Search for a heavy right-handed W boson and a heavy neutrino in events with two same-flavor leptons and two jets at \( \sqrt{s}=13 \) TeV

Journal of High Energy Physics, May 2018

Abstract A search for a heavy right-handed W boson (WR) decaying to a heavy right-handed neutrino and a charged lepton in events with two same-flavor leptons (e or μ) and two jets, is presented. The analysis is based on proton-proton collision data, collected by the CMS Collaboration at the LHC in 2016 and corresponding to an integrated luminosity of 35.9 fb−1. No significant excess above the standard model expectation is seen in the invariant mass distribution of the dilepton plus dijet system. Assuming that couplings are identical to those of the standard model, and that only one heavy neutrino flavor NR contributes significantly to the WR decay width, the region in the two-dimensional \( \left({m}_{{\mathrm{W}}_{\mathrm{R}}},{m}_{{\mathrm{N}}_{\mathrm{R}}}\right) \) mass plane excluded at 95% confidence level extends to approximately \( {m}_{{\mathrm{W}}_{\mathrm{R}}}=4.4 \) TeV and covers a large range of right-handed neutrino masses below the WR boson mass. This analysis provides the most stringent limits on the WR mass to date. Open image in new window

A PDF file should load here. If you do not see its contents the file may be temporarily unavailable at the journal website or you do not have a PDF plug-in installed and enabled in your browser.

Alternatively, you can download the file locally and open with any standalone PDF reader:

https://link.springer.com/content/pdf/10.1007%2FJHEP05%282018%29148.pdf

Search for a heavy right-handed W boson and a heavy neutrino in events with two same-flavor leptons and two jets at \( \sqrt{s}=13 \) TeV

Received: March boson and a and two jets at s = 13 TeV p heavy neutrino in events with two same- avor leptons A search for a heavy right-handed W boson (WR) decaying to a heavy righthanded neutrino and a charged lepton in events with two same- avor leptons (e or ) and two jets, is presented. The analysis is based on proton-proton collision data, collected by the CMS Collaboration at the LHC in 2016 and corresponding to an integrated luminosity of 35.9 fb 1 . No signi cant excess above the standard model expectation is seen in the invariant mass distribution of the dilepton plus dijet system. Assuming that couplings are identical to those of the standard model, and that only one heavy neutrino avor NR contributes signi cantly to the WR decay width, the region in the two-dimensional (mWR, mNR) mass plane excluded at 95% con dence level extends to approximately mWR = 4:4 TeV and covers a large range of right-handed neutrino masses below the WR boson mass. This analysis provides the most stringent limits on the WR mass to date. Beyond Standard Model; Hadron-Hadron scattering (experiments) - The CMS collaboration 1 Introduction 2 The CMS detector 3 Trigger, particle reconstruction, and event selection 4 Signal model 5 Background estimation 5.1 Drell-Yan background 5.2 tt background 6 Results 7 Summary The CMS collaboration 1 Introduction a heavy right-handed gauge boson WR, in events with two same- avor leptons (e or ) and two jets. The study was conducted by the CMS Collaboration at the CERN LHC, using proton-proton collision data corresponding to an integrated luminosity of 35.9 fb 1 recorded during the 2016 data taking period. The right-handed bosons are assumed to interact with the SM particles with a coupling strength gR. This is a free parameter in most LR models, but we assume a strict LR symmetry in our search so that the coupling constant gR is the same as the SM coupling constant gL. We also assume that the right-handed quark mixing matrix is the same as the Cabibbo-Kobayashi-Maskawa matrix. In addition to the gauge bosons, LR models usually include heavy right-handed neutrinos (NR) [5, 6]. The existence of these heavy neutrinos can explain the very small masses of the SM neutrinos as a consequence of the see-saw mechanism [7{9]. In this search, we consider the case in which the WR boson decays to a rst- or second-generation charged lepton and a heavy neutrino of the same lepton avor. The { 1 { heavy neutrino further decays to another charged lepton of the same avor and a virtual WR. The virtual WR decays to two light quarks, producing the decay chain WR ! `NR ! ``WR ! ``qq0; ` = e or : The quarks hadronize into jets that can be observed by the CMS detector. The lepton avor is conserved, and there is no charge requirement on the leptons, which can be opposite-sign or same-sign. The SM processes that have the same nal state of two same- avor leptons and two jets include Drell-Yan production of lepton pairs with additional jets (DY+jets), tt production, tW from t-channel single top quark production, and diboson production is the invariant mass m``jj constructed from the two leptons and two jets with the largest transverse momenta. We search for an excess of events above the SM prediction for di erent WR mass hypotheses in windows of m``jj. A search for WR bosons that was performed by the CMS Collaboration at a centerof-mass energy of p s = 8 TeV excluded WR masses up to approximately 3 TeV at 95% con dence level (CL) [10]. An excess with a local signi cance of 2.8 was observed in that search in the electron channel at meejj 2:1 TeV. The excess did not appear to be consistent with signal events from the LR symmetric theory. The search presented in this paper extends this previous search using data collected at p s = 13 TeV during 2016. It does not overlap with other heavy neutrino searches previously carried out by the CMS Collaboration [11{13]. The ATLAS Collaboration has also carried out similar searches [14{16]. 2 The CMS detector The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal diameter, providing a magnetic eld of 3.8 T. Within the solenoid volume are a silicon pixel and strip tracker, a lead tungstate crystal electromagnetic calorimeter (ECAL), and a brass and scintillator hadron calorimeter (HCAL), each composed of a barrel and two endcap sections. Forward calorimeters extend the pseudorapidity ( ) coverage provided by the barrel and endcap detectors. Electrons are measured in the ECAL, while drift tubes, cathode strip chambers, and resistive-plate chambers embedded in the steel uxreturn yoke outside the solenoid are used in the identi cation of muons. A more detailed description of the CMS detector, together with a de nition of the coordinate system used and the relevant kinematic variables, can be found in ref. [17]. 3 Trigger, particle reconstruction, and event selection Events of interest are selected online using a two-tiered trigger system [18]. The rst level is composed of custom hardware processors and uses information from the calorimeters and muon detectors to select events at a rate of around 100 kHz. The second level consists of a farm of processors running a version of the full event reconstruction software optimized for fast processing, and reduces the event rate to less than 1 kHz before data storage. { 2 { The leptons in the nal state carry a large fraction of the rest energy of the WR. Thus, a trigger with a high momentum requirement on the lepton is highly e cient for our signal. For events with electrons, we use an unprescaled double-electron trigger. This trigger requires a minimum transverse momentum (pT) of 33 GeV and an ECAL energy deposit with a pixel hit on an associated track. For the muon channel, and for an auxiliary measurement that is used to estimate the tt background, we use unprescaled single-muon triggers that have no isolation requirement and a pT > 50 GeV requirement applied to the muon. Global event reconstruction is performed using the particle- ow algorithm [19], which reconstructs and identi es each individual particle with an optimized combination of all subdetector information. At least one reconstructed vertex is required. For events with multiple collision vertices from additional collisions in the same or adjacent bunch crossings (pileup interactions), the reconstructed vertex with the largest value of summed p2T in the event, where the sum extends over all charged tracks associated with the vertex, is taken to be the primary pp interaction vertex (PV). Electron candidates are identi ed by the association of a charged-particle track from the PV, with energy deposits clusters (superclusters) in the ECAL. The association takes into account energy deposits both from the electron and from bremsstrahlung photons produced during its passage through the inner detector. The electron momentum is estimated by combining the energy measurement in the ECAL with the momentum measurement in the tracker. The experimental mass resolution for barrel-barrel (barrel-endcap) dielectron pairs with a mass of 1 TeV is 1.0 (1.5)% [20]. To correct for observed discrepancies in energy scale and resolution between data and simulation, the measured electron energy is adjusted by a multiplicative factor that depends on and R9, where R9 is the ratio of the energy in a 3 3 matrix of ECAL crystals, centered on the crystal with the largest energy, to the full energy collected by a supercluster. In addition, the electron energy in simulated events is smeared by 1{3% using a Gaussian expression that varies as a function of and R9 [20]. Di erences in electron identi cation (ID) e ciency between data and simulation were taken into account by applying a scale factor (SF) of 0:972 0:006 (stat+syst) in the barrel and 0:983 0:007 (stat+syst) in the endcaps. Muons are reconstructed from tracker and muon chamber information. Each muon is required to have at least one hit in the pixel detector, at least six tracker layer hits, and segments in two or more muon detector stations. Muons are measured in the range j j < 2:4. The pT resolution in the barrel is better than 10% for muons with pT up to 1 TeV [21]. The muon momentum resolution in data is well described in simulated events, with its uncertainty provided by a smearing of 1% in the barrel and 2% in the endcaps. The muon curvature distributions in data and simulation are compared for di erent ranges of and azimuthal angle ( , in radians), resulting in the assignment of a momentum scale uncertainty of 3% in the barrel and up to 9% in the endcaps. To account for di erences in the reconstruction and identi cation e ciencies between data and simulation, -dependent SFs in the range 0.95{0.99 are applied to simulated events [21]. Systematic uncertainties related to the dependence of the SFs on momentum are neglected, since they have an impact on the results of less than 1%. { 3 { Charged hadrons are identi ed by matching tracks to one or more calorimeter clusters, and by the absence of signal in the muon detectors. The energies of charged hadrons are determined from combinations of the track momenta and the corresponding ECAL and HCAL energies, corrected for zero-suppression e ects and for the response function of the calorimeters to hadronic showers. Neutral hadrons are identi ed as ECAL and HCAL energy clusters that are not matched to charged particle trajectories. The energies of neutral hadrons are obtained from the corresponding corrected ECAL and HCAL energies. For each event, hadronic jets are clustered from reconstructed particles with the antikT algorithm, operated with a size parameter R of 