev Physical Institute, Moscow, Russia
39: Also at California Institute of Technology, Pasadena, U.S.A.
40: Also at Budker Institute of Nuclear Physics, Novosibirsk, Russia
41: Also at Faculty of Physics, University of Belgrade, Belgrade, Serbia
42: Also at INFN Sezione di Roma; Sapienza Universita di Roma, Rome, Italy
Belgrade, Serbia
44: Also at Scuola Normale e Sezione dell'INFN, Pisa, Italy
45: Also at National and Kapodistrian University of Athens, Athens, Greece
46: Also at Riga Technical University, Riga, Latvia
47: Also at Institute for Theoretical and Experimental Physics, Moscow, Russia
48: Also at Albert Einstein Center for Fundamental Physics, Bern, Switzerland
49: Also at Gaziosmanpasa University, Tokat, Turkey
43: Also at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences,
51: Also at Mersin University, Mersin, Turkey
52: Also at Cag University, Mersin, Turkey
53: Also at Piri Reis University, Istanbul, Turkey
54: Also at Adiyaman University, Adiyaman, Turkey
55: Also at Ozyegin University, Istanbul, Turkey
56: Also at Izmir Institute of Technology, Izmir, Turkey
57: Also at Marmara University, Istanbul, Turkey
58: Also at Kafkas University, Kars, Turkey
59: Also at Istanbul Bilgi University, Istanbul, Turkey
60: Also at Yildiz Technical University, Istanbul, Turkey
61: Also at Hacettepe University, Ankara, Turkey
62: Also at Rutherford Appleton Laboratory, Didcot, United Kingdom
63: Also at School of Physics and Astronomy, University of Southampton, Southampton, United
Kingdom
64: Also at Instituto de Astrof sica de Canarias, La Laguna, Spain
65: Also at Utah Valley University, Orem, U.S.A.
66: Also at BEYKENT UNIVERSITY, Istanbul, Turkey
67: Also at Erzincan University, Erzincan, Turkey
68: Also at Mimar Sinan University, Istanbul, Istanbul, Turkey
69: Also at Texas A&M University at Qatar, Doha, Qatar
70: Also at Kyungpook National University, Daegu, Korea
[4] A.H. Chamseddine , R.L. Arnowitt and P. Nath , Locally supersymmetric grand uni cation , [5] G.L. Kane , C.F. Kolda , L. Roszkowski and J.D. Wells , Study of constrained minimal supersymmetry , Phys. Rev. D 49 ( 1994 ) 6173 [ hep -ph/9312272] [INSPIRE].
[6] P. Fayet , Supergauge invariant extension of the Higgs mechanism and a model for the electron and its neutrino , Nucl. Phys. B 90 ( 1975 ) 104 [INSPIRE].
[7] R. Barbieri , S. Ferrara and C.A. Savoy , Gauge models with spontaneously broken local supersymmetry , Phys. Lett. 119B ( 1982 ) 343 [INSPIRE].
[8] L.J. Hall , J.D. Lykken and S. Weinberg , Supergravity as the messenger of supersymmetry [9] P. Ramond, Dual theory for free fermions , Phys. Rev. D 3 ( 1971 ) 2415 [INSPIRE].
[10] G. ' t Hooft, Naturalness, chiral symmetry, and spontaneous chiral symmetry breaking , NATO [11] E. Witten , Dynamical breaking of supersymmetry, Nucl. Phys. B 188 ( 1981 ) 513 .
[12] M. Dine , W. Fischler and M. Srednicki , Supersymmetric technicolor, Nucl. Phys. B 189 [13] S. Dimopoulos and S. Raby , Supercolor, Nucl. Phys. B 192 ( 1981 ) 353 [INSPIRE].
[14] S. Dimopoulos and H. Georgi , Softly broken supersymmetry and SU(5), Nucl . Phys. B 193 [15] R.K. Kaul and P. Majumdar , Cancellation of quadratically divergent mass corrections in globally supersymmetric spontaneously broken gauge theories , Nucl. Phys. B 199 ( 1982 ) 36 [29] L. Alvarez-Gaume , M. Claudson and M.B. Wise , Low-energy supersymmetry , Nucl. Phys. B [30] R. Barbier et al., R-parity violating supersymmetry , Phys. Rept . 420 ( 2005 ) 1 [31] G.R. Farrar and P. Fayet , Phenomenology of the production, decay and detection of new hadronic states associated with supersymmetry , Phys. Lett. 76B ( 1978 ) 575 [INSPIRE].
[32] P. Meade , N. Seiberg and D. Shih , General gauge mediation , Prog. Theor. Phys. Suppl . 177 [34] S. Abel , M.J. Dolan , J. Jaeckel and V.V. Khoze , Phenomenology of pure general gauge [43] M. Cacciari , G.P. Salam and G. Soyez, FastJet user manual , Eur. Phys. J. C 72 ( 2012 ) 1896 [48] J. Alwall , M. Herquet , F. Maltoni , O. Mattelaer and T. Stelzer , MadGraph 5: going beyond, [49] T. Sj ostrand, S. Mrenna and P.Z. Skands , PYTHIA 6 . 4 physics and manual , JHEP 05 [50] S. Frixione , P. Nason and C. Oleari , Matching NLO QCD computations with Parton Shower [63] A.L. Read , Presentation of search results: the CL(s) technique , J. Phys. G 28 ( 2002 ) 2693 [64] G. Cowan , K. Cranmer , E. Gross and O. Vitells , Asymptotic formulae for likelihood-based tests of new physics , Eur. Phys. J. C 71 ( 2011 ) 1554 [Erratum ibid . C 73 ( 2013 ) 2501] [65] R.J. Barlow and C. Beeston , Fitting using nite Monte Carlo samples , Comput. Phys.