Advanced search    

Search: *

14,839 papers found. Showing first 1,000 results.
Use AND, OR, NOT, +word, -word, "long phrase", (parentheses) to fine-tune your search.

An interview with Deepak Srivastava

Deepak Srivastava is a Director at the Gladstone Institute of Cardiovascular Disease and a Distinguished Professor in Paediatric Developmental Cardiology at the University of California, San Francisco. As well as caring for sick children as a physician at the Benioff Children's Hospital in San Francisco, he runs an active research group that studies the biology of heart...

An interview with Rudolf Jaenisch

Rudolf Jaenisch is a Professor of Biology at Massachusetts Institute of Technology, a founding member of the Whitehead Institute for Biomedical Research and the current president of the International Society for Stem Cell Research (ISSCR). His contributions to the stem cell field span from making the first transgenic mouse to seminal advances in the reprogramming field, and much...

Orchestrating liver development

The liver is a central regulator of metabolism, and liver failure thus constitutes a major health burden. Understanding how this complex organ develops during embryogenesis will yield insights into how liver regeneration can be promoted and how functional liver replacement tissue can be engineered. Recent studies of animal models have identified key signaling pathways and complex...

Brachyury and SMAD signalling collaboratively orchestrate distinct mesoderm and endoderm gene regulatory networks in differentiating human embryonic stem cells

The transcription factor brachyury (T, BRA) is one of the first markers of gastrulation and lineage specification in vertebrates. Despite its wide use and importance in stem cell and developmental biology, its functional genomic targets in human cells are largely unknown. Here, we use differentiating human embryonic stem cells to study the role of BRA in activin A-induced...

Rab8a vesicles regulate Wnt ligand delivery and Paneth cell maturation at the intestinal stem cell niche

Communication between stem and niche supporting cells maintains the homeostasis of adult tissues. Wnt signaling is a crucial regulator of the stem cell niche, but the mechanism that governs Wnt ligand delivery in this compartment has not been fully investigated. We identified that Wnt secretion is partly dependent on Rab8a-mediated anterograde transport of Gpr177 (wntless), a Wnt...

The atlas of mouse development eHistology resource

The Atlas of Mouse Development by Professor Mathew Kaufman is an essential text for understanding mouse developmental anatomy. This definitive and authoritative atlas is still in production and is essential for any biologist working with the mouse embryo, although the last revision dates back to 1994. Here, we announce the eHistology online resource that provides free access to...

How to make a midbrain dopaminergic neuron

Midbrain dopaminergic (mDA) neuron development has been an intense area of research during recent years. This is due in part to a growing interest in regenerative medicine and the hope that treatment for diseases affecting mDA neurons, such as Parkinson's disease (PD), might be facilitated by a better understanding of how these neurons are specified, differentiated and maintained...

An interview with Juergen Knoblich

Juergen Knoblich is a senior scientist and deputy scientific director of the Institute of Molecular Biotechnology of the Austrian Academy of Sciences in Vienna. We met Juergen at the 56th Annual Drosophila Research Conference, where we asked him about his work in this model system and, more recently, on human cerebral organoids, and about his thoughts on recent technological...

Control of brain patterning by Engrailed paracrine transfer: a new function of the Pbx interaction domain

Homeoproteins of the Engrailed family are involved in the patterning of mesencephalic boundaries through a mechanism classically ascribed to their transcriptional functions. In light of recent reports on the paracrine activity of homeoproteins, including Engrailed, we asked whether Engrailed intercellular transfer was also involved in brain patterning and boundary formation...

Neural retina identity is specified by lens-derived BMP signals

The eye has served as a classical model to study cell specification and tissue induction for over a century. Nevertheless, the molecular mechanisms that regulate the induction and maintenance of eye-field cells, and the specification of neural retina cells are poorly understood. Moreover, within the developing anterior forebrain, how prospective eye and telencephalic cells are...

Live imaging of endogenous protein dynamics in zebrafish using chromobodies

Chromobodies are intracellular nanoprobes that combine the specificity of antibodies with the convenience of live fluorescence imaging in a flexible, DNA-encoded reagent. Here, we present the first application of this technique to an intact living vertebrate organism. We generated zebrafish lines expressing chromobodies that trace the major cytoskeletal component actin and the...

Animal models for studying neural crest development: is the mouse different?

The neural crest is a uniquely vertebrate cell type and has been well studied in a number of model systems. Zebrafish, Xenopus and chick embryos largely show consistent requirements for specific genes in early steps of neural crest development. By contrast, knockouts of homologous genes in the mouse often do not exhibit comparable early neural crest phenotypes. In this Spotlight...

Intrinsic and extrinsic mechanisms regulating satellite cell function

Muscle stem cells, termed satellite cells, are crucial for skeletal muscle growth and regeneration. In healthy adult muscle, satellite cells are quiescent but poised for activation. During muscle regeneration, activated satellite cells transiently re-enter the cell cycle to proliferate and subsequently exit the cell cycle to differentiate or self-renew. Recent studies have...

Hierarchical differentiation competence in response to retinoic acid ensures stem cell maintenance during mouse spermatogenesis

Stem cells ensure tissue homeostasis through the production of differentiating and self-renewing progeny. In some tissues, this is achieved by the function of a definitive stem cell niche. However, the mechanisms that operate in mouse spermatogenesis are unknown because undifferentiated spermatogonia (Aundiff) are motile and intermingle with differentiating cells in an ‘open...

Quantitative analysis of tissue deformation dynamics reveals three characteristic growth modes and globally aligned anisotropic tissue deformation during chick limb development

Tissue-level characterization of deformation dynamics is crucial for understanding organ morphogenetic mechanisms, especially the interhierarchical links among molecular activities, cellular behaviors and tissue/organ morphogenetic processes. Limb development is a well-studied topic in vertebrate organogenesis. Nevertheless, there is still little understanding of tissue-level...