0.4, where R 23]. Charged hadrons that originate from pileup interactions are removed from the list of reconstructed particles using the charged-hadron pileup subtraction algorithm [19]. The contributions of neutral particles that originate from pileup interactions to the calorimeter energies are removed by applying a residual average area-based correction [24]. The jet momentum is de ned as the vector sum of all particle momenta associated with the jet, and is found to be within 5 to 10% of the true momentum in simulated events over the whole pT spectrum and detector acceptance. Jet energy corrections are derived from the simulation, and are con rmed with in-situ measurements of the energy balance in dijet, multijet, photon+jet, and leptonically decaying Z+jet events [25]. Jet identi cation algorithms [25] also remove contributions to jets from calorimeter noise and beam halo. To reconstruct WR candidates, we select the two leptons with the largest pT and the two jets with the largest pT. The leading (subleading) leptons are required to have pT > 60 (53) GeV and to be within the detector acceptance (j j < 2:4). Electrons are rejected if the supercluster lies in the range 1:444 < j j < 1:566, which corresponds to the transition region between the barrel and endcap sections of the ECAL, where the performance is degraded. To suppress muons originating from hadron decays or pion punch-through in jets, we remove muons for which the sum of the pT of additional tracks that originate from the PV and that are inside a cone of R < 0:3 around the muon is more than 10% of the muon pT. We also require electrons to be isolated, i.e., the sum of the pT of all tracks inside a cone of R < 0:3 centered on the electron candidate, not associated with the electron and originating from the PV must be below 5 GeV. We use dedicated identi cation algorithms, optimized for the selection of high-momentum leptons [20, 21]. The two jet candidates must each have pT > 40 GeV and be within j j < 2:4. To avoid having reconstructed leptons overlap jets, we impose a R > 0:4 requirement between all jets and leptons. p ( )2 + ( )2 [22, tribution of the number of pileup events is matched to that observed in the data. For estimating the acceptance and e ciency for detecting WR bosons, simulated signal samples of eejj and jj nal states are generated assuming mNR = 1=2mWR , using the pythia 8.212 program [ 27 ] with the NNPDF2.3 [28] parton distribution functions (PDFs). Simulated signal samples with mNR 6= 1=2mWR , needed to estimate the 2D limits described in section 6, are also generated using pythia 8.212. We focus our search on a region of phase-space where the signal is expected to appear. This signal region applies to events with two leptons with the same avor and two jets. The invariant mass of the dilepton system must be above 200 GeV, to avoid contamination from resonant Z boson production. The m``jj must be greater than 600 GeV to ensure that all the kinematic requirements on the candidates are fully e cient. There is no charge requirement on the leptons, to ensure sensitivity to a wider class of models. Using the selection requirements described above, the product of the acceptance and e ciency for WR decays to the ``jj nal state, increases from 30% at mWR = 1000 GeV to 57% for mWR > 3000 GeV in the electron channel, and similarly from 40 to 75% in the muon channel. For both channels, the signal e ciency reaches a plateau at mWR = 3000 GeV. The e ciency for electron events is lower than the muon event e ciency because of differences between the selection requirements, and because of the omission of the transition regions between the ECAL barrel and endcaps in the case of electrons. 5 Background estimation Standard model processes that produce events with the same nal-state particles as the signal model include DY production of lepton pairs with additional jets in the nal state, and tt and diboson production. The DY+jets and tt production are irreducible background processes that comprise most of the background events in the signal region. The contribution from diboson backgrounds is suppressed by the dilepton mass requirement (m`` > 200 GeV). We also consider backgrounds for which candidate misidenti cation leads to events with two leptons and two jets in the nal state. These backgrounds include W boson production with additional jets, t-channel single top quark events with additional jets, and QCD multijet events. These reducible backgrounds do not signi cantly contaminate our signal region. The diboson backgrounds constitute 1.5% of the total background in the signal region, the W+jets 0.5%, the single top quark events 5%, and the QCD events 0.1%. The MC samples used to estimate the background processes are simulated with several MC event generators. The DY+jets and the tt samples are generated with MadGraph5 amc@nlo 2.3.3 [29] at next-to-leading order (NLO) using the NLO NNPDF3.0 [30] PDF set. Diboson (WW, WZ, and ZZ) samples are generated at leading order (LO) using pythia 8.212 along with the LO NNPDF2.3 [28] PDFs, while W+jets events are generated with MadGraph5 amc@nlo 2.3.3 [29] at leading order (LO) and single top quark events are produced in the tW channel with powheg v1.0 [31{34]. The more precise NLO calculations are used to normalize the SM simulated samples of dibo{ 5 { son, W+jets and single top quark events to NLO accuracy. The NNPDF3.0 PDFs are used for samples generated at NLO. For all samples, pythia 8.212 is used for parton showering, fragmentation and hadronization with the underlying event tune cuetp8m1 [35]. The DY+jets samples have one parton at the matrix element level, and additional parton showering is modeled in pythia. The potential double counting of partons generated using pythia with those using MadGraph5 amc@nlo is minimized using the MLM [36] (FXFX [37]) matching scheme in the LO (NLO) samples. We de ne di erent regions of phase-space (control regions) to estimate the contributions of the di erent SM backgrounds. To study the background contribution from DY+jets events we use a sample de ned by the presence of two same- avor, opposite-charge electrons or muons and two jets. The invariant mass of the dilepton system must satisfy m`` < 200 GeV. We call this the \low dilepton mass control region". The \ avor control region", used to study the tt background contribution, corresponds to an event sample composed of one electron, one muon, and two jets. For this region the invariant mass of the dilepton system must satisfy m`` > 200 GeV, while the m``jj is required to be above 600 GeV. 5.1 Drell-Yan background Monte Carlo simulation is used to estimate the background from high mass DY lepton pair production in association with additional jets, since no high purity control region has been identi ed having the same kinematic characteristics as the signal region. The normalization of DY+jets background in simulation is adjusted to match the event counts in data using a SF calculated as the ratio of data and simulation events under the Z resonance in the range 80 < m`` < 100 GeV. This SF corrects for residual mismodeling between data and simulation, and includes the signal region requirements on the jets. The measured SF is 1:07 0:01 (stat) in both electron and muon channels. We compare between data and MC all the kinematic distributions of the low dilepton mass control region for the ee and channels, respectively. The agreement in this control region is especially important since we derive the estimate for the shape of the DY+jets background directly from simulation. The distributions of some kinematic quantities in the low dilepton mass control region with the SF already applied are shown in gure 1 for both electron and muon channels. In these plots, all expected SM backgrounds, except for DY+jets and tt, are labelled as Other backgrounds. Good agreement is observed in the shapes of the kinematic distributions in both cases. To verify that the SF measured for DY+jets below the Z boson peak is valid also at higher dilepton masses, we use a dedicated control region, referred to as the \low m``jj control region", which is de ned by the signal region selections, except for an inverted m``jj < 600 GeV requirement. In this control region, we check for agreement between data and simulation in events with high dilepton mass. The m``jj distributions with the DY SF applied are shown in gure 2. 5.2 tt background The tt background contribution is estimated directly from data in the avor control region de ned above, which has the same kinematic characteristics as the tt events in the signal { 6 { CMS s t ve103 E 102 10 1 Data 10−1 10−2 s t e 1vE03 102 10 1 .2.5 in the ratio plots represent combined statistical uncertainties of data and simulation. region. For this estimate, we use the events in the avor control region, assuming that there is no contamination from signal events. This assumption, which corresponds to an imposition of the conservation of individual lepton avor on our signal models, is valid since, at leading order, the decay of a WR boson cannot yield events with an e jj nal state. To calculate the number of events from tt production in the eejj and the jj signal regions, we use simulated tt events to determine transfer factors R``=e (`` = ee or ) between the e jj control region and the signal region. These factors are evaluated from the ratio of the number of simulated tt events in the distributions of meejj or m jj in the signal region to the number of events in the distribution of me jj in the avor control region. The { 7 { s t Data tt s t combined statistical uncertainties of data and simulation. Transfer factor Stat. uncertainty Syst. uncertainty the number of tt events in the eejj and jj signal regions. number of events in the signal region is then given by: Ntt(signal region) = Ntt( avor control region) R``=e : (5.1) Using the transfer factor, we can account for the di erence in the e ciency and acceptance between electrons and muons in these nal states. The values of the transfer factors obtained are given in table 1. The R``=e as a function of the m``jj distribution is t to a constant. A systematic uncertainty is assigned by tting the transfer factor to a linear function and taking the di erence between the values of this function at the high and low m``jj. Figure 3 shows a comparison between simulated events and data for several kinematic variables in the avor control region. The tt background contribution in the signal region is estimated without the direct use of simulated events. However, the agreement between simulation and data in the avor control region suggests that other modeling using simulation, such as the signal acceptance, is reliable. 