Measurement of normalized differential \( \mathrm{t}\overline{\mathrm{t}} \) cross sections in the dilepton channel from pp collisions at \( \sqrt{s}=13 \) TeV
HJE
Measurement of normalized di erential tt cross
0 Open Access , Copyright CERN
1 production , QCD
Normalized di erential cross sections for top quark pair production are measured in the dilepton (e+e , + e ) decay channels in proton-proton collisions at a center-of-mass energy of 13 TeV. The measurements are performed with data corresponding to an integrated luminosity of 2.1 fb 1 using the CMS detector at the LHC. The cross sections are measured di erentially as a function of the kinematic properties of the leptons, jets from bottom quark hadronization, top quarks, and top quark pairs at the particle and parton levels. The results are compared to several Monte Carlo generators that implement calculations up to next-to-leading order in perturbative quantum chromodynamics interfaced with parton showering, and also to xed-order theoretical calculations of top quark pair production up to next-to-next-to-leading order.
Hadron-Hadron scattering (experiments); Top physics; Heavy quark
-
The CMS collaboration
1 Introduction
2 The CMS detector and simulation
2.1
2.2 Signal and background simulation
3 Object and event selection
4 Signal de nition
5 Reconstruction of the tt system
6 Normalized di erential cross sections
7 Systematic uncertainties
8 Results
9 Summary
A Tables of di erential tt cross sections at the particle level
B Tables of di erential cross section at the parton level
The CMS collaboration
energies of 7 [2, 3] and 8 TeV [4{12]. The dilepton (electron or muon) nal state of the tt
decay helps in the suppression of background events. This paper presents the rst CMS
s = 13 TeV in the dilepton decay nal state and includes the same- avor
), using data corresponding to an integrated luminosity
. The statistical precision of the measurements is improved by the increased
data sample from including the same- avor lepton channels. The data were recorded by
the CMS experiment at the LHC in 2015, and this measurement complements other recent
{ 1 {
measurements that have been reported in a di erent decay channel [13] and by a di erent
experiment [14, 15].
The tt di erential cross section measurements are performed at the particle and parton
levels. Particle-level measurements use
nal-state kinematic observables that are
experimentally measurable and theoretically well de ned. Corrections are limited mainly to
detector e ects that can be determined experimentally. The particle-level measurements
are designed to have minimal model dependencies. The visible di erential cross section is
de ned for a phase space within the acceptance of the experiment. Large extrapolations
into inaccessible phase-space regions are thus avoided in particle-level di erential cross
section measurements. In contrast, the parton-level measurement of the top quark pair
predictions of new physics beyond the standard model [16]. In addition, the normalized tt
cross sections are measured as a function of the transverse momenta of the top quark and
of the top quark pair.
2
2.1
The CMS detector and simulation
The CMS detector
The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal
diameter, providing a magnetic
eld of 3.8 T. The solenoid volume encases the silicon
pixel and strip tracker, a lead tungstate crystal electromagnetic calorimeter, and a brass
and scintillator hadron calorimeter, each composed of a barrel and two endcap sections.
Forward calorimeters extend the pseudorapidity ( ) coverage provided by the barrel and
endcap detectors. Muons are detected in gas-ionization chambers embedded in the steel
ux-return yoke outside the solenoid. A more detailed description of the CMS detector,
together with a de nition of the coordinate system used and the relevant kinematic
variables, can be found in ref. [17]. The particle- ow (PF) algorithm [18] is used to reconstruct
objects in the event, combining information from all the CMS subdetectors. The missing
transverse momentum vector (p~Tmiss) is de ned as the projection onto the plane
perpendicular to the beam axis of the negative vector sum of the momenta of all PF candidates in
an event [19]. Its magnitude is referred to as pTmiss.
2.2
Signal and background simulation
Monte Carlo (MC) techniques are used to simulate the tt signal and the background
processes. We use the powheg (v2) [20{23] generator to model the nominal tt signal at
{ 2 {
next-to-leading order (NLO). In order to simulate tt events with additional partons,
Madorder (LO) and NLO matrix elements (MEs).
Parton shower (PS) simulation is
performed with pythia8 (v8.205) [25], using the tune CUETP8M1 [26] to model the
underlying event.
Up to two partons in addition to the tt pair are calculated at NLO
and combined with the pythia8 PS simulation using the FXFX [27] algorithm,
denoted as MG5 amc@nlo+pythia8[FXFX]. Up to three partons are considered at LO and
combined with the pythia8 PS simulation using the MLM [28] algorithm, denoted as
MG5 amc@nlo+pythia8[MLM]. The data are also compared to predictions obtained with
powheg samples interfaced with herwig++ [29] (v 2.7.1) using the tune EE5C [30]. The
signal samples are simulated assuming a top quark mass of 172.5 GeV and normalized
to the inclusive cross section calculated at NNLO precision with
next-to-next-to-leadinglogarithmic (NNLL) accuracy [31].
For the simulation of W
boson production and the Drell-Yan process, the
MG5 amc@nlo generator is used, and the samples are normalized to the cross sections
calculated at NNLO [32]. The t-channel single top quark production in the tW channel is
simulated with the powheg generator based on the
ve- avor scheme [33, 34], and
normalized to the cross sections calculated at NNLO [35]. Diboson samples (WW, WZ, and
ZZ) are simulated at LO using pythia8, and normalized to the cross section calculated at
NNLO for the WW sample [36] and NLO for the WZ and ZZ samples [37].
The detector response to the nal-state particles is simulated using Geant4 [38, 39].
Additional pp collisions in the same or nearby beam crossings (pileup) are also simulated
with pythia8 and superimposed on the hard-scattering events using a pileup multiplicity
distribution that re ects that of the analyzed data. Simulated events are reconstructed
and analyzed with the same software used to process the data.
3
Object and event selection
T
The dilepton
nal state of the tt decay consists of two leptons (electrons or muons), at
least two jets, and pmiss from the two neutrinos. Events are selected using dilepton triggers
with asymmetric pT thresholds. The low transverse momentum (pT) threshold is 8 GeV for
the muon and 12 GeV for the electron, and the high-pT threshold is 17 GeV for both muon
and electron. The trigger e ciency is measured in data using triggers based on pmiss [40].
T
The reconstructed and selected muons [41] and electrons [42] are required to have
pT > 20 GeV and j j < 2:4. Since the primary leptons that originated from top quark decays
are expected to be isolated, an isolation criterion is placed on each lepton to reduce the rate
of secondary leptons from non-top hadronic decays. A relative isolation parameter is used,
which is calculated as the sum of the pT of charged and neutral hadrons and photons in a
cone of angular radius
by the lepton pT, where
R = p
(
)2 + (
)2) around the direction of the lepton, divided
and
are the azimuthal and pseudorapidity di erences,
respectively, between the directions of the lepton and the other particle. Any mismodeling
of the lepton selection in the simulation is accounted for by applying corrections derived
using a \tag-and-probe" technique based on control regions in data [43].
{ 3 {
Dilepton
jets with pT > 30 GeV and j j < 2:4 that pass identi cation criteria designed to reject noise
in the calorimeters.
Jets from the hadronization of b quarks (b jets) are identi ed by the combined
secondary vertex b tagging algorithm [47].
The jets are selected using a loose working
point [48], corresponding to an e ciency of about 80% and a light- avor jet rejection
probability of 85%. The b tagging e ciency in the simulation is corrected to be consistent
with that in data.
Events are required to have exactly two oppositely charged leptons with the invariant
mass of the dilepton system M`+`
> 20 GeV, and two or more jets, at least one of which
has to be identi ed as a b jet. For the same- avor lepton channels (ee and
), additional
selection criteria are applied to reject events from Drell-Yan production: pmiss > 40 GeV
and jM`+`
MZj > 15 GeV, where MZ is the Z boson mass [49]. The selected numbers
T
of events after the selection are listed in table 1.
4
Signal de nition
The measurements of normalized tt di erential cross sections are performed at both
particle and parton levels as a function of kinematic observables, de ned at the generator
level. The particle-level top quark is de ned at the generator level using the procedure
described below. This approach avoids theoretical uncertainties in the measurements due
to the di erent calculations within each generator, and leads to results that are largely
independent of the generator implementation and tuning. Top quarks are reconstructed
in the simulation starting from the
nal-state particles with a mean lifetime greater than
30 ps at the generator level, as summarized in table 2.
{ 4 {
using all particles and ghost-B hadrons
not including any neutrinos
nor particles used in dressed leptons
Selection criteria
none
pT > 20 GeV, j j < 2:4
pT > 30 GeV, j j < 2:4
with ghost-B hadrons
Leptons are \dressed", which means that leptons are de ned using the anti-kT
clustering algorithm [44, 45] with
R = 0:1 to account for
nal-state radiated photons. To
avoid the ambiguity of additional leptons at the generator level, the clustering is applied
to electrons, muons, and photons not from hadron decays. Events with leptons associated
with
lepton decays are treated as background. Leptons are required to satisfy the same
acceptance requirements as imposed on the reconstructed objects described in section 3,
i.e., pT > 20 GeV and j j < 2:4.
The generator-level jets are clustered using the anti-kT algorithm with
R = 0:4.
The clustering is applied to all nal-state particles except neutrinos and particles already
included in the dressed-lepton de nition. Jets are required to have pT > 30 GeV and
j j < 2:4 to be consistent with the reconstructed-object selection. To identify the bottom
quark
avor of the jet, the ghost-B hadron technique [13] is used in which short-lifetime
B hadrons are included in the jet clustering after scaling down their momentum to be
negligible. A jet is identi ed as a b jet if it contains any B hadrons among its constituents.
A W boson at the particle level is de ned by combining a dressed lepton and a neutrino.
In each event, a pair of particle-level W bosons is chosen among the possible combinations
such that the sum of the absolute values of the invariant mass di erences with respect to
the W boson mass is minimal [49]. Similarly, a top quark at the particle level is de ned
by combining a particle-level W boson and a b jet. The combination of a W boson and a
b jet with the minimum invariant mass di erence from the correct top quark mass [49] is
selected. Events are considered to be in the visible phase space if they contain a pair of
particle-level top quarks, constructed from neutrinos, dressed leptons, and b jets. Simulated
dilepton events that are not in the visible phase space are considered as background and
combined with the non-dilepton tt decay background contribution, subsequently denoted
as tt-others.
In addition, the top quark and tt system observables are de ned before the top quark
decays into a bottom quark and a W boson and after QCD radiation, which we refer to as
the parton level. The tt system at the parton level is calculated in the generator at NLO.
The normalized di erential cross sections at the parton level are derived by extrapolating
the measurements into the full phase space, which includes the experimentally inaccessible
regions, such as at high rapidity and low transverse momentum of the leptons and jets.
{ 5 {
HJEP04(218)6
Reconstruction of the tt system
The top quark reconstruction method is adopted from the recent CMS measurement of the
di erential tt cross section [4]. In the dilepton channel, the reconstruction of the neutrino
and antineutrino is crucial in measuring the top quark kinematic observables. Using an
analytical approach [50, 51], the six unknown neutrino degrees of freedom are constrained
by the two measured components of p~miss and the assumed invariant masses of both the
W boson and top quark. The e ciency for
nding a physical solution depends on the
detector resolution, which is accounted for by reconstructing the tt system in both the MC
simulation and data with 100 trials, using random modi cations of the measured leptons
and b jets within their resolution functions. The e ciency for nding a physical solution
to the kinematic reconstruction is approximately 90%, as determined from simulation and
data. The numbers of events remaining after reconstructing the ttbar system are listed
in table 1.
In each trial, the solution with the minimum invariant mass of the tt system is selected,
and a weight is calculated based on the expected invariant mass distribution of the lepton
and b jet pairs (M`b) at generator level. The lepton and b jet pairs with the maximum
sum of weights are chosen for the
nal solution of the tt system, and the reconstructed
neutrino momentum is taken from the weighted average over the trials.
The kinematic variables of the leptons, b jets, top quarks, and tt system are taken from
the selected
nal solution. Figure 1 shows the distributions of the transverse momenta of
leptons (p Tlep), jets (p Tjet), and top quarks (ptT), and the rapidity of the top quarks (yt).
Figure 2 displays the distributions of the transverse momentum (ptTt), rapidity (ytt), and
invariant mass (M tt) of the tt system, and the azimuthal angle between the top quarks
(
tt). In the upper panel of each
gure, the data points are compared to the sum of
the expected contributions obtained from MC simulated events reconstructed as the data.
The lower panel shows the ratio of the data to the expectations. The measured p Tlep, p Tjet,
and ptT distributions are softer than those predicted by the MC simulation, resulting in the
negative slopes observed in the bottom panels. However, in general, there is reasonable
agreement between the data and simulation within the uncertainties, which are discussed
in section 7.
6
Normalized di erential cross sections
The normalized di erential tt cross sections (1= )(d =dX) are measured as a
function of several di erent kinematic variables X.
ytt, M tt, and
tt, at both the particle and parton levels.
surements are performed with p lep and p jet at the particle level.
