5 papers found.

Use AND, OR, NOT, +word, -word, "long phrase", (parentheses) to fine-tune your search.

Use AND, OR, NOT, +word, -word, "long phrase", (parentheses) to fine-tune your search.

Assuming the existence of a field theory in D dimensions dual to (D + 1)-dimensional flat space, governed by the asymptotic symmetries of flat space, we make some preliminary remarks about the properties of this field theory. We review briefly some successes of the 3d bulk – 2d boundary case and then focus on the 4d bulk – 3d boundary example, where the symmetry in question is...

We investigate the symmetry structure of the non-relativistic limit of Yang-Mills theories. Generalising previous results in the Galilean limit of electrodynamics, we discover that for Yang-Mills theories there are a variety of limits inside the Galilean regime. We first explicitly work with the SU(2) theory and then generalise to SU(N) for all N, systematising our notation and...

We define a ‘non-relativistic conformal method’, based on a Schrödinger algebra with critical exponent z = 2, as the non-relativistic version of the relativistic conformal method. An important ingredient of this method is the occurrence of a complex compensating scalar field that transforms under both scale and central charge transformations. We apply this non-relativistic method...

Maxwell’s Electrodynamics admits two distinct Galilean limits called the Electric and Magnetic limits. We show that the equations of motion in both these limits are invariant under the Galilean Conformal Algebra in D = 4, thereby exhibiting non-relativistic conformal symmetries. Remarkably, the symmetries are infinite dimensional and thus Galilean Electrodynamics give us the...