6 Results The strategy followed in this analysis is to search for deviations from the shape of the m``jj distribution expected in the standard model. This distribution extends over a range of { 8 { Data tt Data tt e G 5104 7 1 / 10−1 10−2 s t n e v represent combined statistical uncertainties of data and simulation. several TeV. While the LR symmetric models motivate the choice of the ``jj nal state, we do not impose requirements on the signal shape speci c to these models, in order to maintain sensitivity to other models. The strategy to search for an excess of events in a wide mass range is e ective in analyzing the data without exploiting other characteristics of the benchmark signal model and reduces the e ect of the uncertainties in the shapes of the backgrounds, especially in the high-m``jj region. The expected number of signal and background events is estimated by counting the events falling in a particular m``jj window. The upper and lower limits of the mass window are chosen as a function of mWR to obtain the most stringent expected cross section upper limits. Optimizing with respect to signal signi cance instead results in comparable mass windows. The width of the mass window for the electron nal state varies from 130 GeV at low masses (mWR ' 800 GeV) to 3100 GeV at high { 9 { masses (mWR ' 6000 GeV). For muons, the mass window varies more, and becomes as large as 3800 GeV. The upper and lower bounds are tted as functions of mWR to third degree polynomials to reduce the e ect of statistical uctuations in the optimization procedure. The probability of the observed number of events being produced by a combination of background and signal with a cross section is calculated using a Bayesian approach with at signal prior and a t model with nuisance parameters introduced to address the uncertainties, with log-normal priors. The exclusion limit on the cross section is de ned as the upper bound of the one-sided 95% credibility interval determined from the posterior likelihood distribution for the signal cross section. This procedure is repeated for each mass hypothesis. In order to take into account the statistical and systematic uncertainties, pseudoexperiments are performed, varying the expected number of events from signal and background according to the uncertainties as described below. The median of the distribution of the excluded cross section produced by pseudo-experiments and the intervals containing 68 and 95% of the pseudo-experiments are then quoted in the expected limits and their uncertainties. The sources of systematic uncertainty considered in this analysis are the uncertainty in the integrated luminosity determination [38], the normalization uncertainty in the tt background, the uncertainties due to proton PDFs, and factorization and renormalization scales for the DY+jets background and the signal, and the systematic e ects related to candidate reconstruction. This last set of uncertainties, a ecting the shape of the m``jj distribution, include uncertainties in the jet and lepton energy scales and resolutions, and in the lepton reconstruction, trigger, isolation, and identi cation SFs. In order to propagate the uncertainties in candidate reconstruction, a large number of pseudo-experiments are performed, varying all the uncertainty sources at the same time in an uncorrelated fashion, each according to a Gaussian distribution with mean equal to the nominal value and width equal to the uncertainty of the single source. The variations are performed before the event selection, so each pseudo-experiment is processed using the full analysis chain. The expected number of events for signal and background in a mass window is evaluated for each pseudo-experiment. The values used to extract the limit are given by the mean of the pseudo-experiment distribution, and their standard deviation is the propagated uncertainty. The uncertainties in the candidate reconstruction are then implemented as nuisance parameters with log-normal priors in the limit evaluation. The e ects of these uncertainties on the signal and background yields are listed in table 2. The uncertainty in the integrated luminosity a ects only the normalization of the m``jj distributions, as does the uncertainty in the tt extrapolation SF given by the sum in quadrature of its statistical and systematic uncertainties, evaluated as described in section 5. The uncertainties in the estimation of the DY+jets background are implemented as a function of m``jj following the PDF4LHC prescription [39], and a ect both shape and normalization of the m``jj distributions. Table 3 lists the range of values of these uncertainties, which are included in the evaluation of the limits as nuisance parameters with log-normal priors. Uncertainty Jet energy resolution Jet energy scale Electron energy resolution Electron energy scale Electron reco/trigger/ID Muon energy resolution Muon energy scale Muon trigger/ID/iso resolutions on the signal and background yields. The Signal column shows the range of uncertainties computed at each of the WR mass points. The Background column indicates the range of the uncertainties for the backgrounds. Uncertainty tt extrapolation ee/e SF tt extrapolation /e SF DY ee PDF DY ee renormalization/factorization DY DY PDF renormalization/factorization Integrated luminosity Magnitude (%) 17 (stat+syst) 20 (stat+syst) 15{70 (syst) 5.0{40 (syst) 10{70 (syst) 10{50 (syst) 2.5 (stat+syst) in the tt SFs a ect the tt background, the uncertainties in the DY PDF and the DY factorization and renormalization scales a ect the DY+jets background, and the uncertainty in the integrated luminosity a ects both signal and backgrounds. Concerning uncertainties in the signal arising from the PDF and scale uncertainties, only the e ect on the WR signal acceptance is considered in the expected limit calculation. The e ect is implemented as a function of m``jj as for the DY+jets background. All of the uncertainties that a ect the shape of the m``jj distribution also a ect the number of events in speci c mass ranges and e ectively become normalization uncertainties. To include the statistical uncertainties for each process in the evaluation of the limits, Gamma distributions are used [40]. In the limit estimation, pseudo-experiments are generated based on the expected number of events, sampled according to a Gamma distribution and multiplied by the log-normal distributions of the systematics uncertainties. In table 4, the expected number of events, including the statistical and systematic uncertainties, for the WR signal, the DY+jets and tt background events, and the total of additional smaller background sources are reported, together with the observed number of HJEP05(218)4 2200 [1960{2810] as the observed number of events in di erent WR mass windows. All uncertainties are included in the expected number of events. In each table cell, the entry is of the form (mean stat syst). channel. The uncertainty bands on the simulated background histograms include only statistical uncertainties. The uncertainty bars in the ratio plots represent combined statistical uncertainties of data and simulation. The gray error band around unity represents the systematic uncertainty on the simulation. events, for several representative WR mass points. The signal normalization is obtained for the assumptions mNR = 1=2mWR and gR = gL. In gure 4, we present the observed m``jj distribution in the signal region and compare it to the expected backgrounds and the signal shape for mWR = 4 TeV. No signi cant deviations are seen in the data with respect to expectation. Expected and observed exclusion limits on the signal cross section at 95% CL are shown in gure 5, taking into account all the systematic and statistical uncertainties described in this section. For the WR model, with mNR = 1=2mWR , the observed lower limit at 95% CL on the mass of the right-handed W boson is 4.4 TeV for both channels, while the expected exclusion limit is 4.4 TeV for the electron channel and 4.5 TeV for the muon channel, giving n i b /104 s t e v103 E 102 10 1 10−1 10−2 95% CL upper limit Theory (gR= gL) Observed Median expected 68% expected 95% expected ) b f ( CMS 95% CL upper limit Theory (gR= gL) branching fraction B(WR ! ``jj) for the electron channel on the left and for the muon channel on the right. The inner (green) band and the outer (yellow) band indicate the expected 68% and 95% CL exclusion regions. an improvement of 1.4 TeV from the previous analysis at 8 TeV. The most signi cant excess, of at meejj 1.5 , is observed at m``jj ' 3:4 TeV in the electron channel. A 2.8 excess seen 2:1 TeV with the 8 TeV analysis is thus not con rmed by the present data. The lower edge of the 95% CL band disappears at high masses because of the small number of events in that region. Assuming that only one heavy neutrino avor NR contributes significantly to the WR decay width, the region in the two-dimensional (mWR , mNR ) mass plane is analyzed, covering a large range of neutrino masses below the WR boson mass. The WR cross section limits obtained for mNR = 1=2mWR are scaled to this 2D plane by applying an mWR - and mNR -dependent SF to the cross section limit. This SF is calculated using WR signal events at the generator level that pass the signal selection, and accounts for the change in the WR acceptance and e ciency as mNR changes for xed mWR . The expected and observed upper limits on the cross section for di erent WR and NR mass hypotheses are shown in gure 6. The 2D exclusion limits are less stringent in the region mNR . 1=8mWR , where the selection e ciency in generator level events is lower than in fully reconstructed events. 7 Summary A search for a right-handed analogue of the standard model W boson in the decay channel of two leptons and two jets has been presented. The analysis is based on proton-proton collision data collected at p s = 13 TeV by the CMS experiment at the LHC in 2016, corresponding to an integrated luminosity of 35.9 fb 1 . No signi cant excess over the standard model background expectations is observed in the invariant mass distribution of the dilepton plus dijet system. Thus the 2.8 excess previously observed in data recorded by CMS at 8 TeV is not con rmed. Assuming that couplings are identical to those of the standard model, a region in the two-dimensional plane (mWR , mNR ) covering a large 35.9 fb-1(13 TeV) electron channel on the left and for the muon channel on the right. The expected and observed exclusions are shown as the dotted (blue) curve and the solid (red) curve, respectively. The thindotted (blue) curves indicate the region in (mWR, mNR) parameter space that is expected to be excluded at 68% CL in the case that no signal is present in the data. range of right-handed neutrino masses is excluded at 95% con dence level. A WR boson decaying into a right-handed heavy neutrino with a mass mNR = 1=2mWR is excluded at 95% con dence level up to a mass of 4.4 TeV, providing the most stringent limit to date. Acknowledgments We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative sta s at CERN and at other CMS institutes for their contributions to the success of the CMS e ort. In addition, we gratefully acknowledge the computing centers and personnel of the Worldwide LHC Computing Grid for delivering so e ectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMWFW and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES and CSF (Croatia); RPF (Cyprus); SENESCYT (Ecuador); MoER, ERC IUT, and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); NKFIA (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); MSIP and NRF (Republic of Korea); LAS (Lithuania); MOE and UM (Malaysia); BUAP, CINVESTAV, CONACYT, LNS, SEP, and UASLP-FAI (Mexico); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS and RFBR (Russia); MESTD (Serbia); SEIDI, CPAN, PCTI and FEDER (Spain); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter, IPST, STAR, and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU and SFFR (Ukraine); STFC (United Kingdom); DOE and NSF (U.S.A.). Individuals have received support from the Marie-Curie programme and the European Leventis Foundation; the A. P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy O ce; the Fonds pour la Formation a la Recherche dans l'Industrie et dans l'Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the F.R.S.