T
T
In addition, the
mea
The measurements
The variables include pt , ptt, yt,
T
T
are compared to the predictions of powheg+pythia8, MG5 amc@nlo+pythia8[FXFX],
MG5 amc@nlo+pythia8[MLM], and powheg+herwig++.
The non-tt backgrounds are estimated from simulation and subtracted from the data.
For Drell-Yan processes the normalization of the simulation is determined from the data
using the \Rout/in" method [52{54]. The non-tt backgrounds are rst subtracted from the
{ 6 {
G
016000
C 1.40
M 1.2
taaD 00..68
1
eV 5000 CMS
CMS
Data
tt-signal
T 4000
2000
Data
tt-signal
distributions from data (points) and from MC simulation (shaded histograms). The signal de nition
for particle level is considered to distinguish tt-signal and tt-others. All corrections described in
the text are applied to the simulation. The last bin includes the over ow events. The uncertainties
shown by the vertical bars on the data points are statistical only while the hatched band shows the
combined statistical and systematic uncertainties added in quadrature. The lower panels display
the ratios of the data to the MC prediction.
{ 7 {
oT 1000
Data
tt-signal
Data
tt-signal
distributions from data (points) and from MC simulation (shaded histograms). The signal de nition
for particle level is considered to distinguish tt-signal and tt-others. All corrections described in
the text are applied to the simulation. The last bin includes the over ow events. The uncertainties
shown by the vertical bars on the data points are statistical only while the hatched band shows the
combined statistical and systematic uncertainties added in quadrature. The lower panels display
the ratios of the data to the MC prediction.
{ 8 {
measured distributions. The data distributions are slightly lower than those from the MC
simulation. The tt-others backgrounds are then removed as a proportion of the total tt
contribution by applying a single correction factor k shown in eq. (6.1), using eq. (6.2):
k =
N data
NnMonC-tt ;
NtMt-Csig + NtMt-Cothers
Ntdta-stiag = N data
NnMonC-tt kNtMt-Cothers:
Here, NnMonC-tt is the total estimate for the non-tt background from the MC simulation,
NtMt-Csig is the total MC-predicted tt signal yield, and NtMt-Cothers is the total MC prediction
of the remaining tt background. The tt signal yield, Ntdta-stiag, is then extracted from the
number of data events, N data, separately in each bin of the kinematic distributions, as
shown in eq. (6.2).
The bin widths of the distributions are chosen to control event migration between the
bins at the reconstruction and generator level due to detector resolutions. We de ne the
purity (stability) as the number of events generated and correctly reconstructed in a certain
bin, divided by the total number of events in the reconstruction-level (generator-level) bin.
The bin widths are chosen to give both a purity and a stability of about 50%.
Detector resolution and reconstruction e ciency e ects are corrected using an
unfolding procedure. The method relies on a response matrix that maps the expected relation
between the true and reconstructed variables taken from the powheg+pythia8
simulation. The D'Agostini method [55] is employed to perform the unfolding. The e ective
regularization strength of the iterative D'Agostini unfolding is controlled by the number of
iterations. A small number of iterations can bias the measurement towards the simulated
prediction, while with a large number of iterations the result converges to that of a matrix
inversion. The number of iterations is optimized for each distribution, using simulation to
nd the minimum number of iterations that reduces the bias to a negligible level. This
optimization is performed with the multiplication of the response matrix and does not
require any regularization. A detailed description of the method can be found in ref. [13].
(6.1)
(6.2)
Several sources of systematic uncertainties are studied. The normalized di erential cross
sections are remeasured with respect to each source of systematic uncertainty individually,
and the di erences from the nominal values in each bin are taken as the corresponding
systematic uncertainty.
The overall systematic uncertainties are then obtained as the
quadratic sum of the individual components.
The pileup distribution used in the simulation is varied by shifting the assumed total
inelastic pp cross section by
5%, in order to determine the associated systematic
uncertainty. The systematic uncertainties in the lepton trigger, identi cation, and isolation
e ciencies are determined by varying the measured scale factors by their total
uncertainties. Uncertainties coming from the jet in the jet energy scale (JES) and jet energy
resolution (JER) are determined on a per-jet basis by shifting the energies of the jets [56]
{ 9 {
within their measured energy scale and resolution uncertainties. The b tagging uncertainty
is estimated by varying its e ciency uncertainty.
The uncertainty in the non-tt background normalization is estimated using a 15{30%
variation in the background yields, which is based on a previous CMS measurement of
the tt cross section [40]. The uncertainty in the shape of the tt-others contribution is
obtained by reweighting the pT distribution of the top quark for the tt-others events to match
the data and comparing with the unweighted contribution. For the theoretical
uncertainties, we investigate the e ect of the choice of PDFs, factorization and renormalization
scales ( F and
R), variation of the top quark mass, top quark pT, and hadronization and
generator modeling.
The PDF uncertainty is estimated using the uncertainties in the NNPDF30 NLO as 0118
set with the strong coupling strength s = 0:118 [57]. We measure 100 individual
uncertainties and take the root-mean-square as the PDF uncertainty, following the PDF4LHC
recommendation [58]. In addition, we consider the PDF sets with s = 0:117 and 0.119.
The MC generator modeling uncertainties are estimated by taking the di erence between
the results based on the powheg and MG5 amc@nlo generators.
The uncertainty from the choice of F and
R is estimated by varying the scales by
a factor of two up and down in powheg independently for the ME and PS steps. For
the ME calculation, all possible combinations are considered independently, excluding the
most extreme cases of ( F, R) = (0.5, 2) and (2, 0.5) [59, 60]. The scale uncertainty in the
PS modeling is assessed using dedicated MC samples with the scales varied up and down
together. The uncertainties in the factorization and renormalization scales in the ME and
PS calculations are taken as the envelope of the di erences with respect to the nominal
parameter choice.
We evaluate the top quark mass uncertainty by taking the maximum deviation between
the nominal MC sample with a top quark mass of 172.5 GeV and samples with masses of
171.5 and 173.5 GeV. The tt signal cross sections are not corrected for the mismodeling of
the top quark pT distribution in simulation. Instead, a systematic uncertainty from this
mismodeling is obtained by comparing the nominal results to the results obtained from a
response matrix using tt-signal in which the top quark pT distribution is reweighted to match
the data. The uncertainty from hadronization and PS modeling is estimated by comparing
the results obtained from powheg samples interfaced with pythia8 and with herwig++.
Table 3 lists typical values for the statistical and systematic uncertainties in the
measured normalized tt di erential cross sections. The table gives the uncertainty sources and
corresponding range of the median uncertainty of each distribution, at both the particle
and parton levels. The hadronization is the dominant systematic uncertainty source for ptT
(4:9% at particle and 7:1% at parton level) and M tt (5:9% at particle and 7:4% at parton
level), and the MC generator modeling is dominant for yt (2:3% at particle and 2:2% at
parton level), ptTt (6:1% at particle and 3:9% at parton level), ytt (1:2% at particle and
1:6% at parton level), and
tt (9:2% at particle and 7:3% at parton level). In general,
the MC generator modeling and hadronization are the dominant systematic uncertainty
sources for both the particle- and parton-level measurements.
Uncertainty source
Statistical
Pileup modeling
Trigger e ciency
Lepton e ciency
JES
JER
b jet tagging
Background
PDFs
MC generator
Fact./renorm.
Top quark mass
Top quark pT
Hadronization | PS modeling
Total systematic uncertainty
Particle level [%]
Parton level [%]
at particle and parton levels. The uncertainty sources and the corresponding range of the median
uncertainty of each distribution are shown in percent.
8
Results
The normalized di erential tt cross sections are measured by subtracting the
background contribution, correcting for detector e ects and acceptance, and dividing the
resultant number of tt signal events by the total inclusive tt cross section. Figures 3
and 4 show the normalized di erential tt cross sections as a function of p Tlep, p Tjet, ptT,
T
yt, ptt, ytt, M tt, and
tt at the particle level in the visible phase space.
Partonlevel results are also independently extrapolated to the full phase space using the
powheg+pythia8 tt simulation. Figures 5 and 6 show the normalized di erential tt cross
sections as a function of ptT, yt, ptt, ytt, M tt, and
T
tt at parton level in the full phase
space. The measured data are compared to di erent standard model predictions from
powheg+pythia8, MG5 amc@nlo+pythia8[FXFX], MG5 amc@nlo+pythia8[MLM],
and powheg+herwig++ in the gures. The values of the measured normalized di
erential tt cross sections at the parton and particle levels with their statistical and systematic
uncertainties are listed in appendices A and B.
The compatibility between the measurements and the predictions is quanti ed by
the high-pT region. A similar trend was also observed at p
means of a 2 test performed with the full covariance matrix from the unfolding procedure,
including the systematic uncertainties. Tables 4 and 5 report the values obtained for the
2 with the numbers of degrees of freedom (dof) and the corresponding p-values [61]. The
lepton, jet, and top quark pT spectra in data tend to be softer than the MC predictions for
s = 8 TeV by both the ATLAS
HJEP04(218)6
and CMS experiments [
4, 5
]. The powheg+pythia8 generator better describes the ptt,
yt, and ytt distributions at the particle and parton levels, while powheg+herwig++ is
found to be in good agreement for the ptT at the parton and particle levels. In general,
measurements are found to be in fair agreement with predictions within the uncertainties.
The parton-level results are also compared to the following perturbative QCD
calculations:
An approximate NNLO calculation based on QCD threshold expansions beyond the
leading-logarithmic approximation using the CT14nnlo PDF set [62].
An approximate next-to-NNLO (N3LO) calculation performed with the resummation
of soft-gluon contributions in the double-di erential cross section at NNLL accuracy
in momentum space using the MMHT2014 PDF set [63, 64].
An improved NNLL QCD calculation (NLO+NNLL') [65] with simultaneous
resummation of soft and small-mass logarithms to NNLL accuracy, matched with both the
standard soft-gluon resummation at NNLL accuracy and the xed-order calculation
at NLO accuracy, using the MTSW2008nnlo PDF set.
A full NNLO calculation based on the NNPDF3.0 PDF set [66].
The measurements and the perturbative QCD predictions are shown in gures 7 and 8.
Table 6 gives the
2=dof and the corresponding p-values for the agreement between the
measurements and QCD calculations. The normalized di erential tt cross sections as a
function of the yt, ytt, and ptTt are found to be in good agreement with the di erent
predictions considered. We observe some tension between the data and the NNLO predictions
for other variables such as the ptT and M tt.
9
Summary
by the CMS experiment in the dilepton decay channel in pp collisions at p
The normalized di erential cross sections for top quark pair production have been presented
data corresponding to an integrated luminosity of 2.1 fb 1. The di erential cross sections
are measured as a function of several kinematic variables at particle level in a visible phase
space corresponding to the detector acceptance and at parton level in the full phase space.
The measurements are compared to the predictions from Monte Carlo simulations and
calculations in perturbative quantum chromodynamics. In general, the measurements are in
fairly good agreement with predictions. We con rm that the top quark pT spectrum in data
is softer than the Monte Carlo predictions at both particle and parton levels, as reported by
the ATLAS and CMS experiments. The present results are in agreement with the earlier
ATLAS and CMS measurements. We also nd that the measurements are in better
agreement with calculations within quantum chromodynamics up to
next-to-next-to-leadingorder accuracy at the parton level compared to previous next-to-leading-order predictions.
POWHEG H++
T
plep [GeV]
2.1 fb-1 (13 TeV)
POWHEG H++
t
1σ
10−3
10−4
1.4
1σ
10−3
10−4
1.4
1
1σ
10−3
10−4
1.4
ryo ta1.2
heT aD0.81
0.6
0
CMS
Stat
POWHEG H++
HJEP04(218)6
T
1
1
Normalized di erential tt cross sections as a function of lepton (upper left),
jet (upper right), and top quark pT (lower left) and top quark rapidity (lower right),
measured at the particle level in the visible phase space and combining the distributions for top
quarks and antiquarks.
The measured data are compared to di erent standard model
predictions from powheg+pythia8 (POWHEG P8), MG5 amc@nlo+pythia8[MLM] (MG5 P8[MLM]),
MG5 amc@nlo+pythia8[FXFX] (MG5 P8[FXFX]), and powheg+herwig++ (POWHEG H++).
The vertical bars on the data points indicate the total (combined statistical and systematic)
uncertainties while the hatched band shows the statistical uncertainty. The lower panel gives the ratio
of the theoretical predictions to the data. The light-shaded band displays the combined statistical
and systematic uncertainties added in quadrature.
2.1 fb-1 (13 TeV)
POWHEG H++
ptTt [GeV]
POWHEG H++
σ t y
1
Stat
POWHEG H++
HJEP04(218)6
ytt
2.1 fb-1 (13 TeV)
1
1σ
10−3
10−4
1.4
1
d dM
1σ
10−3
10−4
1.4
ryo ta1.2
heT aD0.81
0.6
Stat+syst
Stat+syst
400
600
per right), M tt (lower left), and
tt (lower right), measured at the particle level in the
visible phase space.
