Advanced search    

Search: *

30,876 papers found. Showing first 1,000 results.
Use AND, OR, NOT, +word, -word, "long phrase", (parentheses) to fine-tune your search.

Coupling of replisome movement with nucleosome dynamics can contribute to the parent–daughter information transfer

Positioning of nucleosomes along the genomic DNA is crucial for many cellular processes that include gene regulation and higher order packaging of chromatin. The question of how nucleosome-positioning information from a parent chromatin gets transferred to the daughter chromatin is highly intriguing. Accounting for experimentally known coupling between replisome movement and...

Polyadenylation and degradation of structurally abnormal mitochondrial tRNAs in human cells

RNA 3′ polyadenylation is known to serve diverse purposes in biology, in particular, regulating mRNA stability and translation. Here we determined that, upon exposure to high levels of the intercalating agent ethidium bromide (EtBr), greater than those required to suppress mitochondrial transcription, mitochondrial tRNAs in human cells became polyadenylated. Relaxation of the...

DNA template sequence control of bacterial RNA polymerase escape from the promoter

Promoter escape involves breaking of the favourable contacts between RNA polymerase (RNAP) and the promoter to allow transition to an elongation complex. The sequence of DNA template that is transcribed during promoter escape (ITS; Initially Transcribed Sequence) can affect promoter escape by mechanisms that are not yet fully understood. We employed a highly parallel strategy...

Determination of an effective scoring function for RNA–RNA interactions with a physics-based double-iterative method

RNA–RNA interactions play fundamental roles in gene and cell regulation. Therefore, accurate prediction of RNA–RNA interactions is critical to determine their complex structures and understand the molecular mechanism of the interactions. Here, we have developed a physics-based double-iterative strategy to determine the effective potentials for RNA–RNA interactions based on a...

RNA-splicing factor SART3 regulates translesion DNA synthesis

Translesion DNA synthesis (TLS) is one mode of DNA damage tolerance that uses specialized DNA polymerases to replicate damaged DNA. DNA polymerase η (Polη) is well known to facilitate TLS across ultraviolet (UV) irradiation and mutations in POLH are implicated in skin carcinogenesis. However, the basis for recruitment of Polη to stalled replication forks is not completely...

A new class of antibacterials, the imidazopyrazinones, reveal structural transitions involved in DNA gyrase poisoning and mechanisms of resistance

Imidazopyrazinones (IPYs) are a new class of compounds that target bacterial topoisomerases as a basis for their antibacterial activity. We have characterized the mechanism of these compounds through structural/mechanistic studies showing they bind and stabilize a cleavage complex between DNA gyrase and DNA (‘poisoning’) in an analogous fashion to fluoroquinolones, but without...

Reconstructing spatial organizations of chromosomes through manifold learning

Decoding the spatial organizations of chromosomes has crucial implications for studying eukaryotic gene regulation. Recently, chromosomal conformation capture based technologies, such as Hi-C, have been widely used to uncover the interaction frequencies of genomic loci in a high-throughput and genome-wide manner and provide new insights into the folding of three-dimensional (3D...

Mining for recurrent long-range interactions in RNA structures reveals embedded hierarchies in network families

The wealth of the combinatorics of nucleotide base pairs enables RNA molecules to assemble into sophisticated interaction networks, which are used to create complex 3D substructures. These interaction networks are essential to shape the 3D architecture of the molecule, and also to provide the key elements to carry molecular functions such as protein or ligand binding. They are...

PERK/eIF2α signaling inhibits HIF-induced gene expression during the unfolded protein response via YB1-dependent regulation of HIF1α translation

HIF1α (hypoxia inducible factor 1α) is the central regulator of the cellular response to low oxygen and its activity is deregulated in multiple human pathologies. Consequently, given the importance of HIF signaling in disease, there is considerable interest in developing strategies to modulate HIF1α activity and down-stream signaling events. In the present study we find that...

Protein plasticity driven by disorder and collapse governs the heterogeneous binding of CytR to DNA

The amplitude of thermodynamic fluctuations in biological macromolecules determines their conformational behavior, dimensions, nature of phase transitions and effectively their specificity and affinity, thus contributing to fine-tuned molecular recognition. Unique among large-scale conformational changes in proteins are temperature-induced collapse transitions in intrinsically...