-FNRS and FWO (Belgium) under the \Excellence of Science - EOS" - be.h project n. 30820817; the Ministry of Education, Youth and Sports (MEYS) of the Czech Republic; the Lendulet (\Momentum") Programme and the Janos Bolyai Research Scholarship of the Hungarian Academy of Sciences, the New National Excellence Program UNKP, the NKFIA research grants 123842, 123959, 124845, 124850 and 125105 (Hungary); the Council of Science and Industrial Research, India; the HOMING PLUS programme of the Foundation for Polish Science, co nanced from European Union, Regional Development Fund, the Mobility Plus programme of the Ministry of Science and Higher Education, the National Science Center (Poland), contracts Harmonia 2014/14/M/ST2/00428, Opus 2014/13/B/ST2/02543, 2014/15/B/ST2/03998, and 2015/19/B/ST2/02861, Sonata-bis 2012/07/E/ST2/01406; the National Priorities Research Program by Qatar National Research Fund; the Programa Estatal de Fomento de la Investigacion Cient ca y Tecnica de Excelencia Mar a de Maeztu, grant MDM-2015-0509 and the Programa Severo Ochoa del Principado de Asturias; the Thalis and Aristeia programmes co nanced by EU-ESF and the Greek NSRF; the Rachadapisek Sompot Fund for Postdoctoral Fellowship, Chulalongkorn University and the Chulalongkorn Academic into Its 2nd Century Project Advancement Project (Thailand); the Welch Foundation, contract C-1845; and the Weston Havens Foundation (U.S.A.). Open Access. This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited. [Erratum ibid. D 11 (1975) 703] [INSPIRE]. parity, Phys. Rev. D 12 (1975) 1502 [INSPIRE]. [3] G. Senjanovic and R.N. Mohapatra, Exact left-right symmetry and spontaneous violation of [4] W.-Y. Keung and G. Senjanovic, Majorana neutrinos and the production of the right-handed charged gauge boson, Phys. Rev. Lett. 50 (1983) 1427 [INSPIRE]. [5] P. Adhya, D.R. Chaudhuri and A. Raychaudhuri, Decay and decoupling of heavy right-handed Majorana neutrinos in the L-R model, Eur. Phys. J. C 19 (2001) 183 [hep-ph/0006260] [INSPIRE]. [6] P.S.B. Dev, R.N. Mohapatra and Y. Zhang, Heavy right-handed neutrino dark matter in left-right models, Mod. Phys. Lett. A 32 (2017) 1740007 [arXiv:1610.05738] [INSPIRE]. proton-proton collisions at p Supergravity, P.V. Nieuwenhuizen and D.Z. Freedman eds., Elsevier, The Netherlands, (1979), pg. 315 [Conf. Proc. C 790927 (1979) 315] [arXiv:1306.4669] [INSPIRE]. [10] CMS collaboration, Search for heavy neutrinos and W bosons with right-handed couplings in [11] CMS collaboration, Search for heavy neutrinos or third-generation leptoquarks in nal states with two hadronically decaying leptons and two jets in proton-proton collisions at s = 13 TeV, JHEP 03 (2017) 077 [arXiv:1612.01190] [INSPIRE]. [12] CMS collaboration, Search for third-generation scalar leptoquarks and heavy right-handed neutrinos in nal states with two tau leptons and two jets in proton-proton collisions at s = 13 TeV, JHEP 07 (2017) 121 [arXiv:1703.03995] [INSPIRE]. p p p p s = 8 TeV, Eur. Phys. J. C 74 (2014) 3149 [arXiv:1407.3683] two leptons and jets in pp collisions at p C 72 (2012) 2056 [arXiv:1203.5420] [INSPIRE]. two leptons and two quarks at ps = 13 TeV, Phys. Lett. B 775 (2017) 315 [13] CMS collaboration, Search for a heavy composite Majorana neutrino in the nal state with [14] ATLAS collaboration, Search for heavy neutrinos and right-handed W bosons in events with s = 7 TeV with the ATLAS detector, Eur. Phys. J. 063 [arXiv:0802.1189] [INSPIRE]. [arXiv:1111.6097] [INSPIRE]. [22] M. Cacciari, G.P. Salam and G. Soyez, The anti-kt jet clustering algorithm, JHEP 04 (2008) [15] ATLAS collaboration, Search for third generation scalar leptoquarks in pp collisions at s = 7 TeV with the ATLAS detector, JHEP 06 (2013) 033 [arXiv:1303.0526] [INSPIRE]. collisions at p [16] ATLAS collaboration, Search for heavy Majorana neutrinos with the ATLAS detector in pp s = 8 TeV, JHEP 07 (2015) 162 [arXiv:1506.06020] [INSPIRE]. [17] CMS collaboration, The CMS experiment at the CERN LHC, 2008 JINST 3 S08004 [18] CMS collaboration, The CMS trigger system, 2017 JINST 12 P01020 [arXiv:1609.02366] [19] CMS collaboration, Particle- ow reconstruction and global event description with the CMS detector, 2017 JINST 12 P10003 [arXiv:1706.04965] [INSPIRE]. [20] CMS collaboration, Performance of electron reconstruction and selection with the CMS detector in proton-proton collisions at p [arXiv:1502.02701] [INSPIRE]. s = 8 TeV, 2015 JINST 10 P06005 [21] CMS collaboration, Performance of CMS muon reconstruction in pp collision events at s = 7 TeV, 2012 JINST 7 P10002 [arXiv:1206.4071] [INSPIRE]. [arXiv:0707.1378] [INSPIRE]. Instrum. Meth. A 506 (2003) 250 [INSPIRE]. 159 [arXiv:1410.3012] [INSPIRE]. [arXiv:1207.1303] [INSPIRE]. [25] CMS collaboration, Jet energy scale and resolution in the CMS experiment in pp collisions at 8 TeV, 2017 JINST 12 P02014 [arXiv:1607.03663] [INSPIRE]. HJEP05(218)4 di erential cross sections and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE]. [30] NNPDF collaboration, R.D. Ball et al., Parton distributions for the LHC run II, JHEP 04 (2015) 040 [arXiv:1410.8849] [INSPIRE]. JHEP 11 (2004) 040 [hep-ph/0409146] [INSPIRE]. [31] P. Nason, A new method for combining NLO QCD with shower Monte Carlo algorithms, [32] S. Frixione, P. Nason and C. Oleari, Matching NLO QCD computations with parton shower simulations: the POWHEG method, JHEP 11 (2007) 070 [arXiv:0709.2092] [INSPIRE]. [33] S. Alioli, P. Nason, C. Oleari and E. Re, A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX, JHEP 06 (2010) 043 [arXiv:1002.2581] [INSPIRE]. [34] E. Re, Single-top Wt-channel production matched with parton showers using the POWHEG method, Eur. Phys. J. C 71 (2011) 1547 [arXiv:1009.2450] [INSPIRE]. [35] CMS collaboration, Event generator tunes obtained from underlying event and multiparton scattering measurements, Eur. Phys. J. C 76 (2016) 155 [arXiv:1512.00815] [INSPIRE]. [36] J. Alwall et al., Comparative study of various algorithms for the merging of parton showers and matrix elements in hadronic collisions, Eur. Phys. J. C 53 (2008) 473 [arXiv:0706.2569] [INSPIRE]. [arXiv:1209.6215] [INSPIRE]. [37] R. Frederix and S. Frixione, Merging meets matching in MC@NLO, JHEP 12 (2012) 061 [38] CMS collaboration, CMS luminosity measurements for the 2016 data taking period, CMS-PAS-LUM-17-001, CERN, Geneva Switzerland, (2017). [39] J. Butterworth et al., PDF4LHC recommendations for LHC run II, J. Phys. G 43 (2016) 023001 [arXiv:1510.03865] [INSPIRE]. Geneva Switzerland, (2011). [40] ATLAS, CMS collaborations and LHC Higgs Combination group, Procedure for the LHC Higgs boson search combination in Summer 2011, CMS-NOTE-2011-005, CERN, Yerevan Physics Institute, Yerevan, Armenia A.M. Sirunyan, A. Tumasyan Institut fur Hochenergiephysik, Wien, Austria W. Adam, F. Ambrogi, E. Asilar, T. Bergauer, J. Brandstetter, E. Brondolin, M. Dragicevic, J. Ero, A. Escalante Del Valle, M. Flechl, M. Friedl, R. Fruhwirth1, V.M. Ghete, J. Grossmann, J. Hrubec, M. Jeitler1, A. Konig, N. Krammer, I. Kratschmer, D. Liko, T. Madlener, I. Mikulec, E. Pree, N. Rad, H. Rohringer, J. Schieck1, R. Schofbeck, Institute for Nuclear Problems, Minsk, Belarus V. Chekhovsky, V. Mossolov, J. Suarez Gonzalez Universiteit Antwerpen, Antwerpen, Belgium H. Van Haevermaet, P. Van Mechelen, N. Van Remortel Vrije Universiteit Brussel, Brussel, Belgium E.A. De Wolf, D. Di Croce, X. Janssen, J. Lauwers, M. Pieters, M. Van De Klundert, S. Abu Zeid, F. Blekman, J. D'Hondt, I. De Bruyn, J. De Clercq, K. Deroover, G. Flouris, D. Lontkovskyi, S. Lowette, I. Marchesini, S. Moortgat, L. Moreels, Q. Python, K. Skovpen, S. Tavernier, W. Van Doninck, P. Van Mulders, I. Van Parijs Universite Libre de Bruxelles, Bruxelles, Belgium D. Beghin, B. Bilin, H. Brun, B. Clerbaux, G. De Lentdecker, H. Delannoy, B. Dorney, G. Fasanella, L. Favart, R. Goldouzian, A. Grebenyuk, A.K. Kalsi, T. Lenzi, J. Luetic, T. Seva, E. Starling, C. Vander Velde, P. Vanlaer, D. Vannerom, R. Yonamine Ghent University, Ghent, Belgium T. Cornelis, D. Dobur, A. Fagot, M. Gul, I. Khvastunov2, D. Poyraz, C. Roskas, D. Trocino, M. Tytgat, W. Verbeke, B. Vermassen, M. Vit, N. Zaganidis Universite Catholique de Louvain, Louvain-la-Neuve, Belgium H. Bakhshiansohi, O. Bondu, S. Brochet, G. Bruno, C. Caputo, A. Caudron, P. David, S. De Visscher, C. Delaere, M. Delcourt, B. Francois, A. Giammanco, G. Krintiras, V. Lemaitre, A. Magitteri, A. Mertens, M. Musich, K. Piotrzkowski, L. Quertenmont, A. Saggio, M. Vidal Marono, S. Wertz, J. Zobec Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil W.L. Alda Junior, F.L. Alves, G.A. Alves, L. Brito, G. Correia Silva, C. Hensel, A. Moraes, M.E. Pol, P. Rebello Teles Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil E. Belchior Batista Das Chagas, W. Carvalho, J. Chinellato3, E. Coelho, E.M. Da Costa, G.G. Da Silveira4, D. De Jesus Damiao, S. Fonseca De Souza, H. Malbouisson, M. Medina Jaime5, M. Melo De Almeida, C. Mora Herrera, L. Mundim, H. Nogima, L.J. Sanchez Rosas, A. Santoro, A. Sznajder, M. Thiel, E.J. Tonelli Manganote3, F. Torres Da Silva De Araujo, A. Vilela Pereira Brazil Universidade Estadual Paulista a, Universidade Federal do ABC b, S~ao Paulo, P.G. Mercadanteb, S.F. Novaesa, Sandra S. Padulaa, D. Romero Abadb, J.C. Ruiz Vargasa Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, So a, Bulgaria A. Aleksandrov, R. Hadjiiska, P. Iaydjiev, A. Marinov, M. Misheva, M. Rodozov, M. Shopova, G. Sultanov University of So a, So a, Bulgaria A. Dimitrov, L. Litov, B. Pavlov, P. Petkov Beihang University, Beijing, China W. Fang6, X. Gao6, L. Yuan Institute of High Energy Physics, Beijing, China M. Ahmad, J.G. Bian, G.M. Chen, H.S. Chen, M. Chen, Y. Chen, C.H. Jiang, D. Leggat, H. Liao, Z. Liu, F. Romeo, S.M. Shaheen, A. Spiezia, J. Tao, C. Wang, Z. Wang, E. Yazgan, H. Zhang, J. Zhao Beijing, China State Key Laboratory of Nuclear Physics and Technology, Peking University, Y. Ban, G. Chen, J. Li, Q. Li, S. Liu, Y. Mao, S.J. Qian, D. Wang, Z. Xu Tsinghua University, Beijing, China Y. Wang Universidad de Los Andes, Bogota, Colombia C. Avila, A. Cabrera, C.A. Carrillo Montoya, L.F. Chaparro Sierra, C. Florez, C.F. Gonzalez Hernandez, M.A. Segura Delgado University of Split, Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, Split, Croatia B. Courbon, N. Godinovic, D. Lelas, I. Puljak, P.M. Ribeiro Cipriano, T. Sculac University of Split, Faculty of Science, Split, Croatia Z. Antunovic, M. Kovac Institute Rudjer Boskovic, Zagreb, Croatia V. Brigljevic, D. Ferencek, K. Kadija, B. Mesic, A. Starodumov7, T. Susa University of Cyprus, Nicosia, Cyprus M.W. Ather, A. Attikis, G. Mavromanolakis, J. Mousa, C. Nicolaou, F. Ptochos, P.A. Razis, H. Rykaczewski Charles University, Prague, Czech Republic M. Finger8, M. Finger Jr.8 Universidad San Francisco de Quito, Quito, Ecuador E. Carrera Jarrin Academy of Scienti c Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt Y. Assran9;10, S. Elgammal10, S. Khalil11 National Institute of Chemical Physics and Biophysics, Tallinn, Estonia S. Bhowmik, R.K. Dewanjee, M. Kadastik, L. Perrini, M. Raidal, C. Veelken Department of Physics, University of Helsinki, Helsinki, Finland P. Eerola, H. Kirschenmann, J. Pekkanen, M. Voutilainen Helsinki Institute of Physics, Helsinki, Finland J. Havukainen, J.K. Heikkila, T. Jarvinen, V. Karimaki, R. Kinnunen, T. Lampen, K. Lassila-Perini, S. Laurila, S. Lehti, T. Linden, P. Luukka, T. Maenpaa, H. Siikonen, E. Tuominen, J. Tuominiemi T. Tuuva Lappeenranta University of Technology, Lappeenranta, Finland IRFU, CEA, Universite Paris-Saclay, Gif-sur-Yvette, France M. Besancon, F. Couderc, M. Dejardin, D. Denegri, J.L. Faure, F. Ferri, S. Ganjour, S. Ghosh, A. Givernaud, P. Gras, G. Hamel de Monchenault, P. Jarry, C. Leloup, E. Locci, M. Machet, J. Malcles, G. Negro, J. Rander, A. Rosowsky, M.O . Sahin, M. Titov Laboratoire Leprince-Ringuet, Ecole polytechnique, CNRS/IN2P3, Universite Paris-Saclay, Palaiseau, France A. Abdulsalam12, C. Amendola, I. Antropov, S. Ba oni, F. Beaudette, P. Busson, L. Cadamuro, C. Charlot, R. Granier de Cassagnac, M. Jo, I. Kucher, S. Lisniak, A. Lobanov, J. Martin Blanco, M. Nguyen, C. Ochando, G. Ortona, P. Paganini, P. Pigard, R. Salerno, J.B. Sauvan, Y. Sirois, A.G. Stahl Leiton, Y. Yilmaz, A. Zabi, A. Zghiche Universite de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France S. Gadrat J.