The measured data are compared to di erent standard model
predictions from powheg+pythia8 (POWHEG P8), MG5 amc@nlo+pythia8[MLM] (MG5 P8[MLM]),
MG5 amc@nlo+pythia8[FXFX] (MG5 P8[FXFX]), and powheg+herwig++ (POWHEG H++).
The vertical bars on the data points indicate the total (combined statistical and systematic)
uncertainties while the hatched band shows the statistical uncertainty. The lower panel gives the ratio
of the theoretical predictions to the data. The light-shaded band displays the combined statistical
and systematic uncertainties added in quadrature.
1
d d
1σ
10−3
10−4
1.4
ryo ta1.2
heT aD0.81
0.6
0
CMS
POWHEG H++
500
ptT [GeV]
σ t y0.55
d d 0.5
1σ
CMS
POWHEG H++
100
200
300
400
quark rapidity (right), measured at the parton level in the full phase space and combining the
distributions for top quarks and antiquarks. The measured data are compared to di erent
standard model predictions from powheg+pythia8 (POWHEG P8), MG5 amc@nlo+pythia8[MLM]
(MG5 P8[MLM]), MG5 amc@nlo+pythia8[FXFX] (MG5 P8[FXFX]), and powheg+herwig++
(POWHEG H++). The vertical bars on the data points indicate the total (combined statistical
and systematic) uncertainties while the hatched band shows the statistical uncertainty. The lower
panel gives the ratio of the theoretical predictions to the data. The light-shaded band displays the
combined statistical and systematic uncertainties added in quadrature.
2.1 fb-1 (13 TeV)
POWHEG H++
ptTt [GeV]
POWHEG H++
0.6
1
1σ
10−3
10−4
1.4
1
d d
10−4
10−5
1.4
ryo ta1.2
heT aD0.81
0.6
CMS
Parton level
Stat+syst
Stat
POWHEG H++
HJEP04(218)6
ytt
2.1 fb-1 (13 TeV)
Data with stat+syst
Stat
POWHEG P8
MG5 P8[MLM]
MG5 P8[FXFX]
POWHEG H++
1
Normalized di erential tt cross sections as a function of ptTt (upper left), ytt
M tt (lower left), and
tt (lower right), measured at the parton level in
the full phase space.
The measured data are compared to di erent standard model
predictions from powheg+pythia8 (POWHEG P8), MG5 amc@nlo+pythia8[MLM] (MG5 P8[MLM]),
MG5 amc@nlo+pythia8[FXFX] (MG5 P8[FXFX]), and powheg+herwig++ (POWHEG H++).
The vertical bars on the data points indicate the total (combined statistical and systematic)
uncertainties while the hatched band shows the statistical uncertainty. The lower panel gives the ratio
of the theoretical predictions to the data. The light-shaded band displays the combined statistical
and systematic uncertainties added in quadrature.
<0.01
<0.01
ytt
M tt
tt
Variable
p
y
t
T
t
ptt
T
ytt
M tt
tt
Variable
p
y
t
T
t
ptt
T
ytt
M tt
powheg
+ pythia8
powheg
+ pythia8 [MLM]
+ pythia8 [FXFX]
+ herwig++
cross sections with di erent model predictions at the particle level for each of the kinematic variables.
powheg
+ pythia8
powheg
+ pythia8 [MLM]
+ pythia8 [FXFX]
+ herwig++
cross sections with di erent model predictions at the parton level for each of the kinematic variables.
Approx. NNLO [62]
Approx. N3LO [63]
NLO+NNLL' [65]
NNLO [66]
2=dof
cross sections with published perturbative QCD calculations.
1
V
e
d d
1σ
10−3
10−4
1.4
ryo ta1.2
heT aD0.81
0.6
0
CMS
100
200
300
400
quark rapidity (right), measured at the parton level in the full phase space and combining the
distributions for top quarks and antiquarks. The vertical bars on the data points indicate the total
(combined statistical and systematic) uncertainties, while the hatched band shows the statistical
uncertainty. The measurements are compared to di erent perturbative QCD calculations of an
approximate NNLO [62], an approximate next-to-NNLO (N3LO) [63], an improved NLO+NNLL
(NLO+NNLL') [65], and a full NNLO [66]. The lower panel gives the ratio of the theoretical
predictions to the data.
Data with stat+syst
Stat
POWHEG P8
NNLO
1
1σ
10−3
10−4
1.4
Stat
1
V
e
d d
1σ 10−3
10−4
10−5
1.4
ryo ta1.2
heT aD0.81
0.6
ptTt [GeV]
CMS
Parton level
Stat+syst
σ tt y 0.6
CMS
d1σ d 0.5 Parton level
0.4
0.3
0.2
0.1
0
1.4
0.6
right), and M tt (lower) for the top quarks or antiquarks, measured at parton level in the full phase
space. The vertical bars on the data points indicate the total (combined statistical and systematic)
uncertainties, while the hatched band shows the statistical uncertainty. The measurements are
compared to di erent perturbative QCD calculations of an improved NLO+NNLL (NLO+NNLL') [65]
and a full NNLO [66]. The lower panel gives the ratio of the theoretical predictions to the data.
dilepton channel in pp collisions at p
092003 [arXiv:1607.07281] [INSPIRE].
[11] ATLAS collaboration, Measurement of top quark pair di erential cross-sections in the
s = 7 and 8 TeV with ATLAS, Phys. Rev. D 94 (2016)
[12] CMS collaboration, Measurement of double-di erential cross sections for top quark pair
production in pp collisions at p
Phys. J. C 77 (2017) 459 [arXiv:1703.01630] [INSPIRE].
s = 8 TeV and impact on parton distribution functions, Eur.
[13] CMS collaboration, Measurement of di erential cross sections for top quark pair production
using the lepton+jets
nal state in proton-proton collisions at 13 TeV, Phys. Rev. D 95
(2017) 092001 [arXiv:1610.04191] [INSPIRE].
[14] ATLAS collaboration, Measurement of jet activity produced in top-quark events with an
electron, a muon and two b-tagged jets in the
nal state in pp collisions at p
the ATLAS detector, Eur. Phys. J. C 77 (2017) 220 [arXiv:1610.09978] [INSPIRE].
[15] ATLAS collaboration, Measurements of top-quark pair di erential cross-sections in the e
s = 13 TeV using the ATLAS detector, Eur. Phys. J. C 77
channel in pp collisions at p
(2017) 292 [arXiv:1612.05220] [INSPIRE].
Rev. D 87 (2013) 034012 [arXiv:1207.1484] [INSPIRE].
[16] S. Choi and H.S. Lee, Azimuthal decorrelation in tt production at hadron colliders, Phys.
[17] CMS collaboration, The CMS experiment at the CERN LHC, 2008 JINST 3 S08004
[18] CMS collaboration, Particle- ow reconstruction and global event description with the CMS
detector, 2017 JINST 12 P10003 [arXiv:1706.04965] [INSPIRE].
[19] CMS collaboration, Missing transverse energy performance of the CMS detector, 2011
JINST 6 P09001 [arXiv:1106.5048] [INSPIRE].
JHEP 11 (2004) 040 [hep-ph/0409146] [INSPIRE].
[20] P. Nason, A New method for combining NLO QCD with shower Monte Carlo algorithms,
[21] S. Frixione, P. Nason and C. Oleari, Matching NLO QCD computations with parton shower
simulations: the POWHEG method, JHEP 11 (2007) 070 [arXiv:0709.2092] [INSPIRE].
[22] S. Alioli, P. Nason, C. Oleari and E. Re, A general framework for implementing NLO
calculations in shower Monte Carlo programs: the POWHEG BOX, JHEP 06 (2010) 043
[arXiv:1002.2581] [INSPIRE].
[23] J.M. Campbell, R.K. Ellis, P. Nason and E. Re, Top-Pair Production and Decay at NLO
Matched with Parton Showers, JHEP 04 (2015) 114 [arXiv:1412.1828] [INSPIRE].
[24] J. Alwall et al., The automated computation of tree-level and next-to-leading order
di erential cross sections and their matching to parton shower simulations, JHEP 07 (2014)
079 [arXiv:1405.0301] [INSPIRE].
[25] T. Sjostrand, S. Mrenna and P.Z. Skands, A brief introduction to PYTHIA 8.1, Comput.
Phys. Commun. 178 (2008) 852 [arXiv:0710.3820] [INSPIRE].
[26] P. Skands, S. Carrazza and J. Rojo, Tuning PYTHIA 8.1: the Monash 2013 Tune, Eur.
Phys. J. C 74 (2014) 3024 [arXiv:1404.5630] [INSPIRE].
[27] R. Frederix and S. Frixione, Merging meets matching in MC@NLO, JHEP 12 (2012) 061
[arXiv:1209.6215] [INSPIRE].
[28] J. Alwall et al., Comparative study of various algorithms for the merging of parton showers
and matrix elements in hadronic collisions, Eur. Phys. J. C 53 (2008) 473
[arXiv:0706.2569] [INSPIRE].
[arXiv:0803.0883] [INSPIRE].
[30] M.H. Seymour and A. Siodmok, Constraining MPI models using e and recent Tevatron
and LHC Underlying Event data, JHEP 10 (2013) 113 [arXiv:1307.5015] [INSPIRE].
[31] M. Czakon and A. Mitov, Top++: A program for the calculation of the top-pair cross-section
at hadron colliders, Comput. Phys. Commun. 185 (2014) 2930 [arXiv:1112.5675] [INSPIRE].
[32] Y. Li and F. Petriello, Combining QCD and electroweak corrections to dilepton production in
FEWZ, Phys. Rev. D 86 (2012) 094034 [arXiv:1208.5967] [INSPIRE].
HJEP04(218)6
hadroproduction in association with a W boson, JHEP 07 (2008) 029 [arXiv:0805.3067]
method, Eur. Phys. J. C 71 (2011) 1547 [arXiv:1009.2450] [INSPIRE].
[35] N. Kidonakis, NNLL threshold resummation for top-pair and single-top production, Phys.
Part. Nucl. 45 (2014) 714 [arXiv:1210.7813] [INSPIRE].
[36] T. Gehrmann et al., W +W
production at hadron colliders in next to next to leading order
QCD, Phys. Rev. Lett. 113 (2014) 212001 [arXiv:1408.5243] [INSPIRE].
[37] J.M. Campbell and R.K. Ellis, MCFM for the Tevatron and the LHC, Nucl. Phys. Proc.
Suppl. 205-206 (2010) 10 [arXiv:1007.3492] [INSPIRE].
[38] J. Allison et al., GEANT4 developments and applications, IEEE Trans. Nucl. Sci. 53 (2006)
[44] M. Cacciari, G.P. Salam and G. Soyez, FastJet user manual, Eur. Phys. J. C 72 (2012) 1896
[45] M. Cacciari, G.P. Salam and G. Soyez, The anti-kt jet clustering algorithm, JHEP 04 (2008)
[46] CMS collaboration, Jet energy scale and resolution in the CMS experiment in pp collisions
at 8 TeV, 2017 JINST 12 P02014 [arXiv:1607.03663] [INSPIRE].
[47] CMS collaboration, Identi cation of b-quark jets with the CMS experiment, 2013 JINST 8
P04013 [arXiv:1211.4462] [INSPIRE].
Instrum. Meth. A 506 (2003) 250 [INSPIRE].
nal state in pp collisions at p
[arXiv:1611.04040] [INSPIRE].
[39] GEANT4 collaboration, S. Agostinelli et al., GEANT4 | a simulation toolkit, Nucl.
[40] CMS collaboration, Measurement of the tt production cross section using events in the e
s = 13 TeV, Eur. Phys. J. C 77 (2017) 172
[41] CMS collaboration, Performance of CMS muon reconstruction in pp collision events at
s = 7 TeV, 2012 JINST 7 P10002 [arXiv:1206.4071] [INSPIRE].
[42] CMS collaboration, Performance of Electron Reconstruction and Selection with the CMS
s = 8 TeV, 2015 JINST 10 P06005
270.
p
Detector in Proton-Proton Collisions at p
[arXiv:1502.02701] [INSPIRE].
proton-proton collisions at p
[arXiv:1510.05302] [INSPIRE].
[arXiv:1111.6097] [INSPIRE].
063 [arXiv:0802.1189] [INSPIRE].
[43] CMS collaboration, Measurement of the top quark pair production cross section in
s = 13 TeV, Phys. Rev. Lett. 116 (2016) 052002
CMS-PAS-BTV-15-001 (2016).
Phys. C 40 (2016) 100001 [INSPIRE].
[48] CMS collaboration, Identi cation of b quark jets at the CMS Experiment in the LHC Run 2,
and the top quark mass, Phys. Lett. B 287 (1992) 225 [INSPIRE].