Human RAD51 rapidly forms intrinsically dynamic nucleoprotein filaments modulated by nucleotide binding state

Formation of RAD51 filaments on single-stranded DNA is an essential event during homologous recombination, which is required for homology search, strand exchange and protection of replication forks. Formation of nucleoprotein filaments (NF) is required for development and genomic stability, and its failure is associated with developmental abnormalities and tumorigenesis. Here we...

Structural analyses of NEAT1 lncRNAs suggest long-range RNA interactions that may contribute to paraspeckle architecture

Paraspeckles are nuclear bodies that regulate multiple aspects of gene expression. The long non-coding RNA (lncRNA) NEAT1 is essential for paraspeckle formation. NEAT1 has a highly ordered spatial organization within the paraspeckle, such that its 5′ and 3′ ends localize on the periphery of paraspeckle, while central sequences of NEAT1 are found within the paraspeckle core. As...

Combined cistrome and transcriptome analysis of SKI in AML cells identifies SKI as a co-repressor for RUNX1

SKI is a transcriptional co-regulator and overexpressed in various human tumors, for example in acute myeloid leukemia (AML). SKI contributes to the origin and maintenance of the leukemic phenotype. Here, we use ChIP-seq and RNA-seq analysis to identify the epigenetic alterations induced by SKI overexpression in AML cells. We show that approximately two thirds of differentially...

Structural divergence creates new functional features in alphavirus genomes

Alphaviruses are mosquito-borne pathogens that cause human diseases ranging from debilitating arthritis to lethal encephalitis. Studies with Sindbis virus (SINV), which causes fever, rash, and arthralgia in humans, and Venezuelan equine encephalitis virus (VEEV), which causes encephalitis, have identified RNA structural elements that play key roles in replication and pathogenesis...

Acetylation and phosphorylation of human TFAM regulate TFAM–DNA interactions via contrasting mechanisms

Mitochondrial transcription factor A (TFAM) is essential for the maintenance, expression and transmission of mitochondrial DNA (mtDNA). However, mechanisms for the post-translational regulation of TFAM are poorly understood. Here, we show that TFAM is lysine acetylated within its high-mobility-group box 1, a domain that can also be serine phosphorylated. Using bulk and single...

Structural changes in DNA-binding proteins on complexation

Characterization and prediction of the DNA-biding regions in proteins are essential for our understanding of how proteins recognize/bind DNA. We analyze the unbound (U) and the bound (B) forms of proteins from the protein–DNA docking benchmark that contains 66 binary protein–DNA complexes along with their unbound counterparts. Proteins binding DNA undergo greater structural...

Ezh2 promotes clock function and hematopoiesis independent of histone methyltransferase activity in zebrafish

EZH2 is a subunit of polycomb repressive complex 2 (PRC2) that silences gene transcription via H3K27me3 and was shown to be essential for mammalian liver circadian regulation and hematopoiesis through gene silencing. Much less, however, is known about how Ezh2 acts in live zebrafish. Here, we show that zebrafish ezh2 is regulated directly by the circadian clock via both E-box and...

Genetic instability associated with loop or stem–loop structures within transcription units can be independent of nucleotide excision repair

Simple sequence repeats (SSRs) are found throughout the genome, and under some conditions can change in length over time. Germline and somatic expansions of trinucleotide repeats are associated with a series of severely disabling illnesses, including Huntington's disease. The underlying mechanisms that effect SSR expansions and contractions have been experimentally elusive, but...

Di-copper metallodrugs promote NCI-60 chemotherapy via singlet oxygen and superoxide production with tandem TA/TA and AT/AT oligonucleotide discrimination

In order to expand the current repertoire of cancer treatments and to help circumvent limitations associated with resistance, the identification of new metallodrugs with high potency and novel mechanisms of action is of significant importance. Here we present a class of di-copper(II) complex based on the synthetic chemical nuclease [Cu(Phen)2]+ (where Phen = 1,10-phenanthroline...