-L. Agram13, J. Andrea, D. Bloch, J.-M. Brom, E.C. Chabert, C. Collard, E. Conte13, X. Coubez, F. Drouhin13, J.-C. Fontaine13, D. Gele, U. Goerlach, M. Jansova, P. Juillot, A.-C. Le Bihan, N. Tonon, P. Van Hove Centre de Calcul de l'Institut National de Physique Nucleaire et de Physique des Particules, CNRS/IN2P3, Villeurbanne, France Universite de Lyon, Universite Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucleaire de Lyon, Villeurbanne, France S. Beauceron, C. Bernet, G. Boudoul, N. Chanon, R. Chierici, D. Contardo, P. Depasse, H. El Mamouni, J. Fay, L. Finco, S. Gascon, M. Gouzevitch, G. Grenier, B. Ille, F. Lagarde, I.B. Laktineh, H. Lattaud, M. Lethuillier, L. Mirabito, A.L. Pequegnot, S. Perries, A. Popov14, V. Sordini, M. Vander Donckt, S. Viret, S. Zhang Georgian Technical University, Tbilisi, Georgia T. Toriashvili15 Z. Tsamalaidze8 Tbilisi State University, Tbilisi, Georgia RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany C. Autermann, L. Feld, M.K. Kiesel, K. Klein, M. Lipinski, M. Preuten, M.P. Rauch, C. Schomakers, J. Schulz, M. Teroerde, B. Wittmer, V. Zhukov14 RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany A. Albert, D. Duchardt, M. Endres, M. Erdmann, S. Erdweg, T. Esch, R. Fischer, A. Guth, T. Hebbeker, C. Heidemann, K. Hoepfner, S. Knutzen, M. Merschmeyer, A. Meyer, P. Millet, S. Mukherjee, T. Pook, M. Radziej, H. Reithler, M. Rieger, F. Scheuch, D. Teyssier, S. Thuer RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany G. Flugge, B. Kargoll, T. Kress, A. Kunsken, T. Muller, A. Nehrkorn, A. Nowack, C. Pistone, O. Pooth, A. Stahl16 Deutsches Elektronen-Synchrotron, Hamburg, Germany M. Aldaya Martin, T. Arndt, C. Asawatangtrakuldee, K. Beernaert, O. Behnke, U. Behrens, A. Bermudez Mart nez, A.A. Bin Anuar, K. Borras17, V. Botta, A. Campbell, P. Connor, C. Contreras-Campana, F. Costanza, V. Danilov, A. De Wit, C. Diez Pardos, D. Dom nguez Damiani, G. Eckerlin, D. Eckstein, T. Eichhorn, A. Elwood, E. Eren, E. Gallo18, J. Garay Garcia, A. Geiser, J.M. Grados Luyando, A. Grohsjean, P. Gunnellini, M. Gutho , A. Harb, J. Hauk, M. Hempel19, H. Jung, M. Kasemann, J. Keaveney, C. Kleinwort, J. Knolle, I. Korol, D. Krucker, W. Lange, A. Lelek, T. Lenz, K. Lipka, W. Lohmann19, R. Mankel, I.-A. Melzer-Pellmann, A.B. Meyer, M. Meyer, M. Missiroli, G. Mittag, J. Mnich, A. Mussgiller, D. Pitzl, A. Raspereza, M. Savitskyi, P. Saxena, R. Shevchenko, N. Stefaniuk, H. Tholen, G.P. Van Onsem, R. Walsh, Y. Wen, K. Wichmann, C. Wissing, O. Zenaiev University of Hamburg, Hamburg, Germany R. Aggleton, S. Bein, V. Blobel, M. Centis Vignali, T. Dreyer, E. Garutti, D. Gonzalez, J. Haller, A. Hinzmann, M. Ho mann, A. Karavdina, G. Kasieczka, R. Klanner, R. Kogler, N. Kovalchuk, S. Kurz, V. Kutzner, J. Lange, D. Marconi, J. Multhaup, M. Niedziela, D. Nowatschin, T. Pei er, A. Perieanu, A. Reimers, C. Scharf, P. Schleper, A. Schmidt, S. Schumann, J. Schwandt, J. Sonneveld, H. Stadie, G. Steinbruck, F.M. Stober, M. Stover, D. Troendle, E. Usai, A. Vanhoefer, B. Vormwald Institut fur Experimentelle Teilchenphysik, Karlsruhe, Germany M. Akbiyik, C. Barth, M. Baselga, S. Baur, E. Butz, R. Caspart, T. Chwalek, F. Colombo, W. De Boer, A. Dierlamm, N. Faltermann, B. Freund, R. Friese, M. Gi els, M.A. Harrendorf, F. Hartmann16, S.M. Heindl, U. Husemann, F. Kassel16, S. Kudella, H. Mildner, M.U. Mozer, Th. Muller, M. Plagge, G. Quast, K. Rabbertz, M. Schroder, I. Shvetsov, G. Sieber, H.J. Simonis, R. Ulrich, S. Wayand, M. Weber, T. Weiler, S. Williamson, C. Wohrmann, R. Wolf Paraskevi, Greece Institute of Nuclear and Particle Physics (INPP), NCSR Demokritos, Aghia G. Anagnostou, G. Daskalakis, T. Geralis, A. Kyriakis, D. Loukas, I. Topsis-Giotis National and Kapodistrian University of Athens, Athens, Greece G. Karathanasis, S. Kesisoglou, A. Panagiotou, N. Saoulidou, E. Tziaferi National Technical University of Athens, Athens, Greece K. Kousouris, I. Papakrivopoulos University of Ioannina, Ioannina, Greece I. Evangelou, C. Foudas, P. Gianneios, P. Katsoulis, P. Kokkas, S. Mallios, N. Manthos, I. Papadopoulos, E. Paradas, J. Strologas, F.A. Triantis, D. Tsitsonis MTA-ELTE Lendulet CMS Particle and Nuclear Physics Group, Eotvos Lorand University, Budapest, Hungary M. Csanad, N. Filipovic, G. Pasztor, O. Suranyi, G.I. Veres Wigner Research Centre for Physics, Budapest, Hungary G. Bencze, C. Hajdu, D. Horvath20, A. Hunyadi, F. Sikler, V. Veszpremi, G. Vesztergombiy, T.A. Vami Institute of Nuclear Research ATOMKI, Debrecen, Hungary N. Beni, S. Czellar, J. Karancsi21, A. Makovec, J. Molnar, Z. Szillasi Institute of Physics, University of Debrecen, Debrecen, Hungary M. Bartok22, P. Raics, Z.L. Trocsanyi, B. Ujvari Indian Institute of Science (IISc), Bangalore, India S. Choudhury, J.R. Komaragiri National Institute of Science Education and Research, Bhubaneswar, India S. Bahinipati23, P. Mal, K. Mandal, A. Nayak24, D.K. Sahoo23, S.K. Swain Panjab University, Chandigarh, India S. Bansal, S.B. Beri, V. Bhatnagar, S. Chauhan, R. Chawla, N. Dhingra, R. Gupta, A. Kaur, M. Kaur, S. Kaur, R. Kumar, P. Kumari, M. Lohan, A. Mehta, S. Sharma, J.B. Singh, G. Walia University of Delhi, Delhi, India Ashok Kumar, Aashaq Shah, A. Bhardwaj, B.C. Choudhary, R.B. Garg, S. Keshri, A. Kumar, S. Malhotra, M. Naimuddin, K. Ranjan, R. Sharma Saha Institute of Nuclear Physics, HBNI, Kolkata, India R. Bhardwaj25, R. Bhattacharya, S. Bhattacharya, U. Bhawandeep25, D. Bhowmik, S. Dey, S. Dutt25, S. Dutta, S. Ghosh, N. Majumdar, K. Mondal, S. Mukhopadhyay, S. Nandan, A. Purohit, P.K. Rout, A. Roy, S. Roy Chowdhury, S. Sarkar, M. Sharan, B. Singh, S. Thakur25 Indian Institute of Technology Madras, Madras, India P.K. Behera Bhabha Atomic Research Centre, Mumbai, India R. Chudasama, D. Dutta, V. Jha, V. Kumar, A.K. Mohanty16, P.K. Netrakanti, L.M. Pant, P. Shukla, A. Topkar Tata Institute of Fundamental Research-A, Mumbai, India T. Aziz, S. Dugad, B. Mahakud, S. Mitra, G.B. Mohanty, N. Sur, B. Sutar Tata Institute of Fundamental Research-B, Mumbai, India S. Banerjee, S. Bhattacharya, S. Chatterjee, P. Das, M. Guchait, Sa. Jain, S. Kumar, M. Maity26, G. Majumder, K. Mazumdar, N. Sahoo, T. Sarkar26, N. Wickramage27 Indian Institute of Science Education and Research (IISER), Pune, India S. Chauhan, S. Dube, V. Hegde, A. Kapoor, K. Kothekar, S. Pandey, A. Rane, S. Sharma Institute for Research in Fundamental Sciences (IPM), Tehran, Iran S. Chenarani28, E. Eskandari Tadavani, S.M. Etesami28, M. Khakzad, M. Mohammadi Najafabadi, M. Naseri, S. Paktinat Mehdiabadi29, F. Rezaei Hosseinabadi, B. Safarzadeh30, M. Zeinali University College Dublin, Dublin, Ireland M. Felcini, M. Grunewald INFN Sezione di Bari a, Universita di Bari b, Politecnico di Bari c, Bari, Italy M. Abbresciaa;b, C. Calabriaa;b, A. Colaleoa, D. Creanzaa;c, L. Cristellaa;b, N. De Filippisa;c, M. De Palmaa;b, A. Di Florioa;b, F. Erricoa;b, L. Fiorea, A. Gelmia;b, G. Iasellia;c, S. Lezkia;b, G. Maggia;c, M. Maggia, B. Marangellia;b, G. Minielloa;b, S. Mya;b, S. Nuzzoa;b, A. Pompilia;b, G. Pugliesea;c, R. Radognaa, A. Ranieria, G. Selvaggia;b, A. Sharmaa, L. Silvestrisa;16, R. Vendittia, P. Verwilligena, G. Zitoa INFN Sezione di Bologna a, Universita di Bologna b, Bologna, Italy G. Abbiendia, C. Battilanaa;b, D. Bonacorsia;b, L. Borgonovia;b, S. Braibant-Giacomellia;b, L. Brigliadoria;b, R. Campaninia;b, P. Capiluppia;b, A. Castroa;b, F.R. Cavalloa, S.S. Chhibraa;b, G. Codispotia;b, M. Cu ania;b, G.M. Dallavallea, F. Fabbria, A. Fanfania;b, D. Fasanellaa;b, P. Giacomellia, C. Grandia, L. Guiduccia;b, S. Marcellinia, G. Masettia, A. Montanaria, F.L. Navarriaa;b, A. Perrottaa, A.M. Rossia;b, T. Rovellia;b, G.P. Sirolia;b, INFN Sezione di Catania a, Universita di Catania b, Catania, Italy S. Albergoa;b, S. Costaa;b, A. Di Mattiaa, F. Giordanoa;b, R. Potenzaa;b, A. Tricomia;b, INFN Sezione di Firenze a, Universita di Firenze b, Firenze, Italy G. Barbaglia, K. Chatterjeea;b, V. Ciullia;b, C. Civininia, R. D'Alessandroa;b, E. Focardia;b, G. Latino, P. Lenzia;b, M. Meschinia, S. Paolettia, L. Russoa;31, G. Sguazzonia, D. Stroma, N. Tosia C. Tuvea;b L. Viliania INFN Laboratori Nazionali di Frascati, Frascati, Italy L. Benussi, S. Bianco, F. Fabbri, D. Piccolo, F. Primavera16 INFN Sezione di Genova a, Universita di Genova b, Genova, Italy V. Calvellia;b, F. Ferroa, F. Raveraa;b, E. Robuttia, S. Tosia;b INFN Sezione di Milano-Bicocca a, Universita di Milano-Bicocca b, Milano, Italy Italy A. Benagliaa, A. Beschib, L. Brianzaa;b, F. Brivioa;b, V. Cirioloa;b;16, M.E. Dinardoa;b, S. Fiorendia;b, S. Gennaia, A. Ghezzia;b, P. Govonia;b, M. Malbertia;b, S. Malvezzia, R.A. Manzonia;b, D. Menascea, L. Moronia, M. Paganonia;b, K. Pauwelsa;b, D. Pedrinia, S. Pigazzinia;b;32, S. Ragazzia;b, T. Tabarelli de Fatisa;b INFN Sezione di Napoli a, Universita di Napoli 'Federico II' b, Napoli, Italy, Universita della Basilicata c, Potenza, Italy, Universita G. Marconi d, Roma, S. Buontempoa, N. Cavalloa;c, S. Di Guidaa;d;16, F. Fabozzia;c, F. Fiengaa;b, G. Galatia;b, A.O.M. Iorioa;b, W.A. Khana, L. Listaa, S. Meolaa;d;16, P. Paoluccia;16, C. Sciaccaa;b, F. Thyssena, E. Voevodinaa;b Trento c, Trento, Italy INFN Sezione di Padova a, Universita di Padova b, Padova, Italy, Universita di P. Azzia, N. Bacchettaa, L. Benatoa;b, D. Biselloa;b, A. Bolettia;b, R. Carlina;b, A. Carvalho Antunes De Oliveiraa;b, P. Checchiaa, P. De Castro Manzanoa, T. Dorigoa, U. Dossellia, F. Gasparinia;b, U. Gasparinia;b, A. Gozzelinoa, S. Lacapraraa, M. Margonia;b, A.T. Meneguzzoa;b, N. Pozzobona;b, P. Ronchesea;b, R. Rossina;b, F. Simonettoa;b, A. Tiko, E. Torassaa, M. Zanettia;b, P. Zottoa;b, G. Zumerlea;b INFN Sezione di Pavia a, Universita di Pavia b, Pavia, Italy A. Braghieria, A. Magnania, P. Montagnaa;b, S.P. Rattia;b, V. Rea, M. Ressegottia;b, C. Riccardia;b, P. Salvinia, I. Vaia;b, P. Vituloa;b INFN Sezione di Perugia a, Universita di Perugia b, Perugia, Italy L. Alunni