[51] R.H. Dalitz and G.R. Goldstein, Analysis of top-antitop production and dilepton decay events
[52] CMS collaboration, First measurement of the cross section for top-quark pair production in
s = 7 TeV, Phys. Lett. B 695 (2011) 424 [arXiv:1010.5994]
in the dilepton channel in pp collisions at p
[53] CMS collaboration, Measurement of the tt production cross section and the top quark mass
s = 7 TeV, JHEP 07 (2011) 049
[54] CMS collaboration, Measurement of the tt production cross section in the dilepton channel
in pp collisions at ps = 7 TeV, JHEP 11 (2012) 067 [arXiv:1208.2671] [INSPIRE].
[55] G. D'Agostini, A multidimensional unfolding method based on Bayes' theorem, Nucl.
Instrum. Meth. A 362 (1995) 487 [INSPIRE].
[56] CMS collaboration, Determination of jet energy calibration and transverse momentum
resolution in CMS, 2011 JINST 6 P11002 [arXiv:1107.4277] [INSPIRE].
[57] NNPDF collaboration, R.D. Ball et al., Parton distributions for the LHC Run II, JHEP 04
(2015) 040 [arXiv:1410.8849] [INSPIRE].
023001 [arXiv:1510.03865] [INSPIRE].
[58] J. Butterworth et al., PDF4LHC recommendations for LHC Run II, J. Phys. G 43 (2016)
[59] M. Cacciari, S. Frixione, M.L. Mangano, P. Nason and G. Ridol , The tt cross-section at
1:8 TeV and 1:96 TeV: A study of the systematics due to parton densities and scale
dependence, JHEP 04 (2004) 068 [hep-ph/0303085] [INSPIRE].
[60] S. Catani, D. de Florian, M. Grazzini and P. Nason, Soft gluon resummation for Higgs boson
production at hadron colliders, JHEP 07 (2003) 028 [hep-ph/0306211] [INSPIRE].
[61] E. Gross and O. Vitells, Trial factors for the look elsewhere e ect in high energy physics,
Eur. Phys. J. C 70 (2010) 525 [arXiv:1005.1891] [INSPIRE].
[62] M. Guzzi, K. Lipka and S.-O. Moch, Top-quark pair production at hadron colliders:
di erential cross section and phenomenological applications with Di Top, JHEP 01 (2015)
082 [arXiv:1406.0386] [INSPIRE].
[63] N. Kidonakis, NNNLO soft-gluon corrections for the top-quark pT and rapidity distributions,
Phys. Rev. D 91 (2015) 031501 [arXiv:1411.2633] [INSPIRE].
[64] L.A. Harland-Lang, A.D. Martin, P. Motylinski and R.S. Thorne, Parton distributions in the
LHC era: MMHT 2014 PDFs, Eur. Phys. J. C 75 (2015) 204 [arXiv:1412.3989] [INSPIRE].
[65] B.D. Pecjak, D.J. Scott, X. Wang and L.L. Yang, Resummed di erential cross sections for
top-quark pairs at the LHC, Phys. Rev. Lett. 116 (2016) 202001 [arXiv:1601.07020]
[66] M. Czakon, D. Heymes and A. Mitov, High-precision di erential predictions for top-quark
pairs at the LHC, Phys. Rev. Lett. 116 (2016) 082003 [arXiv:1511.00549] [INSPIRE].
Yerevan Physics Institute, Yerevan, Armenia
A.M. Sirunyan, A. Tumasyan
Institut fur Hochenergiephysik, Wien, Austria
W. Adam, F. Ambrogi, E. Asilar, T. Bergauer, J. Brandstetter, E. Brondolin, M.
Dragicevic, J. Ero, M. Flechl, M. Friedl, R. Fruhwirth1, V.M. Ghete, J. Grossmann, J. Hrubec,
M. Jeitler1, A. Konig, N. Krammer, I. Kratschmer, D. Liko, T. Madlener, I. Mikulec,
D. Spitzbart, J. Strauss, W. Waltenberger, J. Wittmann, C.-E. Wulz1, M. Zarucki
Institute for Nuclear Problems, Minsk, Belarus
V. Chekhovsky, V. Mossolov, J. Suarez Gonzalez
Universiteit Antwerpen, Antwerpen, Belgium
Mechelen, N. Van Remortel, A. Van Spilbeeck
Vrije Universiteit Brussel, Brussel, Belgium
E.A. De Wolf, X. Janssen, J. Lauwers, M. Van De Klundert, H. Van Haevermaet, P. Van
S. Abu Zeid, F. Blekman, J. D'Hondt, I. De Bruyn, J. De Clercq, K. Deroover, G. Flouris,
S. Lowette, S. Moortgat, L. Moreels, A. Olbrechts, Q. Python, K. Skovpen, S. Tavernier,
W. Van Doninck, P. Van Mulders, I. Van Parijs
Universite Libre de Bruxelles, Bruxelles, Belgium
H. Brun, B. Clerbaux, G. De Lentdecker, H. Delannoy, G. Fasanella, L. Favart,
R. Goldouzian, A. Grebenyuk, G. Karapostoli, T. Lenzi, J. Luetic, T. Maerschalk,
A. Marinov, A. Randle-conde, T. Seva, C. Vander Velde, P. Vanlaer, D. Vannerom,
R. Yonamine, F. Zenoni, F. Zhang2
Ghent University, Ghent, Belgium
A. Cimmino, T. Cornelis, D. Dobur, A. Fagot, M. Gul, I. Khvastunov, D. Poyraz, C. Roskas,
S. Salva, M. Tytgat, W. Verbeke, N. Zaganidis
Universite Catholique de Louvain, Louvain-la-Neuve, Belgium
H. Bakhshiansohi, O. Bondu, S. Brochet, G. Bruno, A. Caudron, S. De Visscher, C. Delaere,
M. Delcourt, B. Francois, A. Giammanco, A. Jafari, M. Komm, G. Krintiras, V. Lemaitre,
A. Magitteri, A. Mertens, M. Musich, K. Piotrzkowski, L. Quertenmont, M. Vidal Marono,
S. Wertz
N. Beliy
Universite de Mons, Mons, Belgium
Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil
W.L. Alda Junior, F.L. Alves, G.A. Alves, L. Brito, M. Correa Martins Junior, C. Hensel,
A. Moraes, M.E. Pol, P. Rebello Teles
Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
E. Belchior Batista Das Chagas, W. Carvalho, J. Chinellato3, A. Custodio, E.M. Da
Costa, G.G. Da Silveira4, D. De Jesus Damiao, S. Fonseca De Souza, L.M. Huertas
Guativa, H. Malbouisson, M. Melo De Almeida, C. Mora Herrera, L. Mundim, H. Nogima,
A. Santoro, A. Sznajder, E.J. Tonelli Manganote3, F. Torres Da Silva De Araujo, A. Vilela
Pereira
Brazil
J.C. Ruiz Vargasa
Sciences
tanov, M. Vutova
Universidade Estadual Paulista a, Universidade Federal do ABC b, S~ao Paulo,
S. Ahujaa,
C.A. Bernardesa,
T.R. Fernandez
Perez Tomeia, E.M. Gregoresb,
P.G. Mercadanteb, C.S. Moona, S.F. Novaesa, Sandra S. Padulaa, D. Romero Abadb,
Institute for Nuclear Research and Nuclear Energy of Bulgaria Academy of
A. Aleksandrov, R. Hadjiiska, P. Iaydjiev, M. Misheva, M. Rodozov, S. Stoykova, G.
SulUniversity of So a, So a, Bulgaria
A. Dimitrov, I. Glushkov, L. Litov, B. Pavlov, P. Petkov
Beihang University, Beijing, China
W. Fang5, X. Gao5
Institute of High Energy Physics, Beijing, China
M. Ahmad, J.G. Bian, G.M. Chen, H.S. Chen, M. Chen, Y. Chen, C.H. Jiang, D. Leggat,
Z. Liu, F. Romeo, S.M. Shaheen, A. Spiezia, J. Tao, C. Wang, Z. Wang, E. Yazgan,
H. Zhang, J. Zhao
Beijing, China
State Key Laboratory of Nuclear Physics and Technology, Peking University,
Y. Ban, G. Chen, Q. Li, S. Liu, Y. Mao, S.J. Qian, D. Wang, Z. Xu
Universidad de Los Andes, Bogota, Colombia
C. Avila, A. Cabrera, L.F. Chaparro Sierra, C. Florez, C.F. Gonzalez Hernandez, J.D. Ruiz
Alvarez
University of Split, Faculty of Electrical Engineering, Mechanical Engineering
and Naval Architecture, Split, Croatia
B. Courbon, N. Godinovic, D. Lelas, I. Puljak, P.M. Ribeiro Cipriano, T. Sculac
University of Split, Faculty of Science, Split, Croatia
Z. Antunovic, M. Kovac
Institute Rudjer Boskovic, Zagreb, Croatia
V. Brigljevic, D. Ferencek, K. Kadija, B. Mesic, T. Susa
University of Cyprus, Nicosia, Cyprus
M.W. Ather, A. Attikis, G. Mavromanolakis, J. Mousa, C. Nicolaou, F. Ptochos,
P.A. Razis, H. Rykaczewski
Charles University, Prague, Czech Republic
M. Finger6, M. Finger Jr.6
Universidad San Francisco de Quito, Quito, Ecuador
E. Carrera Jarrin
Academy of Scienti c Research and Technology of the Arab Republic of Egypt,
Egyptian Network of High Energy Physics, Cairo, Egypt
A.A. Abdelalim7;8, Y. Mohammed9, E. Salama10;11
National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
R.K. Dewanjee, M. Kadastik, L. Perrini, M. Raidal, A. Tiko, C. Veelken
Department of Physics, University of Helsinki, Helsinki, Finland
P. Eerola, J. Pekkanen, M. Voutilainen
Helsinki Institute of Physics, Helsinki, Finland
J. Harkonen, T. Jarvinen, V. Karimaki, R. Kinnunen, T. Lampen, K. Lassila-Perini,
S. Lehti, T. Linden, P. Luukka, E. Tuominen, J. Tuominiemi, E. Tuovinen
Lappeenranta University of Technology, Lappeenranta, Finland
J. Talvitie, T. Tuuva
IRFU, CEA, Universite Paris-Saclay, Gif-sur-Yvette, France
M. Besancon, F. Couderc, M. Dejardin, D. Denegri, J.L. Faure, F. Ferri, S. Ganjour,
S. Ghosh, A. Givernaud, P. Gras, G. Hamel de Monchenault, P. Jarry, I. Kucher, E. Locci,
M. Machet, J. Malcles, G. Negro, J. Rander, A. Rosowsky, M.O . Sahin, M. Titov
Laboratoire Leprince-Ringuet, Ecole polytechnique, CNRS/IN2P3,
Universite Paris-Saclay, Palaiseau, France
A. Abdulsalam, I. Antropov, S. Ba oni, F. Beaudette, P. Busson, L. Cadamuro, C.
Charlot, O. Davignon, R. Granier de Cassagnac, M. Jo, S. Lisniak, A. Lobanov, J. Martin
Blanco, M. Nguyen, C. Ochando, G. Ortona, P. Paganini, P. Pigard, S. Regnard, R. Salerno,
J.B. Sauvan, Y. Sirois, A.G. Stahl Leiton, T. Strebler, Y. Yilmaz, A. Zabi, A. Zghiche
Universite de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg,
France
S. Gadrat
J.-L. Agram12, J. Andrea, D. Bloch, J.-M. Brom, M. Buttignol, E.C. Chabert, N. Chanon,
