Advanced search    

Search: authors:"Bingshan Li"

19 papers found.
Use AND, OR, NOT, +word, -word, "long phrase", (parentheses) to fine-tune your search.

Site-specific selection reveals selective constraints and functionality of tumor somatic mtDNA mutations

Previous studies have indicated that tumor mitochondrial DNA (mtDNA) mutations are primarily shaped by relaxed negative selection, which is contradictory to the critical roles of mtDNA mutations in tumorigenesis. Therefore, we hypothesized that site-specific selection may influence tumor mtDNA mutations. To test our hypothesis, we developed the largest collection of tumor mtDNA...

Site-specific selection reveals selective constraints and functionality of tumor somatic mtDNA mutations

Previous studies have indicated that tumor mitochondrial DNA (mtDNA) mutations are primarily shaped by relaxed negative selection, which is contradictory to the critical roles of mtDNA mutations in tumorigenesis. Therefore, we hypothesized that site-specific selection may influence tumor mtDNA mutations. To test our hypothesis, we developed the largest collection of tumor mtDNA...

Site-specific selection reveals selective constraints and functionality of tumor somatic mtDNA mutations

Previous studies have indicated that tumor mitochondrial DNA (mtDNA) mutations are primarily shaped by relaxed negative selection, which is contradictory to the critical roles of mtDNA mutations in tumorigenesis. Therefore, we hypothesized that site-specific selection may influence tumor mtDNA mutations. To test our hypothesis, we developed the largest collection of tumor mtDNA...

RVTESTS: an efficient and comprehensive tool for rare variant association analysis using sequence data

Motivation: Next-generation sequencing technologies have enabled the large-scale assessment of the impact of rare and low-frequency genetic variants for complex human diseases. Gene-level association tests are often performed to analyze rare variants, where multiple rare variants in a gene region are analyzed jointly. Applying gene-level association tests to analyze sequence data...

Network-based stratification analysis of 13 major cancer types using mutations in panels of cancer genes

Background Cancers are complex diseases with heterogeneous genetic causes and clinical outcomes. It is critical to classify patients into subtypes and associate the subtypes with clinical outcomes for better prognosis and treatment. Large-scale studies have comprehensively identified somatic mutations across multiple tumor types, providing rich datasets for classifying patients...

A computational method for genotype calling in family-based sequencing data

Background As sequencing technologies can help researchers detect common and rare variants across the human genome in many individuals, it is known that jointly calling genotypes across multiple individuals based on linkage disequilibrium (LD) can facilitate the analysis of low to modest coverage sequence data. However, genotype-calling methods for family-based sequence data...

ASAP: an environment for automated preprocessing of sequencing data

Background Next-generation sequencing (NGS) has yielded an unprecedented amount of data for genetics research. It is a daunting task to process the data from raw sequence reads to variant calls and manually processing this data can significantly delay downstream analysis and increase the possibility for human error. The research community has produced tools to properly prepare...

Leveraging Identity-by-Descent for Accurate Genotype Inference in Family Sequencing Data

Sequencing family DNA samples provides an attractive alternative to population based designs to identify rare variants associated with human disease due to the enrichment of causal variants in pedigrees. Previous studies showed that genotype calling accuracy can be improved by modeling family relatedness compared to standard calling algorithms. Current family-based variant...

A gradient-boosting approach for filtering de novo mutations in parent–offspring trios

Motivation: Whole-genome and -exome sequencing on parent–offspring trios is a powerful approach to identifying disease-associated genes by detecting de novo mutations in patients. Accurate detection of de novo mutations from sequencing data is a critical step in trio-based genetic studies. Existing bioinformatic approaches usually yield high error rates due to sequencing...

A Bayesian framework for de novo mutation calling in parents-offspring trios

Motivation: Spontaneous (de novo) mutations play an important role in the disease etiology of a range of complex diseases. Identifying de novo mutations (DNMs) in sporadic cases provides an effective strategy to find genes or genomic regions implicated in the genetics of disease. High-throughput next-generation sequencing enables genome- or exome-wide detection of DNMs by...