Solestizia;b, M. Biasinia;b, G.M. Bileia, C. Cecchia;b, D. Ciangottinia;b, L. Fanoa;b, P. Laricciaa;b, R. Leonardia;b, E. Manonia, G. Mantovania;b, V. Mariania;b, M. Menichellia, A. Rossia;b, A. Santocchiaa;b, D. Spigaa INFN Sezione di Pisa a, Universita di Pisa b, Scuola Normale Superiore di Pisa c, Pisa, Italy K. Androsova, P. Azzurria;16, G. Bagliesia, L. Bianchinia, T. Boccalia, L. Borrello, R. Castaldia, M.A. Cioccia;b, R. Dell'Orsoa, G. Fedia, L. Gianninia;c, A. Giassia, M.T. Grippoa;31, F. Ligabuea;c, T. Lomtadzea, P.G. Verdinia HJEP05(218)4 INFN Sezione di Roma a, Sapienza Universita di Roma b, Rome, Italy L. Baronea;b, F. Cavallaria, M. Cipriania;b, N. Dacia, D. Del Rea;b, E. Di Marcoa;b, M. Diemoza, S. Gellia;b, E. Longoa;b, B. Marzocchia;b, P. Meridiania, G. Organtinia;b, F. Pandol a, R. Paramattia;b, F. Preiatoa;b, S. Rahatloua;b, C. Rovellia, F. Santanastasioa;b INFN Sezione di Torino a, Universita di Torino b, Torino, Italy, Universita del Piemonte Orientale c, Novara, Italy N. Amapanea;b, R. Arcidiaconoa;c, S. Argiroa;b, M. Arneodoa;c, N. Bartosika, R. Bellana;b, C. Biinoa, N. Cartigliaa, R. Castelloa;b, F. Cennaa;b, M. Costaa;b, R. Covarellia;b, A. Deganoa;b, N. Demariaa, B. Kiania;b, C. Mariottia, S. Masellia, E. Migliorea;b, V. Monacoa;b, E. Monteila;b, M. Montenoa, M.M. Obertinoa;b, L. Pachera;b, N. Pastronea, M. Pelliccionia, G.L. Pinna Angionia;b, A. Romeroa;b, M. Ruspaa;c, R. Sacchia;b, K. Shchelinaa;b, V. Solaa, A. Solanoa;b, A. Staianoa INFN Sezione di Trieste a, Universita di Trieste b, Trieste, Italy S. Belfortea, M. Casarsaa, F. Cossuttia, G. Della Riccaa;b, A. Zanettia Kyungpook National University D.H. Kim, G.N. Kim, M.S. Kim, J. Lee, S. Lee, S.W. Lee, C.S. Moon, Y.D. Oh, S. Sekmen, D.C. Son, Y.C. Yang Kwangju, Korea H. Kim, D.H. Moon, G. Oh Chonnam National University, Institute for Universe and Elementary Particles, Hanyang University, Seoul, Korea J.A. Brochero Cifuentes, J. Goh, T.J. Kim Korea University, Seoul, Korea J. Lim, S.K. Park, Y. Roh Seoul National University, Seoul, Korea S.h. Seo, U.K. Yang, H.D. Yoo, G.B. Yu University of Seoul, Seoul, Korea H. Kim, J.H. Kim, J.S.H. Lee, I.C. Park Sungkyunkwan University, Suwon, Korea Y. Choi, C. Hwang, J. Lee, I. Yu Vilnius University, Vilnius, Lithuania V. Dudenas, A. Juodagalvis, J. Vaitkus S. Cho, S. Choi, Y. Go, D. Gyun, S. Ha, B. Hong, Y. Jo, Y. Kim, K. Lee, K.S. Lee, S. Lee, J. Almond, J. Kim, J.S. Kim, H. Lee, K. Lee, K. Nam, S.B. Oh, B.C. Radburn-Smith, National Centre for Particle Physics, Universiti Malaya, Kuala Lumpur, Malaysia M.N. Yusli, Z. Zolkapli I. Ahmed, Z.A. Ibrahim, M.A.B. Md Ali33, F. Mohamad Idris34, W.A.T. Wan Abdullah, HJEP05(218)4 Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico Reyes-Almanza, R, Ramirez-Sanchez, G., Duran-Osuna, M. C., H. Castilla-Valdez, E. De La Cruz-Burelo, I. Heredia-De La Cruz35, Rabadan-Trejo, R. I., R. Lopez-Fernandez, J. Mejia Guisao, A. Sanchez-Hernandez Universidad Iberoamericana, Mexico City, Mexico S. Carrillo Moreno, C. Oropeza Barrera, F. Vazquez Valencia Benemerita Universidad Autonoma de Puebla, Puebla, Mexico J. Eysermans, I. Pedraza, H.A. Salazar Ibarguen, C. Uribe Estrada Universidad Autonoma de San Luis Potos , San Luis Potos , Mexico University of Auckland, Auckland, New Zealand University of Canterbury, Christchurch, New Zealand S. Bheesette, P.H. Butler National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan A. Ahmad, M. Ahmad, Q. Hassan, H.R. Hoorani, A. Saddique, M.A. Shah, M. Shoaib, M. Waqas National Centre for Nuclear Research, Swierk, Poland H. Bialkowska, M. Bluj, B. Boimska, T. Frueboes, M. Gorski, M. Kazana, K. Nawrocki, M. Szleper, P. Traczyk, P. Zalewski Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland K. Bunkowski, A. Byszuk36, K. Doroba, A. Kalinowski, M. Konecki, J. Krolikowski, M. Misiura, M. Olszewski, A. Pyskir, M. Walczak Laboratorio de Instrumentac~ao e F sica Experimental de Part culas, Lisboa, Portugal P. Bargassa, C. Beir~ao Da Cruz E Silva, A. Di Francesco, P. Faccioli, B. Galinhas, M. Gallinaro, J. Hollar, N. Leonardo, L. Lloret Iglesias, M.V. Nemallapudi, J. Seixas, G. Strong, O. Toldaiev, D. Vadruccio, J. Varela Joint Institute for Nuclear Research, Dubna, Russia S. Afanasiev, P. Bunin, M. Gavrilenko, I. Golutvin, I. Gorbunov, A. Kamenev, V. Karjavin, A. Lanev, A. Malakhov, V. Matveev37;38, P. Moisenz, V. Palichik, V. Perelygin, S. Shmatov, S. Shulha, N. Skatchkov, V. Smirnov, N. Voytishin, A. Zarubin Petersburg Nuclear Physics Institute, Gatchina (St. Petersburg), Russia Y. Ivanov, V. Kim39, E. Kuznetsova40, P. Levchenko, V. Murzin, V. Oreshkin, I. Smirnov, D. Sosnov, V. Sulimov, L. Uvarov, S. Vavilov, A. Vorobyev Institute for Nuclear Research, Moscow, Russia Yu. Andreev, A. Dermenev, S. Gninenko, N. Golubev, A. Karneyeu, M. Kirsanov, N. Krasnikov, A. Pashenkov, D. Tlisov, A. Toropin Institute for Theoretical and Experimental Physics, Moscow, Russia V. Epshteyn, V. Gavrilov, N. Lychkovskaya, V. Popov, I. Pozdnyakov, G. Safronov, A. Spiridonov, A. Stepennov, V. Stolin, M. Toms, E. Vlasov, A. Zhokin Moscow Institute of Physics and Technology, Moscow, Russia T. Aushev, A. Bylinkin38 National Research Nuclear University 'Moscow Engineering Physics Institute' (MEPhI), Moscow, Russia M. Chadeeva41, P. Parygin, D. Philippov, S. Polikarpov, E. Popova, V. Rusinov P.N. Lebedev Physical Institute, Moscow, Russia V. Andreev, M. Azarkin38, I. Dremin38, M. Kirakosyan38, S.V. Rusakov, A. Terkulov Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia V. Savrin A. Baskakov, A. Belyaev, E. Boos, V. Bunichev, M. Dubinin42, L. Dudko, A. Ershov, A. Gribushin, V. Klyukhin, O. Kodolova, I. Lokhtin, I. Miagkov, S. Obraztsov, M. Per lov, Novosibirsk State University (NSU), Novosibirsk, Russia V. Blinov43, D. Shtol43, Y. Skovpen43 State Research Center of Russian Federation, Institute for High Energy Physics of NRC &quot;Kurchatov Institute&quot;, Protvino, Russia I. Azhgirey, I. Bayshev, S. Bitioukov, D. Elumakhov, A. Godizov, V. Kachanov, A. Kalinin, D. Konstantinov, P. Mandrik, V. Petrov, R. Ryutin, A. Sobol, S. Troshin, N. Tyurin, A. Uzunian, A. Volkov A. Babaev National Research Tomsk Polytechnic University, Tomsk, Russia University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia P. Adzic44, P. Cirkovic, D. Devetak, M. Dordevic, J. Milosevic Centro de Investigaciones Energeticas Medioambientales y Tecnologicas (CIEMAT), Madrid, Spain J. Alcaraz Maestre, I. Bachiller, M. Barrio Luna, M. Cerrada, N. Colino, B. De La Cruz, A. Delgado Peris, C. Fernandez Bedoya, J.P. Fernandez Ramos, J. Flix, M.C. Fouz, O. Gonzalez Lopez, S. Goy Lopez, J.M. Hernandez, M.I. Josa, D. Moran, A. Perez-Calero Yzquierdo, J. Puerta Pelayo, I. Redondo, L. Romero, M.S. Soares, A. Triossi, A. Alvarez Fernandez Universidad Autonoma de Madrid, Madrid, Spain C. Albajar, J.F. de Troconiz Universidad de Oviedo, Oviedo, Spain J. Cuevas, C. Erice, J. Fernandez Menendez, S. Folgueras, I. Gonzalez Caballero, J.R. Gonzalez Fernandez, E. Palencia Cortezon, S. Sanchez Cruz, P. Vischia, J.M. Vizan Garcia Santander, Spain Instituto de F sica de Cantabria (IFCA), CSIC-Universidad de Cantabria, I.J. Cabrillo, A. Calderon, B. Chazin Quero, J. Duarte Campderros, M. Fernandez, P.J. Fernandez Manteca, J. Garcia-Ferrero, A. Garc a Alonso, G. Gomez, A. Lopez Virto, J. Marco, C. Martinez Rivero, P. Martinez Ruiz del Arbol, F. Matorras, J. Piedra Gomez, C. Prieels, T. Rodrigo, A. Ruiz-Jimeno, L. Scodellaro, N. Trevisani, I. Vila, R. Vilar Cortabitarte CERN, European Organization for Nuclear Research, Geneva, Switzerland D. Abbaneo, B. Akgun, E. Au ray, P. Baillon, A.H. Ball, D. Barney, J. Bendavid, M. Bianco, A. Bocci, C. Botta, T. Camporesi, M. Cepeda, G. Cerminara, E. Chapon, Y. Chen, D. d'Enterria, A. Dabrowski, V. Daponte, A. David, M. De Gruttola, A. De Roeck, N. Deelen, M. Dobson, T. du Pree, M. Dunser, N. Dupont, A. Elliott-Peisert, P. Everaerts, F. Fallavollita45, G. Franzoni, J. Fulcher, W. Funk, D. Gigi, A. Gilbert, K. Gill, F. Glege, D. Gulhan, J. Hegeman, V. Innocente, A. Jafari, P. Janot, O. Karacheban19, J. Kieseler, V. Knunz, A. Kornmayer, M. Krammer1, C. Lange, P. Lecoq, C. Lourenco, M.T. Lucchini, L. Malgeri, M. Mannelli, A. Martelli, F. Meijers, J.A. Merlin, S. Mersi, E. Meschi, P. Milenovic46, F. Moortgat, M. Mulders, H. Neugebauer, J. Ngadiuba, S. Orfanelli, L. Orsini, F. Pantaleo16, L. Pape, E. Perez, M. Peruzzi, A. Petrilli, G. Petrucciani, A. Pfei er, M. Pierini, F.M. Pitters, D. Rabady, A. Racz, T. Reis, G. Rolandi47, M. Rovere, H. Sakulin, C. Schafer, C. Schwick, M. Seidel, M. Selvaggi, A. Sharma, P. Silva, P. Sphicas48, A. Stakia, J. Steggemann, M. Stoye, M. Tosi, D. Treille, A. Tsirou, V. Veckalns49, M. Verweij, W.D. Zeuner Paul Scherrer Institut, Villigen, Switzerland W. Bertly, L. Caminada50, K. Deiters, W. Erdmann, R. Horisberger, Q. Ingram, H.C. Kaestli, D. Kotlinski, U. Langenegger, T. Rohe, S.A. Wiederkehr ETH Zurich - Institute for Particle Physics and Astrophysics (IPA), Zurich, Switzerland M. Backhaus, L. Bani, P. Berger, B. Casal, N. Chernyavskaya, G. Dissertori, M. Dittmar, M. Donega, C. Dorfer, C. Grab, C. Heidegger, D. Hits, J. Hoss, T. Klijnsma, W. Lustermann, M. Marionneau, M.T. Meinhard, D. Meister, F. Micheli, P. Musella, F. NessiTedaldi, J. Pata, F. Pauss, G. Perrin, L. Perrozzi, M. Quittnat, M. Reichmann, D. Ruini, D.A. Sanz Becerra, M. Schonenberger, L. Shchutska, V.R. Tavolaro, K. Theo latos, M.L. Vesterbacka Olsson, R. Wallny, D.H. Zhu Universitat Zurich, Zurich, Switzerland T.K. Aarrestad, C. Amsler51, D. Brzhechko, M.F. Canelli, A. De Cosa, R. Del Burgo, S. Donato, C. Galloni, T. Hreus, B. Kilminster, I. Neutelings, D. Pinna, G. Rauco, P. Robmann, D. Salerno, K. Schweiger, C. Seitz, Y. Takahashi, A. Zucchetta National Central University, Chung-Li, Taiwan V. Candelise, Y.H. Chang, K.y. Cheng, T.H. Doan, Sh. Jain, R. Khurana, C.M. Kuo, W. Lin, A. Pozdnyakov, S.S. Yu National Taiwan University (NTU), Taipei, Taiwan Arun Kumar, P. Chang, Y. Chao, K.F. Chen, P.H. Chen, F. Fiori, W.-S. Hou, Y. Hsiung, Y.F. Liu, R.-S. Lu, E. Paganis, A. Psallidas, A. Steen, J.f. Tsai Chulalongkorn University, Faculty of Science, Department of Physics, Bangkok, Thailand Turkey B. Asavapibhop, K. Kovitanggoon, G. Singh, N. Srimanobhas Cukurova University, Physics Department, Science and Art Faculty, Adana, M.N. Bakirci52, A. Bat, F. Boran, S. Damarseckin, Z.S. Demiroglu, C. Dozen, E. Eskut, S. Girgis, G. Gokbulut, Y. Guler, I. Hos53, E.E. Kangal54, O. Kara, U. Kiminsu, M. Oglakci, G. Onengut, K. Ozdemir55, S. Ozturk52, A. Polatoz, D. Sunar Cerci56, U.G. Tok, S. Turkcapar, I.S. Zorbakir, C. Zorbilmez Middle East Technical University, Physics Department, Ankara, Turkey G. Karapinar57, K. Ocalan58, M. Yalvac, M. Zeyrek Bogazici University, Istanbul, Turkey I.O. Atakisi, E. Gulmez, M. Kaya59, O. Kaya60, S. Tekten, E.A. Yetkin61 Istanbul Technical University, Istanbul, Turkey M.N. Agaras, S. Atay, A. Cakir, K. Cankocak, Y. Komurcu Institute for Scintillation Materials of National Academy of Science of Ukraine, Kharkov, Ukraine B. Grynyov Kharkov, Ukraine L. Levchuk National Scienti c Center, Kharkov Institute of Physics and Technology, University of Bristol, Bristol, United Kingdom F. Ball, L. Beck, J.J. Brooke, D. Burns, E. Clement, D. Cussans, O. Davignon, H. Flacher, J. Goldstein, G.P. Heath, H.F. Heath, L. Kreczko, D.M. Newbold62, S. Paramesvaran, T. Sakuma, S. Seif El Nasr-storey, D. Smith, V.J. Smith Rutherford Appleton Laboratory, Didcot, United Kingdom K.W. Bell, A. Belyaev63, C. Brew, R.M. Brown, D. Cieri, D.J.A. Cockerill, J.A. Coughlan, K. Harder, S. Harper, J. Linacre, E. Olaiya, D. Petyt, C.H. Shepherd-Themistocleous, A. Thea, I.R. Tomalin, T. Williams, W.J. Womersley Imperial College, London, United Kingdom G. Auzinger, R. Bainbridge, P. Bloch, J. Borg, S. Breeze, O. Buchmuller, A. Bundock, S. Casasso, D. Colling, L. Corpe, P. Dauncey, G. Davies, M. Della Negra, R. Di Maria, Y. Haddad, G. Hall, G. Iles, T. James, M. Komm, R. Lane, C. Laner, L. Lyons, A.