C. Collard, E. Conte12, X. Coubez, J.-C. Fontaine12, D. Gele, U. Goerlach, M. Jansova,
A.-C. Le Bihan, P. Van Hove
Centre de Calcul de l'Institut National de Physique Nucleaire et de Physique
des Particules, CNRS/IN2P3, Villeurbanne, France
Universite de Lyon, Universite Claude Bernard Lyon 1, CNRS-IN2P3, Institut
de Physique Nucleaire de Lyon, Villeurbanne, France
S. Beauceron, C. Bernet, G. Boudoul, R. Chierici, D. Contardo, P. Depasse, H. El Mamouni,
J. Fay, L. Finco, S. Gascon, M. Gouzevitch, G. Grenier, B. Ille, F. Lagarde, I.B. Laktineh,
M. Lethuillier, L. Mirabito, A.L. Pequegnot, S. Perries, A. Popov13, V. Sordini, M. Vander
Donckt, S. Viret
A. Khvedelidze6
Z. Tsamalaidze6
Georgian Technical University, Tbilisi, Georgia
Tbilisi State University, Tbilisi, Georgia
RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany
C. Autermann, S. Beranek, L. Feld, M.K. Kiesel, K. Klein, M. Lipinski, M. Preuten,
C. Schomakers, J. Schulz, T. Verlage
RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany
A. Albert, M. Brodski, E. Dietz-Laursonn, D. Duchardt, M. Endres, M. Erdmann, S.
Erdweg, T. Esch, R. Fischer, A. Guth, M. Hamer, T. Hebbeker, C. Heidemann, K. Hoepfner,
S. Knutzen, M. Merschmeyer, A. Meyer, P. Millet, S. Mukherjee, M. Olschewski,
K. Padeken, T. Pook, M. Radziej, H. Reithler, M. Rieger, F. Scheuch, D. Teyssier, S. Thuer
RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany
G. Flugge, B. Kargoll, T. Kress, A. Kunsken, J. Lingemann, T. Muller, A. Nehrkorn,
A. Nowack, C. Pistone, O. Pooth, A. Stahl14
Deutsches Elektronen-Synchrotron, Hamburg, Germany
M. Aldaya Martin, T. Arndt, C. Asawatangtrakuldee, K. Beernaert, O. Behnke,
U. Behrens, A.A. Bin Anuar, K. Borras15, V. Botta, A. Campbell, P. Connor, C.
ContrerasCampana, F. Costanza, C. Diez Pardos, G. Eckerlin, D. Eckstein, T. Eichhorn, E. Eren,
E. Gallo16, J. Garay Garcia, A. Geiser, A. Gizhko, J.M. Grados Luyando, A. Grohsjean,
P. Gunnellini, A. Harb, J. Hauk, M. Hempel17, H. Jung, A. Kalogeropoulos, M. Kasemann,
J. Keaveney, C. Kleinwort, I. Korol, D. Krucker, W. Lange, A. Lelek, T. Lenz, J. Leonard,
K. Lipka, W. Lohmann17, R. Mankel, I.-A. Melzer-Pellmann, A.B. Meyer, G. Mittag,
J. Mnich, A. Mussgiller, E. Ntomari, D. Pitzl, R. Placakyte, A. Raspereza, B. Roland,
M. Savitskyi, P. Saxena, R. Shevchenko, S. Spannagel, N. Stefaniuk, G.P. Van Onsem,
R. Walsh, Y. Wen, K. Wichmann, C. Wissing, O. Zenaiev
University of Hamburg, Hamburg, Germany
S. Bein, V. Blobel, M. Centis Vignali, A.R. Draeger, T. Dreyer, E. Garutti, D. Gonzalez,
J. Haller, M. Ho mann, A. Junkes, R. Klanner, R. Kogler, N. Kovalchuk, S. Kurz, T.
Lapsien, I. Marchesini, D. Marconi, M. Meyer, M. Niedziela, D. Nowatschin, F. Pantaleo14,
T. Pei er, A. Perieanu, C. Scharf, P. Schleper, A. Schmidt, S. Schumann, J. Schwandt,
J. Sonneveld, H. Stadie, G. Steinbruck, F.M. Stober, M. Stover, H. Tholen, D. Troendle,
E. Usai, L. Vanelderen, A. Vanhoefer, B. Vormwald
Institut fur Experimentelle Kernphysik, Karlsruhe, Germany
M. Akbiyik, C. Barth, S. Baur, E. Butz, R. Caspart, T. Chwalek, F. Colombo, W. De
Boer, A. Dierlamm, B. Freund, R. Friese, M. Gi els, A. Gilbert, D. Haitz, F. Hartmann14,
S.M. Heindl, U. Husemann, F. Kassel14, S. Kudella, H. Mildner, M.U. Mozer, Th. Muller,
M. Plagge, G. Quast, K. Rabbertz, M. Schroder, I. Shvetsov, G. Sieber, H.J. Simonis,
R. Ulrich, S. Wayand, M. Weber, T. Weiler, S. Williamson, C. Wohrmann, R. Wolf
Institute of Nuclear and Particle Physics (INPP), NCSR Demokritos, Aghia
Paraskevi, Greece
I. Topsis-Giotis
G. Anagnostou, G. Daskalakis, T. Geralis, V.A. Giakoumopoulou, A. Kyriakis, D. Loukas,
National and Kapodistrian University of Athens, Athens, Greece
S. Kesisoglou, A. Panagiotou, N. Saoulidou
University of Ioannina, Ioannina, Greece
I. Evangelou, C. Foudas, P. Kokkas, N. Manthos, I. Papadopoulos, E. Paradas, J. Strologas,
F.A. Triantis
MTA-ELTE Lendulet CMS Particle and Nuclear Physics Group, Eotvos Lorand
University, Budapest, Hungary
M. Csanad, N. Filipovic, G. Pasztor
Wigner Research Centre for Physics, Budapest, Hungary
G. Bencze, C. Hajdu, D. Horvath18, F. Sikler, V. Veszpremi, G. Vesztergombi19, A.J.
Zsigmond
Institute of Nuclear Research ATOMKI, Debrecen, Hungary
N. Beni, S. Czellar, J. Karancsi20, A. Makovec, J. Molnar, Z. Szillasi
Institute of Physics, University of Debrecen, Debrecen, Hungary
M. Bartok19, P. Raics, Z.L. Trocsanyi, B. Ujvari
Indian Institute of Science (IISc), Bangalore, India
S. Choudhury, J.R. Komaragiri
National Institute of Science Education and Research, Bhubaneswar, India
S. Bahinipati21, S. Bhowmik, P. Mal, K. Mandal, A. Nayak22, D.K. Sahoo21, N. Sahoo,
S.K. Swain
Panjab University, Chandigarh, India
S. Bansal, S.B. Beri, V. Bhatnagar, U. Bhawandeep, R. Chawla, N. Dhingra, A.K. Kalsi,
A. Kaur, M. Kaur, R. Kumar, P. Kumari, A. Mehta, M. Mittal, J.B. Singh, G. Walia
University of Delhi, Delhi, India
Ashok Kumar, Aashaq Shah, A. Bhardwaj, S. Chauhan, B.C. Choudhary, R.B. Garg,
S. Keshri, A. Kumar, S. Malhotra, M. Naimuddin, K. Ranjan, R. Sharma, V. Sharma
Saha Institute of Nuclear Physics, HBNI, Kolkata, India
R. Bhardwaj, R. Bhattacharya, S. Bhattacharya, S. Dey, S. Dutt, S. Dutta, S. Ghosh,
N. Majumdar, A. Modak, K. Mondal, S. Mukhopadhyay, S. Nandan, A. Purohit, A. Roy,
D. Roy, S. Roy Chowdhury, S. Sarkar, M. Sharan, S. Thakur
Indian Institute of Technology Madras, Madras, India
P.K. Behera
Bhabha Atomic Research Centre, Mumbai, India
R. Chudasama, D. Dutta, V. Jha, V. Kumar, A.K. Mohanty14, P.K. Netrakanti, L.M. Pant,
HJEP04(218)6
P. Shukla, A. Topkar
Tata Institute of Fundamental Research-A, Mumbai, India
T. Aziz, S. Dugad, B. Mahakud, S. Mitra, G.B. Mohanty, B. Parida, N. Sur, B. Sutar
Tata Institute of Fundamental Research-B, Mumbai, India
S. Banerjee, S. Bhattacharya, S. Chatterjee, P. Das, M. Guchait, Sa. Jain, S. Kumar,
M. Maity23, G. Majumder, K. Mazumdar, T. Sarkar23, N. Wickramage24
Indian Institute of Science Education and Research (IISER), Pune, India
S. Chauhan, S. Dube, V. Hegde, A. Kapoor, K. Kothekar, S. Pandey, A. Rane, S. Sharma
Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
S. Chenarani25, E. Eskandari Tadavani, S.M. Etesami25, M. Khakzad, M. Mohammadi
Najafabadi, M. Naseri, S. Paktinat Mehdiabadi26, F. Rezaei Hosseinabadi, B. Safarzadeh27,
M. Zeinali
University College Dublin, Dublin, Ireland
M. Felcini, M. Grunewald
INFN Sezione di Bari a, Universita di Bari b, Politecnico di Bari c, Bari, Italy
M. Abbresciaa;b, C. Calabriaa;b, C. Caputoa;b, A. Colaleoa, D. Creanzaa;c, L. Cristellaa;b,
N. De Filippisa;c, M. De Palmaa;b, F. Erricoa;b, L. Fiorea, G. Iasellia;c, G. Maggia;c,
M. Maggia, G. Minielloa;b, S. Mya;b, S. Nuzzoa;b, A. Pompilia;b, G. Pugliesea;c,
R. Radognaa;b, A. Ranieria, G. Selvaggia;b, A. Sharmaa, L. Silvestrisa;14, R. Vendittia,
P. Verwilligena
INFN Sezione di Bologna a, Universita di Bologna b, Bologna, Italy
G. Abbiendia, C. Battilana, D. Bonacorsia;b, S. Braibant-Giacomellia;b, L. Brigliadoria;b,
R. Campaninia;b, P. Capiluppia;b,
A. Castroa;b, F.R. Cavalloa,
S.S. Chhibraa;b,
G. Codispotia;b, M. Cu ania;b, G.M. Dallavallea, F. Fabbria, A. Fanfania;b, D. Fasanellaa;b,
P. Giacomellia, L. Guiduccia;b, S. Marcellinia, G. Masettia, F.L. Navarriaa;b, A. Perrottaa,
A.M. Rossia;b, T. Rovellia;b, G.P. Sirolia;b, N. Tosia;b;14
INFN Sezione di Catania a, Universita di Catania b, Catania, Italy
S. Albergoa;b, S. Costaa;b, A. Di Mattiaa, F. Giordanoa;b, R. Potenzaa;b, A. Tricomia;b,
C. Tuvea;b
INFN Sezione di Firenze a, Universita di Firenze b, Firenze, Italy
G. Barbaglia, K. Chatterjeea;b, V. Ciullia;b, C. Civininia, R. D'Alessandroa;b, E. Focardia;b,
P. Lenzia;b, M. Meschinia, S. Paolettia, L. Russoa;28, G. Sguazzonia, D. Stroma,
L. Viliania;b;14
INFN Laboratori Nazionali di Frascati, Frascati, Italy
L. Benussi, S. Bianco, F. Fabbri, D. Piccolo, F. Primavera14
INFN Sezione di Genova a, Universita di Genova b, Genova, Italy
V. Calvellia;b, F. Ferroa, E. Robuttia, S. Tosia;b
INFN Sezione di Milano-Bicocca a, Universita di Milano-Bicocca b, Milano,
T. Tabarelli de Fatisa;b
INFN Sezione di Napoli a, Universita di Napoli 'Federico II' b, Napoli, Italy,
Universita della Basilicata c, Potenza, Italy, Universita G. Marconi d, Roma,
S. Buontempoa, N. Cavalloa;c, S. Di Guidaa;d;14, M. Espositoa;b, F. Fabozzia;c, F. Fiengaa;b,
A.O.M. Iorioa;b, W.A. Khana, G. Lanzaa, L. Listaa, S. Meolaa;d;14, P. Paoluccia;14,
C. Sciaccaa;b, F. Thyssena
Trento c, Trento, Italy
INFN Sezione di Padova a, Universita di Padova b, Padova, Italy, Universita di
P. Azzia;14, N. Bacchettaa, L. Benatoa;b, D. Biselloa;b, A. Bolettia;b, R. Carlina;b, A.
Carvalho Antunes De Oliveiraa;b, P. Checchiaa, M. Dall'Ossoa;b, P. De Castro Manzanoa,