Discovery of Rare Variants via Sequencing: Implications for the Design of Complex Trait Association Studies

There is strong evidence that rare variants are involved in complex disease etiology. The first step in implicating rare variants in disease etiology is their identification through sequencing in both randomly ascertained samples (e.g., the 1,000 Genomes Project) and samples ascertained according to disease status. We investigated to what extent rare variants will be observed...

A Likelihood-Based Framework for Variant Calling and De Novo Mutation Detection in Families

Family samples, which can be enriched for rare causal variants by focusing on families with multiple extreme individuals and which facilitate detection of de novo mutation events, provide an attractive resource for next-generation sequencing studies. Here, we describe, implement, and evaluate a likelihood-based framework for analysis of next generation sequence data in family...

Post-diagnosis hemoglobin change associates with overall survival of multiple malignancies – results from a 14-year hospital-based cohort of lung, breast, colorectal, and liver cancers

Background Anemia refers to low hemoglobin (Hb) level and is a risk factor of cancer patient survival. The National Comprehensive Cancer Network recently suggested that post-diagnosis Hb change, regardless of baseline Hb level, indicates the potential presence of anemia. However, there is no epidemiological study evaluating whether Hb change has direct prognostic values for...

Analysis of long non-coding RNAs highlights tissue-specific expression patterns and epigenetic profiles in normal and psoriatic skin

Background Although analysis pipelines have been developed to use RNA-seq to identify long non-coding RNAs (lncRNAs), inference of their biological and pathological relevance remains a challenge. As a result, most transcriptome studies of autoimmune disease have only assessed protein-coding transcripts. Results We used RNA-seq data from 99 lesional psoriatic, 27 uninvolved...

Genetic Polymorphism in a VEGF-Independent Angiogenesis Gene ANGPT1 and Overall Survival of Colorectal Cancer Patients after Surgical Resection

Background The VEGF-independent angiogenic signaling plays an important role in the development of colorectal cancer (CRC). However, its implication in the clinical outcome of CRC has not been reported. This study aimed to investigate the association between genetic variations in several major VEGF-independent signaling pathway genes and the overall survival of CRC patients...

Recurrent Tissue-Specific mtDNA Mutations Are Common in Humans

Mitochondrial DNA (mtDNA) variation can affect phenotypic variation; therefore, knowing its distribution within and among individuals is of importance to understanding many human diseases. Intra-individual mtDNA variation (heteroplasmy) has been generally assumed to be random. We used massively parallel sequencing to assess heteroplasmy across ten tissues and demonstrate that in...

Fine Mapping of Five Loci Associated with Low-Density Lipoprotein Cholesterol Detects Variants That Double the Explained Heritability

Complex trait genome-wide association studies (GWAS) provide an efficient strategy for evaluating large numbers of common variants in large numbers of individuals and for identifying trait-associated variants. Nevertheless, GWAS often leave much of the trait heritability unexplained. We hypothesized that some of this unexplained heritability might be due to common and rare...

The genome of Apis mellifera: dialog between linkage mapping and sequence assembly

Two independent genome projects for the honey bee, a microsatellite linkage map and a genome sequence assembly, interactively produced an almost complete organization of the euchromatic genome. Assembly 4.0 now includes 626 scaffolds that were ordered and oriented into chromosomes according to the framework provided by the third-generation linkage map (AmelMap3). Each construct...

Rare and common variants in extracellular matrix gene Fibrillin 2 (FBN2) are associated with macular degeneration

Neurodegenerative diseases affecting the macula constitute a major cause of incurable vision loss and exhibit considerable clinical and genetic heterogeneity, from early-onset monogenic disease to multifactorial late-onset age-related macular degeneration (AMD). As part of our continued efforts to define genetic causes of macular degeneration, we performed whole exome sequencing...