-M. Magnan, S. Malik, L. Mastrolorenzo, T. Matsushita, J. Nash64, A. Nikitenko7, V. Palladino, M. Pesaresi, A. Richards, A. Rose, E. Scott, C. Seez, A. Shtipliyski, T. Strebler, S. Summers, A. Tapper, K. Uchida, M. Vazquez Acosta65, T. Virdee16, N. Wardle, D. Winterbottom, J. Wright, S.C. Zenz Brunel University, Uxbridge, United Kingdom J.E. Cole, P.R. Hobson, A. Khan, P. Kyberd, A. Morton, I.D. Reid, L. Teodorescu, S. Zahid Baylor University, Waco, U.S.A. A. Borzou, K. Call, J. Dittmann, K. Hatakeyama, H. Liu, N. Pastika, C. Smith Catholic University of America, Washington DC, U.S.A. R. Bartek, A. Dominguez The University of Alabama, Tuscaloosa, U.S.A. A. Buccilli, S.I. Cooper, C. Henderson, P. Rumerio, C. West Boston University, Boston, U.S.A. D. Arcaro, A. Avetisyan, T. Bose, D. Gastler, D. Rankin, C. Richardson, J. Rohlf, L. Sulak, D. Zou Brown University, Providence, U.S.A. G. Benelli, D. Cutts, M. Hadley, J. Hakala, U. Heintz, J.M. Hogan66, K.H.M. Kwok, E. Laird, G. Landsberg, J. Lee, Z. Mao, M. Narain, J. Pazzini, S. Piperov, S. Sagir, R. Syarif, D. Yu University of California, Davis, Davis, U.S.A. R. Band, C. Brainerd, R. Breedon, D. Burns, M. Calderon De La Barca Sanchez, M. Chertok, J. Conway, R. Conway, P.T. Cox, R. Erbacher, C. Flores, G. Funk, W. Ko, R. Lander, C. Mclean, M. Mulhearn, D. Pellett, J. Pilot, S. Shalhout, M. Shi, J. Smith, D. Stolp, D. Taylor, K. Tos, M. Tripathi, Z. Wang, F. Zhang University of California, Los Angeles, U.S.A. M. Bachtis, C. Bravo, R. Cousins, A. Dasgupta, A. Florent, J. Hauser, M. Ignatenko, N. Mccoll, S. Regnard, D. Saltzberg, C. Schnaible, V. Valuev University of California, Riverside, Riverside, U.S.A. E. Bouvier, K. Burt, R. Clare, J. Ellison, J.W. Gary, S.M.A. Ghiasi Shirazi, G. Hanson, G. Karapostoli, E. Kennedy, F. Lacroix, O.R. Long, M. Olmedo Negrete, M.I. Paneva, W. Si, L. Wang, H. Wei, S. Wimpenny, B. R. Yates HJEP05(218)4 J.G. Branson, S. Cittolin, M. Derdzinski, R. Gerosa, D. Gilbert, B. Hashemi, A. Holzner, D. Klein, G. Kole, V. Krutelyov, J. Letts, M. Masciovecchio, D. Olivito, S. Padhi, M. Pieri, M. Sani, V. Sharma, S. Simon, M. Tadel, A. Vartak, S. Wasserbaech67, J. Wood, F. Wurthwein, A. Yagil, G. Zevi Della Porta University of California, Santa Barbara - Department of Physics, Santa Barbara, U.S.A. N. Amin, R. Bhandari, J. Bradmiller-Feld, C. Campagnari, M. Citron, A. Dishaw, V. Dutta, M. Franco Sevilla, L. Gouskos, R. Heller, J. Incandela, A. Ovcharova, H. Qu, J. Richman, D. Stuart, I. Suarez, J. Yoo California Institute of Technology, Pasadena, U.S.A. D. Anderson, A. Bornheim, J. Bunn, J.M. Lawhorn, H.B. Newman, T. Q. Nguyen, C. Pena, M. Spiropulu, J.R. Vlimant, R. Wilkinson, S. Xie, Z. Zhang, R.Y. Zhu Carnegie Mellon University, Pittsburgh, U.S.A. M.B. Andrews, T. Ferguson, T. Mudholkar, M. Paulini, J. Russ, M. Sun, H. Vogel, I. Vorobiev, M. Weinberg University of Colorado Boulder, Boulder, U.S.A. J.P. Cumalat, W.T. Ford, F. Jensen, A. Johnson, M. Krohn, S. Leontsinis, E. MacDonald, T. Mulholland, K. Stenson, K.A. Ulmer, S.R. Wagner Cornell University, Ithaca, U.S.A. J. Alexander, J. Chaves, Y. Cheng, J. Chu, A. Datta, K. Mcdermott, N. Mirman, J.R. Patterson, D. Quach, A. Rinkevicius, A. Ryd, L. Skinnari, L. So , S.M. Tan, Z. Tao, J. Thom, J. Tucker, P. Wittich, M. Zientek Fermi National Accelerator Laboratory, Batavia, U.S.A. S. Abdullin, M. Albrow, M. Alyari, G. Apollinari, A. Apresyan, A. Apyan, S. Banerjee, L.A.T. Bauerdick, A. Beretvas, J. Berryhill, P.C. Bhat, G. Bollay, K. Burkett, J.N. Butler, A. Canepa, G.B. Cerati, H.W.K. Cheung, F. Chlebana, M. Cremonesi, J. Duarte, V.D. Elvira, J. Freeman, Z. Gecse, E. Gottschalk, L. Gray, D. Green, S. Grunendahl, O. Gutsche, J. Hanlon, R.M. Harris, S. Hasegawa, J. Hirschauer, Z. Hu, B. Jayatilaka, S. Jindariani, M. Johnson, U. Joshi, B. Klima, M.J. Kortelainen, B. Kreis, S. Lammel, D. Lincoln, R. Lipton, M. Liu, T. Liu, R. Lopes De Sa, J. Lykken, K. Maeshima, N. Magini, J.M. Marra no, D. Mason, P. McBride, P. Merkel, S. Mrenna, S. Nahn, V. O'Dell, K. Pedro, O. Prokofyev, G. Rakness, L. Ristori, A. Savoy-Navarro68, B. Schneider, E. Sexton-Kennedy, A. Soha, W.J. Spalding, L. Spiegel, S. Stoynev, J. Strait, N. Strobbe, L. Taylor, S. Tkaczyk, N.V. Tran, L. Uplegger, E.W. Vaandering, C. Vernieri, M. Verzocchi, R. Vidal, M. Wang, H.A. Weber, A. Whitbeck, W. Wu University of Florida, Gainesville, U.S.A. D. Acosta, P. Avery, P. Bortignon, D. Bourilkov, A. Brinkerho , A. Carnes, M. Carver, D. Curry, R.D. Field, I.K. Furic, S.V. Gleyzer, B.M. Joshi, J. Konigsberg, A. Korytov, K. Kotov, P. Ma, K. Matchev, H. Mei, G. Mitselmakher, K. Shi, D. Sperka, N. Terentyev, L. Thomas, J. Wang, S. Wang, J. Yelton Florida International University, Miami, U.S.A. Y.R. Joshi, S. Linn, P. Markowitz, J.L. Rodriguez Florida State University, Tallahassee, U.S.A. A. Ackert, T. Adams, A. Askew, S. Hagopian, V. Hagopian, K.F. Johnson, T. Kolberg, G. Martinez, T. Perry, H. Prosper, A. Saha, A. Santra, V. Sharma, R. Yohay Florida Institute of Technology, Melbourne, U.S.A. M.M. Baarmand, V. Bhopatkar, S. Colafranceschi, M. Hohlmann, D. Noonan, T. Roy, HJEP05(218)4 F. Yumiceva University of Illinois at Chicago (UIC), Chicago, U.S.A. M.R. Adams, L. Apanasevich, D. Berry, R.R. Betts, R. Cavanaugh, X. Chen, S. Dittmer, O. Evdokimov, C.E. Gerber, D.A. Hangal, D.J. Hofman, K. Jung, J. Kamin, I.D. Sandoval Gonzalez, M.B. Tonjes, N. Varelas, H. Wang, Z. Wu, J. Zhang The University of Iowa, Iowa City, U.S.A. B. Bilki69, W. Clarida, K. Dilsiz70, S. Durgut, R.P. Gandrajula, M. Haytmyradov, V. Khristenko, J.-P. Merlo, H. Mermerkaya71, A. Mestvirishvili, A. Moeller, J. Nachtman, H. Ogul72, Y. Onel, F. Ozok73, A. Penzo, C. Snyder, E. Tiras, J. Wetzel, K. Yi Johns Hopkins University, Baltimore, U.S.A. B. Blumenfeld, A. Cocoros, N. Eminizer, D. Fehling, L. Feng, A.V. Gritsan, W.T. Hung, P. Maksimovic, J. Roskes, U. Sarica, M. Swartz, M. Xiao, C. You The University of Kansas, Lawrence, U.S.A. A. Al-bataineh, P. Baringer, A. Bean, S. Boren, J. Bowen, J. Castle, S. Khalil, A. Kropivnitskaya, D. Majumder, W. Mcbrayer, M. Murray, C. Rogan, C. Royon, S. Sanders, E. Schmitz, J.D. Tapia Takaki, Q. Wang Kansas State University, Manhattan, U.S.A. A. Ivanov, K. Kaadze, Y. Maravin, A. Modak, A. Mohammadi, L.K. Saini, N. Skhirtladze Lawrence Livermore National Laboratory, Livermore, U.S.A. F. Rebassoo, D. Wright University of Maryland, College Park, U.S.A. A. Baden, O. Baron, A. Belloni, S.C. Eno, Y. Feng, C. Ferraioli, N.J. Hadley, S. Jabeen, G.Y. Jeng, R.G. Kellogg, J. Kunkle, A.C. Mignerey, F. Ricci-Tam, Y.H. Shin, A. Skuja, S.C. Tonwar Massachusetts Institute of Technology, Cambridge, U.S.A. D. Abercrombie, B. Allen, V. Azzolini, R. Barbieri, A. Baty, G. Bauer, R. Bi, S. Brandt, W. Busza, I.A. Cali, M. D'Alfonso, Z. Demiragli, G. Gomez Ceballos, M. Goncharov, P. Harris, D. Hsu, M. Hu, Y. Iiyama, G.M. Innocenti, M. Klute, D. Kovalskyi, Y.-J. Lee, A. Levin, P.D. Luckey, B. Maier, A.C. Marini, C. Mcginn, C. Mironov, S. Narayanan, X. Niu, C. Paus, C. Roland, G. Roland, G.S.F. Stephans, K. Sumorok, K. Tatar, D. Velicanu, J. Wang, T.W. Wang, B. Wyslouch, S. Zhaozhong University of Minnesota, Minneapolis, U.S.A. A.C. Benvenuti, R.M. Chatterjee, A. Evans, P. Hansen, S. Kalafut, Y. Kubota, Z. Lesko, J. Mans, S. Nourbakhsh, N. Ruckstuhl, R. Rusack, J. Turkewitz, M.A. Wadud University of Mississippi, Oxford, U.S.A. J.G. Acosta, S. Oliveros University of Nebraska-Lincoln, Lincoln, U.S.A. E. Avdeeva, K. Bloom, D.R. Claes, C. Fangmeier, F. Golf, R. Gonzalez Suarez, R. Kamalieddin, I. Kravchenko, J. Monroy, J.E. Siado, G.R. Snow, B. Stieger State University of New York at Bu alo, Bu alo, U.S.A. A. Godshalk, C. Harrington, I. Iashvili, D. Nguyen, A. Parker, S. Rappoccio, B. Roozbahani Northeastern University, Boston, U.S.A. G. Alverson, E. Barberis, C. Freer, A. Hortiangtham, A. Massironi, D.M. Morse, T. Orimoto, R. Teixeira De Lima, T. Wamorkar, B. Wang, A. Wisecarver, D. Wood Northwestern University, Evanston, U.S.A. S. Bhattacharya, O. Charaf, K.A. Hahn, N. Mucia, N. Odell, M.H. Schmitt, K. Sung, M. Trovato, M. Velasco University of Notre Dame, Notre Dame, U.S.A. R. Bucci, N. Dev, M. Hildreth, K. Hurtado Anampa, C. Jessop, D.J. Karmgard, N. Kellams, K. Lannon, W. Li, N. Loukas, N. Marinelli, F. Meng, C. Mueller, Y. Musienko37, M. Planer, A. Reinsvold, R. Ruchti, P. Siddireddy, G. Smith, S. Taroni, M. Wayne, A. Wightman, M. Wolf, A. Woodard The Ohio State University, Columbus, U.S.A. W. Ji, T.Y. Ling, W. Luo, B.L. Winer, H.W. Wulsin Princeton University, Princeton, U.S.A. J. Alimena, L. Antonelli, B. Bylsma, L.S. Durkin, S. Flowers, B. Francis, A. Hart, C. Hill, S. Cooperstein, O. Driga, P. Elmer, J. Hardenbrook, P. Hebda, S. Higginbotham, A. Kalogeropoulos, D. Lange, J. Luo, D. Marlow, K. Mei, I. Ojalvo, J. Olsen, C. Palmer, P. Piroue, J. Salfeld-Nebgen, D. Stickland, C. Tully University of Puerto Rico, Mayaguez, U.S.A. S. Malik, S. Norberg Purdue University, West Lafayette, U.S.A. A. Barker, V.E. Barnes, S. Das, L. Gutay, M. Jones, A.W. Jung, A. Khatiwada, D.H. Miller, N. Neumeister, C.C. Peng, H. Qiu, J.F. Schulte, J. Sun, F. Wang, R. Xiao, W. Xie Purdue University Northwest, Hammond, U.S.A. T. Cheng, J. Dolen, N. Parashar Rice University, Houston, U.S.A. Z. Chen, K.M. Ecklund, S. Freed, F.J.M. Geurts, M. Guilbaud, M. Kilpatrick, W. Li, B. Michlin, B.P. Padley, J. Roberts, J. Rorie, W. Shi, Z. Tu, J. Zabel, A. Zhang University of Rochester, Rochester, U.S.A. A. Bodek, P. de Barbaro, R. Demina, Y.t. Duh, T. Ferbel, M. Galanti, A. Garcia-Bellido, J. Han, O. Hindrichs, A. Khukhunaishvili, K.H. Lo, P. Tan, M. Verzetti The Rockefeller University, New York, U.S.A. R. Ciesielski, K. Goulianos, C. Mesropian Rutgers, The State University of New Jersey, Piscataway, U.S.A. A. Agapitos, J.P. Chou, Y. Gershtein, T.A. Gomez Espinosa, E. Halkiadakis, M. Heindl, E. Hughes, S. Kaplan, R. Kunnawalkam Elayavalli, S. Kyriacou, A. Lath, R. Montalvo, K. Nash, M. Osherson, H. Saka, S. Salur, S. Schnetzer, D. She eld, S. Somalwar, R. Stone, S. Thomas, P. Thomassen, M. Walker University of Tennessee, Knoxville, U.S.A. A.G. Delannoy, J. Heideman, G. Riley, K. Rose, S. Spanier, K. Thapa Texas A&M University, College Station, U.S.A. O. Bouhali74, A. Castaneda Hernandez74, A. Celik, M. Dalchenko, M. De Mattia, A. Delgado, S. Dildick, R. Eusebi, J. Gilmore, T. Huang, T. Kamon75, R. Mueller, Y. Pakhotin, R. Patel, A. Perlo , L. Pernie, D. Rathjens, A. Safonov, A. Tatarinov Texas Tech University, Lubbock, U.S.A. N. Akchurin, J. Damgov, F. De Guio, P.R. Dudero, J. Faulkner, E. Gurpinar, S. Kunori, K. Lamichhane, S.W. Lee, T. Mengke, S. Muthumuni, T. Peltola, S. Undleeb, I. Volobouev, Z. Wang Vanderbilt University, Nashville, U.S.A. S. Greene, A. Gurrola, R. Janjam, W. Johns, C. Maguire, A. Melo, H. Ni, K. Padeken, J.D. Ruiz