T. Dorigoa, F. Gasparinia;b, U. Gasparinia;b, A. Gozzelinoa, S. Lacapraraa, M. Margonia;b,
A.T. Meneguzzoa;b, M. Passaseoa, M. Pegoraroa, N. Pozzobona;b, P. Ronchesea;b,
R. Rossina;b, F. Simonettoa;b, E. Torassaa, M. Zanettia;b, P. Zottoa;b
INFN Sezione di Pavia a, Universita di Pavia b, Pavia, Italy
A. Braghieria, F. Fallavollitaa;b, A. Magnania;b, P. Montagnaa;b, S.P. Rattia;b, V. Rea,
M. Ressegotti, C. Riccardia;b, P. Salvinia, I. Vaia;b, P. Vituloa;b
INFN Sezione di Perugia a, Universita di Perugia b, Perugia, Italy
L. Alunni Solestizia;b, G.M. Bileia, D. Ciangottinia;b, L. Fanoa;b, P. Laricciaa;b,
R. Leonardia;b, G. Mantovania;b, V. Mariania;b, M. Menichellia, A. Sahaa, A. Santocchiaa;b,
D. Spiga
Pisa c, Pisa, Italy
INFN Sezione di Pisa a, Universita di Pisa b, Scuola Normale Superiore di
K. Androsova, P. Azzurria;14, G. Bagliesia, J. Bernardinia, T. Boccalia, L. Borrello,
R. Castaldia, M.A. Cioccia;b, R. Dell'Orsoa, G. Fedia, A. Giassia, M.T. Grippoa;28,
F. Ligabuea;c, T. Lomtadzea, L. Martinia;b, A. Messineoa;b, F. Pallaa, A. Rizzia;b, A.
SavoyNavarroa;30, P. Spagnoloa, R. Tenchinia, G. Tonellia;b, A. Venturia, P.G. Verdinia
INFN Sezione di Roma a, Sapienza Universita di Roma b, Rome, Italy
L. Baronea;b, F. Cavallaria, M. Cipriania;b, N. Dacia, D. Del Rea;b;14, M. Diemoza,
S. Gellia;b, E. Longoa;b, F. Margarolia;b, B. Marzocchia;b, P. Meridiania, G. Organtinia;b,
R. Paramattia;b, F. Preiatoa;b, S. Rahatloua;b, C. Rovellia, F. Santanastasioa;b
INFN Sezione di Torino a, Universita di Torino b, Torino, Italy, Universita del
Piemonte Orientale c, Novara, Italy
N. Amapanea;b, R. Arcidiaconoa;c;14, S. Argiroa;b, M. Arneodoa;c, N. Bartosika,
R. Bellana;b, C. Biinoa, N. Cartigliaa, F. Cennaa;b, M. Costaa;b, R. Covarellia;b,
A. Deganoa;b, N. Demariaa, B. Kiania;b, C. Mariottia, S. Masellia, E. Migliorea;b,
V. Monacoa;b, E. Monteila;b, M. Montenoa, M.M. Obertinoa;b, L. Pachera;b, N. Pastronea,
M. Pelliccionia, G.L. Pinna Angionia;b, F. Raveraa;b, A. Romeroa;b, M. Ruspaa;c,
R. Sacchia;b, K. Shchelinaa;b, V. Solaa, A. Solanoa;b, A. Staianoa, P. Traczyka;b
INFN Sezione di Trieste a, Universita di Trieste b, Trieste, Italy
S. Belfortea, M. Casarsaa, F. Cossuttia, G. Della Riccaa;b, A. Zanettia
Kyungpook National University, Daegu, Korea
D.H. Kim, G.N. Kim, M.S. Kim, J. Lee, S. Lee, S.W. Lee, Y.D. Oh, S. Sekmen, D.C. Son,
Y.C. Yang
A. Lee
Chonbuk National University, Jeonju, Korea
Chonnam National University, Institute for Universe and Elementary Particles,
Kwangju, Korea
H. Kim, D.H. Moon, G. Oh
Hanyang University, Seoul, Korea
J.A. Brochero Cifuentes, J. Goh, T.J. Kim
Korea University, Seoul, Korea
J. Lim, S.K. Park, Y. Roh
Seoul National University, Seoul, Korea
S. Cho, S. Choi, Y. Go, D. Gyun, S. Ha, B. Hong, Y. Jo, Y. Kim, K. Lee, K.S. Lee, S. Lee,
J. Almond, J. Kim, J.S. Kim, H. Lee, K. Lee, K. Nam, S.B. Oh, B.C. Radburn-Smith,
S.h. Seo, U.K. Yang, H.D. Yoo, G.B. Yu
University of Seoul, Seoul, Korea
M. Choi, H. Kim, J.H. Kim, J.S.H. Lee, I.C. Park, G. Ryu
Sungkyunkwan University, Suwon, Korea
Y. Choi, C. Hwang, J. Lee, I. Yu
Vilnius University, Vilnius, Lithuania
V. Dudenas, A. Juodagalvis, J. Vaitkus
HJEP04(218)6
National Centre for Particle Physics, Universiti Malaya, Kuala Lumpur,
Malaysia
M.N. Yusli, Z. Zolkapli
I. Ahmed, Z.A. Ibrahim, M.A.B. Md Ali31, F. Mohamad Idris32, W.A.T. Wan Abdullah,
Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico
H. Castilla-Valdez, E. De La Cruz-Burelo, I. Heredia-De La Cruz33, R. Lopez-Fernandez,
J. Mejia Guisao, A. Sanchez-Hernandez
Universidad Iberoamericana, Mexico City, Mexico
S. Carrillo Moreno, C. Oropeza Barrera, F. Vazquez Valencia
Benemerita Universidad Autonoma de Puebla, Puebla, Mexico
I. Pedraza, H.A. Salazar Ibarguen, C. Uribe Estrada
Universidad Autonoma de San Luis Potos , San Luis Potos , Mexico
A. Morelos Pineda
University of Auckland, Auckland, New Zealand
HJEP04(218)6
D. Krofcheck
P.H. Butler
M. Waqas
University of Canterbury, Christchurch, New Zealand
National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan
A. Ahmad, M. Ahmad, Q. Hassan, H.R. Hoorani, A. Saddique, M.A. Shah, M. Shoaib,
National Centre for Nuclear Research, Swierk, Poland
H. Bialkowska, M. Bluj, B. Boimska, T. Frueboes, M. Gorski, M. Kazana, K. Nawrocki,
K. Romanowska-Rybinska, M. Szleper, P. Zalewski
Institute of Experimental Physics, Faculty of Physics, University of Warsaw,
Warsaw, Poland
K. Bunkowski, A. Byszuk34, K. Doroba, A. Kalinowski, M. Konecki, J. Krolikowski,
M. Misiura, M. Olszewski, A. Pyskir, M. Walczak
Laboratorio de Instrumentac~ao e F sica Experimental de Part culas, Lisboa,
Portugal
P. Bargassa, C. Beir~ao Da Cruz E Silva, B. Calpas, A. Di Francesco, P. Faccioli,
M. Gallinaro, J. Hollar, N. Leonardo, L. Lloret Iglesias, M.V. Nemallapudi, J. Seixas,
O. Toldaiev, D. Vadruccio, J. Varela
Joint Institute for Nuclear Research, Dubna, Russia
S. Afanasiev, P. Bunin, M. Gavrilenko, I. Golutvin, I. Gorbunov, A. Kamenev, V. Karjavin,
A. Lanev, A. Malakhov, V. Matveev35;36, V. Palichik, V. Perelygin, S. Shmatov, S. Shulha,
N. Skatchkov, V. Smirnov, N. Voytishin, A. Zarubin
Petersburg Nuclear Physics Institute, Gatchina (St. Petersburg), Russia
Y. Ivanov, V. Kim37, E. Kuznetsova38, P. Levchenko, V. Murzin, V. Oreshkin, I. Smirnov,
V. Sulimov, L. Uvarov, S. Vavilov, A. Vorobyev
Institute for Nuclear Research, Moscow, Russia
Yu. Andreev, A. Dermenev, S. Gninenko, N. Golubev, A. Karneyeu, M. Kirsanov,
N. Krasnikov, A. Pashenkov, D. Tlisov, A. Toropin
Institute for Theoretical and Experimental Physics, Moscow, Russia
V. Epshteyn, V. Gavrilov, N. Lychkovskaya, V. Popov, I. Pozdnyakov, G. Safronov,
A. Spiridonov, A. Stepennov, M. Toms, E. Vlasov, A. Zhokin
HJEP04(218)6
Moscow Institute of Physics and Technology, Moscow, Russia
T. Aushev, A. Bylinkin36
National Research Nuclear University 'Moscow Engineering Physics Institute'
(MEPhI), Moscow, Russia
M. Danilov39, P. Parygin, E. Tarkovskii
P.N. Lebedev Physical Institute, Moscow, Russia
V. Andreev, M. Azarkin36, I. Dremin36, M. Kirakosyan, A. Terkulov
Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University,
Moscow, Russia
P. Volkov
A. Baskakov, A. Belyaev, E. Boos, V. Bunichev, M. Dubinin40, L. Dudko, V. Klyukhin,
O. Kodolova, N. Korneeva, I. Lokhtin, I. Miagkov, S. Obraztsov, M. Per lov, V. Savrin,
Novosibirsk State University (NSU), Novosibirsk, Russia
V. Blinov41, Y.Skovpen41, D. Shtol41
State Research Center of Russian Federation, Institute for High Energy
Physics, Protvino, Russia
I. Azhgirey, I. Bayshev, S. Bitioukov, D. Elumakhov, V. Kachanov, A. Kalinin, D.
Konstantinov, V. Krychkine, V. Petrov, R. Ryutin, A. Sobol, S. Troshin, N. Tyurin, A. Uzunian,
A. Volkov
University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear
Sciences, Belgrade, Serbia
P. Adzic42, P. Cirkovic, D. Devetak, M. Dordevic, J. Milosevic, V. Rekovic
Centro de Investigaciones Energeticas Medioambientales y Tecnologicas
(CIEMAT), Madrid, Spain
J. Alcaraz Maestre, M. Barrio Luna, M. Cerrada, N. Colino, B. De La Cruz, A. Delgado
Peris, A. Escalante Del Valle, C. Fernandez Bedoya, J.P. Fernandez Ramos, J. Flix,
M.C. Fouz, P. Garcia-Abia, O. Gonzalez Lopez, S. Goy Lopez, J.M. Hernandez, M.I. Josa,
A. Perez-Calero Yzquierdo, J. Puerta Pelayo, A. Quintario Olmeda, I. Redondo, L. Romero,
M.S. Soares, A. Alvarez Fernandez
Universidad Autonoma de Madrid, Madrid, Spain
J.F. de Troconiz, M. Missiroli, D. Moran
Universidad de Oviedo, Oviedo, Spain
J. Cuevas, C. Erice, J. Fernandez Menendez, I. Gonzalez Caballero, J.R. Gonzalez
Fernandez, E. Palencia Cortezon, S. Sanchez Cruz, I. Suarez Andres, P. Vischia, J.M. Vizan
Garcia
Santander, Spain
Instituto de F sica de Cantabria (IFCA), CSIC-Universidad de Cantabria,
I.J. Cabrillo, A. Calderon, B. Chazin Quero, E. Curras, M. Fernandez, J. Garcia-Ferrero,
G. Gomez, A. Lopez Virto, J. Marco, C. Martinez Rivero, P. Martinez Ruiz del Arbol,
F. Matorras, J. Piedra Gomez, T. Rodrigo, A. Ruiz-Jimeno, L. Scodellaro, N. Trevisani,
I. Vila, R. Vilar Cortabitarte
CERN, European Organization for Nuclear Research, Geneva, Switzerland
D. Abbaneo, E. Au ray, P. Baillon, A.H. Ball, D. Barney, M. Bianco, P. Bloch, A. Bocci,
C. Botta, T. Camporesi, R. Castello, M. Cepeda, G. Cerminara, E. Chapon, Y. Chen,
D. d'Enterria, A. Dabrowski, V. Daponte, A. David, M. De Gruttola, A. De Roeck, E. Di
Marco43, M. Dobson, B. Dorney, T. du Pree, M. Dunser, N. Dupont, A. Elliott-Peisert,
P. Everaerts, G. Franzoni, J. Fulcher, W. Funk, D. Gigi, K. Gill, F. Glege, D. Gulhan,
S. Gundacker, M. Gutho , P. Harris, J. Hegeman, V. Innocente, P. Janot, O. Karacheban17,
J. Kieseler, H. Kirschenmann, V. Knunz, A. Kornmayer14, M.J. Kortelainen, M. Krammer1,
C. Lange, P. Lecoq, C. Lourenco, M.T. Lucchini, L. Malgeri, M. Mannelli, A. Martelli,
F. Meijers, J.A. Merlin, S. Mersi, E. Meschi, P. Milenovic44, F. Moortgat, M. Mulders,
H. Neugebauer, S. Orfanelli, L. Orsini, L. Pape, E. Perez, M. Peruzzi, A. Petrilli, G.
Petrucciani, A. Pfei er, M. Pierini, A. Racz, T. Reis, G. Rolandi45, M. Rovere, H. Sakulin,
C. Schafer, C. Schwick, M. Seidel, M. Selvaggi, A. Sharma, P. Silva, P. Sphicas46,
J. Steggemann, M. Stoye, M. Tosi, D. Treille, A. Triossi, A. Tsirou, V. Veckalns47,
G.I. Veres19, M. Verweij, N. Wardle, W.D. Zeuner
Paul Scherrer Institut, Villigen, Switzerland
W. Bertly, K. Deiters, W. Erdmann, R. Horisberger, Q. Ingram, H.C. Kaestli, D. Kotlinski,
U. Langenegger, T. Rohe, S.A. Wiederkehr
Institute for Particle Physics, ETH Zurich, Zurich, Switzerland
F. Bachmair, L. Bani, P. Berger, L. Bianchini, B. Casal, G. Dissertori, M. Dittmar,
M. Donega, C. Grab, C. Heidegger, D. Hits, J. Hoss, G. Kasieczka, T. Klijnsma, W.
Lustermann, B. Mangano, M. Marionneau, M.T. Meinhard, D. Meister, F. Micheli, P. Musella,
F. Nessi-Tedaldi, F. Pandol , J. Pata, F. Pauss, G. Perrin, L. Perrozzi, M. Quittnat,
M. Rossini, M. Schonenberger, L. Shchutska, A. Starodumov48, V.R. Tavolaro, K. Theo
latos, M.L. Vesterbacka Olsson, R. Wallny, A. Zagozdzinska34, D.H. Zhu
Universitat Zurich, Zurich, Switzerland
T.K. Aarrestad, C. Amsler49, L. Caminada, M.F. Canelli, A. De Cosa, S. Donato,
C. Galloni, A. Hinzmann, T. Hreus, B. Kilminster, J. Ngadiuba, D. Pinna, G. Rauco,
P. Robmann, D. Salerno, C. Seitz, A. Zucchetta
National Central University, Chung-Li, Taiwan
V. Candelise, T.H. Doan, Sh. Jain, R. Khurana, M. Konyushikhin, C.M. Kuo, W. Lin,
A. Pozdnyakov, S.S. Yu
National Taiwan University (NTU), Taipei, Taiwan
Arun Kumar, P. Chang, Y. Chao, K.F. Chen, P.H. Chen, F. Fiori, W.-S. Hou, Y. Hsiung,
Y.F. Liu, R.-S. Lu, M. Min~ano Moya, E. Paganis, A. Psallidas, J.f. Tsai
Chulalongkorn University, Faculty of Science, Department of Physics, Bangkok,
B. Asavapibhop, K. Kovitanggoon, G. Singh, N. Srimanobhas
Cukurova University, Physics Department, Science and Art Faculty, Adana,
A. Adiguzel50, F. Boran, S. Cerci51, S. Damarseckin, Z.S. Demiroglu, C. Dozen, I.
Dumanoglu, S. Girgis, G. Gokbulut, Y. Guler, I. Hos52, E.E. Kangal53, O. Kara, A. Kayis
Topaksu, U. Kiminsu, M. Oglakci, G. Onengut54, K. Ozdemir55, D. Sunar Cerci51,
H. Topakli56, S. Turkcapar, I.S. Zorbakir, C. Zorbilmez
Middle East Technical University, Physics Department, Ankara, Turkey
B. Bilin, G. Karapinar57, K. Ocalan58, M. Yalvac, M. Zeyrek
Bogazici University, Istanbul, Turkey
E. Gulmez, M. Kaya59, O. Kaya60, S. Tekten, E.A. Yetkin61
Istanbul Technical University, Istanbul, Turkey
M.N. Agaras, S. Atay, A. Cakir, K. Cankocak
Institute for Scintillation Materials of National Academy of Science of Ukraine,
Kharkov, Ukraine
B. Grynyov
Kharkov, Ukraine
L. Levchuk, P. Sorokin
National Scienti c Center, Kharkov Institute of Physics and Technology,
University of Bristol, Bristol, United Kingdom
R. Aggleton, F. Ball, L. Beck, J.J. Brooke, D. Burns, E. Clement, D. Cussans, H. Flacher,
J. Goldstein, M. Grimes, G.P. Heath, H.F. Heath, J. Jacob, L. Kreczko, C. Lucas,
D.M. Newbold62, S. Paramesvaran, A. Poll, T. Sakuma, S. Seif El Nasr-storey, D. Smith,
V.J. Smith
Rutherford Appleton Laboratory, Didcot, United Kingdom
K.W. Bell, A. Belyaev63, C. Brew, R.M. Brown, L. Calligaris, D. Cieri, D.J.A. Cockerill,
J.A. Coughlan, K. Harder, S. Harper, E. Olaiya, D. Petyt, C.H. Shepherd-Themistocleous,
A. Thea, I.R. Tomalin, T. Williams
Imperial College, London, United Kingdom
M. Baber, R. Bainbridge, S. Breeze, O. Buchmuller, A. Bundock, S. Casasso, M. Citron,
D. Colling, L. Corpe, P. Dauncey, G. Davies, A. De Wit, M. Della Negra, R. Di Maria,
P. Dunne, A. Elwood, D. Futyan, Y. Haddad, G. Hall, G. Iles, T. James, R. Lane,
C. Laner, L. Lyons, A.-M. Magnan, S. Malik, L. Mastrolorenzo, T. Matsushita, J. Nash,
A. Nikitenko48, J. Pela, M. Pesaresi, D.M. Raymond, A. Richards, A. Rose, E. Scott,
C. Seez, A. Shtipliyski, S. Summers, A. Tapper, K. Uchida, M. Vazquez Acosta64,
T. Virdee14, D. Winterbottom, J. Wright, S.C. Zenz
Brunel University, Uxbridge, United Kingdom
J.E. Cole, P.R. Hobson, A. Khan, P. Kyberd, I.D. Reid, P. Symonds, L. Teodorescu,
Baylor University, Waco, U.S.A.
A. Borzou, K. Call, J. Dittmann, K. Hatakeyama, H. Liu, N. Pastika
Catholic University of America, Washington DC, U.S.A.
R. Bartek, A. Dominguez
The University of Alabama, Tuscaloosa, U.S.A.
A. Buccilli, S.I. Cooper, C. Henderson, P. Rumerio, C. West
Boston University, Boston, U.S.A.
D. Arcaro, A. Avetisyan, T. Bose, D. Gastler, D. Rankin, C. Richardson, J. Rohlf, L. Sulak,
D. Zou
D. Yu
Brown University, Providence, U.S.A.
G. Benelli, D. Cutts, A. Garabedian, J. Hakala, U. Heintz, J.M. Hogan, K.H.M. Kwok,
E. Laird, G. Landsberg, Z. Mao, M. Narain, J. Pazzini, S. Piperov, S. Sagir, R. Syarif,
University of California, Davis, Davis, U.S.A.
R. Band, C. Brainerd, D. Burns, M. Calderon De La Barca Sanchez, M. Chertok, J. Conway,
R. Conway, P.T. Cox, R. Erbacher, C. Flores, G. Funk, M. Gardner, W. Ko, R. Lander,
C. Mclean, M. Mulhearn, D. Pellett, J. Pilot, S. Shalhout, M. Shi, J. Smith, M. Squires,
D. Stolp, K. Tos, M. Tripathi, Z. Wang
University of California, Los Angeles, U.S.A.
M. Bachtis, C. Bravo, R. Cousins, A. Dasgupta, A. Florent, J. Hauser, M. Ignatenko,
N. Mccoll, D. Saltzberg, C. Schnaible, V. Valuev
University of California, Riverside, Riverside, U.S.A.
E. Bouvier, K. Burt, R. Clare, J. Ellison, J.W. Gary, S.M.A. Ghiasi Shirazi, G.
Hanson, J. Heilman, P. Jandir, E. Kennedy, F. Lacroix, O.R. Long, M. Olmedo Negrete,
M.I. Paneva, A. Shrinivas, W. Si, H. Wei, S. Wimpenny, B. R. Yates
University of California, San Diego, La Jolla, U.S.A.
J.G. Branson, G.B. Cerati, S. Cittolin, M. Derdzinski, R. Gerosa, B. Hashemi, A. Holzner,
D. Klein, G. Kole, V. Krutelyov, J. Letts, I. Macneill, M. Masciovecchio, D. Olivito,
S. Padhi, M. Pieri, M. Sani, V. Sharma, S. Simon, M. Tadel, A. Vartak, S. Wasserbaech65,
J. Wood, F. Wurthwein, A. Yagil, G. Zevi Della Porta
University of California, Santa Barbara - Department of Physics, Santa
Barbara, U.S.A.
N. Amin, R. Bhandari, J. Bradmiller-Feld, C. Campagnari, A. Dishaw, V. Dutta, M. Franco
Sevilla, C. George, F. Golf, L. Gouskos, J. Gran, R. Heller, J. Incandela, S.D. Mullin,
A. Ovcharova, H. Qu, J. Richman, D. Stuart, I. Suarez, J. Yoo
California Institute of Technology, Pasadena, U.S.A.
D. Anderson, J. Bendavid, A. Bornheim, J.M. Lawhorn, H.B. Newman, T. Nguyen,
C. Pena, M. Spiropulu, J.R. Vlimant, S. Xie, Z. Zhang, R.Y. Zhu
Carnegie Mellon University, Pittsburgh, U.S.A.
M.B. Andrews, T. Ferguson, T. Mudholkar, M. Paulini, J. Russ, M. Sun, H. Vogel,
I. Vorobiev, M. Weinberg
University of Colorado Boulder, Boulder, U.S.A.
J.P. Cumalat, W.T. Ford, F. Jensen, A. Johnson, M. Krohn, S. Leontsinis, T. Mulholland,
K. Stenson, S.R. Wagner
Cornell University, Ithaca, U.S.A.
J. Alexander, J. Chaves, J. Chu, S. Dittmer, K. Mcdermott, N. Mirman, J.R. Patterson,
A. Rinkevicius, A. Ryd, L. Skinnari, L. So , S.M. Tan, Z. Tao, J. Thom, J. Tucker,
P. Wittich, M. Zientek
Fermi National Accelerator Laboratory, Batavia, U.S.A.
S. Abdullin,
M. Albrow, G. Apollinari, A. Apresyan, A. Apyan, S. Banerjee,
L.A.T. Bauerdick, A. Beretvas, J. Berryhill, P.C. Bhat, G. Bolla, K. Burkett, J.N. Butler,
A. Canepa, H.W.K. Cheung, F. Chlebana, M. Cremonesi, J. Duarte, V.D. Elvira, J.
Freeman, Z. Gecse, E. Gottschalk, L. Gray, D. Green, S. Grunendahl, O. Gutsche, R.M. Harris,
S. Hasegawa, J. Hirschauer, Z. Hu, B. Jayatilaka, S. Jindariani, M. Johnson, U. Joshi,
B. Klima, B. Kreis, S. Lammel, D. Lincoln, R. Lipton, M. Liu, T. Liu, R. Lopes De Sa,
J. Lykken, K. Maeshima, N. Magini, J.M. Marra no, S. Maruyama, D. Mason, P. McBride,
P. Merkel, S. Mrenna, S. Nahn, V. O'Dell, K. Pedro, O. Prokofyev, G. Rakness, L. Ristori,
B. Schneider, E. Sexton-Kennedy, A. Soha, W.J. Spalding, L. Spiegel, S. Stoynev, J. Strait,
N. Strobbe, L. Taylor, S. Tkaczyk, N.V. Tran, L. Uplegger, E.W. Vaandering, C. Vernieri,
M. Verzocchi, R. Vidal, M. Wang, H.A. Weber, A. Whitbeck
University of Florida, Gainesville, U.S.A.
D. Acosta, P. Avery, P. Bortignon, A. Brinkerho , A. Carnes, M. Carver, D. Curry, S. Das,
R.D. Field, I.K. Furic, J. Konigsberg, A. Korytov, K. Kotov, P. Ma, K. Matchev, H. Mei,
G. Mitselmakher, D. Rank, D. Sperka, N. Terentyev, L. Thomas, J. Wang, S. Wang,
J. Yelton
Florida International University, Miami, U.S.A.
Y.R. Joshi, S. Linn, P. Markowitz, G. Martinez, J.L. Rodriguez
Florida State University, Tallahassee, U.S.A.
A. Ackert, T. Adams, A. Askew, S. Hagopian, V. Hagopian, K.F. Johnson, T. Kolberg,
T. Perry, H. Prosper, A. Santra, R. Yohay
Florida Institute of Technology, Melbourne, U.S.A.
M.M. Baarmand, V. Bhopatkar, S. Colafranceschi, M. Hohlmann, D. Noonan, T. Roy,
F. Yumiceva
University of Illinois at Chicago (UIC), Chicago, U.S.A.
M.R. Adams, L. Apanasevich, D. Berry, R.R. Betts, R. Cavanaugh, X. Chen, O.
Evdokimov, C.E. Gerber, D.A. Hangal, D.J. Hofman, K. Jung, J. Kamin, I.D. Sandoval Gonzalez,
M.B. Tonjes, H. Trauger, N. Varelas, H. Wang, Z. Wu, J. Zhang
The University of Iowa, Iowa City, U.S.A.
B. Bilki66, W. Clarida, K. Dilsiz67, S. Durgut, R.P. Gandrajula, M. Haytmyradov,
V. Khristenko, J.-P. Merlo, H. Mermerkaya68, A. Mestvirishvili, A. Moeller, J. Nachtman,
H. Ogul69, Y. Onel, F. Ozok70, A. Penzo, C. Snyder, E. Tiras, J. Wetzel, K. Yi
Johns Hopkins University, Baltimore, U.S.A.
B. Blumenfeld, A. Cocoros, N. Eminizer, D. Fehling, L. Feng, A.V. Gritsan, P. Maksimovic,
J. Roskes, U. Sarica, M. Swartz, M. Xiao, C. You
The University of Kansas, Lawrence, U.S.A.
A. Al-bataineh, P. Baringer, A. Bean, S. Boren, J. Bowen, J. Castle, S. Khalil, A.
Kropivnitskaya, D. Majumder, W. Mcbrayer, M. Murray, C. Royon, S. Sanders, E. Schmitz,
R. Stringer, J.D. Tapia Takaki, Q. Wang
Kansas State University, Manhattan, U.S.A.
A. Ivanov, K. Kaadze, Y. Maravin, A. Mohammadi, L.K. Saini, N. Skhirtladze, S. Toda
Lawrence Livermore National Laboratory, Livermore, U.S.A.
F. Rebassoo, D. Wright
University of Maryland, College Park, U.S.A.
C. Anelli, A. Baden, O. Baron, A. Belloni, B. Calvert, S.C. Eno, C. Ferraioli, N.J. Hadley,
S. Jabeen, G.Y. Jeng, R.G. Kellogg, J. Kunkle, A.C. Mignerey, F. Ricci-Tam, Y.H. Shin,
A. Skuja, S.C. Tonwar
Massachusetts Institute of Technology, Cambridge, U.S.A.