Alvarez, P. Sheldon, S. Tuo, J. Velkovska, Q. Xu University of Virginia, Charlottesville, U.S.A. M.W. Arenton, P. Barria, B. Cox, R. Hirosky, M. Joyce, A. Ledovskoy, H. Li, C. Neu, T. Sinthuprasith, Y. Wang, E. Wolfe, F. Xia Wayne State University, Detroit, U.S.A. R. Harr, P.E. Karchin, N. Poudyal, J. Sturdy, P. Thapa, S. Zaleski University of Wisconsin - Madison, Madison, WI, U.S.A. M. Brodski, J. Buchanan, C. Caillol, D. Carlsmith, S. Dasu, L. Dodd, S. Duric, B. Gomber, M. Grothe, M. Herndon, A. Herve, U. Hussain, P. Klabbers, A. Lanaro, A. Levine, K. Long, R. Loveless, V. Rekovic, T. Ruggles, A. Savin, N. Smith, W.H. Smith, N. Woods y: Deceased 1: Also at Vienna University of Technology, Vienna, Austria 3: Also at Universidade Estadual de Campinas, Campinas, Brazil 4: Also at Federal University of Rio Grande do Sul, Porto Alegre, Brazil 5: Also at Universidade Federal de Pelotas, Pelotas, Brazil 6: Also at Universite Libre de Bruxelles, Bruxelles, Belgium 7: Also at Institute for Theoretical and Experimental Physics, Moscow, Russia 8: Also at Joint Institute for Nuclear Research, Dubna, Russia 9: Also at Suez University, Suez, Egypt 10: Now at British University in Egypt, Cairo, Egypt 11: Also at Zewail City of Science and Technology, Zewail, Egypt 12: Also at Department of Physics, King Abdulaziz University, Jeddah, Saudi Arabia 13: Also at Universite de Haute Alsace, Mulhouse, France 14: Also at Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia 15: Also at Tbilisi State University, Tbilisi, Georgia 16: Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland 17: Also at RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany 18: Also at University of Hamburg, Hamburg, Germany 19: Also at Brandenburg University of Technology, Cottbus, Germany 20: Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary 21: Also at Institute of Physics, University of Debrecen, Debrecen, Hungary 22: Also at MTA-ELTE Lendulet CMS Particle and Nuclear Physics Group, Eotvos Lorand University, Budapest, Hungary 23: Also at Indian Institute of Technology Bhubaneswar, Bhubaneswar, India 24: Also at Institute of Physics, Bhubaneswar, India 25: Also at Shoolini University, Solan, India 26: Also at University of Visva-Bharati, Santiniketan, India 27: Also at University of Ruhuna, Matara, Sri Lanka 28: Also at Isfahan University of Technology, Isfahan, Iran 29: Also at Yazd University, Yazd, Iran 30: Also at Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran 31: Also at Universita degli Studi di Siena, Siena, Italy 32: Also at INFN Sezione di Milano-Bicocca; Universita di Milano-Bicocca, Milano, Italy 33: Also at International Islamic University of Malaysia, Kuala Lumpur, Malaysia 34: Also at Malaysian Nuclear Agency, MOSTI, Kajang, Malaysia 35: Also at Consejo Nacional de Ciencia y Tecnolog a, Mexico city, Mexico 36: Also at Warsaw University of Technology, Institute of Electronic Systems, Warsaw, Poland 37: Also at Institute for Nuclear Research, Moscow, Russia 38: Now at National Research Nuclear University 'Moscow 39: Also at St. Petersburg State Polytechnical University, St. Petersburg, Russia 40: Also at University of Florida, Gainesville, U.S.A. 41: Also at P.N. Lebedev Physical Institute, Moscow, Russia 42: Also at California Institute of Technology, Pasadena, U.S.A. 43: Also at Budker Institute of Nuclear Physics, Novosibirsk, Russia 44: Also at Faculty of Physics, University of Belgrade, Belgrade, Serbia 45: Also at INFN Sezione di Pavia; Universita di Pavia, Pavia, Italy 47: Also at Scuola Normale e Sezione dell'INFN, Pisa, Italy 48: Also at National and Kapodistrian University of Athens, Athens, Greece 49: Also at Riga Technical University, Riga, Latvia 50: Also at Universitat Zurich, Zurich, Switzerland 51: Also at Stefan Meyer Institute for Subatomic Physics (SMI), Vienna, Austria 52: Also at Gaziosmanpasa University, Tokat, Turkey 53: Also at Istanbul Aydin University, Istanbul, Turkey 54: Also at Mersin University, Mersin, Turkey 55: Also at Piri Reis University, Istanbul, Turkey 56: Also at Adiyaman University, Adiyaman, Turkey 57: Also at Izmir Institute of Technology, Izmir, Turkey 58: Also at Necmettin Erbakan University, Konya, Turkey 59: Also at Marmara University, Istanbul, Turkey 60: Also at Kafkas University, Kars, Turkey 61: Also at Istanbul Bilgi University, Istanbul, Turkey 62: Also at Rutherford Appleton Laboratory, Didcot, United Kingdom 63: Also at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom 64: Also at Monash University, Faculty of Science, Clayton, Australia 65: Also at Instituto de Astrof sica de Canarias, La Laguna, Spain 66: Also at Bethel University, ST. PAUL, U.S.A. 67: Also at Utah Valley University, Orem, U.S.A. 68: Also at Purdue University, West Lafayette, U.S.A. 69: Also at Beykent University, Istanbul, Turkey 70: Also at Bingol University, Bingol, Turkey 71: Also at Erzincan University, Erzincan, Turkey 72: Also at Sinop University, Sinop, Turkey 73: Also at Mimar Sinan University, Istanbul, Istanbul, Turkey 74: Also at Texas A&M University at Qatar, Doha, Qatar 75: Also at Kyungpook National University, Daegu, Korea [1] J.C. Pati and A. Salam , Lepton number as the fourth color , Phys. Rev. D 10 ( 1974 ) 275 [2] R.N. Mohapatra and J.C. Pati , A natural left-right symmetry , Phys. Rev. D 11 ( 1975 ) 2558 [9] M. Gell-Mann , P. Ramond and R. Slansky , Complex spinors and uni ed theories, in [23] M. Cacciari , G.P. Salam and G. Soyez, FastJet user manual , Eur. Phys. J. C 72 ( 2012 ) 1896 [24] M. Cacciari and G.P. Salam , Pileup subtraction using jet areas , Phys. Lett. B 659 ( 2008 ) 119 [26] GEANT4 collaboration , S. Agostinelli et al., GEANT4 | a simulation toolkit , Nucl. [27] T. Sj ostrand et al ., An introduction to PYTHIA 8:2, Comput . Phys. Commun . 191 ( 2015 ) [28] R.D. Ball et al., Parton distributions with LHC data, Nucl . Phys. B 867 ( 2013 ) 244 [29] J. Alwall et al., The automated computation of tree-level and next-to-leading order A . Messineoa;b, F. Pallaa , A . Rizzia;b, P. Spagnoloa , R. Tenchinia , G. Tonellia;b, A . Venturia,


This is a preview of a remote PDF: https://link.springer.com/content/pdf/10.1007%2FJHEP05%282018%29148.pdf

The CMS collaboration, A. M. Sirunyan, A. Tumasyan, W. Adam, F. Ambrogi, E. Asilar, T. Bergauer, J. Brandstetter, E. Brondolin, M. Dragicevic, J. Erö, A. Escalante Del Valle, M. Flechl, M. Friedl, R. Frühwirth, V. M. Ghete, J. Grossmann, J. Hrubec, M. Jeitler, A. König, N. Krammer, I. Krätschmer, D. Liko, T. Madlener, I. Mikulec, E. Pree, N. Rad, H. Rohringer, J. Schieck, R. Schöfbeck, M. Spanring, D. Spitzbart, A. Taurok, W. Waltenberger, J. Wittmann, C.-E. Wulz, M. Zarucki, V. Chekhovsky, V. Mossolov, J. Suarez Gonzalez, E. A. De Wolf, D. Di Croce, X. Janssen, J. Lauwers, M. Pieters, M. Van De Klundert, H. Van Haevermaet, P. Van Mechelen, N. Van Remortel, S. Abu Zeid, F. Blekman, J. D’Hondt, I. De Bruyn, J. De Clercq, K. Deroover, G. Flouris, D. Lontkovskyi, S. Lowette, I. Marchesini, S. Moortgat, L. Moreels, Q. Python, K. Skovpen, S. Tavernier, W. Van Doninck, P. Van Mulders, I. Van Parijs, D. Beghin, B. Bilin, H. Brun, B. Clerbaux, G. De Lentdecker, H. Delannoy, B. Dorney, G. Fasanella, L. Favart, R. Goldouzian, A. Grebenyuk, A. K. Kalsi, T. Lenzi, J. Luetic, T. Seva, E. Starling, C. Vander Velde, P. Vanlaer, D. Vannerom, R. Yonamine, T. Cornelis, D. Dobur, A. Fagot, M. Gul, I. Khvastunov, D. Poyraz, C. Roskas, D. Trocino, M. Tytgat, W. Verbeke, B. Vermassen, M. Vit, N. Zaganidis, H. Bakhshiansohi, O. Bondu, S. Brochet, G. Bruno, C. Caputo, A. Caudron, P. David, S. De Visscher, C. Delaere, M. Delcourt, B. Francois, A. Giammanco, G. Krintiras, V. Lemaitre, A. Magitteri, A. Mertens, M. Musich, K. Piotrzkowski, L. Quertenmont, A. Saggio, M. Vidal Marono, S. Wertz, J. Zobec, W. L. Aldá Júnior, F. L. Alves, G. A. Alves, L. Brito, G. Correia Silva, C. Hensel, A. Moraes, M. E. Pol, P. Rebello Teles, E. Belchior Batista Das Chagas, W. Carvalho, J. Chinellato, E. Coelho, E. M. Da Costa, G. G. Da Silveira, D. De Jesus Damiao, S. Fonseca De Souza, H. Malbouisson, M. Medina Jaime, M. Melo De Almeida, C. Mora Herrera, L. Mundim, H. Nogima, L. J. Sanchez Rosas, A. Santoro, A. Sznajder, M. Thiel, E. J. Tonelli Manganote, F. Torres Da Silva De Araujo, A. Vilela Pereira, S. Ahuja, C. A. Bernardes, L. Calligaris, T. R. Fernandez Perez Tomei, E. M. Gregores, P. G. Mercadante, S. F. Novaes, Sandra S. Padula, D. Romero Abad, J. C. Ruiz Vargas, A. Aleksandrov, R. Hadjiiska, P. Iaydjiev, A. Marinov, M. Misheva, M. Rodozov, M. Shopova, G. Sultanov, A. Dimitrov, L. Litov, B. Pavlov, P. Petkov, W. Fang, X. Gao, L. Yuan, M. Ahmad, J. G. Bian, G. M. Chen, H. S. Chen, M. Chen, Y. Chen, C. H. Jiang, D. Leggat, H. Liao, Z. Liu, F. Romeo, S. M. Shaheen, A. Spiezia, J. Tao, C. Wang, Z. Wang, E. Yazgan, H. Zhang, J. Zhao, Y. Ban, G. Chen, J. Li, Q. Li, S. Liu, Y. Mao, S. J. Qian, D. Wang, Z. Xu, Y. Wang, C. Avila, A. Cabrera, C. A. Carrillo Montoya, L. F. Chaparro Sierra, C. Florez, C. F. González Hernández, M. A. Segura Delgado, B. Courbon, N. Godinovic, D. Lelas, I. Puljak, P. M. Ribeiro Cipriano, T. Sculac, Z. Antunovic, M. Kovac, V. Brigljevic, D. Ferencek, K. Kadija, B. Mesic, A. Starodumov, T. Susa, M. W. Ather, A. Attikis, G. Mavromanolakis, J. Mousa, C. Nicolaou, F. Ptochos, P. A. Razis, H. Rykaczewski, M. Finger, M. Finger, E. Carrera Jarrin, Y. Assran, S. Elgammal, S. Khalil, S. Bhowmik, R. K. Dewanjee, M. Kadastik, L. Perrini, M. Raidal, C. Veelken, P. Eerola, H. Kirschenmann, J. Pekkanen, M. Voutilainen, J. Havukainen, J. K. Heikkilä, T. Järvinen, V. Karimäki, R. Kinnunen, T. Lampén, K. Lassila-Perini, S. Laurila, S. Lehti, T. Lindén, P. Luukka, T. Mäenpää, H. Siikonen, E. Tuominen, J. Tuominiemi, T. Tuuva, M. Besancon, F. Couderc, M. Dejardin, D. Denegri, J. L. Faure, F. Ferri, S. Ganjour, S. Ghosh, A. Givernaud, P. Gras, G. Hamel de Monchenault, P. Jarry, C. Leloup, E. Locci, M. Machet, J. Malcles, G. Negro, J. Rander, A. Rosowsky, M. Ö. Sahin, M. Titov, A. Abdulsalam, C. Amendola, I. Antropov, S. Baffioni, F. Beaudette, P. Busson, L. Cadamuro, C. Charlot, R. Granier de Cassagnac, M. Jo, I. Kucher, S. Lisniak, A. Lobanov, J. Martin Blanco, M. Nguyen, C. Ochando, G. Ortona, P. Paganini, P. Pigard, R. Salerno, J. B. Sauvan, Y. Sirois, A. G. Stahl Leiton, Y. Yilmaz, A. Zabi, A. Zghiche, J.-L. Agram, J. Andrea, D. Bloch, J.-M. Brom, E. C. Chabert, C. Collard, E. Conte, X. Coubez, F. Drouhin, J.-C. Fontaine, D. Gelé, U. Goerlach, M. Jansová, P. Juillot, A.-C. Le Bihan, N. Tonon, P. Van Hove, S. Gadrat, S. Beauceron, C. Bernet, G. Boudoul, N. Chanon, R. Chierici, D. Contardo, P. Depasse, H. El Mamouni, J. Fay, L. Finco, S. Gascon, M. Gouzevitch, G. Grenier, B. Ille, F. Lagarde, I. B. Laktineh, H. Lattaud, M. Lethuillier, L. Mirabito, A. L. Pequegnot, S. Perries, A. Popov, V. Sordini, M. Vander Donckt, S. Viret, S. Zhang, T. Toriashvili, Z. Tsamalaidze, C. Autermann, L. Feld, M. K. Kiesel, K. Klein, M. Lipinski, M. Preuten, M. P. Rauch, C. Schomakers, J. Schulz, M. Teroerde, B. Wittmer, V. Zhukov, A. Albert, D. Duchardt, M. Endres, M. Erdmann, S. Erdweg, T. Esch, R. Fischer, A. Güth, T. Hebbeker, C. Heidemann, K. Hoepfner. Search for a heavy right-handed W boson and a heavy neutrino in events with two same-flavor leptons and two jets at \( \sqrt{s}=13 \) TeV, Journal of High Energy Physics, 2018, 148, DOI: 10.1007/JHEP05(2018)148