D. Abercrombie, B. Allen, V. Azzolini, R. Barbieri, A. Baty, R. Bi, S. Brandt, W. Busza,
I.A. Cali, M. D'Alfonso, Z. Demiragli, G. Gomez Ceballos, M. Goncharov, D. Hsu,
Y. Iiyama, G.M. Innocenti, M. Klute, D. Kovalskyi, Y.S. Lai, Y.-J. Lee, A. Levin,
P.D. Luckey, B. Maier, A.C. Marini, C. Mcginn, C. Mironov, S. Narayanan, X. Niu, C. Paus,
C. Roland, G. Roland, J. Salfeld-Nebgen, G.S.F. Stephans, K. Tatar, D. Velicanu, J. Wang,
T.W. Wang, B. Wyslouch
University of Minnesota, Minneapolis, U.S.A.
A.C. Benvenuti, R.M. Chatterjee, A. Evans, P. Hansen, S. Kalafut, Y. Kubota, Z. Lesko,
J. Mans, S. Nourbakhsh, N. Ruckstuhl, R. Rusack, J. Turkewitz
University of Mississippi, Oxford, U.S.A.
J.G. Acosta, S. Oliveros
University of Nebraska-Lincoln, Lincoln, U.S.A.
E. Avdeeva, K. Bloom, D.R. Claes, C. Fangmeier, R. Gonzalez Suarez, R. Kamalieddin,
I. Kravchenko, J. Monroy, J.E. Siado, G.R. Snow, B. Stieger
State University of New York at Bu alo, Bu alo, U.S.A.
M. Alyari, J. Dolen, A. Godshalk, C. Harrington, I. Iashvili, D. Nguyen, A. Parker,
S. Rappoccio, B. Roozbahani
Northeastern University, Boston, U.S.A.
G. Alverson, E. Barberis, A. Hortiangtham, A. Massironi, D.M. Morse, D. Nash, T.
Orimoto, R. Teixeira De Lima, D. Trocino, R.-J. Wang, D. Wood
Northwestern University, Evanston, U.S.A.
S. Bhattacharya, O. Charaf, K.A. Hahn, N. Mucia, N. Odell, B. Pollack, M.H. Schmitt,
K. Sung, M. Trovato, M. Velasco
University of Notre Dame, Notre Dame, U.S.A.
N. Dev, M. Hildreth, K. Hurtado Anampa, C. Jessop, D.J. Karmgard, N. Kellams,
K. Lannon, N. Loukas, N. Marinelli, F. Meng, C. Mueller, Y. Musienko35, M. Planer,
A. Reinsvold, R. Ruchti, G. Smith, S. Taroni, M. Wayne, M. Wolf, A. Woodard
The Ohio State University, Columbus, U.S.A.
J. Alimena, L. Antonelli, B. Bylsma, L.S. Durkin, S. Flowers, B. Francis, A. Hart, C. Hill,
W. Ji, B. Liu, W. Luo, D. Puigh, B.L. Winer, H.W. Wulsin
Princeton University, Princeton, U.S.A.
A. Benaglia, S. Cooperstein, O. Driga, P. Elmer, J. Hardenbrook, P. Hebda, D. Lange,
J. Luo, D. Marlow, K. Mei, I. Ojalvo, J. Olsen, C. Palmer, P. Piroue, D. Stickland,
A. Svyatkovskiy, C. Tully
University of Puerto Rico, Mayaguez, U.S.A.
S. Malik, S. Norberg
Purdue University, West Lafayette, U.S.A.
A. Barker, V.E. Barnes, S. Folgueras, L. Gutay, M.K. Jha, M. Jones, A.W. Jung,
A. Khatiwada, D.H. Miller, N. Neumeister, J.F. Schulte, J. Sun, F. Wang, W. Xie
Purdue University Northwest, Hammond, U.S.A.
T. Cheng, N. Parashar, J. Stupak
Rice University, Houston, U.S.A.
A. Adair, B. Akgun, Z. Chen, K.M. Ecklund, F.J.M. Geurts, M. Guilbaud, W. Li,
B. Michlin, M. Northup, B.P. Padley, J. Roberts, J. Rorie, Z. Tu, J. Zabel
University of Rochester, Rochester, U.S.A.
A. Bodek, P. de Barbaro, R. Demina, Y.t. Duh, T. Ferbel, M. Galanti, A. Garcia-Bellido,
J. Han, O. Hindrichs, A. Khukhunaishvili, K.H. Lo, P. Tan, M. Verzetti
The Rockefeller University, New York, U.S.A.
R. Ciesielski, K. Goulianos, C. Mesropian
Rutgers, The State University of New Jersey, Piscataway, U.S.A.
A. Agapitos, J.P. Chou, Y. Gershtein, T.A. Gomez Espinosa, E. Halkiadakis, M. Heindl,
E. Hughes, S. Kaplan, R. Kunnawalkam Elayavalli, S. Kyriacou, A. Lath, R. Montalvo,
K. Nash, M. Osherson, H. Saka, S. Salur, S. Schnetzer, D. She eld, S. Somalwar, R. Stone,
S. Thomas, P. Thomassen, M. Walker
University of Tennessee, Knoxville, U.S.A.
M. Foerster, J. Heideman, G. Riley, K. Rose, S. Spanier, K. Thapa
Texas A&M University, College Station, U.S.A.
O. Bouhali71, A. Castaneda Hernandez71, A. Celik, M. Dalchenko, M. De Mattia, A.
Delgado, S. Dildick, R. Eusebi, J. Gilmore, T. Huang, T. Kamon72, R. Mueller, Y. Pakhotin,
R. Patel, A. Perlo , L. Pernie, D. Rathjens, A. Safonov, A. Tatarinov, K.A. Ulmer
Texas Tech University, Lubbock, U.S.A.
N. Akchurin, J. Damgov, F. De Guio, P.R. Dudero, J. Faulkner, E. Gurpinar, S. Kunori,
K. Lamichhane, S.W. Lee, T. Libeiro, T. Peltola, S. Undleeb, I. Volobouev, Z. Wang
Vanderbilt University, Nashville, U.S.A.
S. Greene, A. Gurrola, R. Janjam, W. Johns, C. Maguire, A. Melo, H. Ni, P. Sheldon,
S. Tuo, J. Velkovska, Q. Xu
University of Virginia, Charlottesville, U.S.A.
sith, X. Sun, Y. Wang, E. Wolfe, F. Xia
Wayne State University, Detroit, U.S.A.
C. Clarke, R. Harr, P.E. Karchin, J. Sturdy, S. Zaleski
M.W. Arenton, P. Barria, B. Cox, R. Hirosky, A. Ledovskoy, H. Li, C. Neu, T.
SinthupraUniversity of Wisconsin - Madison, Madison, WI, U.S.A.
J. Buchanan, C. Caillol, S. Dasu, L. Dodd, S. Duric, B. Gomber, M. Grothe, M. Herndon,
A. Herve, U. Hussain, P. Klabbers, A. Lanaro, A. Levine, K. Long, R. Loveless, G.A. Pierro,
G. Polese, T. Ruggles, A. Savin, N. Smith, W.H. Smith, D. Taylor, N. Woods
y: Deceased
China
1: Also at Vienna University of Technology, Vienna, Austria
2: Also at State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing,
3: Also at Universidade Estadual de Campinas, Campinas, Brazil
4: Also at Universidade Federal de Pelotas, Pelotas, Brazil
5: Also at Universite Libre de Bruxelles, Bruxelles, Belgium
6: Also at Joint Institute for Nuclear Research, Dubna, Russia
7: Also at Helwan University, Cairo, Egypt
8: Now at Zewail City of Science and Technology, Zewail, Egypt
9: Now at Fayoum University, El-Fayoum, Egypt
11: Now at Ain Shams University, Cairo, Egypt
12: Also at Universite de Haute Alsace, Mulhouse, France
13: Also at Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University,
Moscow, Russia
14: Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland
15: Also at RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany
16: Also at University of Hamburg, Hamburg, Germany
17: Also at Brandenburg University of Technology, Cottbus, Germany
18: Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary
19: Also at MTA-ELTE Lendulet CMS Particle and Nuclear Physics Group, Eotvos Lorand
University, Budapest, Hungary
20: Also at Institute of Physics, University of Debrecen, Debrecen, Hungary
21: Also at Indian Institute of Technology Bhubaneswar, Bhubaneswar, India
22: Also at Institute of Physics, Bhubaneswar, India
23: Also at University of Visva-Bharati, Santiniketan, India
24: Also at University of Ruhuna, Matara, Sri Lanka
25: Also at Isfahan University of Technology, Isfahan, Iran
26: Also at Yazd University, Yazd, Iran
27: Also at Plasma Physics Research Center, Science and Research Branch, Islamic Azad
University, Tehran, Iran
28: Also at Universita degli Studi di Siena, Siena, Italy
29: Also at INFN Sezione di Milano-Bicocca; Universita di Milano-Bicocca, Milano, Italy
30: Also at Purdue University, West Lafayette, U.S.A.
31: Also at International Islamic University of Malaysia, Kuala Lumpur, Malaysia
32: Also at Malaysian Nuclear Agency, MOSTI, Kajang, Malaysia
33: Also at Consejo Nacional de Ciencia y Tecnolog a, Mexico city, Mexico
34: Also at Warsaw University of Technology, Institute of Electronic Systems, Warsaw, Poland
35: Also at Institute for Nuclear Research, Moscow, Russia
36: Now at National Research Nuclear University 'Moscow Engineering Physics Institute'
(MEPhI), Moscow, Russia
37: Also at St. Petersburg State Polytechnical University, St. Petersburg, Russia
38: Also at University of Florida, Gainesville, U.S.A.
39: Also at P.N. Lebedev Physical Institute, Moscow, Russia
40: Also at California Institute of Technology, Pasadena, U.S.A.
41: Also at Budker Institute of Nuclear Physics, Novosibirsk, Russia
42: Also at Faculty of Physics, University of Belgrade, Belgrade, Serbia
43: Also at INFN Sezione di Roma; Sapienza Universita di Roma, Rome, Italy
Belgrade, Serbia
45: Also at Scuola Normale e Sezione dell'INFN, Pisa, Italy
46: Also at National and Kapodistrian University of Athens, Athens, Greece
47: Also at Riga Technical University, Riga, Latvia
48: Also at Institute for Theoretical and Experimental Physics, Moscow, Russia
49: Also at Albert Einstein Center for Fundamental Physics, Bern, Switzerland
50: Also at Istanbul University, Faculty of Science, Istanbul, Turkey
51: Also at Adiyaman University, Adiyaman, Turkey
52: Also at Istanbul Aydin University, Istanbul, Turkey
44: Also at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences,
54: Also at Cag University, Mersin, Turkey
55: Also at Piri Reis University, Istanbul, Turkey
56: Also at Gaziosmanpasa University, Tokat, Turkey
57: Also at Izmir Institute of Technology, Izmir, Turkey
58: Also at Necmettin Erbakan University, Konya, Turkey
59: Also at Marmara University, Istanbul, Turkey
60: Also at Kafkas University, Kars, Turkey
61: Also at Istanbul Bilgi University, Istanbul, Turkey
62: Also at Rutherford Appleton Laboratory, Didcot, United Kingdom
63: Also at School of Physics and Astronomy, University of Southampton, Southampton, United
64: Also at Instituto de Astrof sica de Canarias, La Laguna, Spain
65: Also at Utah Valley University, Orem, U.S.A.
66: Also at Beykent University, Istanbul, Turkey
67: Also at Bingol University, Bingol, Turkey
68: Also at Erzincan University, Erzincan, Turkey
69: Also at Sinop University, Sinop, Turkey
70: Also at Mimar Sinan University, Istanbul, Istanbul, Turkey
71: Also at Texas A&M University at Qatar, Doha, Qatar
72: Also at Kyungpook National University, Daegu, Korea
q 2000 p
MG5 P8[MLM] MG5 P8[FXFX] MG5 P8[MLM] MG5 P8[FXFX] MG5 P8[MLM] MG5 P8[FXFX] MG5 P8[MLM] MG5 P8[FXFX] MG5 P8[MLM] MG5 P8[FXFX] MG5 P8[MLM] MG5 P8 [FXFX] t
σ t MG5 P8[MLM] MG5 P8[FXFX] MG5 P8[MLM] MG5 P8[FXFX] MG5 P8[MLM] MG5 P8[FXFX] MG5 P8[MLM] MG5 P8[FXFX] MG5 P8[MLM] MG5 P8 [FXFX] [29] M. Bahr et al., HERWIG++ physics and manual , Eur. Phys. J. C 58 ( 2008 ) 639 [33] S. Frixione , E. Laenen, P. Motylinski , B.R. Webber and C.D. White , Single-top [49] Particle Data Group collaboration, C. Patrignani et al., Review of particle physics , Chin. [50] L. Sonnenschein , Analytical solution of tt dilepton equations , Phys. Rev. D 73 ( 2006 ) 054015